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Abstract. Let C := {x∈Rn : g(x,v)5 0, ∀v∈ V }, where g : Rn×Rp→R is a continuous function such
that, for all v∈Rp, g(·,v) is a convex function, and V ⊂Rp is some uncertain set. In this paper, under the
satisfaction of the robust characteristic cone constraint qualification, we first propose a represented form
of the ε-normal set to the convex set C at a considered point x̄ ∈C. Then, the proposed result is applied
to formulate a (necessary and sufficient) approximate optimality theorem for a quasi (α,ε)-solution to
the robust counterpart of a convex optimization problem in the face of data uncertainty.
Keywords. Approximate optimality conditions; ε-normal set; Generalized approximate solutions; Ro-
bust characteristic cone constraint qualification; Robust optimization.

1. INTRODUCTION

Minimizing a numerical function over a given set is an interesting and important mathemati-
cal problem in the view of both mathematical theory and real-world applications. In particular,
if the given numerical function is convex and the given set is also convex, it is then known as
a convex optimization problem; see, for example, [1, 2, 3] for more details. Besides, the given
convex set is usually described by an inequality system of convex functions. In other words, a
convex optimization problem reads as follows:

min f (x) subject to gi(x)5 0, i = 1, . . . ,m, (CP)

where f , gi :Rn→R, i= 1, . . . ,m are convex functions. The convex optimization problem (CP)
in the face of data uncertainty in the constraints can be captured by the one:

min f (x) subject to gi(x,vi)5 0, i = 1, . . . ,m, (UCP)

where gi : Rn×Rq→ R is continuous, gi(·,vi) is convex and vi ∈ Rq is an uncertain parameter
which is in the set Vi ⊂ Rq, i = 1, . . . ,m.

In this paper, we explore problem (UCP) by examining its robust (worst-case) counterpart
[4, 5]:

min f (x) subject to gi(x,vi)5 0, ∀vi ∈ Vi, i = 1, . . . ,m. (RCP)

∗Corresponding author.
E-mail address: grpiao@ybu.edu.cn (G.R. Piao), zhong@ybu.edu.cn (Z. Hong), bkduck106@naver.com (K.D.

Bae), dskim@pknu.ac.kr (D.S. Kim).
Received January 19, 2023; Accepted April 4, 2023.

c©2023 Journal of Nonlinear and Variational Analysis

897



898 G.R. PIAO, Z. HONG, K.D. BAE, D.S. KIM

Let F be its feasible set of problem (RCP), where

F := {x ∈ Rn : gi(x,vi)5 0, ∀vi ∈ Vi, i = 1, . . . ,m}. (1.1)

It is well-known that an optimal solution to a mathematical optimization problem may not
be exact but very near to it. This fact leads to the concept of approximate solutions, which
play an important role in algorithmic study of optimization problems; see, for example, [6, 7,
8, 9, 10] and the references therein. Noting that the notion of the so-called quasi ε-solution
introduced by Loridan [11] is motivated by the celebrated Ekeland Variational Principle [12].
Based on this motivation, numerous researchers studied the approximate solutions in convex or
nonconvex optimization problems, and established approximate necessary conditions for them
under various constraint qualifications; see, for example, [11, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22] and the references therein.

In 2008, Beldiman et al. [23] introduced a new class of approximate solutions (including
the one that is studied in this paper in details) in scalar/vector optimization problems, and dis-
cussed the relationship among the introduced approximate solutions. However, they did not
examine approximate optimality conditions for such a class of approximate solutions. In this
paper, we aim to study approximate optimality conditions for a quasi (α,ε)-solution (one of
the generalized approximate solutions introduced by Beldiman et al. [23]) to the robust con-
vex optimization problem (RCP). In fact, many results on robust optimality conditions were
investigated over the years; see, for example, [24, 25, 26, 27, 28] and the references therein.

It is worth mentioning that for certain approximate solutions in the robust convex optimiza-
tion, Lee and Lee [27] and Lee and Jiao [26] did some works. To be more precise, they em-
ployed the robust version of Farkas’s lemma to study some characterizations of ε-solutions and
quasi ε-solutions, respectively; see also the works [18, 19] by Sun and his collaborators. In par-
ticular, Jiao and Lee [25] also proposed approximate optimality conditions for quasi ε-solutions
in the robust convex semidefinite program due to its special structure. In addition, Strodiot et
al [20] pointed out an effective method, that is, by analyzing the ε-normal set when the feasible
set was explicitly expressed in terms of (convex) inequality systems under Slater’s constraint
qualification; then they formulated approximate optimality for a convex programming problem.

In the present paper, we focus on the study of the quasi (α,ε)-solution due to [23] for prob-
lem (RCP). We mainly make contributions to robust convex optimization as follows:

• We study the representation of the ε-normal set to set C at a considered point x̄ ∈ C,
where C is explicitly expressed in terms of a robust (convex) inequality system, under a
constraint qualification named robust characteristic cone constraint qualification [24],
which is weaker than Slater’s constraint qualification.
• By using the proposed result on representation of the ε-normal set, we examine (nec-

essary and sufficient) approximate optimality theorems for the quasi (α,ε)-solution to
problem (RCP).
• As a byproduct, we also have the following assertion: for any ε = 0, if x̄ = 0, then

∂ε‖x̄‖= ∂‖x̄‖= B.
The organization of this paper is as follows. Section 2 states some notations and preliminar-

ies. In Section 3, we introduce the approximate solution concepts. In Section 4, we examine the
approximate optimality theorem for the generalized approximate solution to problem (RCP).
Finally, concluding remarks are given in Section 5.
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2. PRELIMINARIES

This section gives some notations and preliminary results that are used in the paper. We
abbreviate (x1,x2, . . . ,xn) by x. The Euclidean space Rn is equipped with the usual Euclidean
norm ‖ · ‖. The nonnegative orthant of Rn is defined by Rn

+ := {(x1, · · · ,xn) ∈ Rn : xi = 0, i =
1, . . . ,n}. The inner product in Rn is defined by 〈x,y〉 := xT y for all x,y ∈ Rn. We say that a set
A ⊂ Rn is convex whenever µa1 +(1− µ)a2 ∈ A for all µ ∈ [0,1], a1,a2 ∈ A. For a given set
A⊂Rn, we denote the interior, closure, and convex hull generated by A, by intA, clA, and coA,
respectively.

Let f be a function from Rn to R, where R := [−∞,+∞]. Here, f is said to be proper if, for all
x ∈Rn, f (x)>−∞ and there exists x0 ∈Rn such that f (x0) ∈R. We denote the domain of f by
dom f , that is, dom f := {x ∈ Rn : f (x)<+∞}. The epigraph f is defined by epi f := {(x,r) ∈
Rn×R : f (x)5 r}. The function f is said to be convex if for all µ ∈ [0,1], f ((1−µ)x+µy)5
(1−µ) f (x)+µ f (y) for all x,y ∈Rn; equivalently, epi f is convex. The function f is said to be
concave whenever − f is convex. Let f : Rn→ R∪{+∞} be a convex function, the (convex)
subdifferential of f at x ∈ Rn is defined by

∂ f (x) =
{
{x∗ ∈ Rn : 〈x∗,y− x〉5 f (y)− f (x), ∀y ∈ Rn}, ifx ∈ dom f ,
/0, otherwise.

More generally, for any ε = 0, the ε-subdifferential of f at x ∈ Rn is defined by

∂ε f (x) =
{
{x∗ ∈ Rn : 〈x∗,y− x〉5 f (y)− f (x)+ ε, ∀y ∈ Rn}, ifx ∈ dom f ,
/0, otherwise.

We say f is a lower semicontinuous function if liminf
y→x

f (y) = f (x) for all x ∈ Rn. Let δC be

the indicator function with respect to a convex and closed subset C of Rn, that is, δC(x) = 0 if
x ∈C, and δC(x) = +∞ if x /∈C.

Definition 2.1 (ε-normal set). Let C⊂Rn be a convex and closed set and x∈C. Then Nε(x,C) :=
{ξ ∈ Rn : 〈ξ ,y− x〉5 ε, ∀y ∈C} is called the ε-normal set to C at x.

The following two lemmas are the sum rule and the scalar product rule of the ε-subdifferential
that are used in the sequel.

Lemma 2.1. [2, Theorem 2.115] Consider two proper convex functions f1, f2 : Rn → R such
that ridom f1∩ ridom f2 6= /0. Then, for ε > 0,

∂ε( f1 + f2)(x̄) =
⋃

ε1=0,ε2=0
ε1+ε2=ε

(∂ε1 f1(x̄)+∂ε2 f2(x̄)).

Lemma 2.2. [2, Theorem 2.117] For a proper convex function f : Rn→ R and any ε = 0,

∂ε(λ f )(x̄) = λ∂ε/λ f (x̄), ∀λ > 0.

The following remark is useful in the sequel, and its proof is easy by definition.

Remark 2.1. Let δC be the indicator function with respect to a convex and closed subset C of
Rn, and let ε = 0 be given. If x̄ ∈C, then ∂εδC(x̄) = Nε(x̄,C).
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3. APPROXIMATE SOLUTION CONCEPTS

Recall the robust counterpart of problem (UCP) introduced in Section 1,

min f (x) subject to gi(x,vi)5 0, ∀vi ∈ Vi, i = 1, . . . ,m, (RCP)

with its feasible set F defined in (1.1).

Definition 3.1. Let α = 0 and ε = 0 be given. Then x̄ is said to be
(i) an ε-solution to problem (RCP) if f (x̄)5 f (x)+ ε, ∀x ∈ F ;

(ii) a quasi α-solution to problem (RCP) if f (x̄)5 f (x)+α‖x− x̄‖, ∀x ∈ F ;
(iii) a regular (α,ε)-solution to problem (RCP) if, for any x ∈ F, x̄ is an ε-solution to prob-

lem (RCP) as well as a quasi α-solution.

Now, we introduce a generalized approximate solution, i.e., the so-called quasi (α,ε)-solution,
to problem (RCP).

Definition 3.2. [23] Let α = 0 and ε = 0 be given. Then x̄ is said to be a quasi (α,ε)-solution
to problem (RCP) if

f (x̄)5 f (x)+α‖x− x̄‖+ ε, ∀x ∈ F.

Remark 3.1. (i) If α = 0, a quasi (α,ε)-solution to problem (RCP) coincides with an
ε-solution, Lee and Lee [27] studied some characterizations of ε-solutions to prob-
lem (RCP).

(ii) If ε = 0, a quasi (α,ε)-solution to problem (RCP) coincides with a quasi α-solution,
Lee and Jiao [26] explored some characterizations of quasi α-solutions to problem (RCP).
In addition, they analyzed the difference between ε-solutions and quasi α-solutions.

(iii) If both α = 0 and ε = 0, then the quasi (α,ε)-solution x̄ deduces to be an exact mini-
mizer (if exists) to problem (RCP).

(iv) In order to make the quasi (α,ε)-solution to problem (RCP) meaningful, hereafter, we
always assume α > 0 and ε > 0.

Below, we analyze the geometric meanings of ε-solutions, quasi α-solutions, regular (α,ε)-
solutions, and quasi (α,ε)-solutions to problem (RCP); and demonstrate the differences among
them.

• Geometric interpretation of an ε-solution. By definition of an ε-solution to prob-
lem (RCP), f (x̄) 5 inf

x∈F
f (x) + ε, we can easily see that the ε-solution set of prob-

lem (RCP) coincides with the intersection of the ( inf
x∈F

f (x)+ε)-level set and the feasible

set, that is, {x̄ ∈ F : f (x̄)5 inf
x∈F

f (x)+ ε}.
• Geometric interpretation of a quasi α-solution. By definition, x̄ is a quasi α-solution to

problem (RCP) if
f (x̄)5 f (x)+α‖x− x̄‖, ∀x ∈ F,

in other words, a quasi α-solution says f (x) = g(x) for all x ∈ F in the view of their
graphs, where g(x) = f (x̄)−α‖x− x̄‖; moreover, if f is differentiable over its domain,
one has, ‖∇ f (x̄)‖5 α, see [11]. It is also worth noting that if a function f : F → R has
a quasi α-solution at x̄, then f is calm from below at x̄ in the view of Rockafellar and
Wets [29].
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• Geometric interpretation of a quasi (α,ε)-solution. By definition, x̄ is a quasi (α,ε)-
solution to problem (RCP) if

f (x̄)5 f (x)+α‖x− x̄‖+ ε, ∀x ∈ F.

Setting g(x) := f (x̄)−α‖x− x̄‖− ε, we have g(x̄) = f (x̄)− ε. A quasi (α,ε)-solution
says f (x)= g(x) for all x ∈ F in the view of their graphs.

Remark 3.2. (i) For a given (possibly nonconvex) function, it is crucial to use the (local)
concept as the following one: a point x̄ is a quasi ε-solution of f over F, then x̄ is a
(local) minimum of the function x 7→ f (x)+

√
ε‖x− x̄‖ over F.

(ii) Very similarly but essentially different to the quasi ε-solution, a point x̄ is a quasi (α,ε)-
solution of f over F, then x̄ is an ε-solution of the function x 7→ f (x)+

√
ε‖x− x̄‖ over

F. This plays a key role when we study the quasi (α,ε)-solution to problem (RCP).

Below, we give some simple examples, in which the differences among the mentioned ap-
proximate solutions can be verified well.

Example 3.1. Consider the following problem

min f (x) = x2 subject to x ∈ R. (P1)

Let α > 0 and ε > 0 be given.

(i) x̄ is an ε-solution to problem (P1) if f (x̄)5 f (x)+ ε,∀x ∈R, which is equivalent to say
f (x̄)5 inf

x∈R
f (x)+ ε, and the ε-solution set is [−

√
ε,
√

ε];

(ii) x̄ is a quasi α-solution to problem (P1) if f (x̄)5 f (x)+α‖x− x̄‖,∀x ∈R, by a geomet-
rical calculation, we obtain that the quasi α-solution set is [−α

2 ,
α

2 ];
(iii) the regular (α,ε)-solution set is [max{−

√
ε,−α

2 },min{
√

ε, α

2 }];
(iv) the quasi (α,ε)-solution set is [−

√
ε− α

2 ,
√

ε + α

2 ].

Example 3.2. Consider the following problem

min f (x) = max{x2 + x,x2− x} subject to x ∈ R. (P2)

Let α > 0 and ε > 0 be given.

(i) x̄ is an ε-solution to problem (P2) if f (x̄)5 f (x)+ ε,∀x ∈R, which is equivalent to say
f (x̄)5 inf

x∈R
f (x)+ ε, and the ε-solution set is [1−

√
1+4ε

2 ,
√

1+4ε−1
2 ];

(ii) x̄ is a quasi α-solution to problem (P2) if f (x̄)5 f (x)+α‖x− x̄‖,∀x ∈ R, since f (x) =
max{x2 + x,x2− x} is an even function over R, by a geometrical calculation, we obtain
that the quasi α-solution set is{

{0} , 0 < α 5 1,[1−α

2 , α−1
2

]
, α > 1;

(iii) the regular (α,ε)-solution set is{
{0} , 0 < α 5 1,[
max{1−

√
1+4ε

2 , 1−α

2 },min{α−1
2 ,

√
1+4ε−1

2 }
]
, α > 1;
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(iv) the quasi (α,ε)-solution set is
[

1−
√

1+4ε

2 ,
√

1+4ε−1
2

]
, 0 < α 5 1,[

1−α−2
√

ε

2 ,−
√

ε

]
∪
[

1−
√

1+4ε

2 ,
√

1+4ε−1
2

]
∪
[√

ε, α−1+2
√

ε

2

]
, α > 1.

4. MAIN RESULTS

In this section, we establish approximate optimality theorem for a quasi (α,ε)-solution to
problem (RCP) under a robust characteristic cone constraint qualification [24], that is, the cone⋃

vi∈Vi,λi=0

epi(
m

∑
i=1

λigi(·,vi))
∗

is closed and convex.

Note that D :=
⋃

vi∈Vi,λi=0

epi(
m

∑
i=1

λigi(·,vi))
∗ is a cone in Rm+1, which is called the robust

characteristic cone [24].

Definition 4.1. We say a robust characteristic cone constraint qualification (RCCCQ) holds for
problem (RCP) if the robust characteristic cone D is closed and convex.

Remark 4.1. Indeed, Jeyakumar and Li [24] shown that the robust characteristic cone D is con-
vex whenever gi(x, ·) is concave and Vi⊆Rq, i = 1, . . . ,m, is convex (see the following Proposi-
tion 4.1). In addition, they also proved that the robust characteristic cone D is closed whenever
the robust slater condition holds, that is, {x ∈ Rm : gi(x0,vi) < 0, ∀vi ∈ Vi, i = 1, . . . ,m} 6= /0
and Vi ⊆ Rq, i = 1, . . . ,m, is convex and compact (see the following Proposition 4.2).

Proposition 4.1. [24] Let gi : Rn×Rq→R, i = 1, . . . ,m be continuous functions. Suppose that
each Vi ⊆ Rq, i = 1, . . . ,m, is convex, for all vi ∈ Rq, gi(·,vi) is a convex function, and for each
x ∈ Rn, gi(x, ·) is concave on Vi. Then D is convex.

Proposition 4.2. [24] Let gi : Rn×Rq → R, i = 1, . . . ,m, be continuous functions such that
for all vi ∈ Rq, gi(·,vi) is a convex function. Suppose that each Vi, i = 1, . . . ,m, is compact
and convex, and there exists x0 ∈ Rn such that gi(x0,vi) < 0, ∀vi ∈ Vi, i = 1, . . . ,m. Then D is
closed.

4.1. Approximate optimality conditions for unconstrained problems.

Lemma 4.1. Consider the unconstrained convex optimization problem:

min f (x) subject to x ∈ Rn. (CPu)

Then x̄ is an ε-solution to problem (CPu) if and only if 0 ∈ ∂ε f (x̄).

Proof. The proof is trivial. Thus the proof is omit here. �

Theorem 4.1. Let x̄ be a quasi (α,ε)-solution to problem (CPu). Then there exist ε̄ f = 0 and
ε̄b = 0 with ε̄ f + ε̄b = ε, such that

0 ∈ ∂ε̄ f f (x̄)+α∂ε̄b/α‖ ·−x̄‖(x̄).
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Proof. Since x̄ is a quasi (α,ε)-solution to problem (CPu), then f (x̄) 5 f (x) + α‖x− x̄‖+
ε, ∀x ∈ Rn, which is equivalent to

f (x̄)+α‖x̄− x̄‖5 f (x)+α‖x− x̄‖+ ε, ∀x ∈ Rn.

In other words, by Remark 3.2 (ii), x̄ is an ε-solution to the problem:

min f (x)+α‖x− x̄‖ subject to x ∈ Rn.

Along with Lemma 4.1, we have

0 ∈ ∂ε( f +α‖ ·−x̄‖)(x̄).

As ridom f = ridom‖ · −x̄‖ = Rn, it then follows from Lemmas 2.1 and 2.2 that there exist
ε̄ f = 0 and ε̄b = 0 with ε̄ f + ε̄b = ε such that

0 ∈ ∂ε̄ f f (x̄)+α∂ε̄b/α‖ ·−x̄‖(x̄).

Thus, the proof is completed. �

Lemma 4.2. For any ε = 0, ∂ε‖ ·−x̄‖(x̄) = B.

Proof. By definition of ε-subdifferential, one has

∂ε‖ ·−x̄‖(x̄) = {ξ ∈ Rn : ‖x− x̄‖= 〈ξ ,x− x̄〉− ε, ∀x ∈ Rn}. (4.1)

Taking x = λ z, ∀λ > 0, and ∀z ∈ Rn, then x ∈ Rn, along with (4.1) we have,

∂ε‖ ·−x̄‖(x̄) = {ξ ∈ Rn : ‖λ z− x̄‖= 〈ξ ,λ z− x̄〉− ε, ∀z ∈ Rn, ∀λ > 0}

= {ξ ∈ Rn : ‖z− x̄
λ
‖= 〈ξ ,z− x̄

λ
〉− ε

λ
, ∀z ∈ Rn, ∀λ > 0}

= {ξ ∈ Rn : ‖z‖= 〈ξ ,z〉, ∀z ∈ Rn} (4.2)

= B. (4.3)

By taking λ → ∞, (4.2) is attained, and (4.3) is followed by the well-known Cauchy–Schwarz
inequality. �

Thanks to Lemma 4.2, we have the following result, which is the restatement of Theorem
4.1. Since its proof is trivial, we omit it here.

Theorem 4.2. Let x̄ be a quasi (α,ε)-solution to problem (CPu). Then there exist ε̄ f = 0 and
ε̄b = 0 with ε̄ f + ε̄b = ε such that

0 ∈ ∂ε̄ f f (x̄)+αB. (4.4)

Remark 4.2. Note that, in Theorem 4.2, inclusion (4.4) is unrelated to ε̄b, and this is reasonable
due to Lemma 4.2.

4.2. Representation of the ε-normal set. In order to obtain the approximate optimality con-
dition in terms of the constraint functions gi(x,vi)5 0, ∀vi ∈ Vi, i = 1, . . . ,m, the ε-normal set
(see Definition 2.1) must be explicitly expressed in their terms.

Below, we present such a result, which modifies the one studied by Strodiot et al [20], under
the robust characteristic cone constraint qualification (see Definition 4.1) rather than the Slater’s
constraint qualification.
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Proposition 4.3. Let ε = 0 be given. Let g : Rn×Rp → R be continuous function such that,
for all v ∈ V ⊂ Rp, where V is some uncertain set, g(·,v) is a convex function. Suppose that
(RCCCQ) holds. Let x̄ ∈C := {x ∈ Rn : g(x,v)5 0, ∀v ∈ V }. Then, ξ ∈ Nε(x̄,C) if and only if
there exist λ̄ = 0, v̄ ∈ V and ε̄ = 0 such that

ε̄ 5 λ̄g(x̄, v̄)+ ε and ξ ∈ ∂ε̄(λ̄g)(x̄, v̄).

Proof. By the definition of ε-normal set (see Definition 2.1), we have

Nε(x̄,C) = {ξ ∈ Rn : 〈ξ ,x− x̄〉5 ε, ∀x ∈C}
= {ξ ∈ Rn : 〈−ξ , x̄〉5 〈−ξ ,x〉+ ε, ∀x ∈C}.

In other words, x̄ is an ε-optimal solution to the following robust optimization problem with
linear objective function:

min 〈−ξ ,x〉 subject to g(x,v)5 0, ∀v ∈ V . (LP)

Since the condition (RCCCQ) holds, that is, the cone
⋃

v∈V ,λ=0 epi(λg(·,v))∗ is closed and
convex, it follows from [27, Theorem 2.2] that x̄ is an ε-optimal solution to problem (LP) if and
only if there exist there exist λ̄ = 0, v̄ ∈ V and ε̄ = 0 such that

ε̄ 5 λ̄g(x̄, v̄)+ ε and ξ ∈ ∂ε̄(λ̄g)(x̄, v̄).

Thus the desired result follows. �

Remark 4.3. We mention here that if ε = 0, then the ε-normal set at x̄ to C becomes the normal
cone to C at x̄ ∈C. With the same condition (RCCCQ), Jiao et al. [30] obtained a result, which
was the representation of the normal cone to C at x̄ ∈C.

4.3. Approximate optimality condition. Now, we are ready to give the main theorem in this
subsection, which is the approximate optimality condition for a quasi (α,ε)-solution to prob-
lem (RCP) under the fulfilment of the robust characteristic cone constraint qualification.

Theorem 4.3 (approximate optimality theorem). Let α > 0 and ε > 0 be given. Let gi : Rn×
Rq→ R, i = 1, . . . ,m be continuous functions such that, for each vi ∈ Rq, gi(·,vi) is convex on
Rn, and vi ∈ Rq is an uncertain parameter which is in the set Vi ⊂ Rq, i = 1, . . . ,m. Suppose
that (RCCCQ) holds for problem (RCP). Then the following statements are equivalent:

(i) x̄ is a quasi (α,ε)-solution to problem (RCP);
(ii) there exist ε̄ f = 0, ε̄b = 0, ε̄i = 0, v̄i ∈ Vi, and λ̄i = 0, i = 1, . . . ,m such that

0 ∈ ∂ε̄ f f (x̄)+
m

∑
i=1

∂ε̄i(λ̄igi(·, v̄i))(x̄)+αB, (4.5)

ε̄ f + ε̄b +
m

∑
i=1

ε̄i− ε 5
m

∑
i=1

λ̄igi(x̄, v̄i). (4.6)

Proof. [(i)⇒ (ii)] Let x̄ be a quasi (α,ε)-solution to problem (RCP). then

f (x̄)5 f (x)+α‖x− x̄‖+ ε, ∀x ∈ F,

which is equivalent to say that x̄ is an ε-solution to the following unconstrained problem:

min ( f +α‖ ·−x̄‖+
m

∑
i=1

δFi)(x) s.t. x ∈ Rn,
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where Fi = {x ∈Rn : gi(x,vi)5 0 for all vi ∈ Vi}, i = 1, . . . ,m, observe that F =∩m
i=1Fi. Thanks

to Theorem 4.2, there exist ε f = 0, εb = 0, εi = 0, i = 1, . . . ,m with

ε f + εb +
m

∑
i=1

εi = ε, (4.7)

such that 0 ∈ ∂ε f f (x̄)+αB+
m
∑

i=1
∂εiδFi(x̄). This, along with Remark 2.1, yields

0 ∈ ∂ε f f (x̄)+αB+
m

∑
i=1

Nεi(x̄,Fi).

Now, applying Proposition 4.3 to Fi, i = 1, . . . ,m, one sees that there exist λ̄i = 0 and ε̄i =
0, i = 1, . . . ,m such that

0 ∈ ∂ε̄ f f (x̄)+
m

∑
i=1

∂ε̄i(λ̄ig(·, v̄i))(x̄)+αB, (4.8)

ε̄i− εi 5 λ̄igi(x̄, v̄i)5 0, i = 1, . . . ,m, (4.9)

where ε̄ f = ε f and ε̄b = εb. [Note that εb is unrelated to (4.8), but related to (4.7), where εb
is a member for controlling ε]. Now summing (4.9) over i = 1, . . . ,m and using the condition

ε f + εb +
m
∑

i=1
εi 5 ε [in fact (4.7)] with ε̄ f = ε f and ε̄b = εb leads to (4.6) as desired.

[(ii)⇒ (i)] Since (4.5) and (4.6) holds for some ε̄ f = 0, ε̄b = 0, ε̄i = 0, v̄i ∈ Vi and λ̄i = 0,
i = 1, . . . ,m, then, there exist ξ f ∈ ∂ε̄ f f (x̄), ξi ∈ ∂ε̄i(λ̄ig(·, v̄i))(x̄), and b ∈ B such that

0 = ξ f +
m

∑
i=1

ξi +αb. (4.10)

Moreover, we have

f (x)− f (x̄)= 〈ξ f ,x− x̄〉− ε̄ f , ∀x ∈ Rn, (4.11)

λ̄igi(x, v̄i)− λ̄igi(x̄, v̄i)= 〈ξi,x− x̄〉− ε̄i, ∀x ∈ Rn. (4.12)

Summing (4.12) over i = 1, . . . ,m and adding it to (4.11) yields that, for all x ∈ Rn,

[ f (x)− f (x̄)]+ [
m

∑
i=1

λ̄igi(x, v̄i)−
m

∑
i=1

λ̄igi(x̄, v̄i)]= 〈ξ f +
m

∑
i=1

ξi,x− x̄〉− ε̄ f −
m

∑
i=1

ε̄i.

This, together with (4.6) and (4.10), arrives at

f (x)− f (x̄)+
m

∑
i=1

λ̄igi(x, v̄i)=−|αb|‖x− x̄‖− ε, ∀x ∈ Rn.

Particularly, if x ∈ F, we have f (x)− f (x̄) = −α‖x− x̄‖− ε for all x ∈ F. Hence x̄ is a quasi
(α,ε)-solution to problem (RCP). Thus, the proof is completed. �
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5. CONCLUSIONS

In this paper, we mainly studied the approximate optimality theorem for a quasi (α,ε)-
solution to the robust convex optimization problem (RCP) under the fulfilment of the (RCCCQ)
condition. We do this by exploring the representation of the ε-normal set to a convex set (see
Proposition 4.3). Examples are given to illustrate the differences among approximate solutions.
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