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Abstract. This paper proposes a novel inverse-free dynamical system for tackling absolute value equa-
tions. The proposed dynamical system is an extension of the inverse-free dynamical system designed
by Chen et al. (Appl. Numer. Math. 168 (2021), 170-181). A new global error bound for absolute
value equation is obtained, which is more compact than the existing ones. The equilibrium point of the
proposed dynamical system is proved to be the solution to the corresponding absolute value equation. In
contrast to some existing dynamical systems, the distinctive feature of our dynamical system is its simple
structure, inverse-free operation, and global sublinear and exponential convergence. Finally, numerical
results are provided to demonstrate the effectiveness of our dynamical system.
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1. INTRODUCTION

In this paper, we consider the absolute value equation (AVE), which is formulated as follows:

Ay−
∣∣y∣∣−b = 0, (1.1)

where A ∈ Rm×m, y ∈ Rm, b ∈ Rm, and
∣∣y∣∣ ∈ Rm represents the component-wise absolute value

of y whose the k-th component is yk if yk ∈ R+∪
{

0
}

and −yk otherwise. It is worth pointing
out that AVE (1.1) is NP-hard [1] owing to its non-differentiability and nonlinearity. In re-
cent years, AVE (1.1) has attracted much attention, mainly since it is related to many scientific
computing and engineering problems, such as variational inequality (VI) problems, interval lin-
ear equations, mixed integer programming problems, linear complementarity problems (LCP),
economic equilibrium problems, and others; see, e.g., [1–7] and references therein.

To analyze theoretical properties and effectively solve the AVE, many sufficiency conditions
on solvability and numerical calculation methods were studied in [1, 5, 7–12]. As described
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in [1], the general NP-hard LCP subsuming many nonlinear optimization problems can be
equivalent to an AVE. Nonetheless, by means of the connection between LCP and the AVE,
it was proved in [1] that the AVE has a unique solution if the least singular value of the coeffi-
cient matrix is strictly greater than one. Moreover, when the coefficient matrix has some specific
forms, the authors in [7] demonstrated the unique solvability of the AVE. In recent years, many
numerical methods have been investigated for the AVE. For instance, the generalized Newton
method was studied in [9] and then its modified version was devised in [10]. Moreover, the au-
thors in [11] proposed a SOR-like iteration method, and then its modified version was developed
in [12].

It is worth noticing that the numerical methods mentioned above to solve the AVE are all dis-
crete, and they usually need to coordinate the iteration step length and search direction to realize
the fast computation goal. Compared with these discrete methods, it is known that dynamical
systems have the advantages of acquisition of real-time solutions, parallel processing of infor-
mation and induction of some possible discrete methods; see, e.g., [13–16]. In the last decades,
from the perspective of neurodynamic algorithms, many dynamical systems (see [14,15,17–20]
and the references therein) have been widely used to tackle various problems. However, few
researchers devised dynamical systems to seek the solution to the AVE. This article focuses on
the dynamical systems for solving the AVE. To find the exact solution, the globally convergent
double-projection dynamical system was proposed in [19], and the asymptotically stable projec-
tion dynamical system was constructed in [20]. In [21], the AVE was equivalently transformed
into a differentiable unconstrained problem with the aid of smooth approximation technique.
Then, the unified smoothing dynamical system was devised for tackling the differentiable un-
constrained problem. Recently, the authors in [22] reformulated AVE (1.1) as an LCP, and
devised a projection-based dynamical system to address this LCP. It is known that the dynam-
ical systems mentioned above for tackling the AVE almost all involve the inverse operation of
a matrix or some matrices, which may lead to a large amount of calculation, especially for the
high-dimensional AVE problems. To overcome this limitation and directly tackle the AVE, the
authors in [23] proposed an asymptotically stable inverse-free dynamical system without involv-
ing any matrix inversion operation. More recently, to inherit the inverse-free advantage stated
in [23], the authors in [24] devised an inertial inverse-free dynamical system by introducing an
inertial term. Compared with the dynamical system with single-layer structure in [23], although
the dynamical system in [24] enjoys the acceleration characteristics, it is a two-layer structure
and involves more neurons, which will increase the hardware consumption [25]. Considering
that the inverse-free dynamical system in [23] is not only simple in structure but also does
not involve any matrix inversion operation, it is necessary to study the inverse-free dynamical
system with concise structure to address the AVE quickly.

Motivated by the work in [23], we propose a novel inverse-free dynamical system. If the
designed parameters satisfy certain conditions, the proposed dynamical system reduces to the
dynamical system in [23]. Furthermore, the reduced dynamical system is proved to be globally
exponentially convergent. Compared with the error bound involved in [23], a tighter global error
bound for AVE (1.1) is obtained. By virtue of the global error bound, the global sublinear and
exponential convergence of the proposed dynamical system are established under some suitable
conditions on the designed parameters. Detailed comparisons of our dynamical system with
the dynamical system in [23] are given by a numerical example. It can be observed from the
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simulation results that our dynamical system is effective and has certain advantages in tackling
the AVE.

The rest of this work is organized as below. Section 2 introduces some preliminaries for
the AVE. Section 3 proposes a novel inverse-free dynamical system and presents a new global
error bound for the AVE. Convergence results are presented in Section 4. Numerical simulation
results are presented in Section 5. The last section, Section 6 concludes this work.

2. PRELIMINARIES

2.1. Notations. Let R+ be the set of positive real numbers. Let 0 stand for a column vector
with all entries being 0 ∈ R (its size is to be understood from this paper). Em denotes the
m-order identity matrix.

(
·
)> denotes the transpose.

〈
·, ·
〉

denotes the inner product. For the
matrix B, the spectral norm is denoted by

∥∥B
∥∥

2. Moreover, denote
∥∥ ·∥∥1 and

∥∥ ·∥∥ as the `1-norm

and `2-norm, respectively. For p ∈ R+ and y ∈ Rm, we set
∥∥y
∥∥

p =
(

∑
m
i=1

∣∣yi
∣∣p) 1

p . Denote
∣∣ · ∣∣

as the absolute value vectors (matrices) defined by
∣∣b∣∣ = (∣∣b1

∣∣, · · · , ∣∣bm
∣∣)> (

∣∣B∣∣ = (∣∣bi j
∣∣)

mm).
Eigvals

(
B
)

and Eigvecs
(
B
)

denote the eigenvalues and eigenvectors space of the matrix B,
respectively. Let λmin(B) denote the smallest eigenvalue of the matrix B. Denote tridiag

(
c,d,e

)
as a matrix whose the sub-diagonal, the main diagonal, the super-diagonal and other entries are
c ∈R, d ∈R, e ∈R and 0 ∈R, respectively. 0 < D ∈Rm×m means that the matrix D is positive
definite.

2.2. Problem formulation. Let Θ(y) , (A+E)y−b, Ξ(y) , (A−E)y−b and Ω ,
{

y : 0 ≤
y ∈ Rm}. According to the analysis of [1, 23], it can be known that the AVE (1.1) is equivalent
to the following general LCP: find a y ∈ Rm such that

Θ(y)≥ 0, Ξ(y)≥ 0 and
〈
Θ(y),Ξ(y)

〉
= 0. (2.1)

Note that (2.1) is a special case of the following VI: find a y ∈ Rm such that Θ(y) ∈Ω and〈
x−Θ(y),Ξ(y)

〉
≥ 0, ∀x ∈Ω, (2.2)

which is equivalent to the projection equation [6]:

Θ(y) = PΩ

[
Θ(y)−Ξ(y)

]
, (2.3)

where PΩ(·) denotes the projection operator, and PΩ(z), argminy∈Ω ‖y− z‖ for all z ∈ Rm.
Before proceeding, the following assumption is adopted for our analysis.

Assumption 2.1. For A ∈ Rm×m in AVE (1.1), λmin
(
A>A

)
> 1, i.e., σmin(A) > 1, where

σmin(A) stands for the least singular value of the m-order matrix A.

Remark 2.1. Assumption 2.1 has received extensive attention (see, e.g., [1, 7, 8, 23]). From [1,
Proposition 3], it follows that Assumption 2.1 is given to ensure that AVE (1.1) has a unique
solution. Moreover, Assumption 2.1 indicates that it makes sense to devise some computing
methods to tackle AVE (1.1).
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2.3. Definitions and technical lemmas. Consider the following dynamical system{
ẏ(t) = F

(
y(t)
)
,

y
(
t0
)
= y0 ∈ Rm,

(2.4)

where F : Rm→ Rm is a continuous function.

Definition 2.1. [26] A vector y∗ ∈ Rm is called an equilibria of system (2.4) if F
(
y∗
)
= 0.

Definition 2.2. [26] An equilibrium point y∗ ∈ Rm of system (2.4) is said to be globally expo-
nentially stable if there exists two positive constants κ and γ such that∥∥y(t)− y∗

∥∥≤ κ
∥∥y0− y∗

∥∥exp
(
− γ
(
t− t0

))
holds for each solution y(t) ∈ Rm with t ≥ t0.

Next, we give some basic properties of AVE (1.1).

Lemma 2.1. [23] Let ε(y) , Θ(y)−PΩ

[
Θ(y)−Ξ(y)

]
in (2.3). Then, y∗ is a solution to AVE

(1.1) iff ε
(
y∗
)
= 0. Moreover, ε(y) = Ay−

∣∣y∣∣−b can be obtained directly.

Lemma 2.2. [23] For AVE (1.1), if σmin(A) ∈ [1,+∞) and y∗ ∈ Rm is a solution of this equa-
tions, then 〈

y− y∗,A>
(
Ay−

∣∣y∣∣−b
)〉
≥ 1

2

∥∥Ay−
∣∣y∣∣−b

∥∥2
,

for any y ∈ Rm.

3. INVERSE-FREE DYNAMICAL SYSTEM

Before devising the dynamical system, we establish a new global error bound for AVE (1.1)
as follows.

Lemma 3.1. Let Λ(y) = Ay−
∣∣y∣∣−b. If Assumption 2.1 is satisfied and y∗ ∈ Rm is the unique

solution to AVE (1.1), then
1

κ1 +κ2

∥∥Λ(y)
∥∥≤ ∥∥y− y∗

∥∥≤ κ1 +κ2

δ

∥∥Λ(y)
∥∥ (3.1)

holds for any y ∈ Rm, where

κ1 ,

{
ρ
(
A+Em

)
, y− y∗ ∈ Eigvecs

(
A+Em

)
,∥∥A+Em

∥∥
2, otherwise, (3.2)

with ρ
(
A+Em

)
,max

{∣∣λ ∣∣ : λ ∈ Eigvals
(
A+Em

)}
denoting the spectral radius of A+Em,

κ2 ,

{
ρ
(
A−Em

)
, y− y∗ ∈ Eigvecs

(
A−Em

)
,∥∥A−Em

∥∥
2, otherwise, (3.3)

with ρ
(
A−Em

)
,max

{∣∣λ ∣∣ : λ ∈ Eigvals
(
A−Em

)}
being the spectral radius of A−Em, and

δ , λmin
(
A>A

)
−1.

Proof. For simplification, we replace ε(y), Θ(y), Θ
(
y∗
)
, Ξ(y), and Ξ

(
y∗
)

with ε , Θ, Θ∗, Ξ and
Ξ∗, respectively. From VI (2.2) and the proof of [23, Theorem 3.5], it follows that〈

ε,
(
Θ−Θ

∗)+ (Ξ−Ξ
∗)〉≥∥∥ε

∥∥2
+
〈
Θ−Θ

∗,Ξ−Ξ
∗〉. (3.4)
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Let D , A>A−Em. Using Assumption 2.1 and the fact that D = D>, we obtain D > 0. Then
we have 〈

Θ−Θ
∗,Ξ−Ξ

∗〉=〈y− y∗,D
(
y− y∗

)〉
≥ 0. (3.5)

In addition, by [27, Lemma 6], for 0 < D ∈ Rm×m, there is an orthogonal matrix P ∈ Rm×m,
such that 〈

x,Dx
〉
=

m

∑
i

λi
(
Px
)2

i ≥ δ

m

∑
i

(
Px
)2

i = δ
∥∥Px

∥∥2
= δ

〈
x,P>Px

〉
= δ

∥∥x
∥∥2 (3.6)

always holds for any vector x∈Rm (which may not be the eigenvector of D), where λi ∈R+

(
i∈{

1, · · · ,m
})

is the eigenvalue of D and δ , λmin(A>A)− 1 = λmin
(
D
)
. It then follows from

(3.5) and (3.6) that 〈
Θ−Θ

∗,Ξ−Ξ
∗〉≥ δ

∥∥y− y∗
∥∥2
. (3.7)

Further, by (3.4) and (3.7), we see that

δ
∥∥y− y∗

∥∥2 ≤
〈
Θ−Θ

∗,Ξ−Ξ
∗〉+∥∥ε

∥∥2 ≤
〈

ε,
(
Θ−Θ

∗)+ (Ξ−Ξ
∗)〉. (3.8)

Applying the Cauchy-Schwarz inequality and the triangle inequality, we obtain from (3.8) that∥∥y− y∗
∥∥2 ≤ 1

δ

∥∥ε
∥∥∥∥∥(Θ−Θ

∗)+ (Ξ−Ξ
∗)∥∥∥≤ 1

δ

∥∥ε
∥∥(∥∥Θ−Θ

∗∥∥+∥∥Ξ−Ξ
∗∥∥). (3.9)

When y−y∗ ∈ Eigvecs
(
A+Em

) (
y−y∗ ∈ Eigvecs

(
A−Em

))
, we have

∥∥(A+Em)
(
y−y∗

)∥∥≤
ρ
(
A+Em

)∥∥y−y∗
∥∥ (∥∥(A−Em)

(
y−y∗

)∥∥≤ ρ
(
A−Em

)∥∥y−y∗
∥∥) by utilizing the homogeneity

of the matrix norm and [28, Theorem 5.6.9.]. Otherwise, by the compatibility (see [29, Remark
1]) of the matrix spectral norm and the vector `2-norm, we have∥∥(A+Em)

(
y− y∗

)∥∥≤ ∥∥A+Em
∥∥

2

∥∥y− y∗
∥∥

and ∥∥(A−Em)
(
y− y∗

)∥∥≤ ∥∥A−Em
∥∥

2

∥∥y− y∗
∥∥.

Utilizing (3.9), Lemma 3.1, and the definitions of Θ(·) and Ξ(·), one deduces∥∥y− y∗
∥∥2 ≤ 1

δ

∥∥ε
∥∥[∥∥(A+Em)(y− y∗)

∥∥+∥∥(A−Em)(y− y∗)
∥∥]≤ κ1 +κ2

δ

∥∥ε
∥∥∥∥y− y∗

∥∥,
namely, ∥∥y− y∗

∥∥≤ κ1 +κ2

δ

∥∥ε
∥∥= κ1 +κ2

δ

∥∥Λ(y)
∥∥, (3.10)

where κ1 and κ2 are defined by (3.2) and (3.3), respectively. From the definitions of κ1, κ2 and
the spectral norm, it follows that κ1 ≥ 0 and κ2 ≥ 0 are always true and κ1 = 0 (κ2 = 0) iff
A = −Em (A = Em), so κ1 +κ2 > 0 must be established. From (3.10), it then follows that the
right-hand inequality of (3.1) holds.

Besides, for any y ∈ Rm and z ∈ Rm, if y− z ∈ Eigvecs
(
A+Em

)
, then

∥∥(A+Em)
(
y− z

)∥∥≤
ρ
(
A+Em

)∥∥y− z
∥∥ by using [28, Theorem 5.6.9.] and the homogeneity of the matrix norm;
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otherwise, it follows from [29, Remark 1] that we obtain
∥∥(A+Em)

(
y− z

)∥∥≤ ∥∥A+Em
∥∥

2

∥∥y−
z
∥∥. So, by the definitions of Θ(·) and κ1, we conclude that∥∥Θ(y)−Θ(z)

∥∥= ∥∥(A+Em)(y− z)
∥∥≤ κ1

∥∥y− z
∥∥, ∀ y,z ∈ Rm. (3.11)

It then follows from (3.11) that Θ(·) is globally Lipschitz continuous with the Lipschitz constant
L = κ1. By (3.4) and (3.5), one has∥∥ε

∥∥2 ≤
〈
Θ−Θ

∗,Ξ−Ξ
∗〉+∥∥ε

∥∥2 ≤
〈
ε,(Θ−Θ

∗)+(Ξ−Ξ
∗)
〉
. (3.12)

Utilizing the Cauchy-Schwarz inequality, the triangle inequality, Lemma 3.1, [28, Theorem
5.6.9.], [29, Remark 1], and the definitions of Θ(·) and Ξ(·), we see from (3.2), (3.3), and (3.12)
that ∥∥ε

∥∥2 ≤
∥∥ε
∥∥(‖Θ−Θ

∗‖+‖Ξ−Ξ
∗‖
)
≤
(
κ1 +κ2

)∥∥ε
∥∥∥∥y− y∗

∥∥,
that is,

1
κ1 +κ2

∥∥Λ(y)
∥∥= 1

κ1 +κ2

∥∥ε
∥∥≤ ∥∥y− y∗

∥∥. (3.13)

It thus follows from (3.13) that the left-hand inequality of (3.1) is true. Hence, the conclusion
is established. �

Remark 3.1. It is worth noticing that one deduces that κ1 + κ2 in (3.1) is less than or equal
to L1 +L2 involved in [23, Theorem 4.1] by utilizing the property (see [28, Theorem 5.6.9.])
of spectral radius and the compatibility (see [29, Remark 1]) of the matrix spectral norm and
the vector `2-norm. Hence, theoretically, the upper and lower bounds of the error involved in
this paper are more compact than those in [23], which shows that we have improved the results
in [23].

For notational simplicity, (t) will be omitted for all variables
(
like y(t)

)
containing (t) in the

remainder of this work, unless necessary. Now, we propose the following inverse-free dynami-
cal system (IFDS),

ẏ =−h
[
α
∥∥Λ(y)

∥∥µ

p +β
∥∥Λ(y)

∥∥ν

q

]
H (y), (3.14)

where H (y) = A>Λ(y), Λ(y) = Ay−
∣∣y∣∣− b, and h, α , β , p, q ∈ R+ and µ , ν ∈ R are the

designed parameters.

Remark 3.2. The proposed IFDS (3.14) is inspired from the inverse-free dynamical system
in [23]. From the concise structure of (3.14), it can be seen that IFDS inherits the advantages
of the dynamical system in [23], that is, it can directly solve AVE (1.1) and does not involve
any matrix inversion operation. Furthermore, it is worth noting that when µ = ν = 0, IFDS
(3.14) degenerates to the dynamical system in [23]. And we deduce that the reduced dynamical
system is globally exponentially stable (see Theorem 4.4 for details).

Now, we give a lemma on the relationship between the equilibrium point (defined by Defini-
tion 2.1) of IFDS (3.14) and the solution to AVE (1.1).

Lemma 3.2. Under Assumption 2.1, if y∗ ∈ Rm is an equilibrium point of IFDS (3.14) iff it is
the solution to AVE (1.1).
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Proof. From Definition 2.1, it follows that if y∗ ∈ Rm is an equilibrium point to IFDS (3.14),
then [

α
∥∥Λ
(
y∗
)∥∥µ

p +β
∥∥Λ
(
y∗
)∥∥ν

q

]
H
(
y∗
)
= 0,

namely,

α
∥∥Λ
(
y∗
)∥∥µ

p +β
∥∥Λ
(
y∗
)∥∥ν

q = 0, (3.15)

or

H
(
y∗
)
= 0. (3.16)

To implement the IFDS (3.14) well, we set
∥∥Λ(y)

∥∥µ

p , 0 (
∥∥Λ(y)

∥∥ν

q , 0) when µ = 0 (ν = 0)

and Λ
(
y
)
= 0, and

∥∥Λ(y)
∥∥µ

pH (y), 0 (
∥∥Λ(y)

∥∥ν

qH (y), 0) when µ < 0 (ν < 0) and Λ
(
y
)
= 0.

That is to say that we let 00 = 0 and 0
0 = 0 in this paper. Consequently, by (3.14) and (3.15),

one has

Λ
(
y∗
)
= Ay∗−

∣∣y∗∣∣−b = 0. (3.17)

Note that from Assumption 2.1 it can be directly obtained that A ∈ Rm×m is invertible. It thus
follows from (3.14) and (3.16) that

A>Λ
(
y∗
)
= 0 ⇔ Λ

(
y∗
)
= 0. (3.18)

By (3.17) and (3.18), one has Ay∗−
∣∣y∗∣∣−b = 0. It then follows from Lemma 2.1 that y∗ is the

solution to AVE (1.1). Besides, if a point y∗ is a solution to AVE (1.1), it is not difficult to find
that it is the equilibrium point of IFDS (3.14). That is, the converse is also true. This proof is
finished. �

4. MAIN RESULTS

In this section, we begin to prove that IFDS (3.14) is globally asymptotic, sublinear and
exponential convergent under Assumption 2.1 and various parameters, respectively. At first,
Lipschitz continuity of the function H (y) in (3.14) is presented as follows.

Lemma 4.1. The mapping H (·) : Rm → Rm involved in IFDS (3.14) is globally Lipschitz
continuous.

Proof. Combining (3.14) and the compatibility [29] of the spectral norm, one deduces∥∥H (y)−H (z)
∥∥=∥∥A>A

(
y− z

)
+A>

(
|z|− |y|

)∥∥
≤
∥∥A>A

(
y− z

)∥∥+∥∥A>
(∣∣y∣∣− ∣∣z∣∣)∥∥ (4.1)

for any y ∈ Rm and z ∈ Rm. By the proof of Lemma 3.1, it can be obtained that∥∥A>A
(
y− z

)∥∥≤L1
∥∥y− z

∥∥ (4.2)

and ∥∥A>
(∣∣y∣∣− ∣∣z∣∣)∥∥≤L2

∥∥∣∣y∣∣− ∣∣z∣∣∥∥, (4.3)

where

η1 ,

{
ρ
(
A>A

)
, x− y ∈ Eigvecs

(
A>A

)
,∥∥A>A

∥∥
2, otherwise,
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with ρ
(
A>A

)
,max

{∣∣λ ∣∣ : λ ∈ Eigvals
(
A>A

)}
denoting the spectral radius of A>A, and

η2 ,

{
ρ
(
A>
)
,
∣∣x∣∣− ∣∣y∣∣ ∈ Eigvecs

(
A>
)
,∥∥A

∥∥
2, otherwise,

with ρ
(
A>
)
, max

{∣∣λ ∣∣ : λ ∈ Eigvals
(
A>
)}

being the spectral radius of A>. It thus follows
from (4.1), (4.2), and (4.3) that∥∥H (y)−H (z)

∥∥≤ η1
∥∥y− z

∥∥+η2
∥∥|y|− |z|∥∥. (4.4)

By (4.4) and the fact that
∥∥|y|− |z|∥∥≤ ∥∥y− z

∥∥, one sees that∥∥H (y)−H (z)
∥∥≤ (η1 +η2

)∥∥y− z
∥∥. (4.5)

It then follows from (4.5) that H (·) : Rm → Rm is globally Lipschitz continuous with the
Lipschitz constant η0 = η1 +η2. This completes the proof. �

Remark 4.1. It is worth mentioning that our modulus η0 is tighter than that in [23] since∥∥A>
∥∥

2

∥∥A
∥∥

2 ≥ η1 and
∥∥A>

∥∥
2 ≥ η2. Besides, it can be obtained from [15, Lemma 3] that H (·)

is a Lipschitz continuous vector field. Thus, IFDS (3.14) possesses a unique equilibrium point
by virtue of [15, Lemma 3] and Lemma 4.1.

Let µ 6= 0 or ν 6= 0 in (3.14). In what follows, the stability and global convergence results of
IFDS (3.14) is established.

Theorem 4.1. Suppose that Assumption 2.1 is satisfied. If µ 6= 0 or ν 6= 0, then, for any initial
point y(t0) ∈ Rm, IFDS (3.14) is stable in the Lyapunov sense, and its solution trajectory y(t)
converges globally to the solution to AVE (1.1).

Proof. Let us consider the Lyapunov function candidate:

H
(
y(t)
)
,
∥∥y(t)− y∗

∥∥2
. (4.6)

For the sake of simplification discussed, (t) will be omitted for the variable y(t) in the remainder
of this work, unless necessary. By (4.6), one has

H(y)≥ 1
2

∥∥y− y∗
∥∥2
, (4.7)

which implies that H(y) = 0 iff y = y∗, and H(y)→ +∞ when ‖y‖ → +∞. On the one hand,
H(y)≥ 0 needs to be verified. From (4.6), it is not difficult to obtain that H

(
y∗
)
= 0 for y = y∗

and H(y)> 0 for any y 6= y∗.
On the other hand, the differentiation of H(·) with respect to t, namely, Ḣ(y) = dH(y)

dy ·
dy
dt ≤ 0

needs to be demonstrated. From (3.14) and the definition of H(·) in (4.6), it follows that

Ḣ(y) =−2h
〈

y− y∗,
[
α
∥∥Λ(y)

∥∥µ

p +β
∥∥Λ(y)

∥∥ν

q

]
A>Λ(y)

〉
=−2hα

∥∥Λ(y)
∥∥µ

p

〈
y− y∗,A>Λ(y)

〉
−2hβ

∥∥Λ(y)
∥∥ν

q

〈
y− y∗,A>Λ(y)

〉
. (4.8)

It then follows from (3.14), (4.8), and Lemma 2.2 that

Ḣ(y)≤−h
∥∥Λ(y)

∥∥2
[
α
∥∥Λ(y)

∥∥µ

p +β
∥∥Λ(y)

∥∥ν

q

]
≤ 0, (4.9)
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which indicates that H(·) is non-increasing. Moreover, if Ḣ(y) = 0, then it follows from (4.9)
and Lemma 3.2 that Λ(y)= 0 holds, that is, ẏ= 0 is established. Thus, one draws the conclusion:
H(y) is a Lyapunov function.

For all t ≥ t0 and fixed t0 ∈ R+∪{0}, H
(
y(t)
)
≤ H

(
y(t0)

)
since H(·) is non-increasing. By

(4.7), one has

1
2

∥∥y(t)− y∗
∥∥2 ≤ H

(
y(t)
)
≤ H

(
y(t0)

)
, t ∈ [t0,+∞). (4.10)

It then follows from (4.9) and (4.10) that H
(
y(t)
)

has a finite limit as t → +∞, and each tra-
jectory y(t) is uniformly bounded on [t0,+∞). By the boundedness of the trajectory y(t), it can
be deduced that there exists a monotonically increasing sequence

{
t j
}+∞

j=1 and a point ỹ such
that lim j→+∞ y

(
t j
)
= ỹ. Consequently, ỹ is limit point of y(t). In light of the LaSalle invariance

principle in [26], y converges to the largest invariant subset of the set S =
{

y ∈ Rm : Ḣ(y) = 0
}

when t → +∞. It is noticed that y = y∗ when Ḣ(y) = 0. Then, the trajectory y(t) converges to
the equilibria set as t→+∞. Accordingly, the limit point ỹ is an equilibria.

Now we conclude that limt→+∞ y(t) = ỹ holds for each initial point y
(
t0
)
. Replacing y∗ with

ỹ in (4.6), we design a new Lyapunov function

Ĥ(y) =
∥∥y− ỹ

∥∥2
. (4.11)

Similar to the calculation of Ḣ(y), it follows from (4.11) that ˙̂H(y)≤ 0 holds for all t ∈ [t0,+∞).
Due to Ĥ(y)≥ 0 and the continuity of the function Ĥ(·), for any sufficiently small positive num-
ber ε̃ , there exists a positive natural number k and a positive constant δ̃ such that

∣∣Ĥ(y(tk))−
Ĥ
(
ỹ
)∣∣= ∣∣Ĥ(y(tk))∣∣= Ĥ

(
y
(
tk
))

< ε̃ when
∥∥y
(
tk
)
− ỹ
∥∥< δ̃ , where tk ∈ (t0,+∞). Furthermore,

based on the monotone nonincreasing property of Ĥ(·), Ĥ
(
y(t)
)
≤ Ĥ

(
y
(
tk
))

< ε̃ holds for ar-
bitrary t ∈ [tk,+∞). This shows that limt→+∞ y(t) = ỹ holds. Then, by lim‖y‖→+∞ Ĥ(y) = +∞,
we conclude that the solution trajectories y(t) ∈ Rm of IFDS (3.14) converges globally to the
solution of AVE (1.1). If there is a unique solution to AVE (1.1), then the solution trajectory
y(t)∈Rm is asymptotically stable for any initial vector y

(
t0
)
∈Rm. This proof is completed. �

Next, under various parameter conditions, the global sublinear convergence of IFDS (3.14)
is obtained by utilizing the new global error bound formula (see Lemma 3.1).

Theorem 4.2. Suppose that Assumption 2.1 holds. For any initial point y
(
t0
)
∈Rm, the tracking

error
∥∥y(t)−y∗

∥∥ associated with IFDS (3.14) achieves a nonergodic sublinear convergence rate

O
((1

t

)ζ1
)

if anyone of the following two statements is satisfied:
(i) ζ1 ,

1
ν

, µ 6= 0, ν > 0 and q ∈
(
0,2
]
.

(ii) ζ1 ,
1
µ

, µ > 0, ν 6= 0 and p ∈
(
0,2
]
.

Proof. (i) Now we consider the Lyapunov function H(y) ,
∥∥y− y∗

∥∥2 defined in (4.6). By the
definition of H(·) and the proof of Theorem 4.1, one has

Ḣ ≤−hα
∥∥Λ(y)

∥∥2∥∥Λ(y)
∥∥µ

p −hβ
∥∥Λ(y)

∥∥2∥∥Λ(y)
∥∥ν

q . (4.12)
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Based on
∥∥Λ(y)

∥∥
q ≥

∥∥Λ(y)
∥∥ for any q ∈

(
0,2
]

(see the inequality (7) in [30]) and ν > 0, (4.12)
implies that

Ḣ ≤−hβ
∥∥Λ(y)

∥∥ν+2
. (4.13)

Furthermore, by (3.1) in Lemma 3.1, it is straightforward to conclude∥∥Λ(y)
∥∥≥ δ

κ1 +κ2

∥∥y− y∗
∥∥. (4.14)

It then follows from (4.13) and (4.14) that

Ḣ ≤−c
∥∥y− y∗

∥∥ν+2
, (4.15)

where c = hβ

(
δ

κ1+κ2

)ν+2
. By (4.6) and (4.15), one deduces

∥∥y− y∗
∥∥≤ ∥∥y

(
t0
)
− y∗

∥∥( 2
cν
· 1

t

) 1
ν ,

namely,
∥∥y− y∗

∥∥ = O
((1

t

)ζ1
)

with ζ1 =
1
ν

, which indicates that the tracking error
∥∥y(t)− y∗

∥∥
associated with IFDS (3.14) achieves O

((1
t

)ζ1
)
. Consequently, (i) holds.

(ii) The proof of part (ii) is completely similar to parts (i), thus we omit it here. This completes
the proof. �

Theorem 4.3. Under Assumption 2.1, for each initial value y
(
t0
)
∈ Rm in IFDS (3.14), the

tracking error
∥∥y(t)− y∗

∥∥ satisfies∥∥y(t)− y∗
∥∥≤ ∥∥∥y

(
t0
)
− y∗

∥∥∥(γ · 1
t

)ζ2,

that is to say that the error associated with IFDS (3.14) achieves a nonergodic sublinear con-
vergence rate O

((1
t

)ζ2
)
, if anyone of the following two statements is true:

(i) ζ2 ,
1
µ

, µ > 0, ν < 0, 0 < p≤ 2, q≥ 2 and γ =
2
(

κ1+κ2

)ν+2

hαµδ ν+2 ;

(ii) ζ2 ,
1
ν

, µ < 0, ν > 0, p≥ 2, 0 < q≤ 2 and γ =
2
(

κ1+κ2

)µ+2

hβνδ µ+2 .

Proof. This proof is similar to Theorem 4.2, and thus is omitted. �

Remark 4.2. From Theorems 4.2 and 4.3, under different parameter settings, it can be seen that
the global tracking error associated with IFDS (3.14) achieves zero with the nonergodic sublin-
ear convergence rate, and we can flexibly adjust the sublinear convergence rate. Furthermore,
for addressing AVE (1.1), the selection of these different parameters is not complicated, which
is quite convenient for the implementation of our system.

It is worth noting that IFDS (3.14) with µ = ν = 0 is the dynamical system (3.8) in [23].
In what follows, we investigate the global exponential convergence for the proposed dynamical
system in this case.

Theorem 4.4. If Assumption 2.1 and µ = ν = 0 hold, then, for any initial vector y(t0) ∈ Rm,
IFDS (3.14) is exponentially convergent.



A MODIFIED INVERSE-FREE DYNAMICAL SYSTEM 919

Proof. We consider the Lyapunov function H
(
y(t)
)

defined in (4.6). By (4.6), one has

1
2

∥∥y(t)− y∗
∥∥2 ≤ H

(
y(t)
)
≤ 3

2

∥∥y(t)− y∗
∥∥2
,

namely,

2
3

H
(
y(t)
)
≤
∥∥y(t)− y∗

∥∥2 ≤ 2H
(
y(t)
)
. (4.16)

It follows from (3.14) and µ = ν = 0 that

ẏ(t) =−hA>Λ
(
y(t)
)
. (4.17)

Moreover, by (3.1) in Lemma 3.1, we obtain that

δ

κ1 +κ2

∥∥y(t)− y∗
∥∥≤ Λ

(
y(t)
)
≤
(
κ1 +κ2

)∥∥y(t)− y∗
∥∥. (4.18)

It then follows from (4.6), (4.16)-(4.18) and Lemma 2.2 that

dH
(
y(t)
)

dt
= 2
〈
ẏ(t),y(t)− y∗

〉
=−2h

〈
A>Λ

(
y(t)
)
,y(t)− y∗

〉
≤−h

∥∥∥Λ
(
y(t)
)∥∥∥2
≤− hδ 2(

κ1 +κ2
)2

∥∥y(t)− y∗
∥∥2 ≤− 2hδ 2

3
(
κ1 +κ2

)2 H
(
y(t)
)
. (4.19)

Set c,
2hδ 2

3
(
κ1 +κ2

)2 ∈ R+. Then, (4.19) is rewritten as:

dH
(
y(t)
)

dt
≤−cH

(
y(t)
)
. (4.20)

Thus, for each t ≥ t0, integrating (4.20) from t0 to t implies

H
(
y(t)
)
≤ H

(
y(t0)

)
exp
(
− c
(
t− t0

))
. (4.21)

In addition, by utilizing (4.6) and (4.21), one has∥∥y(t)− y∗
∥∥≤√H

(
y(t0)

)
exp
(
− τ
(
t− t0

))
, ∀ t ≥ t0, (4.22)

where τ , c
2 . By (4.22) and Definition 2.2, one obtains that IFDS (3.14) is exponentially con-

vergent for any initial value y(t0) ∈ Rm. This proof is completed. �

5. EXPERIMENTAL RESULTS

This section provides a numerical example to illustrate the computation performance and
theoretical results of our dynamical system. The ODE45 solver in MATLAB R2019b is used
to implement the numerical simulations on the dynamical system (3.8) in [23] and IFDS (3.14)
in this work. For all comparison dynamical systems, we choose the same initial points. For
the dynamical system (3.8) in [23], we take γ = 100; for IFDS (3.14), we take h = 100 and
α = β = 1. To evaluate the performance of those systems, the tracking error of AVE (1.1) is
described by E =

∥∥y− y∗
∥∥, where y∗ stands for the solution to AVE (1.1).
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FIGURE 1. For (3.8) in [23] and IFDS: (a) Convergence behaviors. (b) Compu-
tation errors.

Example 1 [31]: Consider a class of AVE (1.1) with A = tridiag
(
− 1,8,−1

)
∈ Rm and b =

Ay∗−
∣∣y∗∣∣ ∈ Rm, where

tridiag(−1,8,−1) =



8 −1
−1 8 −1

−1 8
. . . −1
−1 8 −1

−1 8


,

y∗ =
(
−1,1,−1,1, · · · ,−1,1

)>
.

From Example 1, it can be obtained that λmin(A>A)> 1, which indicates that Assumption 2.1
holds. For IFDS (3.14), we choose µ = 0.4, ν = 1, p = 7.2, q = 0.5, and µ = 2, ν =−0.1, p =
1.2, and q= 2.3, respectively. We take the same initial vector y0 = zeros(m,1) in all comparison
dynamical systems. For Example 1 with m= 500, the convergence behaviors and tracking errors
of these comparison dynamical systems are reported in Fig. 1(a)-(b). It can be observed from
Fig. 1(a)-(b) that all systems quickly stabilize to the solution of Example 1. However, compared
with the dynamical system (3.8) in [23], our system converges to the solution of the absolute
value equations faster, and the amplitude of the tracking error corresponding to our system is
smaller. Furthermore, it can be seen from Fig. 1(a) that our systems enjoy higher computation
accuracy than the dynamical system (3.8) in [23]. For Example 1 with m = 100, Fig. 2(a)-(b)
reports the tracking error convergence results of IFDS with µ 6= 0, ν > 0, p > 0, 0 < q≤ 2 and
IFDS with µ > 0, ν < 0, 0 < p≤ 2, q≥ 2 for different values of µ , ν , p and q. From Fig. 2(a),
it can be seen that when µ = 0.4, ν = 1, p = 7.2 and q = 0.5, the corresponding system has the
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FIGURE 2. (a) Effect of the parameters for IFDS with µ 6= 0, ν > 0, p > 0 and
0 < q ≤ 2. (b) Effect of the parameters for IFDS with µ > 0, ν < 0, 0 < p ≤ 2
and q≥ 2.

TABLE 1. Comparison results of three different dynamical systems for Example 1

Example 1 ( [31]) setting (3.8) in [23]
IFDS with µ = 0.4, ν = 1,

p = 7.2, q = 0.5
IFDS with µ = 2, ν =−0.1,

p = 1.2, q = 2.3
y0 m E E E

1000 3.9769e−03 2.5707e-09 1.0524e-05
2000 5.6837e−02 9.6075e-10 8.7570e-06

zeros(m,1) 3000 7.2237e−03 2.2317e-10 1.5731e-06
5000 9.4100e−03 2.4176e-04 1.0310e-06

highest error accuracy. This is why we choose µ = 0.4, ν = 1, p = 7.2 and q = 0.5 as the design
parameters of IFDS with µ 6= 0, ν > 0, p > 0, 0 < q≤ 2 in Fig. 1(a). For the same reason, the
most appropriate choice of the design parameters of IFDS with µ > 0, ν < 0, 0 < p≤ 2, q≥ 2
in Fig. 1(b) is µ = 2, ν =−0.1, p = 1.2, q = 2.3.

To compare the computational performance of these systems more comprehensively, for dif-
ferent problem sizes of m, some comparison results are reported in Table 1. From the horizontal
view of this table, as the scale of absolute value equations increases, the tracking errors of the
system (3.8) in [23] and IFDS with µ = 2, ν = −0.1, p = 1.2, q = 2.3 are almost unchanged,
which shows that they can effectively solve some large-scale problems without increasing the
errors to a certain extent. Furthermore, from the vertical view of Table 1, it can be seen that
the calculation accuracy of our systems is higher than that of the system (3.8) in [23], and the
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tracking error of IFDS with µ = 0.4, ν = 1, p = 7.2, and q = 0.5 is the best among these
systems.

From Example 1, it can be seen that the three dynamical systems quickly converge to the
solution of AVE (1.1) and their calculation accuracy is acceptable in most cases. As the scale
of Example 1 increases, the tracking errors of all dynamical systems are almost unchanged,
which shows that they can effectively solve some large-scale problems. It should be noticed
that IFDS with µ = 0.4, ν = 1, p = 7.2, q = 0.5 and IFDS with µ = 2, ν = −0.1, p = 1.2,
q = 2.3 are better than the system (3.8) in [23] in terms of the convergence speed and tracking
error. Different from the system (3.8) in [23], we can flexibly select the parameters in IFDS
to achieve efficient computation. Moreover, among these dynamical system, our systems have
the best computation accuracy, especially for the high-dimensional AVEs. This indicates our
systems are effective and have advantages in addressing the AVEs.

6. CONCLUSIONS

In this paper, a new inverse-free dynamical system was proposed to solve AVE (1.1). Mean-
while, a tighter global error bound for AVE (1.1) was obtained. As demonstrated, the proposed
dynamical system converges the solution to AVE (1.1). Moreover, the proposed dynamical
system with concise structure was proved to be globally sublinear and exponential convergent
under some suitable conditions on the designed parameters. The simulations verify the correct-
ness of our theoretical results.
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