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WEAK HENIG PROPER SOLUTION SETS FOR SET OPTIMIZATION
PROBLEMS
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Abstract. Huerga, Jiménez, and Novo introduced the notion of weak Henig proper solution sets for set
optimization problems (J. Optim. Theory Appl. 195 (2022), 878-902). This paper aims to establish some
characterizations of weak Henig proper solution sets for set optimization problems. We first obtain some
properties of the Henig dilating cone and the continuity of nonlinear scalarizing functions with respect
to the Henig dilating cone. Then, we derive density and connectedness of weak Henig proper solution
sets for set optimization problems under some suitable conditions.
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1. INTRODUCTION

It is well known that the concept of efficient solutions plays an important role in solving
vector optimization problems. However, sometimes the efficient solution set includes some
points of a certain anomalous type and has some undesirable properties. For example, the
efficient solution set can not be characterized by linear scalarization. Thus various concepts of
classic proper efficiency were introduced in the literature, such as Geoffrion proper efficiency
[1], Benson proper efficiency [2], Borwein proper efficiency [3], Henig proper efficiency [4],
super efficiency [5], and strict efficiency [6].

In recent years, set optimization problems have been intensively studied due to their wide
applications in many fields, such as optimal control problems, vector variational inequalities,
vector optimization problems, fuzzy optimization problems, viability theory, image processing
problems, mathematical economics, and differential inclusions. However, the studies on set
optimization problems are far from enough. As pointed out by Khan et al. [7], since set-valued
mappings appear naturally in many practical problems, set optimization problems will remain
an important and active research topic in both the near and foreseeable future. To the best of
our knowledge, there are only three papers [8–10] considering proper efficiency for set opti-
mization problems. Huerga et al. [9] introduced two notions of proper efficiency in the sense
of Henig (named Henig proper solution and weak Henig proper solution) for set optimization
problems. The authors investigated some properties and compared these concepts with the anal-
ogous notions by using the vector criterion. Moreover, they derived a Lagrange multiplier rule
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for Henig proper solutions of set optimization problems. Therefore, it is necessary to explore
further Henig proper solutions (or weak Henig proper solutions) for set optimization problems.
In this paper, we establish some characterizations of weak Henig proper solution sets for set
optimization problems.

Henig [4] introduced a concept of proper efficiency for vector optimization based on the idea
of replacing the ordering cone by Henig dilating cone, which has nonempty interior and is big-
ger then the ordering cone. Henig dilating cone plays a key role in the study of Henig proper
efficiency. For some properties of the Henig dilating cone, we refer to [5, 11, 12]. However, in
order to study weak Henig proper solution sets for set optimization problems, there is a need to
further investigate the properties of the Henig dilating cone. The first aim of this paper is to de-
rive some properties of the Henig dilating cone and establish the continuity of nonlinear scalar-
izing functions with respect to the Henig dilating cone. In the past decades, density theorems
for various proper efficiency, especially the generalizations of the density theorem of Arrow,
Barankin and Blackwell have been extensively studied in the literature (see, e.g., [13–25] and
the references therein). Up to our knowledge, the set of Henig proper efficient points is dense
in the set of efficient points under some suitable conditions (see, e.g., [4, 17, 18, 21, 23, 25]).
Thus, it is natural to understand whether we can obtain that weak Henig proper solution set for
set optimization problems is dense in minimal solution set for set optimization problems. The
second aim of this paper is to make an attempt in this direction. On the other hand, among many
desirable properties of the solution sets, the connectedness is of considerable interest, since it
provides the possibility of continuously moving (transformations) from one solution to another.
It is worth noting that the studies on connectedness of solution sets for set optimization prob-
lems are still in the initial stage. Until now, to the best of our knowledge, it seems that there
are only five papers [26–30] considering connectedness of solution sets for set optimization
problems. Naturally, there is a need to explore further the connectedness of solution sets for set
optimization problems. The third aim of this paper is to establish connectedness of weak Henig
proper solution sets for set optimization problems.

The rest of the paper is organized as follows. In Section 2, we present some necessary
notations and lemmas. In Section 3, we derive some properties of the Henig dilating cone and
establish the continuity of nonlinear scalarizing functions with respect to the Henig dilating
cone. In Section 4, we establish a density result for weak Henig proper solution sets of set
optimization problems by using some properties of the Henig dilating cone. In Section 5, we
investigate connectedness and arcwise connectedness of weak Henig proper solution sets for
set optimization problems by employing the continuity of nonlinear scalarizing functions with
respect to the Henig dilating cone.

2. PRELIMINARIES

From now on, unless otherwise specified, let X and Y be two normed vector spaces. Assume
that C ⊆ Y is a nonempty, convex, closed, and pointed cone with intC 6= /0. We denote by intA
and clA the topological interior and the topological closure, respectively. The family of the
neighborhoods of 0 ∈ Y is denoted by N (0). We denote by BY the closed unit ball in Y . Let
A and B be two nonempty subsets of Y . The lower relation “≤l

C” and the weak lower relation
“�l

C” are defined, respectively, by

A≤l
CB⇔ B⊆ A+C
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and
A�l

CB⇔ B⊆ A+ intC.

A nonempty and convex subset B̄ of the cone C is called a base of C if 0 /∈ cl(B̄) and C =
cone(B̄) := {tb : t ≥ 0,b ∈ B̄}. Let B̄ be a base of C. Due to 0 /∈ clB̄, we have

δ := inf{‖b‖ : b ∈ B̄}> 0.

For ε ∈ [0,δ ), let Cε := cl(cone(B̄+ εBY )). Cε is known as the Henig dilating cone whenever
ε ∈ (0,δ ) (see [4]). It is clear that C0 =C and Cε1 ⊆Cε2 for 0≤ ε1 ≤ ε2 < δ . By [31, Remarks
2.1 and 2.2], we obtain that Cε is a convex, closed, and pointed cone for any ε ∈ (0,δ ). In the
sequel, we always assume that C has a base B̄.

Let ℘0 (Y ) be the family of all nonempty subsets of Y . It is said that a set A ∈℘0 (Y ) is
C-proper if A+C 6= Y ; C-convex if A+C is a convex set; C-closed if A+C is a closed set;
C-bounded if, for any neighborhood U of 0 ∈ Y , there exists t > 0 such that A ⊆ tU +C, and
C-compact if any cover of A of the form {Uα +C}

α∈I , where Uα is open for any α ∈ I, admits
a finite subcover.

Remark 2.1. If A⊆ Y is C-compact, then A is C-bounded and C-closed (see [32]).

Remark 2.2. It follows from [33, Lemma 2.3] that if A is C-bounded, then A is C-proper.

Remark 2.3. For any ε ∈ [0,δ ), it is clear that if A is C-bounded, then A is Cε -bounded. By
Remark 2.2, we obtain that if A is C-bounded, then A is Cε -proper for any ε ∈ [0,δ ).

Remark 2.4. Let ε ∈ (0,δ ). It is easy to see that if A is Cε -proper, then A is C-proper.

We give the following counterexample to illustrate that the converse does not hold.

Example 2.1. Let Y = R2 and C = R2
+ =

{
(x,y) ∈ R2 : x≥ 0,y≥ 0

}
. Let

B̄ =
{
(x,y) ∈ R2 : x+ y = 2,0≤ x≤ 2

}
.

It is clear that B̄ is a base of C and δ = inf{‖b‖ : b ∈ B̄}=
√

2. Let ε = 1. Then we obtain

Cε = cl(cone(B̄+ εBY )) =

{
(x,y) ∈ R2 : y≥−

√
3x,y≥− 1√

3
x
}
.

Let A =
{
(x,y) ∈ R2 : x≤ 0,y = 0

}
. Thus, it is easy to see that A is C-proper. However, A is

not Cε -proper.

Lemma 2.1. [9] Let C and P be two convex cones with C ⊆ P. If A is C-compact, then A is
P-compact.

Let F : X → 2Y be a set-valued mapping and K ⊆ X with K 6= /0. We consider the following
set optimization problem:

(SOP) minF (x) subject to x ∈ K.

Definition 2.1. An element x0 ∈ K is said to be
(i) l-minimal solution of (SOP) if, for x ∈ K, F (x)≤l

CF (x0) implies F (x0)≤l
CF (x).

(ii) weak l-minimal solution of (SOP) if, for x ∈K, F (x)�l
CF (x0) implies F (x0)�l

CF (x).
(iii) [9] weak l-Henig proper solution of (SOP) if there exists ε ∈ (0,δ ) such that for x ∈ K,

F (x)�l
Cε

F (x0) implies F (x0)�l
Cε

F (x).
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Let El (F,K,C), Wl (F,K,C), and Hl (F,K,C) denote the l-minimal solution set of (SOP),
the weak l-minimal solution set of (SOP), and the weak l-Henig proper solution set of (SOP),
respectively.

Remark 2.5. It follows from [34, Proposition 2.7] that El (F,K,C)⊆Wl (F,K,C).

Remark 2.6. It is easy to see that Hl (F,K,C) =
⋃

ε∈(0,δ )
Wl (F,K,Cε).

Lemma 2.2. Let x0 ∈ K and 0 ≤ ε < δ . If F (x0) is C-compact, then x0 ∈Wl (F,K,Cε) if and
only if there is no y ∈ K satisfying F (y)�l

Cε
F (x0).

Proof. It is clear that C⊆Cε . Since F (x0) is C-compact, it follows from Lemma 2.1 that F (x0)
is Cε -compact. By [33, Lemma 4.1], we can see that x0 ∈Wl (F,K,Cε) if and only if there is no
y ∈ K satisfying F (y)�l

Cε
F (x0). This completes the proof. �

Lemma 2.3. Let x0 ∈ K and 0 ≤ ε1 ≤ ε2 < δ . If F (x0) is C-compact and x0 ∈Wl (F,K,Cε2),
then x0 ∈Wl (F,K,Cε1).

Proof. Suppose that x0 /∈Wl (F,K,Cε1). It follows from Lemma 2.2 that there exists y0 ∈ K
such that F (y0)�l

Cε1
F (x0), so F (x0) ⊆ F (y0)+ intCε1 . Combining this with Cε1 ⊆ Cε2 , we

obtain F (x0) ⊆ F (y0)+ intCε2 , which implies F (y0)�l
Cε2

F (x0). We conclude from Lemma
2.2 that x0 /∈Wl (F,K,Cε2), which contradicts x0 ∈Wl (F,K,Cε2). Therefore, we obtain x0 ∈
Wl (F,K,Cε1). This completes the proof. �

From Lemma 2.3 , it is easy to obtain the following corollary.

Corollary 2.1. Let 0 ≤ ε1 ≤ ε2 < δ . Assume that F (x) is C-compact for any x ∈ K. Then
Wl (F,K,Cε2)⊆Wl (F,K,Cε1). In particular, Wl (F,K,Cε)⊆Wl (F,K,C) for any ε ∈ [0,δ ).

By Remark 2.6 and Corollary 2.1, we can obtain the following lemma.

Lemma 2.4. Assume that F (x) is C-compact for any x ∈ K. Then Hl (F,K,C)⊆Wl (F,K,C).

Definition 2.2. [12] Let T and T1 be two topological vector spaces, and let C be a cone of T1.
A set-valued mapping Φ : T → 2T1 is said to be

(i) upper semicontinuous (u.s.c.) at u0 ∈ T if, for any neighborhood V of Φ(u0), there
exists a neighborhood U of u0 such that for every u ∈U , Φ(u)⊆V .

(ii) C-upper semicontinuous (C-u.s.c.) at u0 ∈ T if, for any neighborhood V of Φ(u0), there
exists a neighborhood U of u0 such that for every u ∈U , Φ(u)⊆V +C.

(iii) lower semicontinuous (l.s.c.) at u0 ∈ T if, for any x ∈ Φ(u0) and any neighborhood V
of x, there exists a neighborhood U of u0 such that for every u ∈U , Φ(u)∩V 6= /0.

(iv) C-lower semicontinuous (C-l.s.c.) at u0 ∈ T if, for any x∈Φ(u0) and any neighborhood
V of x, there exists a neighborhood U of u0 such that for every u ∈U , Φ(u)∩ (V −C) 6=
/0.

We say that Φ is u.s.c., C-u.s.c., l.s.c. and C-l.s.c. on T if it is u.s.c., C-u.s.c., l.s.c. and C-l.s.c.
at each point u ∈ T , respectively. We say that Φ is continuous on T if it is both u.s.c. and l.s.c.
on T . We also say that Φ is C-continuous on T if it is both C-u.s.c. and C-l.s.c. on T .

Definition 2.3. Let D be a nonempty convex subset of X . A set-valued mapping Φ : X → 2Y is
said to be
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(i) [35] C-convex on D if, for any x1,x2 ∈ D and for any t ∈ [0,1],

tΦ(x1)+(1− t)Φ(x2)⊆Φ(tx1 +(1− t)x2)+C.

(ii) [36] naturally quasi C-convex on D if, for any x1,x2 ∈ D and for any t ∈ [0,1], there
exists λ ∈ [0,1] such that

λΦ(x1)+(1−λ )Φ(x2)⊆Φ(tx1 +(1− t)x2)+C.

(iii) [37] strictly naturally quasi C-convex on D if, for any x1,x2 ∈ D with x1 6= x2 and for
any t ∈ (0,1), there exists λ ∈ [0,1] such that

λΦ(x1)+(1−λ )Φ(x2)⊆Φ(tx1 +(1− t)x2)+ intC.

Remark 2.7. It is clear that if Φ is C-convex on D, then Φ is naturally quasi C-convex on D.
However, the converse does not hold.

Definition 2.4. [38] Let K be a nonempty subset of X . A set-valued mapping Φ : X → 2Y

is said to be strictly quasi l-C-convexlike on K if, for any x1,x2 ∈ K with x1 6= x2, there exist
x3 ∈ K and t0 ∈ [0,1] such that

Φ(x3)�l
Ct0Φ(x1)+(1− t0)Φ(x2) .

Definition 2.5. [39] Let F : X → 2Y be a set-valued mapping, and let K be a nonempty subset
of X . The sublevel set of F at x in K is the set

Ql(x,C) :=
{

u ∈ K : F(u)≤l
C F(x)

}
.

Remark 2.8. It is easy to see that Wl (F,Ql (x,C) ,C)⊆Wl (F,K,C) for any x ∈ K.

3. CONTINUITY OF NONLINEAR SCALARIZING FUNCTIONS WITH RESPECT TO THE

HENIG DILATING CONE

In this section, we establish the continuity of nonlinear scalarizing functions with respect to
the Henig dilating cone.

Definition 3.1. Let e ∈ −intC. With respect to Cε , we define the Gerstewitz’s function φe :
Y ×Y × [0,δ )→ R by

φe (a,y,ε) = min{t ∈ R : y ∈ te+a+Cε} , ∀(a,y,ε) ∈ Y ×Y × [0,δ ) .

Replacing a by a set A∈℘0 (Y ), we obtain the function ψe :℘0 (Y )×Y × [0,δ )→R∪{−∞}
as follows

ψe (A,y,ε) = min{t ∈ R : y ∈ te+A+Cε} , ∀(A,y,ε) ∈℘0 (Y )×Y × [0,δ ) .

Remark 3.1. Let (A,y,ε)∈℘0 (Y )×Y×[0,δ ). It is easy to see that ψe (A,y,ε)= inf
a∈A
{φe (a,y,ε)}

(see [34]).

Inspired by [34, Definition 3.1], we give the following definition.

Definition 3.2. Define the function Ge :℘0 (Y )×℘0 (Y )× [0,δ )→ R∪{−∞,+∞} by

Ge (A,B,ε) = sup
b∈B
{ψe (A,b,ε)} , ∀(A,B,ε) ∈℘0 (Y )×℘0 (Y )× [0,δ ) .
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Remark 3.2. If ε = 0, it is clear that Ge (A,B,ε) coincides with Ge (A,B) in the Definition 3.1
of [34].

Remark 3.3. Let (A,B,ε) ∈℘0 (Y )×℘0 (Y )× [0,δ ). It follows from Remark 3.1 that

Ge (A,B,ε) = sup
b∈B

inf
a∈A
{φe (a,b,ε)} .

Remark 3.4. Let (A,B,ε) ∈℘0 (Y )×℘0 (Y )× [0,δ ). It follows from [34, Lemma 2.16] that if
A is Cε -proper, then Ge (A,B,ε)>−∞.

Remark 3.5. Let (A,B,ε) ∈℘0 (Y )×℘0 (Y )× [0,δ ). By [34, Theorem 3.6] and Remarks 2.3
and 3.4, we obtain that if A and B are C-bounded, then −∞ < Ge (A,B,ε)<+∞.

Next, we give an example to illustrate the scalarizing function Ge.

Example 3.1. Let Y = R2, C = R2
+ =

{
(x,y) ∈ R2 : x≥ 0,y≥ 0

}
and e = (−1,−1) ∈ −intC.

Let
B̄ =

{
(x,y) ∈ R2 : x+ y = 2,0≤ x≤ 2

}
.

We can see that B̄ is a base of C and δ = inf{‖b‖ : b ∈ B̄} =
√

2. For any ε ∈
(

0,
√

2
)

, let

β =
√

4−ε2

ε
. Then we get β > 1 and

Cε = cl(cone(B̄+ εBY )) =

{
(x,y) ∈ R2 : y≥−βx,y≥− 1

β
x
}
.

For any a = (a1,a2) ∈ Y and y = (y1,y2) ∈ Y , we have

y ∈ te+a+Cε ⇔ (y1,y2) ∈ (−t,−t)+(a1,a2)+Cε

⇔ (t + y1−a1, t + y2−a2) ∈Cε

⇔ t + y2−a2 ≥−β (t + y1−a1) and t + y2−a2 ≥−
1
β
(t + y1−a1)

⇔ t ≥ 1
1+β

(a2− y2)+
β

1+β
(a1− y1) and

t ≥ β

1+β
(a2− y2)+

1
1+β

(a1− y1) .

Thus, it is easy to obtain that

φe (a,y,ε) = min{t ∈ R : y ∈ te+a+Cε}

= max
{

1
1+β

(a2− y2)+
β

1+β
(a1− y1) ,

β

1+β
(a2− y2)+

1
1+β

(a1− y1)

}
.

Let (A,B,ε) ∈℘0 (Y )×℘0 (Y )×
(

0,
√

2
)

. We conclude from Remark 3.3 that

Ge (A,B,ε) = sup
y∈B

inf
a∈A
{φe (a,y,ε)}

= sup
y∈B

inf
a∈A

max
{

1
1+β

(a2− y2)+
β

1+β
(a1− y1) ,

β

1+β
(a2− y2)+

1
1+β

(a1− y1)

}
,

where β =
√

4−ε2

ε
.
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Let Λ1 and Λ2 be two normed vector spaces, and let A : Λ1 → 2Y and B : Λ2 → 2Y be two
set-valued mappings. We define ς : Λ1×Λ2× [0,δ )→ R∪{−∞,+∞} by

ς (λ ,u,ε) = Ge (A(λ ) ,B(u) ,ε) = sup
b∈B(u)

{ψe (A(λ ) ,b,ε)} , ∀(λ ,u,ε) ∈ Λ1×Λ2× [0,δ ) .

Remark 3.6. Let (λ ,u,ε) ∈ Λ1×Λ2× [0,δ ). If A(λ ) and B(u) are C-bounded, then it follows
from Remark 3.5 that ς (λ ,u,ε) ∈ R.

Next, we give four lemmas concerned with the Henig dilating cone, which will be used in the
sequel.

Lemma 3.1. Let {εn} ⊆ [0,δ ) with εn→ ε0 ∈ [0,δ ). Assume that zn ∈Cεn with zn→ z0. Then
z0 ∈Cε0 .

Proof. Since zn ∈Cεn = cl(cone(B̄+ εnBY )), there exists

yn ∈
(

zn +
1
n

BY

)
∩ cone(B̄+ εnBY ) . (3.1)

It follows from zn→ z0 and (3.1) that yn→ z0. If z0 = 0, it is clear that z0 ∈Cε0 . If z0 6= 0, we
conclude from (3.1) that there exist λn > 0 (because of z0 6= 0), an ∈ B̄ and bn ∈ BY such that

yn = λn (an + εnbn) = λn (an + ε0bn)+λn (εn− ε0)bn. (3.2)

Let η = 1
2 (δ − ε0). It follows from ε0 ∈ [0,δ ) that η > 0. Noting that

‖an‖= ‖an + εnbn− εnbn‖ ≤ ‖an + εnbn‖+‖εnbn‖ ,

we have
‖an + εnbn‖ ≥ ‖an‖−‖εnbn‖ . (3.3)

Due to εn→ ε0 and bn ∈ BY , we have

‖εnbn‖ ≤ εn ≤ ε0 +η (3.4)

for n large enough. We conclude from an ∈ B̄ that ‖an‖ ≥ inf{‖b‖ : b ∈ B̄} = δ . Combining
this with (3.3) and (3.4), we have

‖an + εnbn‖ ≥ ‖an‖−‖εnbn‖ ≥ δ − (ε0 +η) = η

for n large enough. Suppose that {λn} is unbounded. Without loss of generality, we assume
that λn→+∞. Then

‖yn‖= λn ‖an + εnbn‖ ≥ λnη →+∞. (3.5)

It follows from yn→ z0 that {yn} is bounded, which contradicts (3.5). Thus, we obtain that {λn}
is bounded. Let xn = λn (an + ε0bn). It is clear that xn ∈ cone(B̄+ ε0BY ). Noting that {λn} and
{bn} are bounded, and εn→ ε0, one has λn (εn− ε0)bn→ 0. This together with (3.2) and yn→ z0
implies that xn→ z0, so z0 ∈ cl(cone(B̄+ ε0BY )) =Cε0 . This completes the proof. �

Lemma 3.2. Assume that {εn} ⊆ [0,δ ) with εn→ ε0 ∈ [0,δ ). Then, for any β > 0, there exists
ξ > 0 and n0 ∈ N such that

(βBY )∩Cεn ⊆ cl

 ⋃
λ∈[0,ξ ]

λ (B̄+ εnBY )

 , ∀n≥ n0.



932 Y. HAN

Proof. Suppose on the contrary that there exists β0 > 0 such that, for any ξ > 0 and for any

n ∈ N, there is n′ ≥ n satisfying (β0BY )∩Cεn′ 6⊂ cl

( ⋃
λ∈[0,ξ ]

λ (B̄+ εn′BY )

)
. In particular, for

any n ∈ N, choosing ξ = n, one sees that there exists n′ ≥ n such that

(β0BY )∩Cεn′ 6⊂ cl

 ⋃
λ∈[0,n]

λ (B̄+ εn′BY )

 .

Without loss of generality, we assume that

(β0BY )∩Cεn 6⊂ cl

 ⋃
λ∈[0,n]

λ (B̄+ εnBY )

 , ∀n ∈ N.

Then there exists yn ∈ (β0BY )∩Cεn such that

yn /∈ cl

 ⋃
λ∈[0,n]

λ (B̄+ εnBY )

 . (3.6)

It follows from (3.6) that there exists Wn ∈ N (0) such that

(yn +Wn)∩

 ⋃
λ∈[0,n]

λ (B̄+ εnBY )

= /0. (3.7)

Let Un =Wn∩BY . Since yn ∈Cεn = cl(cone(B̄+ εnBY )). Then there exists

zn ∈ (yn +Un)∩ cone(B̄+ εnBY ) .

Due to (3.7), we have

zn /∈
⋃

λ∈[0,n]
λ (B̄+ εnBY ).

Then there exist λn > n and bn ∈ B̄+εnBY such that zn = λnbn. By εn→ ε0 ∈ [0,δ ), it is easy to
see that there exists η > 0 and n̄∈N such that, for any n≥ n̄ and for any b∈ B̄+εnBY , ‖b‖≥ η ,
so ‖bn‖ ≥ η for any n≥ n̄. Then ‖zn‖= λn ‖bn‖ ≥ nη for all n≥ n̄, which yields ‖zn‖→+∞.

On the other hand, it follows from yn ∈ β0BY that ‖yn‖ ≤ β0. This together with zn ∈ yn +Un
implies that ‖zn‖ ≤ β0 +1, which contradicts ‖zn‖→+∞. This completes the proof. �

Corollary 3.1. Let ε0 ∈ [0,δ ). Then, for any β > 0, there exists ξ > 0 such that

(βBY )∩Cε0 ⊆ cl

 ⋃
λ∈[0,ξ ]

λ (B̄+ ε0BY )

 .

Lemma 3.3. Assume that {εn} ⊆ [0,δ ) with εn→ ε0 ∈ [0,δ ). Then, for any α > 0 and for any
β > 0, there exists n0 ∈ N such that

(βBY )∩Cε0 ⊆ αBY +Cεn, ∀n≥ n0.
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Proof. It follows from Corollary 3.1 that, for any β > 0, there exists ξ > 0 such that

(βBY )∩Cε0 ⊆ cl

 ⋃
λ∈[0,ξ ]

λ (B̄+ ε0BY )

 . (3.8)

For any α > 0, it is clear that

cl

 ⋃
λ∈[0,ξ ]

λ (B̄+ ε0BY )

⊆ α

2
BY +

⋃
λ∈[0,ξ ]

λ (B̄+ ε0BY ). (3.9)

We claim that there exists n0 ∈ N such that⋃
λ∈[0,ξ ]

λ (B̄+ ε0BY )⊆
α

2
BY +

⋃
λ∈[0,ξ ]

λ (B̄+ εnBY ), ∀n≥ n0. (3.10)

In fact, for any y ∈
⋃

λ∈[0,ξ ]
λ (B̄+ ε0BY ), there exist λy ∈ [0,ξ ], ay ∈ B̄ and by ∈ BY such that

y = λy (ay + ε0by). Due to εn→ ε0, it is clear that there exists n0 ∈ N such that

|ε0− εn|<
α

2
· 1

ξ
, ∀n≥ n0.

Then we have

y = λy (ay + ε0by) = λy (ay + εnby)+λy (ε0− εn)by

∈
⋃

λ∈[0,ξ ]
λ (B̄+ εnBY )+

λy

ξ
· α

2
BY

⊆
⋃

λ∈[0,ξ ]
λ (B̄+ εnBY )+

α

2
BY .

This means that (3.10) holds. We conclude from (3.8), (3.9), and (3.10) that, for any n≥ n0,

βBY ∩Cε0 ⊆
α

2
BY +

⋃
λ∈[0,ξ ]

λ (B̄+ ε0BY )

⊆ α

2
BY +

α

2
BY +

⋃
λ∈[0,ξ ]

λ (B̄+ εnBY )

⊆ αBY + cone(B̄+ εnBY )

⊆ αBY + cl(cone(B̄+ εnBY )) = αBY +Cεn.

This completes the proof. �

Lemma 3.4. Assume that {εn} ⊆ [0,δ ) with εn→ ε0 ∈ [0,δ ). Then, for any α > 0 and for any
β > 0, there exists n0 ∈ N such that (βBY )∩Cεn ⊆ αBY +Cε0 for all n≥ n0.

Proof. By Lemma 3.2, we obtain that, for any β > 0, there exists ξ > 0 and n̄ ∈ N such that

(βBY )∩Cεn ⊆ cl

 ⋃
λ∈[0,ξ ]

λ (B̄+ εnBY )

 , ∀n≥ n̄. (3.11)
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For any α > 0, it is easy to see that

cl

 ⋃
λ∈[0,ξ ]

λ (B̄+ εnBY )

⊆ α

2
BY +

⋃
λ∈[0,ξ ]

λ (B̄+ εnBY ), ∀n ∈ N. (3.12)

It follows from εn→ ε0 that there exists n0 ∈ N such that |εn− ε0|< α

2 ·
1
ξ
, ∀n≥ n0. For any

n ≥ n0 and for any y ∈
⋃

λ∈[0,ξ ]
λ (B̄+ εnBY ), there are λy ∈ [0,ξ ], ay ∈ B̄, and by ∈ BY such that

y = λy (ay + εnby). Thus,

y = λy (ay + εnby) = λy (ay + ε0by)+λy (εn− ε0)by

∈
⋃

λ∈[0,ξ ]
λ (B̄+ ε0BY )+

λy

ξ
· α

2
BY

⊆
⋃

λ∈[0,ξ ]
λ (B̄+ ε0BY )+

α

2
BY .

Hence, we have ⋃
λ∈[0,ξ ]

λ (B̄+ εnBY )⊆
α

2
BY +

⋃
λ∈[0,ξ ]

λ (B̄+ ε0BY ), ∀n≥ n0. (3.13)

Thanks to (3.11), (3.12), and (3.13), for any n≥max{n̄,n0}, one has

(βBY )∩Cεn ⊆
α

2
BY +

⋃
λ∈[0,ξ ]

λ (B̄+ εnBY )

⊆ α

2
BY +

α

2
BY +

⋃
λ∈[0,ξ ]

λ (B̄+ ε0BY )

⊆ αBY + cone(B̄+ ε0BY )⊆ αBY +Cε0.

This completes the proof. �

Theorem 3.1. φe is continuous on Y ×Y × [0,δ ).

Proof. Let (a0,y0,ε0) ∈ Y ×Y × [0,δ ). We prove that φe is l.s.c. at (a0,y0,ε0). In fact, if not,
then there exists β0 > 0 such that, for any neighborhood U (a0)×U (y0)×U (ε0) of (a0,y0,ε0),
there exists (a′,y′,ε ′) ∈ U (a0)×U (y0)×U (ε0) satisfying φe (a′,y′,ε ′) ≤ φe (a0,y0,ε0)− β0.
This means that there exists a sequence {(an,yn,εn)}⊆Y×Y×[0,δ ) with (an,yn,εn)→ (a0,y0,ε0)
such that φe (an,yn,εn) ≤ φe (a0,y0,ε0)− β0 for all n ∈ N. Let γ = φe (a0,y0,ε0)− β0. It is
clear that φe (an,yn,εn) ≤ γ < γ + 1

n , ∀n ∈ N. By the definition of φe (an,yn,εn), there exists
tn ∈

[
φe (an,yn,εn) ,γ +

1
n

)
such that yn ∈ tne+an +Cεn . Thus

yn ∈
(

γ +
1
n

)
e+
(

tn−
(

γ +
1
n

))
e+an +Cεn

⊆
(

γ +
1
n

)
e+ intC+an +Cεn

⊆
(

γ +
1
n

)
e+an +Cεn. (3.14)
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Let zn = yn−
(
γ + 1

n

)
e−an. We conclude from (3.14) that zn ∈Cεn . Noting that zn→ y0− γe−

a0 and εn→ ε0, it follows from Lemma 3.1 that y0− γe−a0 ∈Cε0 , so y0 ∈ γe+a0 +Cε0 . Then

φe (a0,y0,ε0)≤ γ = φe (a0,y0,ε0)−β0,

which is a contradiction.
Next, we show that φe is u.s.c. at (a0,y0,ε0). In fact, if not, then there exist ρ0 > 0 and a

sequence {(an,yn,εn)} ⊆ Y ×Y × [0,δ ) with (an,yn,εn)→ (a0,y0,ε0) such that

φe (an,yn,εn)≥ φe (a0,y0,ε0)+ρ0, ∀n ∈ N.

Let η = φe (a0,y0,ε0)+ρ0. Then

φe (an,yn,εn)≥ η , ∀n ∈ N. (3.15)

It is clear that there exists ϕ ∈ R such that φe (a0,y0,ε0) < ϕ < η . Then there exists t0 ∈
[φe (a0,y0,ε0) ,ϕ) such that

y0 ∈ t0e+a0 +Cε0. (3.16)

Due to 0 ∈ (ϕ− t0)e+ intC, there exists a bounded neighborhood W0 of 0 ∈ Y such that W0 ⊆
(ϕ− t0)e+C. This together with (3.16) implies that

y0−a0 +W0 ⊆ t0e+Cε0 +(ϕ− t0)e+C

⊆ ϕe+Cε0 +Cε0 ⊆ ϕe+Cε0. (3.17)

Since yn→ y0 and an→ a0, there exists n1 ∈ N such that

yn−an ∈ y0−a0 +W0, ∀n≥ n1. (3.18)

It is clear that there exists β0 > 0 such that

y0−a0 +W0−ϕe⊆ β0BY . (3.19)

Let r0 =
η−ϕ

2 . Due to e ∈ −intC, there exists θ0 > 0 such that θ0BY ⊆ e+C, so

r0θ0BY ⊆ r0e+C. (3.20)

For β0 > 0 and for r0θ0 > 0, it follows from Lemma 3.3 that there exists n2 ∈ N such that

(β0BY )∩Cε0 ⊆ r0θ0BY +Cεn, ∀n≥ n2. (3.21)

By (3.20) and (3.21), one has (β0BY )∩Cε0 ⊆ r0e+C+Cεn ⊆ r0e+Cεn, ∀n≥ n2. This together
with (3.17) and (3.19) implies that

y0−a0 +W0−ϕe⊆ (β0BY )∩Cε0 ⊆ r0e+Cεn,

so y0− a0 +W0 ⊆ (r0 +ϕ)e +Cεn for all n ≥ n2. Combining this with (3.18), for any n ≥
max{n1,n2}, we obtain yn ∈ (r0 +ϕ)e+ an +Cεn . This means that φe (an,yn,εn) ≤ r0 +ϕ <
2r0 +ϕ = η , which contradicts (3.15). This completes the proof. �

Similar to the proof of [40, Theorem 5.1], we can obtain from Theorem 3.1 the following
theorem.

Theorem 3.2. If A and B are C-continuous with nonempty and C-compact values, then ς (·, ·, ·)
is continuous on Λ1×Λ2× [0,δ ).
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4. DENSITY OF THE WEAK HENIG PROPER SOLUTION SET

In this section, we obtain a density result for weak Henig proper solution sets of set optimiza-
tion problems.

Lemma 4.1. [41] Assume that K is nonempty and closed, x ∈ K and F is C-u.s.c. on K with
nonempty and C-closed values. Then Ql (x,C) is closed.

Lemma 4.2. [42] Let K be a nonempty subset of X. If F is strictly quasi l-C-convexlike on K
with nonempty C-compact values, then Wl (F,K,C) = El (F,K,C).

Lemma 4.3. Assume that K is a nonempty subset of X and F is strictly quasi l-C-convexlike on
K with nonempty C-compact values. If x0 ∈Wl (F,K,C), then Ql (x0,C) = {x0}.

Proof. It is clear that x0 ∈ Ql (x0,C). Suppose that there exists x̄ ∈ Ql (x0,C) such that x̄ 6= x0.
Since F is strictly quasi l-C-convexlike on K, there exist y0 ∈ K and t0 ∈ [0,1] such that

F (y0)�l
C t0F (x̄)+(1− t0)F (x0) . (4.1)

It follows from x̄ ∈ Ql (x0,C) that F (x̄) ≤l
C F (x0), so F (x0) ⊆ F (x̄)+C. This together with

(4.1) implies that

F (x0) ⊆ t0F (x0)+(1− t0)F (x0)⊆ t0F (x̄)+ t0C+(1− t0)F (x0)

⊆ F (y0)+ intC+ t0C ⊆ F (y0)+ intC,

which yields F (y0)�l
C F (x0). This together with Lemma 2.2 implies that x0 /∈Wl (F,K,C),

which contradicts x0 ∈Wl (F,K,C). This completes the proof. �

From [43, Propositions 29 and 30] and El (F,K,C)⊆Wl (F,K,C), we can obtain the following
lemma.

Lemma 4.4. If K is nonempty compact and F is C-u.s.c. on K, then Wl (F,K,C) 6= /0.

It is easy to see the following lemma.

Lemma 4.5. If K is closed and F is C-u.s.c. on K, then Wl (F,K,C) is closed.

Lemma 4.6. Let B̄ be a bounded base of C and {εn} ⊆ [0,δ ) with εn→ ε0 ∈ [0,δ ). Then, for
any ω > 0, there exists β > 0 and n0 ∈ N such that

(ωBY −Cεn)∩Cεn ⊆ βBY , ∀n≥ n0.

Proof. Suppose on the contrary that there exists ω0 > 0 such that for any β > 0 and for any
n ∈ N, there is n′ ≥ n satisfying

(
ω0BY −Cεn′

)
∩Cεn′ 6⊂ βBY . In particular, for any n ∈ N,

choosing β = n, one sees that there exists n′ ≥ n such that
(
ω0BY −Cεn′

)
∩Cεn′ 6⊂ nBY . Without

loss of generality, we assume that

(ω0BY −Cεn)∩Cεn 6⊂ nBY , ∀n ∈ N.

Then there exist zn ∈ω0BY , cn ∈Cεn and un ∈Cεn such that zn−cn = un and ‖un‖> n. It follows
from [5, Theorem 1.1] that

Cεn = cone(cl(B̄+ εnBY )) , ∀n ∈ N. (4.2)
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By (4.2), cn ∈ Cεn , and un ∈ Cεn , there exist tn ≥ 0, λn ≥ 0, bn ∈ cl(B̄+ εnBY ) and sn ∈
cl(B̄+ εnBY ) such that cn = tnbn and un = λnsn. Due to the boundedness of B̄ and εn → ε0,
it is clear that there exists ϕ > 0 such that

‖b‖ ≤ ϕ, ∀b ∈ cl(B̄+ εnBY ) , ∀n ∈ N,

which implies that ‖sn‖ ≤ ϕ for any n ∈ N. Then n < ‖un‖ = ‖λnsn‖ = λn ‖sn‖ ≤ λnϕ , which
yields λn → +∞. Noting that {εn} ⊆ [0,δ ) with εn → ε0 ∈ [0,δ ), it is easy to see that there
exists φ > 0 such that

‖b‖ ≥ φ , ∀b ∈ cl(B̄+ εnBY ) , ∀n ∈ N. (4.3)

In view of zn = cn +un = tnbn +λnsn, it follows from the convexity of cl(B̄+ εnBY ) that

zn

tn +λn
=

tn
tn +λn

bn +
λn

tn +λn
sn ∈ cl(B̄+ εnBY ) .

This together with (4.3) implies that
∥∥∥ zn

tn+λn

∥∥∥≥ φ > 0, so ‖zn‖ ≥ φ (tn +λn)≥ φλn. Combining
this with λn→ +∞, we obtain ‖zn‖ → +∞, which contradicts zn ∈ ω0BY . This completes the
proof. �

Corollary 4.1. Let B̄ be a bounded base of C and ε ∈ [0,δ ). Then, for any ω > 0, there exists
β > 0 such that (ωBY −Cε)∩Cε ⊆ βBY .

Lemma 4.7. Let B̄ be a bounded base of C and {εn} ⊆ [0,δ ) with εn→ ε0 ∈ [0,δ ). Then, for
any α > 0 and for any β > 0, there exists n0 ∈ N such that

(βBY −Cεn)∩Cεn ⊆ αBY +Cε0 , ∀n≥ n0.

Proof. It follows from Lemma 4.6 that, for any β > 0, there exists θ > 0 and n1 ∈ N such that

(βBY −Cεn)∩Cεn ⊆ θBY , ∀n≥ n1,

so
(βBY −Cεn)∩Cεn ⊆ θBY ∩Cεn, ∀n≥ n1. (4.4)

For any α > 0 and for the above θ > 0, we conclude from Lemma 3.4 that there exists n2 ∈ N
such that

(θBY )∩Cεn ⊆ αBY +Cε0, ∀n≥ n2. (4.5)

Thanks to (4.4) and (4.5), for any n ≥ max{n1,n2}, one has (βBY −Cεn)∩Cεn ⊆ αBY +Cε0 .
This completes the proof. �

Theorem 4.1. Let B̄ be a bounded base of C. Assume that K is nonempty compact and F is
C-u.s.c. and strictly quasi l-C-convexlike on K with nonempty C-compact values. Then

Wl (F,K,C) = El (F,K,C) = cl(Hl (F,K,C)) .

Proof. It follows from Lemma 2.4 that Hl (F,K,C) ⊆Wl (F,K,C). By Lemma 4.5, we obtain
that Wl (F,K,C) is closed, so cl(Hl (F,K,C))⊆Wl (F,K,C). Let x0 ∈Wl (F,K,C), and let {εn}⊆
(0,δ ) with εn→ 0. We claim that, for any neighborhood W of Ql (x0,C), there exists n0 ∈ N
such that

Ql (x0,Cεn)⊆W, ∀n≥ n0. (4.6)
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In fact, if (4.6) is not true, without loss of generality, we assume that there exists a neighborhood
W0 of Ql (x0,C) such that Ql (x0,Cεn) 6⊂W0 for any n ∈ N. Then there exists yn ∈ Ql (x0,Cεn)
such that

yn /∈W0, ∀n ∈ N. (4.7)

Since K is compact and yn ∈ K, without loss of generality, we assume that yn→ y0 ∈ K.
Next, we prove that F (x0)⊆ F (y0)+C, which implies y0 ∈Ql (x0,C). Suppose that F (x0) 6⊂

F (y0)+C. Then there exists z0 ∈ F (x0) such that z0 /∈ F (y0)+C. Since F (y0) is C-compact,
we see that F (y0) is C-closed, so F (y0)+C is closed. Then there exists α0 > 0 such that

z0 /∈ F (y0)+2α0BY +C. (4.8)

Due to yn ∈ Ql (x0,Cεn), one has F (yn)≤l
Cεn

F (x0), so F (x0)⊆ F (yn)+Cεn . This implies that
there are an ∈ F (yn) and cn ∈Cεn such that z0 = an + cn. Since F is C-u.s.c. at y0, we have

an ∈ F (yn)⊆ F (y0)+α0BY +C (4.9)

for n large enough. This means that there exist vn ∈ F (y0), wn ∈ α0BY and hn ∈ C such that
an = vn+wn+hn. Noting that F (y0) is C-compact, we obtain that F (y0) is C-bounded, so there
exists ϕ > 0 such that F (y0) ⊆ ϕBY +C, which implies that there exist bn ∈ ϕBY and sn ∈ C
such that vn = bn + sn. Thus,

z0 = an + cn = bn + sn +wn +hn + cn. (4.10)

Let β = ‖z0‖+ϕ +α0. It is clear that

z0−bn−wn−hn− sn ∈ βBY −C ⊆ βBY −Cεn.

Combining this with (4.10), we have

z0−bn−wn−hn− sn = cn ∈ (βBY −Cεn)∩Cεn. (4.11)

For β > 0 and for α0 > 0, it follows from Lemma 4.7 that (βBY −Cεn)∩Cεn ⊆ α0BY +C for n
large enough. This together with (4.9) and (4.11) implies that

z0 ∈ bn +wn +hn + sn +α0BY +C = an +α0BY +C

⊆ F (y0)+α0BY +C+α0BY +C ⊆ F (y0)+2α0BY +C,

which contradicts (4.8). Thus y0 ∈ Ql (x0,C). Noting that yn→ y0 ∈ Ql (x0,C) ⊆W0, we have
yn ∈W0 for n large enough, which contradicts (4.7). Therefore, we see that (4.6) holds. For
any y ∈ K, noting that F (y) is C-compact, it follows from Lemma 2.1 that F (y) is Cεn-compact,
so F (y) is Cεn-closed. By Lemma 4.1, we obtain that Ql (x0,Cεn) is closed. Since K is com-
pact and Ql (x0,Cεn) ⊆ K, we obtain that Ql (x0,Cεn) is compact. Due to Lemma 4.4, we have
Wl (F,Ql (x0,Cεn) ,Cεn) 6= /0. Let xn ∈Wl (F,Ql (x0,Cεn) ,Cεn). It is clear that xn ∈ Ql (x0,Cεn). It
follows from Lemma 4.3 that Ql (x0,C) = {x0}. Combining this with (4.6), we have xn→ x0.
By Remarks 2.6 and 2.8, we conclude

xn ∈Wl (F,Ql (x0,Cεn) ,Cεn)⊆Wl (F,K,Cεn)⊆ Hl (F,K,C) ,

so x0 ∈ cl(Hl (F,K,C)). Therefore, we obtan Wl (F,K,C)⊆ cl(Hl (F,K,C)). In view of Lemma
4.2, one has

Wl (F,K,C) = El (F,K,C) = cl(Hl (F,K,C)) .

This completes the proof. �
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5. CONNECTEDNESS OF THE WEAK HENIG PROPER SOLUTION SET

In this section, we discuss connectedness and arcwise connectedness of weak Henig proper
solution sets for set optimization problems. We define ξ : K×K× [0,δ )→ R∪{−∞,+∞} by

ξ (x,y,ε) = Ge (F (x) ,F (y) ,ε) , ∀(x,y,ε) ∈ K×K× [0,δ ) .

Remark 5.1. Assume that F (x) is C-bounded for any x ∈ K. Then we conclude from Remark
3.6 that ξ (x,y,ε) ∈ R for any (x,y,ε) ∈ K×K× [0,δ ).

The set-valued mapping H : K× [0,δ )→ K is defined by

H (x,ε) = {v ∈ K : Ge (F (y) ,F (x) ,ε)≥ Ge (F (v) ,F (x) ,ε) , ∀y ∈ K}
= {v ∈ K : ξ (y,x,ε)≥ ξ (v,x,ε) , ∀y ∈ K} , ∀(x,ε) ∈ K× [0,δ ) .

Lemma 5.1. [44] Assume that A is a nonempty and connected subset of a topological space and
F : A→ 2Y is an upper semicontinuous set-valued mapping with nonempty connected values.
Then F (A) is connected.

The following lemma is well known.

Lemma 5.2. Let ϒ and Ω be two topological spaces. Assume that A is a nonempty and arcwise
connected subset of ϒ and f : A→ Ω is a continuous single-valued mapping. Then f (A) :=⋃
x∈A
{ f (x)} is arcwise connected.

Lemma 5.3. Assume that F(x) is C-compact for any x ∈ K. Then

Hl (F,K,C) =
⋃

(x,ε)∈K×(0,δ )
H (x,ε).

Proof. For any x ∈ K, since F(x) is C-compact, it follows from Lemma 2.1 that F(x) is Cε -
compact for any ε ∈ (0,δ ). Similar to the proof of the Theorem 3.1 in [28], we can prove
that

Wl (F,K,Cε) =
⋃

x∈K

H (x,ε).

Combining this with Remark 2.6, we arrive at

Hl (F,K,C) =
⋃

ε∈(0,δ )

⋃
x∈K

H (x,ε) =
⋃

(x,ε)∈K×(0,δ )
H (x,ε).

This completes the proof. �

Similar to the proof of [28, Theorem 4.1 (i)], by Theorem 3.2, it is easy to obtain the following
lemma.

Lemma 5.4. Assume that K is nonempty and compact, and F is C-continuous with nonempty
and C-compact values. Then H is u.s.c. on K× (0,δ ).

Lemma 5.5. Let K be a nonempty subset of X and (x0,ε0)∈K×(0,δ ). Assume that F is strictly
quasi l-C-convexlike on K with nonempty C-compact values. Then H (x0,ε0) is a singleton.
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Proof. It follows from [42, Lemma 3.2] that ξ (·,x0,ε0) is a strictly quasi convexlike function
on K, i.e., for any y1,y2 ∈ K with y1 6= y2, there exist y3 ∈ K and λ ∈ [0,1] such that

ξ (y3,x0,ε0)< λξ (y1,x0,ε0)+(1−λ )ξ (y2,x0,ε0) .

Thus, it is easy to see that H (x0,ε0) is a singleton. This completes the proof. �

Theorem 5.1. Let K be nonempty, convex and compact. Assume that F is C-continuous and
naturally quasi C-convex on K with nonempty C-compact values. Then Hl (F,K,C) is connected.

Proof. Similar to the proof in [28, Lemmas 4.1 and 4.3], we can prove that H (x,ε) is nonempty
and convex for any (x,ε)∈K×(0,δ ). It follows from Lemma 5.4 that H is u.s.c. on K× (0,δ ).
By Lemma 5.3, we have

Hl (F,K,C) =
⋃

(x,ε)∈K×(0,δ )
H (x,ε).

Therefore, we conclude from Lemma 5.1 that Hl (F,K,C) is connected. This completes the
proof. �

From Theorem 5.1 and Remark 2.7, we can obtain the following corollary.

Corollary 5.1. Let K be nonempty, convex and compact. Assume that F is C-continuous and
C-convex on K with nonempty C-compact values. Then Hl (F,K,C) is connected.

Next, we give an example to illustrate Theorem 5.1 and Corollary 5.1.

Example 5.1. Let X = R, Y = R2, K = [0,1] and C = R2
+ =

{
(x1,x2) ∈ R2 : x1 ≥ 0,x2 ≥ 0

}
.

The set-valued mapping F1 : X → 2Y is defined as follows

F1 (x) =
(
(x−1)2,cos

(
x+

π

2

))
+BY , x ∈ X .

It is clear that F1 is C-continuous and C-convex on K with nonempty C-compact values. It
follows from Corollary 5.1 that Hl (F1,K,C) is connected. The set-valued mapping F2 : X → 2Y

is defined as follows
F2 (x) =

(
x2,1− x2)+BY , x ∈ X .

We can check that F2 is C-continuous and naturally quasi C-convex on K with nonempty C-
compact values. However, F2 is not C-convex on K. We conclude from Theorem 5.1 that
Hl (F2,K,C) is connected.

Theorem 5.2. Let K be a nonempty, arcwise connected and compact subset of X. Assume that F
is C-continuous and strictly quasi l-C-convexlike on K with nonempty C-compact values. Then
Hl (F,K,C) is arcwise connected.

Proof. We conclude from Lemma 5.3 that

Hl (F,K,C) =
⋃

(x,ε)∈K×(0,δ )
H (x,ε).

Thanks to Lemmas 5.4 and 5.5, we obtain that H : K×(0,δ )→K is a continuous single-valued
mapping. Noting that K is arcwise connected, we can see that K× (0,δ ) is arcwise connected.
Therefore, it follows from Lemma 5.2 that Hl (F,K,C) is arcwise connected. This completes
the proof. �
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Remark 5.2. Comparing Theorem 5.2 with [26, Theorem 3.1 ], we would like to point out the
following facts.

(i) In Theorem 5.2, we do not need to require that K is convex. It is clear that convexity is
a special case of arcwise connectedness. We weaken the convexity of K by assuming
that K is arcwise connected.

(ii) For any x ∈ K, we replace compactness of F (x) by C-compactness of F (x), which is a
weaker assumption.

(iii) It is clear that the class of C-continuous mappings is strictly larger than the class of con-
tinuous mappings. We weaken the continuity of F by assuming that F is C-continuous.

(iv) Obviously, if F is strictly naturally quasi C-convex on K, then F is strictly quasi C-
convexlike on K. Thus, we weaken the assumption that F is strictly naturally quasi
C-convex on K by assuming that F is strictly quasi C-convexlike on K.

(v) In Theorem 5.2, we derive arcwise connectedness of Hl (F,K,C) by using a well known
lemma (Lemma 5.2). It is worth noting that the proof methods in Theorem 5.2 are
different from the ones in Theorem 3.1 of [26].

Finally, we give an example to illustrate Theorem 5.2.

Example 5.2. Let X = R, Y = R2, K = [0,π] and C = R2
+ =

{
(x1,x2) ∈ R2 : x1 ≥ 0,x2 ≥ 0

}
.

The set-valued mapping F : X → 2Y is defined as follows

F (x) =
(
−2sinx,x2−6x+3

)
+BY , x ∈ X .

It is easy to see that 0 /∈Wl (F,K,C), and so 0 /∈ Hl (F,K,C). This means that Hl (F,K,C) 6=
K. We can check that all conditions of Theorem 5.2 are satisfied. Therefore, it follows from
Theorem 5.2 that Hl (F,K,C) is arcwise connected.
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[41] Y. Han, Painlevé-Kuratowski convergences of the solution sets for set optimization problems with cone-

quasiconnectedness, Optimization 71 (2022), 2185–2208.
[42] B. Chen, Y. Han, Contractibility of the solution sets for set optimization problems, arXiv:2311.15185.
[43] M. Alonso, L. Rodrı́guez-Marı́n, Set-relations and optimality conditions in set-valued maps, Nonlinear Anal.

63 (2005), 1167–1179.
[44] J.B. Hiriart-Urruty, Images of connected sets by semicontinuous multifunctions, J. Math. Anal. Appl. 111

(1985), 407–422.


	1. Introduction
	2. Preliminaries
	3. Continuity of Nonlinear Scalarizing Functions with respect to the Henig Dilating Cone
	4. Density of the Weak Henig Proper Solution Set
	5. Connectedness of the Weak Henig Proper Solution Set
	References

