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THE SPLIT COMMON FIXED POINT PROBLEM WITH MULTIPLE OUTPUT
SETS FOR STRICTLY PSEUDO-CONTRACTIVE MAPPINGS

HUANHUAN CUI, FENGHUI WANG∗
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Abstract. In this paper, we investigate a split common fixed point problem with multiple output sets
within a more general framework and we present a novel iterative method that boasts the advantage of the
step size calculation that is independent of the norm of linear mappings. We prove the weak convergence
of the method and the strong convergence of its variants under certain conditions. Furthermore, we apply
our main results to the split feasibility problem with multiple output sets. Our numerical results indicate
that our method is an effective approach to this problem.

Keywords. Multiple output sets; Strict pseudo-contraction; Split common fixed point problem; Split
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1. INTRODUCTION

Since its inception in 1994, the split feasibility problem (SFP) [1] has been a topic of much
interest due to its applications in signal processing, image reconstruction, and machine learn-
ing [2–5]. In particular, it has presented significant progress in intensity-modulated radiation
therapy [6, 7].

The SFP aims to identify a point x̂ that satisfies two conditions: it belongs to a nonempty,
convex and closed subset C of a Hilbert space H0, and its image under a linear bounded operator
A belongs to another nonempty, convex, and closed subset Q of a Hilbert space H1. In 2002,
Byrne [8] proposed a CQ method to solve the SFP. This method generates an iterative sequence
as follows:

xn+1 = PC(xn− τA∗(I−PQ)Axn), (1.1)
where I represents the identity mapping, PC is the metric projection, and A∗ denotes the con-
jugate of the mapping A. It has been proven that if the step size satisfies 0 < τ < 2

‖A‖2 , then
the iterative method above converges weakly to a solution of the corresponding problem. Al-
though the original formulation of the SFP was in finite-dimensional Euclidean spaces, recent
research has shifted towards studying the problem in infinite-dimensional Hilbert spaces; see,
e.g., [9–17], and the references therein.

In the literature, there exist several generalizations of the SFP. Two of these extensions are the
split common fixed point problem (SCFP) [18] and the split feasibility problem with multiple
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output sets (SFPMOS) [19]. Let T0 : H→H and T1 : H1→H1 be two nonlinear mappings. The
SCFP [18] aims to find x† ∈ H that satisfies the following condition:

x† ∈ Fix(T0)
⋂

A−1(Fix(T1)), (1.2)

where Fix(T0) is the fixed point set of T0, and A−1(Fix(T1)) = {x ∈ H : Ax ∈ Fix(T1)}. On the
other hand, the objective of the SFPMOS is to find an element x† ∈ H that satisfies:

x† ∈C∩
( N⋂

i=1

A−1
i (Qi)

)
, (1.3)

where Ai is a bounded linear mapping from H to Hi, and Qi is a nonempty, convex and closed
subset of Hi for each i = 1, . . . ,N.

Assume that all the problems discussed in this paper have nonempty solution sets. In 2009,
Censor and Segal [18] extended the CQ method to solve the SCFP (1.2) for firmly quasi-
nonexpansive mappings. To approximate its solution, they proposed the following iterative
scheme:

xn+1 = T0(xn− τA∗(I−T1)Axn). (1.4)

It has been shown that if the step size satisfies 0 < τ < 2
‖A‖2 , then their iterative method con-

verges weakly to a solution of the corresponding problem.
Recently, Reich, Truong, and Mai [19] proposed the following iterative method for this prob-

lem:

xn+1 = PC

[
xn− τ

N

∑
i=1

A∗i (I−PQi)Aixn

]
. (1.5)

It can be shown that method (1.5) converges weakly to a solution of problem (1.3) if τ is chosen
such that:

0 < τ <
2

N max1≤i≤N ‖Ai‖2 . (1.6)

In this paper, we aim to investigate the split common fixed point problem with multiple output
sets (SCFPMOS) [20] within a more general framework. The SCFPMOS seeks to find x† ∈ H
that satisfies the following condition:

x† ∈ Fix(T0)∩
( N⋂

i=1

A−1
i (Fix(Ti)

)
. (1.7)

In this work, we extend the corresponding nonlinear mapping from nonexpansive mappings to
strictly pseudo-contractive mappings. Additionally, we extend the number of corresponding
convex and closed sets from two to multiple output sets. Furthermore, we utilize the results ob-
tained to solve the SFPMOS and develop two new iterative methods to approximate its solution.

2. PRELIMINARIES

In what follows, “→” stands for strong convergence, and “⇀” weak convergence. Let now
T be a mapping from H into itself.
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Definition 2.1. [21] Suppose that there is k < 1 so that, for each x,y ∈ H,

‖T x−Ty‖2 ≤ ‖x− y‖2 + k‖(I−T )x− (I−T )y‖2,

where I stands for the identity mapping. Then T is called firmly nonexpansive if k = −1;
nonexpansive if k = 0; k-strictly pseudo-contractive (k-spc) if k ∈ (0,1).

Definition 2.2. [22] Suppose that Fix(T ) 6= ∅ and there is k < 1 so that, for each (x,z) ∈
H×Fix(T ), ‖T x− z‖2 ≤ ‖x− z‖2 + k‖x−T x‖2. Then T is called firmly quasi-nonexpansive if
k =−1; quasi-nonexpansive if k = 0; k-demicontractive if k ∈ (0,1).

Strict pseudo-contractive mappings constitute a broad class of nonlinear mappings, encom-
passing nonexpansive and firmly nonexpansive mappings as special cases. However, it should
be noted that the converse is not necessarily true, as demonstrated by the following example.

Example 2.1. Let T : `2→ `2 be a mapping defined by

T x = 4x− 3x
max(1,‖x‖)

.

It is easy to check that T is 1
2 -spc, but T is not nonexpansive. Indeed, set x = (1,0,0, · · ·) and

y = (1,1,0, · · ·). A simple calculation shows that ‖T x−Ty‖ ≈ 2.074 > ‖x− y‖= 1.

Lemma 2.1. [21] Let T be k-spc. Then the following assertions hold.

(1) Fix(T ) is closed and convex.
(2) T is (1+

√
k)/(1−

√
k)-Lipschitz continuous.

(3) For each (x,z) ∈ H×Fix(T ), it follows that

〈x−T x,x− z〉 ≥ 1− k
2
‖x−T x‖2.

(4) T is demiclosed at the origin, which means that, for any sequence {xn}⊆H and x† ∈H,
the following holds:

xn ⇀ x†

xn−T xn→ 0

]
=⇒ T x† = x†.

Suppose now that C ⊆ H is a nonempty, convex and closed subset. A typical example of
firmly nonexpansive mappings is the metric projection PC from H onto C defined by

PCx = argmin
y∈C

‖x− y‖,x ∈ H.

Let x ∈ H. Then y = PCx if and only if y ∈C and 〈x− y,z− y〉 ≤ 0 for all z ∈C.

Definition 2.3. [23] A sequence {xn} ⊆ H is said to be quasi Fejér monotone with regards to
C if there is a real sequence such that ∑

∞
n=0 εn < ∞ and

‖xn+1− z‖2 ≤ ‖xn− z‖2 + εn, ∀n≥ 0,∀z ∈C.

The following lemmas are very useful in the convergence analysis.

Lemma 2.2. [23] Let {xn} be quasi Fejér monotone with regard to C. Then {xn} converges
weakly to an element in C if and only if each of its weak cluster points belongs to C.
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Lemma 2.3. [24] Suppose that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1−αn)an +αnδn +ρn, n≥ 0,

where {αn} is a sequence in (0,1) and {δn} is a sequence in R. Then the sequence {an}
converges to 0 provided that

∞

∑
n=0

αn = ∞, lim
n→∞

δn ≤ 0,
∞

∑
n=0

ρn < ∞.

Lemma 2.4. [25] Suppose that {an} and {ρn} are two sequences of nonnegative real numbers
such that ∑

∞
n=0 ρnan < ∞,∑∞

n=0 ρ2
n < ∞ and ∑

∞
n=0 ρn = ∞. If there is M > 0 such that |an+1−

an| ≤Mρn, then {an} converges to 0.

3. ITERATIVE METHODS WITH VARIABLE STEP SIZES

For convenience, let us define Λ as the set {0,1,2, . . . ,N} and assume that ki ∈ (0,1) for all
i ∈ Λ. We denote by A0 the identity mapping and S the solution set of the SCFPMOS (1.7). In
our subsequent analysis, we make use of the following lemma.

Lemma 3.1. Let Ti : Hi → Hi be ki-spc for each i ∈ Λ. If the real sequence {‖∑
N
i=0 A∗i (I−

Ti)Aixn‖} converges to 0, then each weak custer point of {xn} belongs to S .

Proof. Fix any z ∈S . By the property of strict pseudo-contractions, one has
N

∑
i=0

(1− ki)‖Aixn−Ti(Aixn)‖2 ≤ 2
N

∑
i=0
〈Aixn−Ti(Aixn),Aixn−Aiz〉

= 2
N

∑
i=0
〈A∗i (I−Ti)Aixn,xn− z〉

≤ 2

∥∥∥∥∥ N

∑
i=0

A∗i (I−Ti)Aixn

∥∥∥∥∥ · ‖xn− z‖.

Thus {‖Aixn−Ti(Aixn)‖} converges to 0 for each i ∈ Λ. Let x∗ be any weak cluster point of
{xn} and choose a subsequence {xnk} that converges weakly to x∗. Since Ai is linear, it is
straightforward to verify that {Aixnk} converges weakly to Aix∗. Moreover, since Ti satisfies the
demiclosedness principle by our assumption, we conclude that Aix∗ ∈ Fix(Ti) for each i ∈ Λ.
Therefore, any weak cluster point of {xn} belongs to solution set S . �

Note that the selection of the step size in (1.1) requires the norm of the linear mapping, which
could be difficult to obtain in practice. To overcome this challenge, Yang [26] proposed a novel
iterative method to approximate a solution of the SFP. The iterative method is as follows:

xn+1 = PC(xn− τnA∗(Axn−PQ(Axn))), (3.1)

where τn = ρn/‖A∗(Axn−PQ(Axn))‖ and {ρn} is a positive real sequence satisfying
∞

∑
n=0

ρn = ∞,
∞

∑
n=0

ρ
2
n < ∞. (3.2)

This selection of step sizes does not require the value of ‖A‖. Moreover, if Q is bounded and A
is of full column rank, then method (3.1) converges to a solution of the SFP. It is worth noting
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that the assumptions about A and Q could be completely removed [27]. Recently, method (3.1)
has been extended to the SCFP (1.2) for firmly nonexpansive mappings [28].

As seen in (1.5), determining the value of max1≤i≤N ‖Ai‖ in advance is often difficult in
practice. To address this issue, we follow (3.1) and adopt a variable step size that is ultimately
independent of max1≤i≤N ‖Ai‖.

Algorithm 3.1. Choose a real sequence {ρn} and an initial guess x0 ∈ H. At each iteration,
given the current iterate xn, check if it satisfies the condition ‖∑

N
i=0 A∗i (I−Ti)Aixn‖ = 0. If it

does, then we stop the method, as xn is a solution to problem (1.7). Otherwise, we update the
next iterate xn+1 as follows:

xn+1 = xn− τn

N

∑
i=0

A∗i (I−Ti)Aixn, (3.3)

where
τn =

ρn

‖∑
N
i=0 A∗i (I−Ti)Aixn‖

.

It is worth noting that {xn} is assumed to be infinite, as the method does not terminate finitely
when condition ‖∑

N
i=0 A∗i (I−Ti)Aixn‖= 0 is not satisfied.

Theorem 3.1. Assume that Ti is ki-spc for each i ∈ Λ, and that condition (3.2) is satisfied. If
problem (1.7) is consistent, then the sequence {xn} generated by method 3.1 converges weakly
to an element of S .

Proof. First, we prove that {xn} is quasi Fejér monotone. In fact, fix any z ∈S , and set yn =

∑
N
i=0 A∗i (I−Ti)Aixn and

τ = min
0≤i≤N

1− ki

(N +1)‖Ai‖2 .

It then follows from Lemma 2.1 that

2〈yn,xn− z〉= 2
N

∑
i=0
〈(I−Ti)Aixn,Aixn−Aiz〉 ≥

N

∑
i=0

(1− ki)‖(I−Ti)Aixn‖2

≥
N

∑
i=0

1− ki

‖Ai‖2‖A
∗
i (I−Ti)Aixn‖2 ≥ (N +1)τ

N

∑
i=0
‖A∗i (I−Ti)Aixn‖2

≥ τ

(
N

∑
i=0
‖A∗i (I−Ti)Aixn‖

)2

≥ τ

∥∥∥∥∥ N

∑
i=0

A∗i (I−Ti)Aixn

∥∥∥∥∥
2

.

Hence 2〈yn,xn− z〉 ≥ τ‖yn‖. This combined with (3.3) yields

‖xn+1− z‖2 = ‖xn− z‖2−2τn〈yn,xn− z〉+ τ
2
n‖un‖2

≤ ‖xn− z‖2− ττn‖yn‖+ τ
2
n‖un‖2

= ‖xn− z‖2− τρn‖yn‖+ρ
2
n . (3.4)

In particular, for all n≥ 0, we have

‖xn+1− z‖2 ≤ ‖xn− z‖2 +ρ
2
n ,

so {xn} is quasi Fejér monotone with regard to S .
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Next, we show that any weak cluster point of the sequence {xn} is a solution to problem (1.7).
In fact, according to formula (3.4), we deduce from the recurrence relation that

∞

∑
n=0

ρn‖yn‖< ∞. (3.5)

Let T ′i = I−Ti. Then it is easy to check that T ′i is 2/(1−
√

ki)-Lipschitz continuous. From this,
it then follows that ∣∣‖yn+1‖−‖yn‖

∣∣≤ ∥∥∥∥∥ N

∑
i=0

A∗i (T
′

i Aixn−T ′i Aixn+1)

∥∥∥∥∥
≤

N

∑
i=0
‖A∗i T ′i (Aixn−Aixn+1)‖

≤
N

∑
i=0
‖A∗i ‖‖T ′i (Aixn−Aixn+1)‖

≤
N

∑
i=0

2‖Ai‖
1−
√

ki
‖Ai(xn− xn+1)‖

≤
N

∑
i=0

2‖Ai‖2

1−
√

ki
‖xn− xn+1‖

=

(
N

∑
i=0

2‖Ai‖2

1−
√

ki

)
ρn.

Therefore, from Lemma 2.4, one has limn ‖yn‖ = 0. By Lemma 3.1, any weak cluster point of
{xn} belongs to the solution set. We thus apply Lemma 2.2 to conclude that {xn} converges
weakly to an element of S . �

Remark 3.1. As a direct application, we present a new method for solving the SFPMOS. This
method is given by the following formula:

xn+1 = xn− τn

N

∑
i=0

A∗i (I−PQi)Aixn, (3.6)

where
τn =

ρn

‖∑
N
i=0 A∗i (I−PQi)Aixn‖

.

This method is distinct from Reich, Truong, and Mai’s method, and its step size selection does
not depend on the value of max1≤i≤N ‖Ai‖.

Remark 3.2. Consider the special case that N = 1 in (3.6). In this instance, we obtain a com-
pletely new method for solving the SFP. The method is given by the following formula:

xn+1 = xn− τn[(I−PC)xn +A∗(I−PQ)Axn],

where τn = ρn‖(I−PC)xn +A∗(I−PQ)Axn‖−1. This method is distinct from Yang’s method,
and its convergence does not require the condition that Q is bounded and A is of full column
rank.
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Remark 3.3. An important question to consider is whether the assumptions regarding strict
pseudo-contractions can be relaxed to those of demicontractions. However, it can be observed
from the above proof that Lipschitz continuity plays a critical role in the convergence analysis,
while demicontractions are typically discontinuous.

As shown above, the sequence generated by our method exhibits only weak convergence in
infinite dimensional Hilbert spaces. To ensure the strong convergence, we will need to modify
the method.

Algorithm 3.2. Choose a fixed element u, two real sequences {αn} ⊆ [0,1] and {ρn} ⊆ (0,∞),
and an arbitrary initial guess x0 ∈ H. Given the current iteration xn, if∥∥∥∥∥ N

∑
i=0

A∗i (I−Ti)Aixn

∥∥∥∥∥= 0,

then stop; otherwise, update the next iteration xn+1 via

xn+1 = αnu+(1−αn)

[
xn− τn

N

∑
i=0

A∗i (I−Ti)Aixn

]
,

where
τn =

ρn

‖∑
N
i=0 A∗i (I−Ti)Aixn‖

.

Theorem 3.2. Assume that the parameters satisfy the following conditions:

(c1) limn(αn/ρn) = 0;
(c2) limn αn = 0 and ∑

∞
n=0 αn = ∞;

(c3) ∑
∞
n=0 ρn = ∞ and ∑

∞
n=0 ρ2

n < ∞.

Under these conditions, if Ti is ki-spc for each i∈Λ, the sequence {xn} generated by method 3.2
converges strongly to z, which is the point in S nearest to the anchor u. Specifically, z= PS (u).

Proof. Set yn = ∑
N
i=0 A∗i (I−Ti)Aixn and zn = xn− τnyn. Similarly, we can deduce that

‖zn− z‖2 ≤ ‖xn− z‖2− τρn‖yn‖+ρ
2
n . (3.7)

The definition of τ here is the same as the previous theorem.
In what follows we divide the proof into four steps.
Step 1. The sequence {xn} is bounded. To see this, we obtain from (3.7) that

‖xn+1− z‖2 = ‖αn(u− z)+(1−αn)(zn− z)‖2

≤ αn‖u− z‖2 +(1−αn)‖zn− z‖2

≤ αn‖u− z‖2 +(1−αn)‖xn− z‖2 +ρ
2
n

≤max
{
‖xn− z‖2,‖u− z‖2}+ρ

2
n .

By induction, we obtain

‖xn− z‖2 ≤max
{
‖x0− z‖2,‖u− z‖2}+ ∞

∑
n=0

ρ
2
n

for all n≥ 0. Hence, by the condition (c3), {xn} is bounded.
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Step 2. Set an := ‖xn− z‖2 and

bn := 2〈u− z,xn+1− z〉− τρn

αn
(1−αn)‖yn‖.

Then there holds the inequality:

an+1 ≤ (1−αn)an +αnbn +ρ
2
n . (3.8)

As a matter of fact, we have

‖xn+1− z‖2 = ‖(1−αn)(zn− z)+αn(u− z)‖2

≤ (1−αn)
2‖zn− z‖2 +2αn〈u− z,xn+1− z〉

≤ (1−αn)‖zn− z‖2 +2αn〈u− z,xn+1− z〉. (3.9)

Substituting (3.7) into (3.9), we obtain

‖xn+1− z‖2 ≤ (1−αn)‖xn− z‖2 +2αn〈u− z,xn+1− z〉

− τ(1−αn)ρn‖yn‖+(1−αn)ρ
2
n ,

and (3.8) follows immediately.
Step 3. We claim that lim

n→∞
bn ≤ 0. First note that, since {bn} is bounded from above, limn bn

is finite. Also from our conditions (c2) and (c3), it is easy to verify that

lim
n→∞
‖xn+1− xn‖= 0.

Based on this, we can choose a subsequence {xnk} of {xn} such that

lim
n→∞

bn = lim
k→∞

bnk

= lim
k→∞

[
2〈u− z,xnk+1− z〉−

τ(1−αnk)

αnk

ρnk‖ynk‖
]

= lim
k→∞

[
2〈u− z,xnk− z〉−

τ(1−αnk)

αnk

ρnk‖ynk‖
]
. (3.10)

With no loss of generality, we may further assume that {xnk} is weakly convergent to some
point x∗. Thus

lim
k→∞
〈u− z,xnk− z〉= 〈u− z,x∗− z〉. (3.11)

A key ingredient of the proof of this step lies in proving that x∗ ∈ S. To see this, we proceed as
follows. Since αnk → 0, a consequence of (3.10) and (3.11) is that limk→∞

ρnk
αnk
‖ynk‖ exists. In

particular, { ρnk
αnk
‖ynk‖} is bounded. Therefore, using condition (c1), we have

lim
k→∞
‖ynk‖= lim

k→∞

(
αnk

ρnk

·
ρnk

αnk

‖ynk‖
)
= 0.

That is

lim
k→∞

∥∥∥∥∥ N

∑
i=0

A∗i (I−Ti)Aixnk

∥∥∥∥∥= 0.

It then turns out from Lemma 3.1 that x∗ ∈S . Combining (3.10) and (3.11) yields

lim
n→∞

bn ≤ lim
k→∞

2〈u− z,xnk− z〉= 2〈u−PS u,x∗−PS u〉 ≤ 0. (3.12)
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Step 4. We show the strong convergence of {xn}. As a matter of fact, we thus apply Lemma
2.3 to (3.8) to obtain the desired result. �

Remark 3.4. The real sequences given below satisfy conditions (c1)-(c3):

ρn = 1/(n+1)r, αn = 1/(n+1)s,
1
2
< r < s≤ 1.

Remark 3.5. As a direct application, we present a new method for solving the SFPMOS. This
method is given by the following formula:

xn+1 = αnu+(1−αn)

[
xn− τn

N

∑
i=0

A∗i (I−PQi)Aixn

]
,

where τn = ρn/‖∑
N
i=0 A∗i (I−PQi)Aixn‖. This method is distinct from Reich, Truong, and Mai’s

method, and its step size selection does not depend on the value of max1≤i≤N ‖Ai‖.

4. A NUMERICAL EXPERIMENT

In this section, we explore numerical experiments that demonstrate the practical applications
of the proposed algorithm to inverse problems in signal processing. Compressed sensing is
a very active domain of research and applications, based on the fact that an N-sample signal
x with exactly m nonzero components can be recovered from m� k < N measurements as
long as the number of measurements is smaller than the number of signal samples and at the
same time much larger than the sparsity level of x. Likewise the measurements are required
to be incoherent, which means that the information contained in the signal is spread out in the
domain. Since k < N, the problem of recovering x from k measurements is ill conditioned
because we encounter an underdeterminated system of linear equations. With a sparsity prior,
it turns out that reconstructing x from y is possible as long as the number of nonzero elements
is small enough.

To formulate compressed sensing, we begin with the equation system yi = Aix+ ε for i =
1,2, . . . ,10, where x ∈ RN is the signal that we wish to recover, yi ∈ Rk is the vector of noisy
measurements, and ε represents the noise. However, the linear observation operator Ai : RN →
Rk is often ill-conditioned due to the loss of information in the measurement process. To over-
come this challenge, we adopt a sparse representation of the signal, which assumes that the
signal can be represented by a series expansion with respect to an orthonormal basis that has
only a small number of large coefficients. By leveraging convex analysis, we can formulate
the compressed sensing problem as a particular SFPMOS, where C = {x ∈ RN : ‖x‖1 ≤ t} and
Qi = {yi}. Our proposed method can solve this problem efficiently. In this case, PC has a closed
form and is nothing but the projection onto the closed `1 ball in RN (see [29]). To perform
the experiment, we start with an initial signal x0 = 0 and run 300 iterations. We measure the
restoration accuracy using the mean squared error: MSE = (1/N)‖x∗− x‖2, where x∗ is the
estimated signal of x.

In Figure 1, we present three plots: the top one demonstrates the true signal, while the second
and third plots demonstrate the signal reconstructed using Reich, Truong, and Mai’s method
and our method, respectively. For Reich, Truong, and Mai’s method, we used a stepsize of
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τn ≡ (10maxi ‖Ai‖2)−1, while for our method, we used a stepsize of

τn =
1

(n+1)‖∑
N
i=0 A∗i (I−PQi)Aixn‖

.

As the figure demonstrates, our method provides a relatively accurate estimate of the signal x,
while requiring the shortest CPU time compared to Reich, Truong, and Mai’s method. This dif-
ference in efficiency becomes more pronounced as the dimensionality of N increases. Overall,
our results suggest that our method is a promising approach for problem (1.7).

FIGURE 1. Numerical Results on Different Choices of N
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