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Abstract. We prove the existence of mild solutions to a nonlocal boundary value problem for fractional-
functional differential inclusions of the Hale type in a separable Banach space. We assume that the linear
part of an inclusion is an infinitesimal generator of a bounded C0-semigroup of linear operators, and the
nonlinear part is a causal multivalued operator.
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1. INTRODUCTION

In the last decades, the theory of fractional calculus has become one of the most popular and
important areas of contemporary mathematics. Interest in this topic has increased as the result
of the fact that numerous modern problems of science and technology find a fairly adequate de-
scription in terms of fractional differential equations and inclusions. Many physical, economic,
biological and engineering problems, primarily related to the evolution of processes in dynam-
ical systems, lead to the necessity of investigation of boundary value problems for fractional
differential equations and inclusions (see, e.g., [1, 2, 3, 4, 5]). In recent years, the study of the
whole complex of problems related to differential equations and inclusions of fractional order
has been very intensively carried out by many researchers (see, e.g., [6, 7, 8, 9, 10, 11, 12]).
Fractional functional differential and integro-differential inclusions of Hale type occupy an in-
termediate position between functional differential inclusions with delay and neutral type in-
clusions. The monograph of Hale [13] is devoted to the corresponding equations in the finite-
dimensional case. For the infinite-dimensional case, this theory was developed by Ilolov et al.
in [14, 15, 16, 17, 18].

Recently, the attention of many researchers (see the monograph [19] and references therein)
has been attracted to the generalizations of differential equations and inclusions to the class
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of functional equations and inclusions with causal operators. The term of a causal or Volterra
operator in the sense of Tikhonov (see [20]) was used in mathematical physics to solve problems
of differential equations, integro-differential equations, functional differential equations with a
finite or infinite delay, integral equations of Volterra type, functional equations of a neutral
type, etc. The results presented in [21, 22, 23, 24, 25, 26, 27, 28] are devoted to the study of
equations and inclusions with causal operators of various types, the justification of the existence
of solutions, the description of qualitative properties of solutions and a number of applications.

In this paper, we prove the existence of mild solutions to a nonlocal boundary value prob-
lem for fractional differential inclusions of the Hale type. We assume that the linear part of an
inclusion is an infinitesimal generator of a bounded C0-semigroup of linear operators, and the
nonlinear part is a causal multivalued operator. The paper is organized in the following way. In
the preliminaries section, we collect the basic concepts and statements from the fractional cal-
culus, theory of multivalued maps and measures of noncompactness, and the Hale-Kato phase
space. In the third section, we define the notion of a causal multivalued operator, and present
examples and necessary properties. In the forth section, we introduce the resolving operator for
the considered boundary value problem and study its properties. In the last section, the con-
cluding section, by using the fixed point theory for condensing multivalued maps, we present
the existence result.

2. PRELIMINARIES

2.1. The fractional integral and Caputo fractional derivative. For the considering of the
main problem, we need the following notions from fractional calculus (see, e.g., monographs
[2, 3]).

Definition 2.1. The fractional integral of an order q > 0 of a function g : [0,T ]→ E is the
function Iq

0 g of the following form:

Iq
0 g(t) =

1
Γ(q)

∫ t

0
(t− s)q−1g(s)ds,

where Γ is the Euler gamma function

Γ(q) =
∫

∞

0
xq−1e−xdx.

Definition 2.2. The Caputo fractional derivative of an order q≥ 0 of a function g∈Cn([0,T ];E)
is the function CDq

0g of the following form:

CDq
0g(t) =

1
Γ(n−q)

∫ t

0
(t− s)n−q−1g(n)(s)ds,

where n and q are related by equality n = [q]+1.

2.2. Multivalued maps and measures of noncompactness. Let X be a metric space and Y a
normed space. We introduce the following notation:

P(Y ) denotes the collection of all non-empty subsets of Y ;
Pb(Y ) denotes the collection of all non-empty and bounded subsets of Y ;
C(Y ) denotes the collection of all non-empty and closed subsets of Y ;
Cv(Y ) denotes the collection of all non-empty, closed and convex subsets of Y ;
K(Y ) denotes the collection of all non-empty and compact subsets of Y ;
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Kv(Y ) denotes the collection of all non-empty, compact and convex subsets of Y.

Let us recall some notions (see, e.g., [29], [30]).

Definition 2.3. A multivalued map (multimap) F : X → P(Y ) is said to be upper semicontin-
uous (u.s.c.) at a point x ∈ X if, for every open set V ⊂ Y such that F (x) ⊂ V, there exists a
neighborhood U(x) of x such that F (U(x))⊂V.

Definition 2.4. A multivalued map F : X → P(Y ) is called closed if its graph GF = {(x,y) :
x ∈ X ,y ∈F (x)} is a closed subset of X×Y.

Definition 2.5. For a given p≥ 1, a multifunction G : [0,T ]→ K(Y ) is called:
• Lp-integrable if it admits an Lp–Bochner integrable selection, i.e., there exists a function

g ∈ Lp ([0,T ];Y ) such that g(t) ∈ G(t) for a.e. t ∈ [0,T ];
• Lp-integrably bounded if there exists a function ξ ∈ Lp([0,T ]) such that ‖G(t)‖ ≤ ξ (t)

for a.e. t ∈ [0,T ].

Let E be a Banach space.

Definition 2.6. A sequence of functions {ξn} ⊂ Lp([0,T ];E ), p≥ 1, is called Lp–semicompact
if it is Lp–integrably bounded and the set {ξn(t)} is relatively compact in E for a.e. t ∈ [0,T ].

Definition 2.7. Let (A ,≥) be a partially ordered set. A function β : Pb(E )→A is called the
measure of noncompactness (MNC) in E if, for each Ω ∈ Pb(E ), β (coΩ) = β (Ω), where coΩ

denotes the closure of the convex hull of Ω.

A measure of noncompactness β is called:
1) monotone if, for each Ω0,Ω1 ∈ Pb(E ), β (Ω0)≤ β (Ω1) for Ω0 ⊆Ω1;
2) nonsingular if, for each a ∈ E and each Ω ∈ Pb(E ), β ({a}∪Ω) = β (Ω).

If A is a cone in a Banach space, the MNC β is called:
3) regular if β (Ω) = 0 is equivalent to the relative compactness of Ω ∈ Pb(E );
4) real if A is the set of all real numbers R with the natural ordering.

As the example of a real MNC obeying all above properties, we can consider the Hausdorff
MNC χ(Ω):

χ(Ω) = inf{ε > 0, for which Ω has a finite ε-net in E }.
As other examples, we consider the measures of noncompactness defined in the space of

continuous functions C([a,b];E) with values in a Banach space E:
(1) the modulus of fiber noncompactness:

ϕ(Ω) = sup
t∈[a,b]

χE(Ω(t)),

where χE is the Hausdorff MNC in E and Ω(t) = {y(t) : y ∈Ω};
(2) the fading modulus of fiber noncompactness:

γ(Ω) = sup
t∈[a,b]

e−Lt
χE(Ω(t)),

where L > 0 is a given number;
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(3) the modulus of equicontinuity:

modC (Ω) = lim
δ→0

sup
y∈Ω

max
|t1−t2|≤δ

‖y(t1)− y(t2)‖ .

These measures of noncompactness satisfy all the above properties, except for the regularity.

Definition 2.8. A multimap F : X ⊆ E → K(E ) is called condensing with respect to a MNC β

(or β–condensing) if, for each bounded set Ω⊆ X which is not relatively compact, β (F(Ω)) 6≥
β (Ω).

Let D ⊂ E be a non-empty closed convex subset, V be a non-empty bounded open subset of
D , β be a monotone nonsingular MNC in E , and F : V → Kv(D) be a u.s.c. β -condensing
map such that x /∈F (x) for all x ∈ ∂V , where V and ∂V denote the closure and the boundary
of the set V in the relative topology of D .

In such a setting, the (relative) topological degree

degD

(
i−F ,V

)
of the corresponding vector field i−F , satisfying the standard properties is defined (see, for
example, [29] and [30]). In particular, the condition

degD

(
i−F ,V

)
6= 0

implies that the fixed points set FixF = {x : x ∈F (x)} is a nonempty subset of V.
The application of topological degree theory leads to the following fixed point principles,

which will be used in the sequel.

Theorem 2.1. ([29], Theorem 3.3.4). Let V ⊂ D be a bounded open neighborhood of a point
a∈V and F : V→Kv(D) a u.s.c. β -condensing multimap, where β is a monotone nonsingular
MNC in E , satisfying the boundary condition

x−a /∈ λ (F (x)−a)

for all x ∈ ∂V and 0 < λ ≤ 1. Then FixF 6= /0 is a non-empty compact set.

2.3. Phase space. We will use the axiomatic definition of the phase space B, introduced by
Hale and Kato (see [31] and [32]). The space B will be considered as a linear topological space
of functions defined on (−∞,0] with values in a Banach space E endowed with the seminorm
‖ · ‖B. For all function x : (−∞,T ]→ E, where T > 0, and every t ∈ (−∞,T ], xt describes the
prehistory and is defined as

xt(θ) = x(t +θ), θ ∈ (−∞,0].

We will assume that B satisfies the following axioms:
(B1) if a function x : (−∞;T ]→E is continuous on [0;T ] and x0 ∈B, then, for each t ∈ [0;T ],

(i) xt ∈B;
(ii) the function t 7→ xt is continuous;

(iii) ‖xt‖B ≤ K(t)sup0≤τ≤t ‖x(τ)‖+H(t)‖x0‖B, where the functions K,H : [0;∞)→
[0;∞) are independent of x, K is strictly positive and continuous, and H is locally
bounded.

(B2) there exists l > 0 such that ‖ψ(0)‖E ≤ l‖ψ‖B for all ψ ∈B.
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Notice that under these conditions the space C00 of all continuous functions with compact
support mapping (−∞,0] to E is a subset of phase space B ([32, Proposition 1.2.1]).

In addition, we will assume that the following condition is satisfied:
(BC 1) if a uniformly bounded sequence {ψn}+∞

n=1 ⊂C00 converges to a function ψ compactly
(i.e. uniformly on each compact subset (−∞,0]), then ψ ∈B and lim

n→+∞
‖ψn−ψ‖B = 0.

The condition (BC 1) implies that the Banach space of bounded continuous functions BC =
BC((−∞,0];E) is continuously embedded into B. More precisely, the following assertion is
true.

Theorem 2.2. ([32, Proposition 7.1.1]).
(i) BC ⊂C00, where C00 denote the closure of C00 in B;

(ii) if a uniformly bounded sequence {ψn} in BC converges to a function ψ compactly on
(−∞,0], then ψ ∈B and lim

n→+∞
‖ψn−ψ‖B = 0;

(iii) there exists L > 0 such that ‖ψ‖B ≤ L‖ψ‖BC for all ψ ∈ BC.

Finally, we assume that the following condition is satisfied:
(BC 2) if ψ ∈ BC and ‖ψ‖BC 6= 0, then ‖ψ‖B 6= 0.

This assumption implies that BC, endowed with ‖ · ‖B, is a normed space. We denote it by
BC .

We may consider the following examples of phase spaces satisfying all the above properties:
(1) for γ > 0 let B = Cγ be the space of continuous functions ϕ : (−∞;0]→ E for which

there exists lim
θ→−∞

eγθ ϕ(θ) and

‖ϕ‖B = sup
−∞<θ≤0

eγθ‖ϕ(θ)‖.

(2) (Spaces of ”fading memory”) Let B = Cρ be the space of functions ϕ : (−∞;0]→ E
such that
(a) ϕ is continuous on [−r;0],r > 0;
(b) ϕ is Lebesgue measurable on (−∞;r) and there exists a nonnegative Lebesgue

integrable function ρ : (−∞;−r)→ R+ such that ρϕ is Lebesgue integrable on
(−∞;r). Moreover, there exists a locally bounded function P : (−∞;0]→ R+ such
that, for all ξ ≤ 0, ρ(ξ +θ)≤ P(ξ )ρ(θ) a.e. θ ∈ (−∞;−r).

Then

‖ϕ‖B = sup
−r≤θ≤0

‖ϕ(θ)‖+
−r∫
−∞

ρ(θ)‖ϕ(θ)‖dθ .

A simple example of such space is given by taking ρ(θ) = eµθ , µ ∈ R.

3. CAUSAL MULTIOPERATORS

Let E be a separable Banach space. By Lp ([0,T ];E) , 1 ≤ p ≤ ∞, we denote the Banach
space of all Bochner p-summable functions f : [0,T ]→ E with the usual norm. For each subset
N ⊂ Lp ([0,T ];E) and τ ∈ (0,T ) we define restriction N on [0,τ] as

N |[0,τ]= { f |[0,τ]: f ∈N }.
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We denote by C ((−∞;T ];E) the normed space of bounded continuous functions x : (−∞;T ]→
E such that x |(−∞;0]= x0 ∈BC , which is endowed with the norm

‖x‖C = ‖x0‖BC +‖x |[0;T ] ‖C.

Definition 3.1. A multivalued map Q : C ((−∞,T ];E)( Lp ([0,T ];E) is said to be a causal
multioperator if, for each τ ∈ (0,T ) and for every u(·),v(·) ∈ C ((−∞,T ];E), the condition
u |(−∞,τ]= v |(−∞,τ] implies that Q(u) |[0,τ]= Q(v) |[0,τ] .

Let us give examples of causal multioperators.

Example 3.1. We assume that the multimap F : [0,T ]×BC ×E→ Kv(E) satisfies the follow-
ing conditions:
(F1) for each (ψ,x) ∈BC ×E, F (·,ψ,x) : [0,T ]→ Kv(E) admits a measurable selection;
(F2) for a.e. t ∈ [0,T ], F (t, ·, ·) : BC ×E→ Kv(E) is u.s.c.;
(F3) there exists a function α ∈ Lp

+[0,T ], 1≤ p≤ ∞, such that

‖F(t,ψ,x)‖E := sup{‖z‖E : z ∈ F(t,ψ,x)} ≤ α(t)(1+‖ψ‖BC +‖x‖E)

for a.e. t ∈ [0,T ] and (ψ,x) ∈BC ×E.
From (F1)-(F3) and (B1), it follows that the multimap PF : C ((−∞;T ];E)→P(Lp([0,T ];E))

as
PF(x) = { f ∈ Lp([0,T ];E) : f (t) ∈ F(t,xt ,x(t)) a.e. t ∈ [0,T ]}

is well defined (see, e.g., [29] and [30]). It is clear that the multioperator PF is causal.

Example 3.2. Let F : [0,T ]×BC → Kv(E) be a multimap satisfying conditions (F1)− (F3)
from Example 3.1. Suppose that {K(t,s) : 0 ≤ s ≤ t ≤ T} is a continuous (with respect to
the corresponding norm) family of bounded linear operators in E and m ∈ L1([0,T ];E) is a
given function. Consider the Volterra integral multioperator V : C ((−∞,T ];E)( L1 ([0,T ];E)
defined as

V (u)(t) = m(t)+
∫ t

0
K(t,s)F(s,us)ds,

i.e.,

V (u) = {y ∈ L1 ([0,T ];E) : y(t) = m(t)+
∫ t

0
K(t,s) f (s)ds : f ∈PF(u)}.

It is also clear that the multioperator V is causal.

We will assume that the causal multioperator Q : C ((−∞,T ];E)(C (Lp ([0,T ];E)) satisfies
the following conditions:
(Q1) Q is weakly closed in the following sense: conditions {un}∞

n=1 ⊂ C ((−∞,T ];E) ,

{ fn}∞
n=1 ⊂ Lp ([0,T ];E) , 1 ≤ p ≤ ∞, fn ∈ Q(un), n ≥ 1, un → u0, fn

L1
⇀ f0 implies

f0 ∈Q(u0);
(Q2) there exists a function α ∈ L∞

+([0,T ]) such that

‖Q (u)(t)‖E ≤ α (t)(1+‖u‖C ) , for a.e. t ∈ [0,T ],

for all u ∈ C ((−∞,T ];E);
(Q3) there exists a function ω : [0,T ]×R+→ R+ such that

(ω1) for all x ∈ R+ : ω(·,x) ∈ Lp
+([0,T ]), 1≤ p≤ ∞;
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(ω2) for a.e. t ∈ [0,T ] a function ω(t, ·) : R+→ R+ is continuous, nondecreasing, and
quasihomogeneous in the sense that ω(t,λx)≤ λω(t,x) for all x ∈ R+ and λ ≥ 0;

(ω3) for each bounded set ∆⊂ C ((−∞,T ];E) we have

χ (Q (∆)(t))≤ ω

(
t, sup

s∈[0,t]
ϕ (∆s)

)
for a.e. t ∈ [0,T ],

where the set ∆s = {ys : y ∈ ∆} ⊂BC and ϕ is the modulus of fiber noncompact-
ness in BC .

Notice that condition (ω2) means that ω(t,0) = 0 for a.e. t ∈ [0,T ] and as an example of
such a function we can consider ω(t,x) = k(t) · x, where k(·) ∈ Lp

+([0,T ]).
Consider a linear operator S : Lp([0,T ];E)→C([0,T ];E), which is causal in the sense that

for every τ ∈ (0,T ] and f ,g ∈ Lp([0,T ];E) condition f (t) = g(t) for a.e. t ∈ [0,τ] implies
(S f )(t) = (S g)(t) for all t ∈ [0,τ]. Following [29], we impose the following conditions on
operator S :

(S 1) for 1≤ p < ∞, there exist D≥ 0 such that

‖S f (t)−S g(t)‖p
E ≤ D

∫ t

0
‖ f (s)−g(s)‖p

Eds

for all f ,g ∈ Lp([0,T ];E) and 0≤ t ≤ T ;
if p = ∞, then there exist D1 ≥ 0 such that

‖S f (t)−S g(t)‖E ≤ D1

∫ t

0
‖ f (s)−g(s)‖Eds

for all f ,g ∈ L∞([0,T ];E) and 0≤ t ≤ T.
(S 2) for an arbitrary compact set K ⊂ E and a sequence { fn}∞

n=1 ⊂ Lp ([0,T ];E) , 1≤ p≤∞,

such that { fn(t)}∞
n=1⊂K for almost all t ∈ [0,T ], the weak convergence fn

L1
⇀ f0 implies

S fn→S f0 in C([0,T ];E).

Also we suppose that S satisfies the relation:

(S 3) (S f )(0) = 0 for each function f ∈ Lp([0,T ];E).

Notice that condition (S 1) implies that S satisfies the Lipschitz condition:

(S 1′) ‖S f −S g‖C ≤ D‖ f −g‖L1.

Consider the following important examples.

(i) Let a closed linear operator A : D(A) ⊂ E → E be the infinitesimal generator of a C0-
semigroup {eAt}t≥0. The operator L : L1([0,T ];E)→C([0,T ];E) defined as

L f (t) =
∫ t

0
eA(t−s) f (s)ds

is a special case of the causal operator S .
Taking A= 0, we obtain, in a particular, the usual integral operator LI : L1([0,T ];E)→

C([0,T ];E),

LI f (t) =
∫ t

0
f (s)ds.



964 V. OBUKHOVSKII, G. PETROSYAN, M. SOROKA, C.-F. WEN

(ii) Let A : D(A)→ E be a closed linear operator E generating a C0-semigroup {U(t)}t≥0 .
The operator G : Lp([0,T ];E)→C([0,T ];E), p > 1/q, defined as

G f (t) =
∫ t

0
(t− s)q−1T (t− s) f (s)ds, 0 < q < 1, (3.1)

where
T (t) = q

∫
∞

0
θξq(θ)U(tq

θ)dθ , (3.2)

ξq(θ) =
1
q

θ
−1− 1

q Ψq(θ
−1/q),

and

Ψq(θ) =
1
π

∞

∑
n=1

(−1)n−1
θ
−qn−1 Γ(nq+1)

n!
sin(nπq),θ ∈ R+,

is a special case of the causal operator S .

Lemma 3.1. ([29, Lemma 4.2.1], [33, Lemma 3.4]). The operators L and G satisfy conditions
(S 1)− (S 3).

4. THE RESOLVING MULTIOPERATOR AND ITS PROPERTIES

We consider in a separable Banach spaces E a system governed by a Hale type fractional
functional-differential inclusion of the following form:

CDq
0[y(t)− k(t,yt)] ∈ Ay(t)+Q(y)(t), t ∈ [0,T ], (4.1)

y(τ)+g(ỹ)(τ) = υ(τ), τ ∈ (−∞,0], (4.2)
where CDq

0 is the Caputo fractional derivative of an order 0< q< 1, A : D(A)⊂E→E is a closed
linear (not necessariliy bounded) operator, k : [0,T ]×BC → E, υ ∈BC are given functions,
g : C([0,T ];E)→BC is a nonlinear map, and ỹ= y |[0;T ] . Denote by C =C([0,T ];R) and CE =
C([0,T ];E). We will suppose that the multioperator Q : C ((−∞,T ];E)(C (Lp ([0,T ];E)) in
problem (4.1)-(4.2) is causal, satisfies conditions (Q1)− (Q3), and the following assumptions
hold true.

(A) The operator A : D(A)⊂ E→ E is an infinitesimal generator of a bounded C0-semigroup
{U(t)}t≥0 of linear operators in E. Denote

M = sup{‖U(t)‖; t ≥ 0}.
(K1) The function k : [0,T ]×BC → E is completely continuous, and for every bounded set

N ⊂ C ((−∞,T ];E) the set of functions {t→ k(t,yt) : y ∈N } is equicontinuous in the space
CE.

(K2) There exists a continuous function b1 : [0,T ]→ R+,b1(0) = 0, and a constant b2 > 0
such that

‖k(t,φ)‖E ≤ b1(t)‖φ‖BC +b2, t ∈ [0,T ], φ ∈BC .

We impose the following conditions on the map g :
(g1) g : CE→BC is completely continuous;
(g2) there exist constants N1,N2 ≥ 0 such that

‖g(z)‖BC ≤ N1‖z‖CE +N2 and ‖g(z)(0)‖E ≤ N2,

for each z ∈CE;
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(g3) g is an affine operator in the following sense: for every z1,z2 ∈CE and each 0≤ λ ≤ 1,

g(λ z1 +(1−λ )z2) = λg(z1)+(1−λ )g(z2).

As an example of g, the following function can be considered:

g(z)(τ) =
k

∑
i=1

ci(τ)z(ti),

where z ∈CE, ci : (−∞,0]→ R, i = 1, ....k, are given bounded continuous linearly independent
functions such that ci(0) = 0 and 0≤ t1 < ... < tk ≤ T. For a function y ∈CE such that y(0) =
υ(0)−g(y)(0), we define the function y[υ ] ∈ C ((−∞,T ];E) as

y[υ ](t) =

{
υ(t)−g(y)(t), −∞ < t ≤ 0,

y(t), 0≤ t ≤ T .

We denote by D the closed convex subset of CE, which consists of all functions y, satisfying
the condition y(0) = υ(0)−g(y)(0).

Definition 4.1. A function y ∈ C ((−∞,T ];E) is called a mild solution to problem (4.1)–(4.2)
if it satisfies conditions:

(1) y(s) = υ(s)−g(ỹ)(s), for s ∈ (−∞,0], where ỹ = y |[0;T ];
(2) the function ỹ ∈D , and y on [0,T ] satisfies the relation

y(t) = k(t,yt)+G (t)
(
υ(0)−g(ỹ)(0)− k(0,υ−g(ỹ))

)
+
∫ t

0
(t− s)q−1T (t− s) f (s)ds,

where
G (t) =

∫
∞

0
ξq(θ)U(tq

θ)dθ ,

and the operator–function T is defined by (3.2), f ∈Q(y[υ ]).

Lemma 4.1. (see [33]) The operator functions G and T possess the following properties:
1) For each t ∈ [0,T ], G (t) and T (t) are linear bounded operators. More precisely, for

each x ∈ E, we have

‖G (t)x‖E ≤M ‖x‖E ,‖T (t)x‖E ≤
qM

Γ(1+q)
‖x‖E .

2) the operator functions G (·) and T (·) are strongly continuous, i.e., the functions t ∈
[0,T ]→ G (t)x and t ∈ [0,T ]→T (t)x are continuous for each x ∈ E.

Consider the multioperator Γ : D(D given by

Γ(y) = {z ∈D : z(t) = k(t,yt)+G (t)
(
υ(0)−g(ỹ)(0)− k(0,υ−g(ỹ))

)
+G f (t)},

where f ∈Q(y[υ ]) and the operator G is defined by formula (3.1). It is clear that if the function
y is a fixed point of the multioperator Γ, then y[υ ] is a solution to problem (4.1)-(4.2). Thus our
goal is to prove the existence of a fixed point of the multioperator Γ.

We can formulate a modification of the Theorem 5.1.1 from [29] in the following form.

Lemma 4.2. For every L∞-semicompact sequence { fn}∞
n=1 ⊂ L∞([0,T ];E), {G fn}∞

n=1 is rel-

atively compact in CE and. Moreover, the weak convergence fn
L1
⇀ f0 implies G fn → G f0 in

CE.
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Lemma 4.3. (see [21]) Let the multioperator Q satisfy conditions (Q1)–(Q3) and the oper-
ator S satisfy (S 1′), (S 2). Then the composition S ◦Q : C ((−∞,T ];E)( CE is a u.s.c.
multimap with compact values.

From the last lemma, we obtain that multioperator Γ is u.s.c. Let us find conditions under
which the multioperator Γ is condensing with respect to an appropriate MNC. For this, we need
the following assertions.

Lemma 4.4. (see [21, Lemma 3.5]) Let a sequence of functions { fn}∞
n=1 ⊂ L∞([0,T ];E) be

L∞-integrally bounded and there exists a function ψ ∈ L∞
+([0,T ]) such that

χ ({ fn (t)}∞
n=1)≤ ψ(t) for a.e. t ∈ [0,T ].

Then

χ ({G fn (t)}∞
n=1)≤ 2D1

∫ t

0
ψ(s)ds,

where D1 is the constant from condition (S 1).

Consider the measure of noncompactness ν in the space CE with values in the cone R2
+. On

a bounded subset of Ω⊂CE, we define the values of ν the following way:

ν(Ω) = (γ (Ω) , mod CE (Ω)) ,

where mod CE is the modulus of equicontinuity, and γ is the fading modulus of fiber noncom-
pactness

γ(Ω) = sup
t∈[0,T ]

e−Lt
χ(Ω(t)).

We assume that the constant L > 0 is chosen so that

β = sup
t∈[0,T ]

(
2D1

∫ t

0
eLs

ω (s,1)ds
)
< 1, (4.3)

where the constant D1 is from condition (S 1), and ω is a function from condition (Q3). It
is easy to see that the MNC ν is monotone, nonsingular, and algebraically semi-additive. It
follows from the Arzela–Ascoli theorem that it is also regular.

Theorem 4.1. Let a causal multioperator Q : C ((−∞,T ];E)( L∞ ([0,T ];E) satisfy conditions
(Q2) and (Q3). Then, under conditions (A), (K1)− (K2), (g1)− (g3), the multioperator Γ is
ν-condensing.

Proof. By Lemma 4.1 and condition (K1), it is sufficient to prove the assertion of the theorem
for the multioperator G◦Q. Let Ω⊂D be a bounded set such that

ν (G◦Q (Ω[υ ]))≥ ν (Ω) , (4.4)

where Ω[υ ] = {y[υ ] : y ∈Ω}. Let us prove that the set Ω is relatively compact. Inequality (4.4)
means that

γ(G◦Q (Ω[υ ]))≥ γ(Ω). (4.5)
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Applying condition (Q3) and using the properties of function ω , we obtain for a.e. t ∈ [0,T ]

χ ({ f (t) : f ∈Q (Ω[υ ])})≤ ω

(
t, sup

s∈[0,t]
ϕ ({y[υ ]s : y ∈Ω})

)
= ω

(
t,ϕ
(
{y|[0,t] : y ∈Ω}

))
= ω

(
t,eLte−Lt

ϕ
(
{y|[0,t] : y ∈Ω}

))
≤ ω

(
t,eLt

γ
(
{y|[0,t] : y ∈Ω}

))
≤ ω

(
t,eLt

γ (Ω)
)

≤ ω
(
t,eLt) · γ (Ω) .

By Lemma 4.4 and (ω2), we have, for each t ∈ [0,T ],

χ ({G f (t) : f ∈Q (Ω[υ ])})≤ 2D1

∫ t

0
ω
(
s,eLs)ds · γ (Ω)

≤ 2D1

∫ t

0
eLs

ω (s,1)ds · γ (Ω) .

Inequality (4.5) and the last estimate imply that

γ(Ω)≤ sup
t∈[0,T ]

(
2D1

∫ t

0
eLs

ω (s,1)ds
)

γ (Ω) = β · γ (Ω) .

It follows from (4.3) that γ (Ω) = 0. Thus ϕ (Ω[υ ]t) = 0 for each t ∈ [0,T ].
Now we demonstrate that Ω is equicontinuous. We take sequences {yn}∞

n=1 ⊂ Ω, n ≥ 1
and { fn}∞

n=1, fn ∈Q(yn[υ ]). From conditions (Q2) and (Q3), it follows that { fn}∞
n=1 is L∞-

semicompact. By Lemma 4.2, we have tha t {G fn}∞
n=1 is relatively compact. Hence

mod CE({G fn}∞
n=1) = 0.

Thus ν ({G◦Q (Ω[υ ])}) = (0,0), but it follows from inequality (4.4) that ν(Ω) = (0,0), and
the last equality yields that Ω is relatively compact. �

5. THE EXISTENCE RESULT

To prove the main theorem of this paper, we need the following Gronwall-Bellman Lemma
(see [34]).

Lemma 5.1. Let v(t) and f (t) be nonnegative continuous functions on the segment [a,b], more-
over v(t)≤ c+

∫ t
a f (s)v(s)ds, t ∈ [a,b], where c is a positive constant. Then, for each t ∈ [a,b],

the inequality v(t)≤ ce
∫ t

a f (s)ds, holds.

Theorem 5.1. Let a causal multioperator Q : C ((−∞,T ];E)→Cv(L∞([0,T ];E)) satisfy con-
ditions (Q1)-(Q3). Then, under conditions (A), (K1)− (K2), (g1)− (g3) and

L1 := ‖b1‖C (K +HN1)+D1‖α‖L∞T HN1 < 1

the set Συ of all solutions to problem (4.1)-(4.2) is non-empty and compact set.
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Proof. Let us prove that the set of all solutions y ∈D to a one-parameter inclusion

y ∈ λΓ(y), λ ∈ [0,1], (5.1)

is a priori bounded. If y∈D satisfies inclusion (5.1) for some λ ∈ [0,1], then, for each t ∈ [0,T ],
we obtained by using assumptions (B2),(S 1),(K2), and (g2) that

‖y(t)‖E ≤ λ‖k(t,yt)‖E +λ‖G (t)
(
υ(0)−g(ỹ)(0)− k(0,υ−g(ỹ))

)
‖E

+λ

∥∥∥∫ t

0
(t− s)q−1T (t− s) f (s)ds

∥∥∥
E

≤ ‖b1‖C‖yt‖BC +b2 +M‖υ(0)−g(ỹ)(0)− k(0,υ−g(ỹ))‖E +D1

∫ t

0
‖ f (s)‖Eds

≤ ‖b1‖C‖yt‖BC +b2 +M
(
l‖υ‖BC +N2 +b2

)
+D1

∫ t

0
‖ f (s)‖Eds,

where f ∈Q(y[υ ]). By condition (Q2), ‖ f (s)‖E ≤ α(s)(1+‖y[υ ]‖C ). Then

‖y(t)‖E ≤ ‖b1‖C‖yt‖BC +b2 +M
(
l‖υ‖BC +N2 +b2

)
+D1

∫ t

0
α(s)(1+‖y[υ ]‖C )ds

≤ ‖b1‖C‖yt‖BC +b2 +M
(
l‖υ‖BC +N2 +b2

)
+D1‖α‖L∞

∫ t

0

(
1+‖y[υ ]s‖BC + sup

s∈[0,t]
‖y(s)‖E

)
ds.

From property B1 (iii), it follows that

‖y[υ ]s‖BC + sup
s∈[0,t]

‖y(s)‖E ≤ H‖υ−g(ỹ)‖BC +(K +1) sup
s∈[0,t]

‖y(s)‖E ,

where H(t)≤ H,K(t)≤ K, t ∈ [0,T ]. Then,

‖y(t)‖E ≤ ‖b1‖C(K sup
τ∈[0,t]

‖y(τ)‖E +H‖υ−g(ỹ)‖BC )+b2 +M
(
l‖υ‖BC +N2 +b2

)
+D1‖α‖L∞

∫ t

0

(
1+H‖υ−g(ỹ)‖BC +(K +1) sup

s∈[0,t]
‖y(s)‖E

)
ds

≤ ‖b1‖CK sup
t∈[0,T ]

‖y(t)‖E +H‖b1‖C(‖υ‖BC +N1‖y‖CE +N2)+b2

+M
(
l‖υ‖BC +N2 +b2

)
+D1‖α‖L∞T (1+H(‖υ‖BC +N1‖y‖CE +N2))

+D1‖α‖L∞

∫ t

0
(K +1) sup

s∈[0,t]
‖y(s)‖Eds

= (‖b1‖C (K +HN1)+D1‖α‖L∞T HN1)‖y‖CE +H‖b1‖C (‖υ‖BC +N2)+b2

+M
(
l‖υ‖BC +N2 +b2

)
+D1‖α‖L∞T (1+H (‖υ‖BC +N2))+D1‖α‖L∞(K +1)

∫ t

0
sup

s∈[0,t]
‖y(s)‖Eds

= L1‖y‖CE +L2 +L3

∫ t

0
sup

s∈[0,t]
‖y(s)‖Eds,

where
L1 = ‖b1‖C (K +HN1)+D1‖α‖L∞T HN1,



ON A BOUNDARY VALUE PROBLEM FOR HALE TYPE 969

L2 = H‖b1‖C (‖υ‖BC +N2)+b2 +M
(
l‖υ‖BC +N2 +b2

)
+D1‖α‖L∞T (1+H (‖υ‖BC +N2)) ,

and
L3 = D1‖α‖L∞(K +1).

The last expression is a non-decreasing function of t, so we have

sup
t∈[0,T ]

‖y(t)‖E ≤ L2(1−L1)
−1 +L3(1−L1)

−1
∫ t

0
sup

s∈[0,t]
‖y(s)‖Eds.

This means that v(s) = sups∈[0,t] ‖y(s)‖E satisfies the estimate

v(t)≤ L2(1−L1)
−1 +L3(1−L1)

−1
∫ t

0
v(s)ds.

Applying Lemma 5.1, we obtain the required a priori boundedness:

v(t) = ‖y‖CE ≤ L2(1−L1)
−1eL3(1−L1)

−1T .

Now, if we take
R > L2(1−L1)

−1eL3(1−L1)
−1T ,

then we can guarantee that the set V ⊂ D , given as V = {y ∈ D : ‖y‖CE < R}, contains all
solutions of inclusion (5.1). Thus the multioperator Γ satisfies on ∂V the condition of Theorem
2.1 with a = 0. Hence, the set of its fixed points is non-empty and compact. �
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