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NEW BREGMAN PROJECTION ALGORITHMS FOR SOLVING THE SPLIT
FEASIBILITY PROBLEM

YAXIN HAO, JING ZHAO∗

College of Science, Civil Aviation University of China, Tianjin 300300, China

Abstract. Bregman distance iterative methods for solving optimization problems are important and in-
teresting because of the numerous applications of Bregman distance techniques. In this paper, for solving
a split feasibility problem, we introduce a new Bregman projection algorithm and construct two selection
strategies of stepsizes. Moreover, a relaxed Bregman projection algorithm is proposed with two selec-
tion strategies of stepsizes, where the two closed and convex sets are both level sets of convex functions.
Weak convergence results of the proposed algorithms are obtained under suitable assumptions. In addi-
tion, using the proposed algorithms with different Bregman distances, a numerical experiment solving
signal processing problem is also given to demonstrate the effectiveness of the proposed algorithms.

Keywords. Bregman projection; Split feasibility problem; Self-adaptive stepsize; Weak convergence.

1. INTRODUCTION

The split feasibility problem (SFP) was firstly introduced by Censor and Elfving [1] for mod-
elling some inverse problems. Since then, it has played an important role in many real-world
application problems, such as signal processing, image reconstruction, machine learning, radi-
ation therapy, and so on [3–7]. Let H1 and H2 be real Hilbert spaces, and let A : H1→ H2 be a
bounded linear operator. The SFP can mathematically be formulated as the problem of finding
a point x̂ with the property

x̂ ∈C and Ax̂ ∈ Q, (1.1)

where C and Q are nonempty, convex, and closed subsets of H1 and H2, respectively. In particu-
lar, when Q= {b}, SFP (1.1) becomes the following convex constrained linear inverse problem:

x̂ ∈C and Ax̂ = b.

For solving SFP (1.1), Byrne [2] introduced the following celebrated CQ algorithm, which
generates an iterative sequence {xn} by

xn+1 = PC(I−λnA∗(I−PQ)A)xn, (1.2)

where λn ∈ (0, 2
λ
) with λ being the spectral radius of the operator A∗A, PC and PQ are the

projections onto C and Q, respectively.
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We assume that SFP (1.1) is consistent (i.e., (1.1) at least has a solution) and use Γ to denote
the solution set of SFP (1.1), i.e., Γ = {x̂ ∈C : Ax̂ ∈Q}. We know that Γ is a nonempty, convex,
and closed set. And x̂ ∈ Γ if and only if x̂ is the solution to the following fixed point equation:

x̂ = PC(I−λA∗(I−PQ)A)x̂,

where λ > 0. This implies that we can use fixed point algorithms (see, e.g., [8–12]) to solve the
SFP (1.1).

It is observed that, in CQ algorithm (1.2), stepsize λn depends on the bounded linear oper-
ator (matrix) norm ‖A‖ (or the largest eigenvalue of A∗A). It is not always easy in practice to
calculate the operator (matrix) norm ‖A‖ . To avoid this difficulty, there have been many self-
adaptive algorithms that the stepsize dose not depend on the norm of operator A. In [13], Lopez
et al. improved CQ algorithm (1.2) by selecting the following stepsize:

λn =
ρnh(xn)

‖∇h(xn)‖2 ,

where infn ρn(4−ρn)> 0 and h(x) = 1
2‖(I−PQ)Ax‖2.

We note that CQ algorithm (1.2) and numerous pertinent iterative algorithms involve the
calculations of the projections, PC and PQ, onto sets C and Q, respectively. However, in some
cases, it is very difficult to calculate projections, and hence the efficiency of CQ algorithm (1.2)
is seriously affected. To overcome this difficulty, in [14], for the level sets C and Q of convex
functions, Yang introduced the following relaxed CQ algorithm for solving SFP (1.1):

xn+1 = PCn(xn−λnA∗(I−PQn)Axn), (1.3)

where λn ∈ (0, 2
λ
) with λ being the spectral radius of A∗A. In relaxed CQ algorithm (1.3), convex

and closed sets C and Q were replaced with two half-spaces Cn and Qn, respectively. Recently,
numerous authors presented various relaxed CQ algorithms for solving SFP (1.1); see, e.g.,
[12, 13, 15–19]. We know the SFP (1.1) has a close connection with the variational inequality
problem (VIP). Let C be a nonempty, convex and closed subset of H, and let F : C→ H be an
operator. The VIP is to find a point x̂ ∈C such that

〈Fx̂,z− x̂〉 ≥ 0, ∀z ∈C. (1.4)

x̂ solves SFP (1.1) if and only if that there is a vector x̂ ∈C such that Ax̂−q = 0 for some q ∈Q.
This motivates us to introduce the (convex) objective function:

h(x) =
1
2
‖(I−PQ)Ax‖2.

Therefore, SFP (1.1) becomes the following convex minimization problem: minx∈C h(x). The
objective function h is differentiable and its gradient is given by ∇h(x) = A∗(I−PQ)Ax. Hence,
SFP (1.1) can be converted to the following VIP: 〈A∗(I−PQ)Ax̂,z− x̂〉 ≥ 0 for all z ∈C. It is
known that the Bregman distance is a useful substitute for a distance, obtained from the various
choices of functions. The applications of the Bregman distance instead of the norm gives us
alternative ways for more flexibility in the selection of projections. Let the function f : H→ R
be σ -strongly convex, Frééchet differentiable ,and bounded on bounded subsets of H. The
Bregman projection with respect to f of x ∈ int(dom f ) is denoted by Π

f
C. In [20], Sunthrayuth
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et al. proposed the following Bregman projection algorithm for solving the VIP (1.4):{
yn = Π

f
c (∇ f )−1(∇ f (xn)−λnFxn),

xn+1 = (∇ f )−1(∇ f (yn)−λn(Fyn−Fxn)),

where F : H→ H is pseudo-monotone, λn+1 is chosen by

λn+1 =

{
min{µ ‖xn−yn‖2+‖xn+1−yn‖2

2〈Fxn−Fyn,xn+1−yn〉 ,λn}, if 〈Fxn−Fyn,xn+1− yn〉> 0,
λn, otherwise

and µ ∈ (0,σ).
Motivated and inspired by the results mentioned above, we, in this paper, introduce new

Bregman projection algorithms for solving SFP (1.1) in real Hilbert spaces. The paper is orga-
nized as follows. In Section 2, we present definitions and notions that are need for the rest of
the paper. In Section 3 and Section 4, we introduce a new Bregman projection algorithm and
construct two selection strategies of stepsizes. We also obtain weak convergence results under
mild conditions. In Section 5, we modify the relaxed CQ algorithm (1.3) by employing the
Bregman projection and obtain weak convergence theorems for the proposed algorithms. Fi-
nally, a numerical experiment is given to illustrate the effectiveness of our proposed algorithms
in Section 6, the last section.

2. PRELIMINARIES

From now on, we denote the inner product by 〈·, ·〉 and the norm by ‖ · ‖. Let H be a real
Hilbert space, and let C be a nonempty, convex, and closed subset of H. One uses→ and ⇀ to
denote the strong convergence and weak convergence, respectively, and use ωw(xn) to denote
the weak limit set of {xn}.

Recall that the projection from H on to C, denoted PC, is defined in such a way that, for each
x ∈ H, PCx is the unique point in C with PCx = argmin{‖x− y‖ : y ∈ C}. The following is a
useful characterization of the projection: given x ∈ H and z ∈C, z = PCx if and only if, for all
y ∈C, 〈x− z,y− z〉 ≤ 0.

Let T : H→ H be an operator. Recall that T is said to be
(i) nonexpansive if ‖T x−Ty‖ ≤ ‖x− y‖ for all x, y ∈ H;
(ii) firmly nonexpansive if 2T − I is nonexpansive or, equivalently,

〈x− y,T x−Ty〉 ≥ ‖T x−Ty‖2

for all x, y ∈ H;
(iii) demiclosed at the origin if, for any sequence {xn}, which converges weakly to x, {T xn}

strongly converges to 0, then T x = 0.
It is well known that both PC and I−PC are firmly nonexpansive.
Recall that the Bregman bifunction D f : dom f × int(dom f )→ [0,∞) corresponding to the

convex and differentiable function f with its gradient ∇ f is defined by D f (x,y) = f (x)− f (y)−
〈∇ f (y),x− y〉. The Bregman projection with respect to f of x ∈ int(dom f ) is denoted by Π

f
C

and Π
f
C(x) = argmin{D f (y,x) : y ∈C}. In addition, Π

f
C(x) has the following property [21]: for

each x ∈ H, z = Π
f
C(x) if and only if, for all y ∈C, 〈∇ f (z)−∇ f (x),y− z〉 ≥ 0.
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Recall that a convex and differentiable function f is said to be σ -strongly convex if there
exists a constant σ > 0 such that

f (x)≥ f (y)+ 〈∇ f (y),x− y〉+ σ

2
‖x− y‖2,

for any x ∈ dom f and y ∈ int(dom f ). If the function f is σ -strongly convex, we find from the
definition of the Bregman distance the following inequality:

D f (x,y)≥
σ

2
‖x− y‖2. (2.1)

For any two sequences {xn} and {yn} in H, one has limn→∞ D f (xn,yn) = 0 =⇒ limn→∞ ‖xn−
yn‖= 0.

Finally, we also need the following lemmas.

Lemma 2.1. [22] Let f : H −→ R be a strongly convex and differentiable function. And its
gradient ∇ f is sequentially weak-to-weak continuous. Suppose that {xn} is a sequence in H
such that xn ⇀ x, then liminfn→∞ D f (x,xn)< liminfn→∞ D f (y,xn), for all y ∈ H with y 6= x.

Lemma 2.2. [23,24] Let E be a uniformly convex Banach space. Let K be a nonempty, convex,
and closed subset of E, and let T : K→K be a nonexpansive operator. Then I−T is demiclosed
at origin.

3. THE BREGMAN PROJECTION ALGORITHM

We assume that the following conditions hold.

Condition 3.1. The function f : H → R is σ -strongly convex and differentiable function with
its gradient ∇ f being sequentially weak-to-weak continuous.

Condition 3.2. (1) Γ denotes the solution set of the SFP (1.1), and Γ is nonempty. (2) A : H1→
H2 be a bounded linear operator with A 6= 000.

Algorithm 3.1. (Bregman Projection Algorithm for Solving SFP (1.1))
Let x1 ∈ H1 be arbitrary. For n≥ 1, compute

xn+1 = Π
f
C(∇ f )−1(∇ f (xn)−λnA∗(I−PQ)Axn),

where λn > 0.

Theorem 3.1. Assume that Conditions 3.1-3.2 hold. If 0 < liminfn→∞ λn ≤ limsupn→∞ λn <
2σ

‖A‖2 , then the sequence {xn} generated by Algorithm 3.1 converges weakly to a solution of the
SFP (1.1).

Proof. First, we show that {xn} is bounded. Let p ∈ Γ and zn = (∇ f )−1(∇ f (xn)− λnA∗(I−
PQ)Axn). Then xn+1 = Π

f
C(zn). It follows that

〈∇ f (xn+1)−∇ f (zn), p− xn+1〉 ≥ 0. (3.1)

By the definition of the Bregman distance, we have

D f (p,xn+1) = f (p)− f (xn+1)−〈∇ f (xn+1), p− xn+1〉
= f (p)− f (xn+1)−〈∇ f (xn+1)−∇ f (zn)+∇ f (zn), p− xn+1〉
= f (p)− f (xn+1)−〈∇ f (xn+1)−∇ f (zn), p− xn+1〉−〈∇ f (zn), p− xn+1〉.
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From (3.1), we obtain

D f (p,xn+1)≤ f (p)− f (xn+1)−〈∇ f (zn), p− xn+1〉
= f (p)− f (xn+1)−〈∇ f (xn)−λnA∗(I−PQ)Axn, p− xn+1〉
= f (p)− f (xn+1)−〈∇ f (xn), p− xn+1〉+λn〈 A∗(I−PQ)Axn, p− xn+1〉
= f (p)− f (xn+1)− f (xn)+ f (xn)−〈∇ f (xn), p− xn〉−〈∇ f (xn),xn− xn+1〉
+λn〈 A∗(I−PQ)Axn, p− xn+1〉

=D f (p,xn)−D f (xn+1,xn)+λn〈 A∗(I−PQ)Axn, p− xn〉
+λn〈 A∗(I−PQ)Axn,xn− xn+1〉.

(3.2)

In view of Ap ∈ Q, we have 〈Axn−PQAxn,Ap−PQAxn〉 ≤ 0, which implies that

λn〈 A∗(I−PQ)Axn, p− xn〉=λn〈(I−PQ)Axn,Ap−PQAxn〉+λn〈(I−PQ)Axn,PQAxn−Axn〉

≤−λn‖(I−PQ)Axn‖2.
(3.3)

For all µ > 0, we have

λn〈 A∗(I−PQ)Axn,xn− xn+1〉 ≤ λn‖A∗(I−PQ)Axn‖ · ‖xn− xn+1‖

≤ µλn

2
‖A∗(I−PQ)Axn‖2 +

λn

2µ
‖xn− xn+1‖2.

(3.4)

Substituting (3.3) and (3.4) into (3.2), we have

D f (p,xn+1)≤ D f (p,xn)−D f (xn+1,xn)−λn‖(I−PQ)Axn‖2

+
µλn

2
‖A∗(I−PQ)Axn‖2 +

λn

2µ
‖xn− xn+1‖2.

Using (2.1), we have

D f (p,xn+1)≤ D f (p,xn)−D f (xn+1,xn)−λn(1−
µ

2
‖A‖2)‖(I−PQ)Axn‖2 +

λn

2µ

2
σ

D f (xn+1,xn)

=D f (p,xn)− (1− λn

µσ
)D f (xn+1,xn)−λn(1−

µ

2
‖A‖2)‖(I−PQ)Axn‖2.

(3.5)
Take µ > 0 with 1

σ
limsupn→∞ λn < µ < 2

‖A‖2 . Since 0 < liminfn→∞ λn ≤ limsupn→∞ λn <
2σ

‖A‖2 ,
we see that

liminf
n→∞

λn(1−
µ

2
‖A‖2)> 0 (3.6)

and

liminf
n→∞

(1− λn

µσ
)> 0. (3.7)

From (3.6) and (3.7), we obtain D f (p,xn+1) ≤ D f (p,xn), which shows that limn→∞ D f (p,xn)
exists and hence {D f (p,xn)} is bounded. In view of (2.1), we have that {xn} is bounded. From
(3.5), we have

(1− λn

µσ
)D f (xn+1,xn)+λn(1−

µ

2
‖A‖2)‖(I−PQ)Axn‖2 ≤ D f (p,xn)−D f (p,xn+1).
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Since limn→∞ D f (p,xn) exists, we have from (3.6) and (3.7) that

lim
n→∞

D f (xn+1,xn) = lim
n→∞
‖(I−PQ)Axn‖= 0 (3.8)

and hence limn→∞ ‖xn+1− xn‖= 0.
Next we show ωw(xn) ⊆ Γ. By the boundedness of {xn}, we have ωw(xn) 6= /0. Taking

x̂ ∈ ωw(xn), there exists a subsequence {xnk} of {xn} such that xnk ⇀ x̂ ∈ C. Since xnk ⇀ x̂,
then Axnk ⇀ Ax̂ as k→ ∞. By Lemma 2.2 and (3.8), we can obtain (I−PQ)Ax̂ = 0, so Ax̂ ∈ Q.
Hence, we have ωw(xn)⊆ Γ.

Finally, we show the uniqueness of the weak cluster points of {xn}. Indeed, let x
′

be other
weak cluster point of {xn}. Then x

′ ∈ Γ and there exists a subsequence {xm j} of {xn} such that
xm j ⇀ x

′
as j→ ∞. Since limn→∞ D f (u,xn) exists for any u ∈ Γ, it follows from Lemma 2.1

that
lim
n→∞

D f (x̂,xn) = lim
k→∞

D f (x̂,xnk) = lim
k→∞

infD f (x̂,xnk)

< lim
k→∞

infD f (x
′
,xnk) = lim

j→∞
D f (x

′
,xm j)

= lim
n→∞

D f (x
′
,xn).

In a similar way as above, we have limk→∞ D f (x
′
,xn) < limn→∞ D f (x̂,xn). This is a contradic-

tion. Hence x̂ = x
′
and we conclude that {xn} converges weakly to a point in Γ. This completes

the proof. �

Remark 3.1. If f (x) = 1
2‖x‖

2, then ∇ f (x) = x, Π
f
C = PC, and σ = 1. In this case, Algorithm 3.1

reduces to Byrne’s CQ algorithm (1.2). Moreover, we can select a different Bregman distance
which is more flexible than the squared Euclidean distance.

4. SELF-ADAPTIVE STEPSIZE

As we see from the previous section, the selection of λn requires the norm of A (or the largest
eigenvalue of A∗A). To avoid computing the norm of the bounded linear operator A, in this
section, we choose self-adaptive stepsizes to modify the Bregman projection algorithm.

Algorithm 4.1. (Bregman Projection Algorithm with Self-Adaptive Stepsizes)
Let x1 ∈ C be arbitrary. For n ≥ 1, if Axn = PQAxn, then stop and xn is a solution to SFP

(1.1). Otherwise, compute

xn+1 = Π
f
C(∇ f )−1(∇ f (xn)−λnA∗(I−PQ)Axn),

where λn is chosen by
λn = min{ ρσ‖(I−PQ)Axn‖2

‖A∗(I−PQ)Axn‖2 ,λn−1} (4.1)

with 0 < ρ < 2.

Remark 4.1. (i) In Algorithm 4.1, stepsize λn is chosen by a self-adaptive way. We give a
way of selecting the stepsize such that the implementation of the algorithm does not need any
prior information about the norm of the bounded linear operator. (ii) We see that if Algorithm
4.1 terminates in a finite step of iterations, then xn is a solution to the SFP (1.1). In the rest of
this paper, we assume that Algorithm 4.1 does not terminate in any finite iterations, and hence
generates an infinite sequence {xn}.
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From the following lemma, we see that λn is well-defined.

Lemma 4.1. λn defined by (4.1) is well-defined.

Proof. Fix x ∈ Γ, i.e., x ∈C and Ax ∈ Q. Since I−PQ is firmly nonexpansive, we have

‖A∗(I−PQ)Axn‖ · ‖xn− x‖ ≥〈A∗(I−PQ)Axn,xn− x〉
=〈(I−PQ)Axn,Axn−Ax〉

≥‖(I−PQ)Axn‖2.

Consequently, when ‖(I−PQ)Axn‖ 6= 0, we have ‖A∗(I−PQ)Axn‖> 0. This guarantees that λn
is well-defined. �

Theorem 4.1. Assume that Conditions 3.1-3.2 hold, then the sequence {xn} generated by Al-
gorithm 4.1 converges weakly to a solution of the SFP (1.1).

Proof. First, we prove that {xn} is bounded. For all µ > 0, we can deduce that

D f (p,xn+1)≤ D f (p,xn)−D f (xn+1,xn)−λn‖(I−PQ)Axn‖2

+
µλn

2
‖A∗(I−PQ)Axn‖2 +

λn

2µ
‖xn− xn+1‖2.

Using (2.1), we see that

D f (p,xn+1)

≤ D f (p,xn)− (1− λn

µσ
)D f (xn+1,xn)−λn‖(I−PQ)Axn‖2(1−

µ‖A∗(I−PQ)Axn‖2

2‖(I−PQ)Axn‖2 ).
(4.2)

Since 2‖(I−PQ)Axn‖2

‖A∗(I−PQ)Axn‖2 ≥ 2
‖A‖2 > 0 , then infn

2‖(I−PQ)Axn‖2

‖A∗(I−PQ)Axn‖2 ≥ 2
‖A‖2 > 0. By the definition of λn and

0 < ρ < 2, we have

λn

σ
≤ inf

k≤n

ρ‖(I−PQ)Axk‖2

‖A∗(I−PQ)Axk‖2 < inf
k≤n

2‖(I−PQ)Axk‖2

‖A∗(I−PQ)Axk‖2 .

Since {λn} is non-increasing and λn ≥ ρσ

‖A‖2 , we have that limn→∞ λn exists, so

1
σ

lim
n→∞

λn < liminf
n→∞

2‖(I−PQ)Axn‖2

‖A∗(I−PQ)Axn‖2 .

Take µ with 1
σ

limn→∞ λn < µ < liminfn→∞

2‖(I−PQ)Axn‖2

‖A∗(I−PQ)Axn‖2 . Then,

liminf
n→∞

(1− λn

µσ
)> 0 (4.3)

and

liminf
n→∞

(1−
µ‖A∗(I−PQ)Axn‖2

2‖(I−PQ)Axn‖2 )> 0. (4.4)

So D f (p,xn+1) ≤ D f (p,xn), which yields that limn→∞ D f (p,xn) exists and hence {D f (p,xn)}
is bounded. By using (2.1), we have that {xn} is bounded. It follows from (4.2)-(4.4) that

lim
n→∞

D f (xn+1,xn) = lim
n→∞
‖(I−PQ)Axn‖= 0.
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Similar to the proof of Theorem 3.1, we can obtain ωw(xn)⊆ Γ. And the sequence {xn} gener-
ated by Algorithm 4.1 converges weakly to a solution of the SFP (1.1). �

5. RELAXED BREGMAN PROJECTION ALGORITHMS

In this section, we propose relaxed Bregman projection algorithms for solving SFP (1.1). Let
C = {u∈H1 : c(u)≤ 0}, Q = {v∈H2 : q(v)≤ 0}, where c : H1→ R and q : H2→ R are convex
and lower semi-continuous functions. We assume that c and q are subdifferentiable on H1 and
H2, respectively. For all u ∈C and v ∈ Q, the subdifferentials are

∂c(u) = {z ∈ H1 : c(x)≥ c(u)+ 〈z,x−u〉, x ∈ H1} 6= /0

and
∂q(v) = {w ∈ H2 : q(y)≥ q(v)+ 〈w,y− v〉, y ∈ H2} 6= /0.

We also assume that ∂c and ∂q are bounded on bounded sets.

Algorithm 5.1. (Relaxed Bregman Projection Algorithm for Solving SFP (1.1))
Let x1 ∈ H1 be arbitrary. For n≥ 1, set

Cn = {u ∈ H1 : c(xn)+ 〈ξn,u− xn〉 ≤ 0} (5.1)

and
Qn = {v ∈ H2 : q(Axn)+ 〈ηn,v−Axn〉 ≤ 0}, (5.2)

where ξn ∈ ∂c(xn) and ηn ∈ ∂q(Axn). Compute

xn+1 = Π
f
Cn
(∇ f )−1(∇ f (xn)−λnA∗(I−PQn)Axn),

where λn > 0.

Remark 5.1. Obviously, Cn and Qn are half-spaces. From the subdifferentiable inequality, It is
easy to verify that C ⊆Cn and Q⊆ Qn for every n≥ 1 .

Theorem 5.1. Assume that Conditions 3.1-3.2 hold. If 0 < liminfn→∞ λn ≤ limsupn→∞ λn <
2σ

‖A‖2 , then the sequence {xn} generated by Algorithm 5.1 converges weakly to a solution of the
SFP (1.1).

Proof. First, we prove that {xn} is bounded. Let p ∈ Γ ⊆ Cn and zn = (∇ f )−1(∇ f (xn)−
λnA∗(I−PQn)Axn). Then xn+1 = Π

f
Cn
(zn). It follows that 〈∇ f (xn+1)−∇ f (zn), p− xn+1〉 ≥ 0.

Using Qn to substitute Q, we obtain

D f (p,xn+1)≤ D f (p,xn)−D f (xn+1,xn)+λn〈 A∗(I−PQn)Axn, p− xn〉
+λn〈 A∗(I−PQn)Axn,xn− xn+1〉.

(5.3)

In view of Ap ∈ Qn, we have 〈(I−PQn)Axn,Ap−PQnAxn〉 ≤ 0. Similar to (3.3) and (3.4), we
see that

λn〈 A∗(I−PQn)Axn, p− xn〉 ≤ −λn‖(I−PQn)Axn‖2 (5.4)

and

λn〈 A∗(I−PQn)Axn,xn− xn+1〉 ≤
µλn

2
‖A∗(I−PQn)Axn‖2 +

λn

2µ
‖xn− xn+1‖2, (5.5)
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where µ > 0. Substituting (5.4) and (5.5) into (5.3), we have

D f (p,xn+1)≤ D f (p,xn)−D f (xn+1,xn)−λn‖(I−PQn)Axn‖2

+
µλn

2
‖A∗(I−PQn)Axn‖2 +

λn

2µ
‖xn− xn+1‖2.

Using (2.1), it follows from that

D f (p,xn+1)≤ D f (p,xn)− (1− λn

µσ
)D f (xn+1,xn)−λn(1−

µ

2
)‖A‖2‖(I−PQn)Axn‖2. (5.6)

Take µ > 0 with 1
σ

limsupn→∞ λn < µ < 2
‖A‖2 . Using the same arguments as in Theorem 3.1,

we find that limn→∞ D f (p,xn) exists and {D f (p,xn)} is bounded. We also have that {xn} is
bounded. From (5.6), we have

(1− λn

µσ
)D f (xn+1,xn)+λn(1−

µ

2
‖A‖2)‖(I−PQn)Axn‖2 ≤ D f (p,xn)−D f (p,xn+1).

Since liminfn→∞ λn(1− µ

2 ‖A‖
2)> 0 and liminfn→∞(1− λn

µσ
)> 0, we have

lim
n→∞

D f (xn+1,xn) = lim
n→∞
‖(I−PQn)Axn‖= 0

and hence limn→∞ ‖xn+1− xn‖= 0.
Next we show ωw(xn)⊆ Γ. Since ∂c is bounded on bounded sets, one sees that there exists a

constant M1 > 0 such that ‖ξn‖ ≤M1 for all n ∈ N. It follows that

c(xn)≤−〈ξn,xn+1− xn〉 ≤M1‖xn+1− xn‖.

Hence limsupn→∞ c(xn) ≤ 0. By the boundedness of {xn}, we have ωw(xn) 6= /0. Fixing x̂ ∈
ωw(xn), one sees that there exists a subsequence {xn j} of {xn} such that xn j ⇀ x̂ as j → ∞.
From the weak lower semicontinuity of c, we have c(x̂) ≤ liminf j→∞ c(xn j) ≤ 0. Therefore,
x̂ ∈ C. Since ηn ∈ ∂q(Axn), then there exists a constant M2 > 0 such that ‖ηn‖ ≤ M2 for all
n ∈ N. It follows from PQnAxn ∈ Qn that

q(Axn)+ 〈ηn,PQnAxn−Axn〉 ≤ 0,

which implies that

q(Axn)≤ 〈ηn,Axn−PQnAxn〉 ≤M2‖Axn−PQnAxn‖.

It follows from limn→∞ ‖(I−PQn)Axn‖ = 0, the weak lower semicontinuity of q, and the fact
that Axn j ⇀Ax̂ that q(Ax̂)≤ liminf j→∞ q(Axn j)≤ 0, that is, Ax̂∈Q. Thus x̂∈ Γ and ωw(xn)⊆ Γ.

Finally, as proved in Theorem 3.1, we can deduce that {xn} converges weakly to a point in Γ.
This completes the proof. �

Remark 5.2. If f (x) = 1
2‖x‖

2, then Algorithm 5.1 is reduced to the relaxed CQ algorithm (1.3).

Algorithm 5.2. (Bregman Projection Algorithm with a Self-Adaptive Stepsize)
Let x1 ∈ H1 be arbitrary. For n ≥ 1, Cn and Qn are defined by (5.1) and (5.2) respectively.

Compute

xn+1 = Π
f
Cn
(∇ f )−1(∇ f (xn)−λnA∗(I−PQn)Axn),
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where λn is chosen by

λn =

{
min{ρσ‖(I−PQn)Axn)‖2

‖A∗(I−PQn)Axn)‖2 ,λn−1} (I−PQn)Axn 6= 0,

θ , (I−PQn)Axn = 0
(5.7)

with θ enough small and 0 < ρ < 2.

From Lemma 4.1, we can obtain the following Lemma immediately.

Lemma 5.1. λn defined by (5.7) is well-defined.

Theorem 5.2. Assume that Conditions 3.1-3.2 hold, then the sequence {xn} generated by Al-
gorithm 5.2 converges weakly to a solution of the SFP (1.1).

Proof. Following Theorem 5.1, we can deduce that

D f (p,xn+1)≤ D f (p,xn)−D f (xn+1,xn)−λn‖(I−PQn)Axn‖2

+
µλn

2
‖A∗(I−PQn)Axn‖2 +

λn

2µ
‖xn− xn+1‖2,

for all µ > 0. If (I−PQn)Axn = 0, then λn = θ and

D f (p,xn+1)≤ D f (p,xn)− (1− θ

µσ
)D f (xn+1,xn). (5.8)

If (I−PQn)Axn 6= 0, similar to (4.2), we obtain

D f (p,xn+1)

≤ D f (p,xn)− (1− λn

µσ
)D f (xn+1,xn)−λn‖(I−PQn)Axn‖2(1−

µ‖A∗(I−PQn)Axn‖2

2‖(I−PQn)Axn‖2 ).
(5.9)

Take µ with 1
σ

limn→∞ λn < µ < liminfn→∞

2‖(I−PQn)Axn‖2

‖A∗(I−PQn)Axn‖2 . Then,

liminf
n→∞

(1− λn

µσ
)> 0 (5.10)

and

liminf
n→∞

(1−
µ‖A∗(I−PQn)Axn‖2

2‖(I−PQn)Axn‖2 )> 0. (5.11)

Taking θ with 0 < θ < µσ , we obtain 1− θ

µσ
> 0. It follows from (5.8)-(5.11) that

D f (p,xn+1)≤ D f (p,xn),

which yields that limn→∞ D f (p,xn) exists and hence {D f (p,xn)} is bounded. By using (2.1),
we have that {xn} is bounded. Moreover,

lim
n→∞

D f (xn+1,xn) = lim
n→∞
‖(I−PQn)Axn‖= 0.

Following the proof of Theorem 5.1, we can obtain ωw(xn) ⊆ Γ. It is not hard to see that the
sequence {xn} generated by Algorithm 5.2 converges weakly to a solution of SFP (1.1). This
completes the proof. �
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6. NUMERICAL EXPERIMENT

In this section, we demonstrate the performance of the proposed Algorithm 3.1 and Algo-
rithm 4.1 for solving the SFP (1.1). All the codes are written in MATLAB and are performed
on a personal Lenovo computer with Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80GHz
and RAM 8.00GB. For notational simplicity, we denote the vector with all elements 1 by e1 in
what follows. In the numerical results listed in the following tables, ‘Iter.’ denotes the number
of iteration, and ‘Time’ denotes the time of iteration. We provide a numerical experiment to il-
lustrate the numerical results of Algorithm 3.1 and Algorithm 4.1 using two Bregman distances.
The following list are functions with their Bregman distances:

(i) Define the function f KL(x) = ∑
m
i=1 xi lnxi with domain dom f KL = {x = (x1,x2, ...,xm)

T ∈
Rm : xi > 0, i = 1,2, ...m} and range ran f KL = (−∞,+∞). Then

∇ f KL(x) = (1+ ln(x1),1+ ln(x2), ...,1+ ln(xm))
T

and
(∇ f KL)−1(x) = (exp(x1−1),exp(x2−1), ...,exp(xm−1))T .

Hence, we have the Kullback-Leibler distance given by

DKL
f (x,y) =

m

∑
i=1

(xiln(
xi

yi
)+ yi− xi).

(ii) Define the function f SE(x) = 1
2‖x‖

2 with domain dom f SE = H and range ran f SE =

[0,+∞). Then ∇ f SE(x) = x and (∇ f SE)−1(x) = x. Hence, we have the squared Euclidean
distance given by DSE

f (x,y) = 1
2‖x− y‖2. It is clear that f KL and f SE satisfy strong convexity

with σ = 1 (see [25]).

Example 6.1. Consider the equation system y = Ax+η , where x ∈ RN is the data to be recov-
ered, y is the vector of noisy observations, and η represents the noise, sampling A = (ai j)M×N is
a matrix, M <N and ai j ∈ [0,1]. The task is to recover the sparse signal x from the data y. We are
interested in finding solution x∗ ∈ {x̂∈C|Ax̂∈Q}, where C = {x = (xi) | xi≤ 0,1≤ i≤N1;x j ≥
0,N1 < j ≤ N}, N1 is positive integer, N1 < N, and Q = [L,U ] = {y = (yi) | Li ≤ yi ≤Ui,1 ≤
i≤M}. We know that Q is a box delimited by L and U , where L = (Li) and U = (Ui) ∈ RM. To
ensure the existence of the solution of the considered problem, K-sparse vector x∗ is generated
randomly in C. Take y(t) = Ax∗, L = y−0.1e1, and U = y+0.1e1. We use Algorithm 3.1 and
Algorithm 4.1 to solve the above SFP. The metric projection PQ can be computed by formula:
PQ(y) = max{L,min{y,U}}. In this experiment, we perform the numerical tests of Algorithm
3.1 and Algorithm 4.1 with different dimensions (M,N,N1) = (50,100,25),(80,200,50). The
matrix A is generated randomly in [0,1]. The sparse ratio is 0.05 and 0.1, respectively. We
use the Kullback-Leibler distance and the squared Euclidean distance in Algorithm 3.1 and
Algorithm 4.1. In the following, ‘Alg.3.1.KL’ and ‘Alg.3.1.SE’ denote Algorithm 3.1 with
f (x) = f KL(x) and f (x) = f SE(x), respectively. ‘Alg.4.1.KL’ and ‘Alg.4.1.SE’ denote Algo-
rithm 4.1 with f (x) = f KL(x) and f (x) = f SE(x), respectively. In all methods, we choose
initial point x1 = (xi j)N×1, where xi j ∈ [0,27] is generated randomly. In Algorithm 3.1, we
take λn = 1.95

‖A‖2 . And in Algorithm 4.1, we take ρ = 1.95. In the implementation, we use

error = ‖xn+1− xn‖ < 10−4 as the stopping criterion. The numerical results for the perfor-
mance of Algorithm 3.1 and Algorithm 4.1 with different Bregman distances are demonstrated



982 Y. HAO, J. ZHAO

in Table 1, Figure 1, and Figure 2.

TABLE 1. Numerical Results of Algorithm 3.1 and Algorithm 4.1

M = 50, N = 100, N1 = 25, K = 5 M = 50, N = 100, N1 = 25, K = 10

Iter. Time(s) Iter. Time(s)

Alg.3.1.KL 10629 0.7188 5862 0.4844

Alg.3.1.SE 77558 0.8906 31104 0.5156

Alg.4.1.KL 381 0.0313 826 0.0313

Alg.4.1.SE 17081 0.1875 5504 0.0625

M = 80, N = 200, N1 = 50, K = 10 M = 80, N = 200, N1 = 50, K = 20

Iter. Time(s) Iter. Time(s)

Alg.3.1.KL 2003 0.9219 5809 2.2500

Alg.3.1.SE 19814 1.3594 40376 2.4063

Alg.4.1.KL 1961 0.7500 2604 1.1406

Alg.4.1.SE 17824 1.2656 17562 1.2500
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FIGURE 1. Comparison of the iteration number with different Bregman dis-
tances of Algorithm 3.1 and Algorithm 4.1 (M = 80,N = 200,N1 = 50).

Table 1 reports iterative numbers and times of Algorithm 3.1 and Algorithm 4.1 with different
Bregman distances and different dimensions. Further, in Figure 1 and Figure 2, we compare
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FIGURE 2. Comparison of the iteration number with different Bregman dis-
tances of Algorithm 3.1 and Algorithm 4.1 (M = 50,N = 100,N1 = 25).

Algorithm 3.1 and Algorithm 4.1 with different Bregman distances and different sparse cases.
Figure 1 and Figure 2 present Error value versus the iteration numbers. From Table 1, Figure
1, and Figure 2, it can be seen that the Kullback-Leibler distance have computational advantage
than the squared Euclidean distance for solving Example 6.1 . We can also see that Algorithm
4.1 with the self-adaptive stepsize is more effective than Algorithm 3.1 for solving the above
SFP with different dimensions and different Bregman distances.
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