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Abstract. In this article, we introduce and study a new q-fractional integral operator which essentially
stems from a successive application of the Srivastava-Owa operator of fractional integration with the
q-Ruscheweyh derivative operator. As an application of this new q-fractional integral operator, we inves-
tigate a coefficient problem involving the second Hankel determinant H2

2 ( f ) for normalized analytic and
univalent functions f (z) belonging to some normalized families of q-starlike and q-convex functions in
the open unit disk U.
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1. INTRODUCTION, DEFINITIONS, AND PRELIMINARIES

Let A denote the class of functions f , which are analytic in the open unit disk

U= {z : z ∈ C and |z|< 1}
and normalized by the following conditions:

f (0) = 0 and f ′(0)−1 = 0.

Thus, clearly, each function f ∈A has a Taylor-Maclaurin series expansion of the form given
by

f (z) = z+
∞

∑
k=2

ak zk (z ∈ U). (1.1)

In recent years, many researchers focused their attention on the connection between the frac-
tional calculus (that is, the calculus of integrals and derivatives of arbitrary real or complex
order) and the quantum (or q-) calculus in the area of Geometric Function Theory of Complex
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Analysis, especially with the study univalent and multivalent functions. In fact, Srivastava’s re-
cent survey-cum-expository review article [1] has shown how important and potentially useful
it is to study the concepts of the fractional calculus and the q-calculus in Geometric Function
Theory of Complex Analysis. In [1], as well as in its predecessors [2] and [3], the interested
reader can find a hybrid-type family of operators of Fractional Calculus with the kernel in-
volving a unified form of various extensions and generalizations of the Mittag-Leffler and the
Hurwitz-Lerch functions.

The celebrated operator of the Riemann-Liouville fractional integral has been successfully
combined with such other powerful operators as (for example) the Ruscheweyh and Săalăgean
derivative operators with a view to obtaining a beneficial function that can be used to introduce
new families of operators (see, for details, [4–6]).

Fractional integral operators on the complex plane C were defined by Srivastava and Owa [7]
as follows.

Definition 1.1. (see Srivastava and Owa [7]) The fractional integral of order α is defined, for a
function f (z) , by

Iα
z f (z) :=

1
Γ(α)

∫ z

0
(z−ζ )α−1 f (ζ ) dζ (α > 0), (1.2)

where the function f (z) is analytic in a simply-connected region of the complex z-plane con-
taining the origin and the multiplicity of (z− ζ )σ−1 is removed by requiring log(z− ζ ) to be
real when z−ζ > 0.

Recently, Aldweby and Darus [8] presented the q-Ruscheweyh derivative operator, which has
subsequently been used widely to introduce and study several new classes of univalent functions
(see, for example, [9–12]; see also the recent works [13–15]).

Definition 1.2. (see Aldweby and Darus [8]) The q-Ruscheweyh derivative operator is given by

Rτ
q f (z) := z+

∞

∑
k=2

[k+ τ−1]q!
[τ]q! [k−1]q!

ak zk (0 < q < 1; τ >−1), (1.3)

where the quantum (or q-) factorial [ν ]q! is defined for every non-negative integer ν by

[ν ]q! =


[1]q [2]q [3]q · · · [ν ]q (ν ∈ N\{1})

1 (ν = 1)

and, for the q-number [λ ]q,

[λ ]q =


1−qλ

1−q
(λ ∈ C∗ := C\{0})

0 (λ = 0),

N being the set of positive integers and N0 = N∪{0}.

In this work, we introduce a presumably new q-fractional integral operator which is defined
by successive application of the Srivastava-Owa operator and the q-Ruscheweyh derivative op-
erator, which are given in Definition 1.1 and Definition 1.2, respectively. We also examine the
second Hankel determinant of a class of normalized starlike and convex functions.
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We recall that Noonan and Thomas [16] studied the following qth Hankel determinant Hn
q ( f )

for a function f (z) in the analytic function class A , and given by (1.1), for q,n ∈ N:

Hn
q ( f ) := det


an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

... . . . ...
an+q−1 an+q . . . an+2q−2

 .

Obviously, for q= n = 2, we have the second Hankel determinant defined by

H2
2 ( f ) := det

(
a2 a3
a3 a4

)
=
∣∣a2a4−a2

3
∣∣ .

In Geometric Function Theory of Complex Analysis, the finding of the upper bounds for the
Hankel determinants for various subclasses of the normalized analytic function class A (such as
the class S ∗ of starlike functions in U and the class C of convex functions in U) continues to be
an interesting problem (see, for details, the recent developments which are reported in [17–24]).
Motivated by many of these recent developments, here we apply the approaches used by Janteng
et al. (see [25] and [26]), and by Lupaş and Oros [5], to derive upper bounds for the second
Hankel determinant H2

2 ( f ) for functions f belonging to the following function classes S ∗
q,α and

Cq,α :

S ∗
q;α,τ :=

{
f : f ∈A and ℜ

(
zDq

(
Iα,τ

q f (z)
)

Iα,τ
q f (z)

)
> 0 (z ∈ U)

}
(1.4)

and

Cq;α,τ :=

{
f : f ∈A and ℜ

(
1+

qzD2
q
(
Iα,τ

q f (z)
)

Dq
(
Iα,τ

q f (z)
) )> 0 (z ∈ U)

}
, (1.5)

respectively. Here, and in what follows, the aforementioned q-fractional integral operator Iα,τ
q

is given by Definition 1.3 below and Dq denotes the q-derivative operator defined as follows:

Dq
(

f (z)
)

:=


f (z)− f (qz)
(1−q)z

(z 6= 0)

f
′
(0) (z = 0).

Clearly, when q→ 1−, the q-derivative Dq
(

f (z)
)

reduces to the ordinary derivative f
′
(z).

Definition 1.3. By successively applying the Srivastava-Owa operator Iα
z , defined by (1.2) and

the q-Ruscheweyh derivative operator Rτ
q, defined by (1.3), we are led eventually to a presum-

ably new q-fractional operator defined, for a function f ∈A given by (1.1), as follows

Iα,τ
q f (z) := Iα

z Rτ
q f (z)

= Iα
z Rτ

q

(
z+

∞

∑
k=2

ak zk

)

= z+
∞

∑
k=2

[k+ τ−1]q!
[τ]q! [k−1]q!

Γ(k+1)Γ(α +2)
Γ(k+1+α)

ak zk,

which is easily verifiable.
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The following lemmas will be needed in our present investigation.

Lemma 1.1. (see Duren [27] and [28]) If the function p(z) is in the class P, for which

ℜ
(

p(z)
)
> 0 (z ∈ U)

and
p(z) = 1+ p1z+ p2z+ p3z3 + · · · (z ∈ U),

then |pk|5 2 (k ∈ N).

Lemma 1.2. (see Libera and Złotkiewicz [29]) Let the function p(z) be in the class P, for
which

ℜ
(

p(z)
)
> 0 (z ∈ U)

and
p(z) = 1+ p1z+ p2z+ p3z3 + · · · (z ∈ U).

Then there exist ζ ,z ∈ C with max{|ζ |, |z|}5 1 such that

p2 =
1
2

(
p2

1 +ζ
(
4− p2

1
))

and

p3 =
1
4

(
p3

1 +2
(
4− p2

1
)

p1ζ − p1
(
4− p2

1
)
ζ

2 +2
(
4− p2

1
)(

1−|ζ |2
)
z
)
.

2. APPLICATIONS TO THE COEFFICIENT PROBLEM FOR

THE FUNCTION CLASSES S ∗
q;α,τ AND Cq;α,τ

In this section, we begin by stating our first main result as Theorem 2.1 below.

Theorem 2.1. Let the function f (z), given by (1.1), be in the class S ∗
q;α,τ . Then∣∣a2a4−a2

3
∣∣5 4

(
([2]q +1)([3]q +1)−2

)
}2}4([2]q−1)2([3]q−1)([4]q−1)

+
4([2]q +1)2

}2
3([2]q−1)2([3]q−1)2 ,

where

}2 = [τ +1]q
Γ(3)Γ(2+α)

Γ(3+α)
,

}3 =
[τ +2]q[τ +1]q

[2]q!
Γ(4)Γ(2+α)

Γ(4+α)

and

}4 =
[τ +3]q[τ +2]q[τ +1]q

[3]q!
Γ(5)Γ(2+α)

Γ(5+α)
.

Proof. Since f (z) ∈S ∗
q;α,τ , in light of the definition in equation (1.4), there exists a function

p(z) given by p(z) = 1+ p1z+ p2z2 + p3z3 + · · · in P such that

zDq
(
Iα,τ

q f (z)
)
=
(
Iα,τ

q f (z)
)

p(z) (∀ z ∈ U).

This implies that

zDq
(
z+}2a2z2 +}3a3z3 +}4a4z4 + · · ·

)
=
(
z+}2a2z2 +}3a3z3 +}4a4z4 + · · ·

)(
1+ p1z+ p2z2 + p3z3 + · · ·

)
,
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which yields

z+[2]q}2a2z2 +[3]q}3a3z3 +[4]q}4a4z4 + · · ·

= z+(p1 +}2a2)z2 +(p2 +}2 p1a2 +}3a3)z3 +(p3 +}2 p2a2 +}3 p1a3 +}4a4)z4 + · · · .

Upon comparing the coefficients on both sides of this last equation, we are led to the following
three equations:

a2 =
p1

}2([2]q−1)
,

a3 =
1

}3([3]q−1)

(
p2 +

p2
1

[2]q−1

)
,

and

a4 =
1

}4([4]q−1)

(
p3 +

p2 p1

[2]q−1
+

p1

[3]q−1

(
p2 +

p2
1

[2]q−1

))
.

Thus, for the second Hankel determinant H2
2 ( f ), we obtain

|H2(2)| :=
∣∣a2a4−a2

3
∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

p1

}2}4([2]q−1)([4]q−1)

(
p3 +

p2 p1
[2]q−1 +

p1

[3]q−1

(
p2 +

p2
1

[2]q−1

))

−

(
1

}3([3]q−1)

(
p2 +

p2
1

[2]q−1

))2

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1
}2}4([2]q−1)([4]q−1)

(
p1 p3 +

p2
1 p2

[2]q−1 +
p2

1
[3]q−1

(
p2 +

p2
1

[2]q−1

))

− 1
}2

3([3]q−1)2

(
p2

2 +
2p2

1 p2
[2]q−1 +

p4
1

([2]q−1)2

)
∣∣∣∣∣∣∣∣∣∣∣
.
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Now, without any loss of generality, we can assume that p1 = p with p ∈ [0,2]. Then, by
applying Lemma 1.1 and Lemma 1.2, we find that

∣∣a2a4−a2
3
∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
}2}4([2]q−1)([4]q−1)

·



p

4

(
p3 +2

(
4−p2)pζ −p

(
4−p2)ζ 2 +2

(
4−p2)(1−|ζ |2

)
z
)

+
p2

[2]q−1

(
1
2

(
p2 +ζ

(
4−p2)))

+
p2

[3]q−1

(
1
2

(
p2 +ζ

(
4−p2))+ p2

[2]q−1

)


− 1
}2

3([3]q−1)2

(
1
4
(
p2 +ζ

(
4−p2))2

+ 2p2

[2]q−1

(1
2

(
p2 +

(
4−p2)ζ

))
+ p4

([2]q−1)2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By simplifying the right-hand side of the above equation and using the triangle inequality, we
find for r := |ζ |5 1 that

∣∣a2a4−a2
3

∣∣5 1
4}2}4([2]q−1)2([3]q−1)([4]q−1)

·



(
([2]q +1)([3]q +1)−2

)
p4

+([2]q−1)([3]q−1)p2(4−p2)r2

+2([2]q−1)([3]q−1)p
(
4−p2)(1− r2)

+
(
2([2]q[3]q−1)

)
p2 (4−p2)r


+

1
4}2

3([2]q−1)2([3]q−1)2

·
((

[2]q +1
)2
p4 +

(
[2]q−1

)2r2(4−p2)2

+2
(
[2]2q−1

)
rp2(4−p2)

)
.

If we denote the right-hand side of this last equation by ϒ(p,r) and make use of the derivative
test to maximize the function ϒ(p,r) with

(p,r) ∈ [0,2]× [0,1] ,
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we can eventually have∣∣a2a4−a2
3
∣∣= ϒ(p,r)

5 max
05r51; 05p52

{ϒ(p,r)}= ϒ(2,1)

=
1

4}2}4([2]q−1)2([3]q−1)([4]q−1)

((
24([2]q +1)([3]q +1)−2

))
+

1
4}2

3([2]q−1)2([3]q−1)2

(
24([2]q +1)2

)
=

4
(
([2]q +1)([3]q +1)−2

)
}2}4([2]q−1)2([3]q−1)([4]q−1)

+
4([2]q +1)2

}2
3([2]q−1)2([3]q−1)2 ,

with evidently completes the proof of Theorem 2.1. �

We next turn to the coefficient problem involving the upper bounds for the second Hankel
determinant H2

2 ( f ) for the functions in the class C α,τ
q defined by (1.5).

Theorem 2.2. Let the function f (z), given by (1.1), be in the class C α,τ
q . Then∣∣a2a4−a2

3
∣∣5 4([3]q +1)([2]q +1)

([2]q−1)2[2]q([3]q−1)([4]q−1)[4]q}̃2}̃4

+
8([2]2q +1)

([3]2q}̃3− [3]q}̃3)2([2]q−1)2
,

where

}̃2 = [τ +1]q
Γ(3)Γ(2+α)

Γ(3+α)
,

}̃3 =
[τ +2]q[τ +1]q

[2]q!
Γ(4)Γ(2+α)

Γ(4+α)
,

and

}̃4 =
[τ +3]q[τ +2]q[τ +1]q

[3]q!
Γ(5)Γ(2+α)

Γ(5+α)
.

Proof. First of all, the Product Rule for the q-derivative operator Dq states that

Dq
(

f (z) ·g(z)
)
=Dq

(
f (z)

)
·g(z)+ f (qz) ·Dq

(
g(z)

)
,

provided that each member exists. Thus, clearly, the following inequality in the definition (1.5):

ℜ

(
1+

qzD2
q
(
Iα,τ

q f (z)
)

Dq
(
Iα,τ

q f (z)
) )> 0 (z ∈ U)

can be rewritten as follows

ℜ

Dq

(
zDq

(
Iα,τ

q f (z)
))

Dq
(
Iα,τ

q f (z)
)

> 0 (z ∈ U).
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Let us now assume that f (z)∈C α,τ
q . Then, in view of the definition (1.5), there exists a function

p(z) given by p(z) = 1+ p1z+ p2z2 + p3z3 + · · · in P such that

1+
qzD2

q
(
Iα,τ

q f (z)
)

Dq
(
Iα,τ

q f (z)
) = p(z) (∀ z ∈ U)

or, equivalently, that

Dq

(
zDq

(
Iα,τ

q f (z)
))

=Dq
(
Iα,τ

q f (z)
)
· p(z) (∀ z ∈ U). (2.1)

If we set

Fq;α,τ(z) :=Dq
(
Iα,τ

q f (z)
)

(z ∈ U),

then the following extension of Alexander’s theorem can be easily verified from the definitions
(1.4) and (1.5):

Fq;α,τ(z) ∈ C α,τ
q ⇐⇒ zDα

(
Fq;α,τ(z)

)
.

We now write equation (2.1) as follows:

Dq

(
zDq

(
z+ }̃2a2z2 + }̃3a3z3 + }̃4a4z4 + · · ·

))
=Dq

(
z+ }̃2a2z2 + }̃3a3z3 + }̃4a4z4 + · · ·

)
·
(
1+ p1z+ p2z2 + p3z3 + · · ·

)
,

which readily yields

1+[2]2q}̃2a2z+[3]2q}̃3a3z2 +[4]2q}̃4a4z3 + · · ·

= 1+
(

p1 +[2]q}̃2a2

)
z+
(

p2 +[2]q}̃2 p1a2 +[3]q}̃3a3

)
z2

+
(

p3 +[2]q}̃2 p2a2 +[3]q}̃3 p1a3 +[4]q}̃4a4

)
z3 + · · · . (2.2)

If we compare the coefficients on both sides of this last equation (2.2), we are led to the follow-
ing three equations:

a2 =
p1

[2]2q}̃2− [2]q}̃2
,

a3 =
1

[3]2q}̃3− [3]q}̃3

(
p2 +

p2
1

[2]q−1

)
,

and

a4 =
1

[4]2q}̃4− [4]q}̃4

(
p3 +

p1 p2

[2]q−1
+

p1 p2

[3]q−1
+

p3
1

([2]q−1)([3]q−1)

)
.

The remainder of the proof of Theorem 2.2 would run parallel to that of Theorem 2.2, which we
have already presented fairly adequately. We, therefore, leave the details involved as an exercise
for the interested reader. �
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3. CONCLUDING REMARKS AND OBSERVATIONS

In our present investigation, we introduced a presumably new q-fractional integral operator
Iα,τ

q , which combines the q-Ruscheweyh derivative operator Rτ
q with the Srivastava-Owa frac-

tional integral operator Iα
z . We then applied this q-fractional integral operator Iα,τ

q in order
to define two general function classes S ∗

q;α,τ and C α,τ
q that are analogous to the widely- and

extensively-studied classes q-starlike and q-convext functions, respectively. Finally, for func-
tions belonging to each of these newly-refined function classes S ∗

q;α,τ and C α,τ
q , we derived

upper bounds for the second Hankel determinant H2
2 ( f ). Our findings in this paper could po-

tentially lead to further researches and applications in related areas of mathematical sciences.
In conclusion, we remark that a large number of mostly amateurish-type researchers on these

and other related topics continue to produce and publish obvious and inconsequential variations
and straightforward translations of the known q-results in terms of the so-called (p̃,q)-calculus
by unnecessarily forcing-in an obviously superfluous (or redundant) parameter p̃ into the clas-
sical q-calculus and thereby falsely claiming “generalization” (see [1, p. 340] and [2, Section 5,
pp. 1511–1512]; see also the recent survey-cum-expository review article [30, Section 6]). Such
tendencies to produce and flood the literature with trivialities and amateurish-type researches
should be discouraged by all means.

REFERENCES

[1] H.M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geo-
metric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020), 327–344.

[2] H.M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related
special functions and integral transformations, J. Nonlinear Convex Anal. 22 (2021), 1501–1520.

[3] H.M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and
related higher transcendental functions, J. Adv. Engrg. Comput. 5 (2021), 135–166.
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