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Abstract. In this paper, we investigate a stochastic approximation based algorithm for solving nonmono-
tone stochastic variational inequalities. Our algorithm combines the projection and contraction method
with the inertial extrapolation technique. The self-adaptive step size sequence is generated by employing
the Armijo’s line search rule. We also investigate the almost sure convergence property without using the
prior knowledge of the Lipschitz constant of the involved operator in our algorithm. Theoretical results
related to the convergence rate and the oracle complexity are provided under mild assumptions. Primary
numerical experiments are presented to demonstrate the efficiency of the algorithm.
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1. INTRODUCTION

Let Rd be a d-dimensional Euclidean space with inner product 〈·, ·〉 and induced norm ‖ · ‖.
Let X be a nonempty, closed, and convex set of Rd . Given an operator G :Rd→Rd , we consider
the variational inequality problem consists of finding an x∗ ∈ X such that 〈G(x∗),x−x∗〉 ≥ 0 for
all x ∈ X . It is known that the variational inequality is fundamental in applied mathematics and
operations research. In view of the situations that many practical problems may involve random
factors, Gurkan et al. [1] proposed a stochastic variational inequality.

In the stochastic case, we start with a probability space (Ω,F ,P), where F denotes a σ -
algebra on Ω, and P is the associated probability distribution. Let (Ξ,G) be a measurable space.
Let ξ : Ω→ Ξ be a random variable defined on the probability space (Ω,F ,P), which induces
an expectation E and a distribution Pξ . One assumes that F(·, ·) : Rd×Ξ→Rd is integrable on
Ξ. Let G : Rd→Rd be defined by G(x) = E[F(x,ξ )] for all x ∈Rd. We include the formulation
of the stochastic variational inequality (SVI, shortly) as follows

Find an x∗ ∈ X , 〈E[F(x∗,ξ )],x− x∗〉 ≥ 0, ∀x ∈ X . (1.1)

In what follows, the solution set of (1.1) is denoted by S(X ,G). We denote by M(X ,G) the
solution set of the involved Minty variational inequality: find a z∈ X such that 〈G(x),x−z〉 ≥ 0,
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where z can be referred as a weak solution to (1.1). The SVI represents a unified form of
optimality conditions of the stochastic optimization, which theoretically and algorithmically
applied in various fields, such as engineering, management, and economics; see, e.g., [2–4].

The well-developed deterministic algorithms cannot directly resolve SVIs unless the involved
expectation can be evaluated explicitly. It is of interest to devise stochastic algorithms that
produce asymptotically solutions of SVIs. Based on how sampling is incorporated with the
algorithm, there are two basic methodologies existed for solving SVIs: Sample average approx-
imation (SAA, shortly) method and and stochastic approximation (SA, shortly) method.

The SAA method was studied in the stochastic programming; see, e.g., [5–7]. It replaces the
expected-value operator G(·) with an empirical estimator of the form 1

N ∑
N
j=1 F(·,ξ j) by using

samples of ξ1,ξ2, · · · ,ξN . In this case, deterministic algorithms can be employed to solve SVIs.
From this point of view, the SAA method is called an ‘exterior’ approach since it does not de-
pend on the structure of the algorithm. In order to precisely approximate the exact solution of
SVIs, it requires the sample size N to be relatively large, which results in a large computational
complexity. The SA approach was initiated by Robbins and Monro [8] for solving the sto-
chastic root-finding problem. Its strategy is to replace the expected-value operator G(·) along
the iterations by the random operator F(·,ξ ). Along the trajectory of the iterative procedure,
the interior and online samples of ξ can bring out the oracle error, ε(x,ξ ) = F(x,ξ )−G(x),
∀x ∈ X . It is noted that the SA method can be viewed as an “interior” approach since it relies on
the structure of the algorithm. In contrast with the SAA method, one sees that the SA method
is easier to implement with the less memory. The efficiency of SA methods prompts the study
of SA-based algorithms for dealing with SVIs [9–11]. Jiang and Xu [12] first extended the SA
method to solve SVIs. The almost sure convergence of the resulting algorithm was proven under
the assumption of the strongly monotonicity and the Lipschitz continuity on the expected-value
operator G(·). Yousefian et al. [13] proposed an SA-based algorithm with adaptive step sizes for
solving Cartesian SVIs under the strongly monotone assumption on the expected-value operator
G(·). In order to relax the strongly monotonicity to the plain monotonicity, Koshal et al. [14]
incorporated the Tikhonov regularization technique into an SA-based proximal point algorithm
and guaranteed the almost sure convergence result.

In much of the prior work, SA-based algorithms for solving SVIs were limited to mono-
tone operators. However, the monotonicity is somewhat strong, which restricts the applications
of the algorithms. Iusem et al. [15] devised an SA-based extragradient algorithm for solving
pseudomonotone SVIs. The iterative steps can be expressed as: ∀x0 ∈ X , yn = ΠX

(
xn− γn

Sn
∑

Sn
j=1 F(xn,ξ

j
n )
)
,

xn+1 = ΠX

(
xn− γn

Sn
∑

Sn
j=1 F(yn,η

j
n)
)
,

(1.2)

where ξn = {ξ j
n}Sn

j and ηn = {η j
n}Sn

j are independent identically distributed (i.i.d., shortly)
samples, L is the Lipschitz constant of the involved expected-value operator E[F(·,ξ )], and
γn =O

( 1
L

)
is the step size. The almost sure convergence requires E[F(·,ξ )] to be pseudomono-

tone and Lipschitz continuous. It is noted that the projection onto the feasible set X is either
unavailable or computationally expensive when feasible set X has a complex expression. In
such situation, the efficiency of the extragradient method may be affected, due to the fact that
the projection onto feasible set X has to be calculated twice per iteration. How to reduce the
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number of projections onto feasible set X performed at each iteration has been one of the im-
portant tasks. Along this way, it has led to some projection-based methods with one projection
onto the feasible set X per iteration; see, e.g., [16–18].

It is noted that the projection onto a specific half-space can be calculated by an explicit for-
mula. In this spirit, Yang et al. [17] developed an SA-based subgradient extragradient algorithm,
which reads as follows  yn = ΠX

(
xn− γn

Sn
∑

Sn
j=1 F(xn,ξ

j
n )
)
,

xn+1 = ΠCn

(
xn− γn

Sn
∑

Sn
j=1 F(yn,η

j
n)
)
,

(1.3)

where

Cn :=

{
z ∈ Rd :

〈
xn−

γn

Sn

Sn

∑
j=1

F(xn,ξ
j

n )− yn,yn− z

〉
≥ 0

}
.

One salient advantage of Algorithm (1.3) is the evaluation of only one projection onto the fea-
sible set X , which improves the computational efficiency. As a modification of Algorithm (1.2),
the SA-based projection and contraction algorithm [19] replaces the second projection onto
feasible set X by computing the search direction and the step size. The resulting algorithm
involves only one projection onto feasible set X and no further projections onto a priori half-
space. The saving of one projection step allows the algorithm to be more potentially efficient
than Algorithm (1.2). Through continuous research in this aspect, we focus on an extension of
the SA-based projection and contraction algorithm for solving nonmonotone SVIs.

The update of the step size requires the Lipschitz constant of the involved operator. How-
ever, the Lipschitz constant is necessarily unknown or difficult to estimate. To overcome this
drawback, the construction of self-adaptive step sizes has aroused numerous interest among re-
searchers; see, e.g., [16–18]. They adopted an SA-version of Armijo’s line search criterion to
determine the step size. More precisely, choose γn as the maximum γ ∈ {µν ι : ι ∈ N0} such
that

γ

∥∥∥∥∥ 1
Sn

Sn

∑
j=1

f (xn,ξ
j

n )−
1
Sn

Sn

∑
j=1

f (zλ
n ,ξ

j
n )

∥∥∥∥∥≤ λ‖xn− zλ
n ‖, (1.4)

where zγ
n = ΠX

(
xn− γ

Sn
∑

Sn
j=1 f (xn,ξ

j
n )
)

, ν ∈ (0,1), µ ∈ (0,1), and λ ∈ (0,1).
It is noted that the inertial extrapolation as one of accelerated techniques has attracted the

attention of researchers in building fast algorithms. Such inertial extrapolation was initially
proposed by Polyak [20], acting as an acceleration process. It is based on a discrete version of
a second-order dissipative dynamical system. The main feature of the inertial procedure is that
it involves two iterative steps and the next iterative step is obtained by using the combination of
previous two iterates. Recently, various types of inertial algorithms have been devised and ap-
plied to various optimization problems, such as split feasibility problems, equilibrium problems,
variational inequalities, and fixed point problems; see, e.g., [21–25]. An interesting problem is
how do we establish an inertial type algorithm for solving stochastic variational inequalities.

Motivated and inspired by the above results, our interest lies in developing an SA-based
projection and contraction algorithm incorporated with inertial effects and step size rules. It
is proved that the iterative sequence converges to a solution of SVIs in an almost sure sense.
Some numerical experiments are presented to demonstrate the efficiency and advantages of the
proposed algorithm. Our main contributions in this paper can be summarized as follows
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(i) Our algorithm incorporates inertial terms, which accelerates the convergence speed. The
test results demonstrate the benefits of inertial terms on the algorithm.

(ii) Our algorithm does not require a projection step onto a priori half-space, which reduces
the computational cost, in contrast to algorithms in [16–18].

(iii) The almost sure convergence analysis of the algorithm is performed without using the
prior knowledge of the Lipschitz constant of the operator involved.

The paper is organized as follows. Some basic definitions and lemmas are presented in Sec-
tion 2. The algorithm and its almost sure convergence analysis are provided in Section 3. We
focus on analyzing the convergence rate and the oracle complexity of the proposed algorithm
in Section 4. We provide some numerical experiments based on the randomly generated data to
support the theoretical results in Section 5. Concluding remarks are reported in Section 6, the
last section.

2. PRELIMINARIES

Let us start this section by introducing the notations to facilitate our analysis. Let N0 = N∪
{0}, where N is the set of all positive integers. Given a sequence {xk}, the notation xk = O(B)
denotes that there exists a constant C > 0 such that ‖xk‖ ≤ CB for all n ∈ N0. Given a σ -
algebra F and a random variable ξ , we denote by E[ξ ], E[ξ |F ], and V[ξ ], the expectation,
the conditional expectation, and the variance, respectively. The notations ξ ∈F and ξ ⊥⊥F
denote that ξ is F -measurable and ξ is independent of F . We denote by σ(ξ1, · · · ,ξn) the
σ -algebra generated by random variables ξ1, · · · ,ξn. Given the random variable ξ and p ≥ 1,
|ξ |p is the Lp-norm of ξ and |ξ |F |p := p

√
E[|ξ |p |F ] is the Lp-norm of ξ conditional to the

σ -algebra F . The symbol “a.s.” is the abbreviation for “almost surely”. We use ΠX(x) to
denote the projection of x onto a closed and convex set X , i.e., ΠX(x) := argminy∈X ‖y− x‖2.

We recall some properties of projections; see [26] for more details.

Lemma 2.1. Let X ⊆ Rd be a nonempty, convex and closed set. Then

(i) Given x ∈ Rd , 〈x−ΠX(x),ΠX(x)− y〉 ≥ 0 for all y ∈ X .
(ii) For all x,y ∈ Rd , ‖ΠX(x)−ΠX(y)‖ ≤ ‖x− y‖.

(iii) For all x ∈ X and y ∈ Rd , ‖x−ΠX(y)‖ ≤ 〈x−ΠX(y),x− y〉.
(iv) Given γ > 0 and G : Rd → Rd , S(X ,G) = {x ∈ Rd : x = ΠX(x− γG(x))}.

For a given operator G :Rd→Rd and a constant γ > 0, we define the natural residual function
associated to SVI (1.1) as Rγ(x) := ‖x−ΠX(x− γG(x))‖ for all x ∈ Rd . For simplicity, we
denote by R(x) =R1(x).
Lemma 2.2. [26] Given x ∈ Rd , the function γ 7→ Rγ (x)

γ
is non-increasing over (0,∞).

Definition 2.1. [27] An operator G : X → Rd is said to be

(i) µ-strongly monotone on X if there exists µ > 0 such that 〈G(x)−G(y),x− y〉 ≥ µ‖x−
y‖2 for all x,y ∈ X ;

(ii) monotone on X if 〈G(x)−G(y),x− y〉 ≥ 0 for all x,y ∈ X ;
(iii) pseudomonotone on X if 〈G(y),x− y〉 ≥ 0⇒ 〈G(x),x− y〉 ≥ 0 for all x,y ∈ X ;
(iv) quasimonotone on X if 〈G(y),x− y〉> 0⇒ 〈G(x),x− y〉 ≥ 0 for all x,y ∈ X ;
(v) nonmonotone on X if there exists y ∈ X such that 〈G(x),x− y〉 ≥ 0 for all x ∈ X .
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Remark 2.1. The relation between different kinds of monotonicity can be described as: strong
monotonicity⇒ monotonicity⇒ pseudomonotonicity⇒ quasimonotonicity. In addition, if X
is weakly compact, then quasimonotonicity⇒ nonmonotonicity; see [28], while the reverse is
not always true (see Example 5.1 below.)

Remark 2.2. If G is pseudomonotone, then S(X ,G)⊆M(X ,G), while the reverse case may be
not true; see [29, 30]. This explains why the solution of the Minty variational inequality can be
referred as a weak solution of the corresponding SVI. While, in the nonmonotone setting, if G
is continuous, then M(X ,G)⊆ S(X ,G); see [30, 31].

We define the oracle error map ε : X×Ξ→ Rd by

ε(x,ξ ) := F(x,ξ )−G(x), ∀x ∈ X , ∀ξ ∈ Ξ.

For a given constant p≥ 2, the oracle error’s p-moment function is defined by

σp(x) := p
√

E[‖ε(x,ξ )‖p], ∀x ∈ X . (2.1)

Given an i.i.d. sample ξS = (ξ j)
S
j=1 drawn from Ξ, the empirical operator and the oracle’s

empirical mean error associated to ξS are respectively defined by

F̂(x,ξS) :=
1
S

S

∑
j=1

f (x,ξ j) and ε̂(x,ξS) :=
1
S

S

∑
j=1

ε(x,ξ j), ∀x ∈ X . (2.2)

We give the following standard assumption that are assumed to hold through the rest of this
paper.

Assumption 2.1. (i) For almost every ξ ∈ Ξ, F : Rd×Ξ→ Rd satisfies

‖F(x,ξ )−F(y,ξ )‖ ≤L (ξ )‖x− y‖, for all x,y ∈ Rd,

where L : Ξ→ R+ is a measurable function such that L (ξ ) ≥ 1 for almost every ξ ∈ Ξ.
Then the expected-value operator G(x) = E[F(x,ξ )] is Lipschitz continuous with the constant
L = E[L (ξ )]. For p ≥ 2, the oracle error’s p-moment function σp(·) is Lipschitz continuous
with the constant Lp = |L (·)|p +L.
(ii) There exist z ∈ Rd and p≥ 2 such that E [‖F(z,ξ )‖p]< ∞ and E [L (ξ )p]< ∞.

The following lemmas are crucial in our subsequent analysis.

Lemma 2.3. [32] For any q≥ 2, there exists Cq > 0 such that, for any vector-valued martingale
{w j}S

j=1 ⊆ Rd adapted to the filtration {F j}S
j=0 with w0 = 0,∣∣∣∣∣sup

j≤S
‖w j‖

∣∣∣∣∣
q

≤Cq

∣∣∣∣∣∣
√√√√ S

∑
j=1
‖w j−w j−1‖2

∣∣∣∣∣∣
q

≤Cq

√√√√ S

∑
j=1

∣∣‖w j−w j−1‖2
∣∣
q.

Lemma 2.4. [18] Let ξS := (ξ j)
S
j=1 be an i.i.d. sample drawn from Ξ. Given p ≥ 2, suppose

that Assumption 2.1 holds and q is in [p,2p] such that the integrability condition in Assumption
2.1 is satisfied. Let ε̂(·, ·) be defined in Definition (2.2) and Cq be defined in Lemma 2.3. Set
C2 = 1 if q = p = 2. It holds that, for all x ∈ X,

|‖ε̂(x,ξS)‖|q ≤Cq
Lq‖x− z‖+σq(z)√

S
, ∀z ∈ X .
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Lemma 2.5. [18] Assume that the solution set, S(X ,G), of SVI (1.1) is /0. Suppose that As-
sumption 2.1 holds. Let ξ := {ξ j}S

j=1 be an i.i.d sample drawn from Ξ and γ : Ξ→ [0, γ̂] be a
random variable for some 0 < γ̂ ≤ 1. Let (γ,x) ∈ [0, γ̂]×X and y(x,γ,ξ ) := ΠX(x− γF̂(x,ξ )).
There exist positive constants {c j}3

j=1 such that, for any x ∈ X,

|‖ε(y(x,γ,ξ ),ξ )‖|2 ≤
c1σ4(x∗)+(c2L2 + c3L4)‖x− x∗‖√

S
, ∀x∗ ∈ S(X ,G).

Lemma 2.6. [33] Let the filtration {Fn : n ∈ N0} be a collection of σ -fields satisfying F0 ⊆
F1⊆ ·· · ⊆Fn⊆ ·· · ⊆F . Let {µn}, {νn}, {αn}, and {βn} be sequences of nonnegative random
variables adapted to the filtration {Fn}. Suppose that a.s. ∑

∞
n=0 αn < ∞, a.s. ∑

∞
n=0 βn < ∞. For

each n ∈ N0, it holds that E[νk+1 |Fn] ≤ (1+αn)νn− µn +βn. Then, {νn} a.s. converges as
n→ ∞ and a.s. ∑

∞
n=0 µn < ∞.

3. THE ALGORITHM AND ITS CONVERGENCE ANALYSIS

In this section, we propose an SA-based projection and contraction algorithm with inertial
effects for solving nonmonotone SVI (1.1).

Algorithm 1

Step 1: Choose x0,x1 ∈ Rd . Take ζn ∈ (0,∞),∀n ∈ N and θ ∈ (0,∞). Take µ, ν , λ ∈ (0,1) and
τ ∈

(
0, 2(1−λ )

1+λ

)
. Take the sample rate {Sn}⊂ N, and set n = 1.

Step 2: Compute wn = xn +ηn(xn− xn−1), where

ηn =

{
min

{
θ , ζn
‖xn−xn−1‖

}
, if xn 6= xn−1,

θ , otherwise.

Step 3: Generate an i.i.d. sample ξn := (ξ
j

n )
Sn
j=1 from Ξ and compute

yn = ΠX(wn− γn(F̂(wn,ξn))),

where F̂(wn,ξn) =
1
Sn

∑
Sn
j=1 F(wn,ξ

j
n ) and γn is the largest γ ∈ {µνk : k ∈ N0} such that

γ‖F̂(wn,ξn)− F̂(yn,ξn)‖ ≤ λ‖wn− yn‖. (3.1)

If yn = wn, then stop. Otherwise, go to Step 4.
Step 4: Compute F̂(yn,ξn) =

1
Sn

∑
Sn
j=1 F(yn,ξ

j
n ) and

dn(wn,yn) = (wn− yn)− γn(F̂(wn,ξn)− F̂(yn,ξn)). (3.2)

If dn(wn,yn) = 0, then stop. Otherwise, go to Step 5.
Step 5: Compute

xn+1 = wn− τβndn(wn,yn), (3.3)

where βn =
√

1−λ
‖wn−yn‖
‖dn(wn,yn)‖ . Set n := n+1 and return back to Step 2.

Remark 3.1. (i) The inertial terminology is believed to improve the computational perfor-
mance of the algorithm.
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(ii) The adaptive step size usage avoids the requirement of a priori Lipschitz constant of the
associated operator.

(iii) The implementation of Algorithm 1 needs to compute the projection onto the feasible
set X only once in each iteration.

In the convergence analysis, the following assumption is considered.

Assumption 3.1. (i) F : Rd×Ξ→ Rd is a Garathéodory operator;
(ii) M(X ,F) 6= /0;

(iii) Sn ∈ (0,∞), ∀n ∈ N and ∑
∞
n=1

1√
Sn

< ∞;
(iv) ζn ∈ (0,∞), ∀n ∈ N and ∑

∞
k=1 ζn < ∞.

We respectively define two oracle errors {ε ′n} and {ε ′′n} by

ε
′
n := F̂(wn,ξn)−G(wn) and ε

′′
n := F̂(yn,ξn)−G(yn), ∀n ∈ N.

Define the σ -algebras by F0 := σ(x0), F1 := σ(x0,x1), and Fn := σ(x0,x1,ξ1, · · · ,ξn−1) for
all n > 1. We observe that by induction, xn ∈Fn, wn ∈Fn, yn ∈Fn+1 and γn ∈Fn+1.

The following lemmas are essential in establishing the almost sure convergence of Algorithm
1.

Lemma 3.1. [18] Suppose that Assumption 2.1 holds. Then the line search rule (3.1) in Algo-
rithm 1 terminates after a finite number of iterations. Define Ln := 1

Sn
∑

Sn
j=1 L (ξ

j
n ). If Algorithm

1 does not stop at iteration n+1, then a.s. γn ≥min{µ, λν

Ln
}. Moreover, |γn |Fn|2 · |L (ξ )|2 ≥

min{µ,λν}.

Lemma 3.2. Let {dn} and {βn} be two sequences generated by Algorithm 1. Then
(i) dn(wn,yn) = 0 if and only if wn = yn;

(ii) βn ∈
(

1−λ

1+λ
,1
)
, ∀n ∈ N.

Proof. (i) By the definition of dn, we have that

‖wn− yn‖− γn‖F̂(wn,ξn)− F̂(yn,ξn)‖ ≤ ‖dn(wn,yn)‖,
‖wn− yn‖+ γn‖F̂(wn,ξn)− F̂(yn,ξn)‖ ≥ ‖dn(wn,yn)‖.

(3.4)

As a consequence of (3.4), we have that

(1−λ )‖wn− yn‖ ≤ ‖dn(wn,yn)‖ ≤ (1+λ )‖wn− yn‖. (3.5)

In view of (3.5) and λ ∈ (0,1), we obtain that dn(wn,yn) = 0 if and only if wn = yn.

(ii) If dn(wn,yn) 6= 0, by using (3.5) and the definition of βn, one sees that

1−λ

1+λ
≤ βn ≤ 1.

�

Proposition 3.1. Suppose that Assumptions 2.1 and 3.1 hold. Let {xn} be a sequence generated
by Algorithm 1. Then, for any z ∈M(X ,G), it holds that

‖xn+1− z‖2 ≤(1+ζn)‖xn− z‖2 +ζn(1+ζn)+ τ(τ−2βn)(1−λ )‖wn− yn‖2

−2τβnγn〈ε
′′
n ,yn− z〉.

(3.6)
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Proof. By using (3.3), we have that

‖xn+1− z‖2 =‖wn− τβndn(wn,yn)− z‖2

=‖wn− z‖2︸ ︷︷ ︸
Term 1

−2τβn 〈dn(wn,yn),wn− z〉︸ ︷︷ ︸
Term 2

+τ
2
β

2
n ‖dn(wn,yn)‖2. (3.7)

Now, we estimate the Term 1 in (3.7). From the definition of xn, we have that

Term 1 =‖xn +ηn(xn− xn−1)− z‖2

≤‖xn− z‖2 +‖ηn(xn− xn−1)‖2 +2ηn‖xn− xn−1‖‖xn− z‖

≤‖xn− z‖2 +ζ
2
n +2ζn‖xn− z‖

≤(1+ζn)‖xn− z‖2 +ζn(1+ζn).

(3.8)

Next, we estimate the Term 2 in (3.7). By combining (3.1) with (3.2), we obtain that

〈dn(wn,yn),wn− yn〉=〈wn− yn− γn(F̂(wn,ξn)− F̂(yn,ξn)),wn− yn〉

=‖wn− yn‖2− γn〈F̂(wn,ξn)− F̂(yn,ξn),wn− yn〉

≥(1−λ )‖wn− yn‖2.

(3.9)

By recalling the definition of yn and using Lemma 2.1 (i), we have that

〈wn− γn(F̂(wn,ξn))− yn,yn− z〉 ≥ 0. (3.10)

Since z ∈M(X ,G) and yn ∈ X , one gets that 〈G(yn),yn− z〉 ≥ 0. By using the fact that G(yn) =

F̂(yn,ξn)− ε
′′
n , one further derives that

〈F̂(yn,ξn),yn− z〉 ≥ 〈ε
′′
n ,yn− z〉. (3.11)

By using (3.10), (3.11), and the definition of dn(wn,yn), one sees that

〈dn(wn,yn),yn− z〉 ≥ γn〈ε
′′
n ,yn− z〉. (3.12)

By summing up both sides of (3.9) and (3.12), we obtain that

Term 2 =〈dn(wn,yn),wn− yn〉+ 〈dn(wn,yn),yn− z〉

≥(1−λ )‖wn− yn‖2 + γn〈ε
′′
n ,yn− z〉.

(3.13)

By using (3.7), (3.8), (3.13), and the definition of βn, we have that

‖xn+1− z‖2

≤‖wn− z‖2−2τβn

[
(1−λ )‖wn− yn‖2 + γn〈ε

′′
n ,yn− z〉

]
+ τ

2(1−λ )‖wn− yn‖2

≤(1+ζn)‖xn− z‖2 +ζn(1+ζn)+ τ(τ−2βn)(1−λ )‖wn− yn‖2−2τβnγn〈ε
′′
n ,yn− z〉.

We hence have the desired result. �

Proposition 3.2. Under Assumptions 2.1 and 3.1, let {xn} be an infinite sequence generated
by Algorithm 1. Let z ∈ M(X ,G) be arbitrarily chosen. Let c1,c2, and c3 be the same as in
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Lemma 2.5. We make use of the following definitions for the sake of clarity:

χ := τ

(
2(1−λ )

1+λ
− τ

)
(1−λ ),

p := max{2τµ(1+µL),c1L2 + c2L4,2τµ
2L2},

ϖ := 4χµ
2(L2)

2 +8p2,

q(z) := max{1,c3σ4(z),2τµ
2
σ2(z),c3σ4(z)},

ϕ(z) := 2χµ
2
σ2(z)2 +4q(z)2.

Then, for any n ∈ N,

E[‖xn+1− z‖2 |Fn]

≤
(

1+ζn +
ϖ√
Sn

)
‖xn− z‖2 +ζn(1+ζn)+

ϖζ 2
n +ϕ(z)√

Sn
− χ

2
E[γ2

nR(wn)
2 |Fn].

(3.14)

Proof. From the definition of yn and Lemma 2.1 (ii) and (iv), we deduce that

‖yn− z‖=
∥∥ΠX(wn− γn(F̂(wn,ξn)))−ΠX(z− γnG(z))

∥∥
≤
∥∥wn− γn(F̂(wn,ξn))− (z− γnG(z))

∥∥
≤‖wn− z‖+ γn ‖G(wn)−G(z)‖+ γn‖ε

′
n‖

≤(1+ γnL)‖wn− z‖+ γn‖ε
′
n‖.

(3.15)

By using (3.15), Lemma 3.2 (ii), and γn ∈ (0,µ), we concludes that

−2τβnγn〈ε
′′
n ,yn− z〉 ≤2τµ‖ε

′′
n‖‖yn− z‖

≤2τµ‖ε
′′
n‖
(
(1+µL)‖wn− z‖+µ‖ε

′
n‖
)
.

(3.16)

Taking E[· |Fn] in (3.16) and using Hölder’s inequality, we see that

E[−2τβnγn〈ε
′′
n ,yn− z〉]

≤2τµE[(1+µL)‖ε
′′
n‖‖wn− z‖+µ‖ε

′
n‖‖ε

′′
n‖ |Fn]

≤2τµ

[
(1+µL)‖wn− z‖E[‖ε

′′
n‖ |Fn]+µE[‖ε

′
n‖‖ε

′′
n‖ |Fn]

]
≤2τµ(1+µL)‖wn− z‖|‖ε

′′
n‖ |Fn|2 +2τµ

2|‖ε
′
n‖ |Fn|2|‖ε

′′
n‖ |Fn|2.

(3.17)

Since wn ∈Fn and ξn ⊥⊥Fn, we find from Lemma 2.4 that

|‖ε
′
n‖ |Fn|2 ≤

L2‖wn− z‖+σ2(z)√
Sn

. (3.18)

Since wn ∈Fn, ξn ⊥⊥Fn, γn ∈ (0,µ]⊂ (0,1), and yn = y(wn,γn,ξn), we see that Lemma 2.5
yields that ∣∣∣‖ε ′′n‖ |Fn

∣∣∣
2
≤ (c1L2 + c2L4)‖wn− z‖+ c3σ4(z)√

Sn
, (3.19)

where c1,c2, and c3 are given in Lemma 2.5. The definition of wn asserts that

‖wn− z‖ ≤ ‖xn− z‖+ζn. (3.20)
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Putting together (3.17), (3.18), (3.19), and (3.20), we obtain that

E[−2τβnγn〈ε
′′
n ,yn− z〉]

≤2τµ(1+µL)‖wn− z‖(c1L2 + c2L4)‖wn− z‖+ c3σ4(z)√
Sn

+2τµ
2 L2‖wn− z‖+σ2(z)√

Sn
× (c1L2 + c2L4)‖wn− z‖+ c3σ4(z)√

Sn

≤4p2‖wn− z‖2 +4q(z)2
√

Sn

≤8p2‖xn− z‖2 +4q(z)2 +8p2ζ 2
n√

Sn
,

(3.21)

where
p := max{2τµ(1+µL),c1L2 + c2L4,2τµ

2L2}
and

q(z) := max{1,c3σ4(z),2τµ
2
σ2(z),c3σ4(z)}.

By the definition of the natural residual function and the definition of yn, we have that

γ
2
nR(wn)

2 ≤Rγn(wn)
2 = ‖wn−ΠX(wn− γnG(wn))‖2

≤2‖wn− yn‖2 +2‖ΠX(wn− γnG(wn))−ΠX(wn− γn(G(wn)+ ε
′
n))‖2

≤2‖wn− yn‖2 +2γ
2
n‖ε

′
n‖2.

(3.22)

Noting that γn ∈ (0,µ], it follows from (3.22) that

−‖wn− yn‖2 ≤−1
2

γ
2
nR(wn)

2 +µ
2‖ε

′
n‖2. (3.23)

Recalling (3.8) and (3.18), one sees that

E[‖ε
′
n‖2 |Fn]≤

2(L2)
2‖wn− z‖2 +2σ2(z)2

Sn

≤4(L2)
2‖xn− z‖2 +4(L2)

2ζ 2
n +2σ2(z)2

Sn
.

(3.24)

Taking E[· |Fn] in (3.6) and using (3.21), (3.23), (3.24) and Lemma 3.2 (ii), one finds that

E[‖xn+1− z‖2 |Fn]

≤(1+ζn)‖xn− z‖2 +ζn(1+ζn)−χE[‖wn− yn‖2 |Fn]+E[−2τβnγn〈ε
′′
n ,yn− z〉 |Fn]

≤(1+ζn)‖xn− z‖2 +ζn(1+ζn)−
χ

2
E[γ2

nR(wn)
2 |Fn]

+2χµ
2 2(L2)

2‖xn− z‖2 +2(L2)
2ζ 2

n +σ2(z)2

Sn

+
8p2‖xn− z‖2 +4q(z)2 +8p2ζ 2

n√
Sn

=

(
1+ζn +

ϖ√
Sn

)
‖xn− z‖2 +ζn(1+ζn)+

ϖζ 2
n +ϕ(z)√

Sn
− χ

2
E[γ2

nR(wn)
2 |Fn],
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where χ := τ

(
2(1−λ )

1+λ
− τ

)
(1−λ ), ϖ := 4χµ2(L2)

2 +8p2, and ϕ(z) := 2χµ2σ2(z)2 +4q(z)2.
The proof is completed. �

Theorem 3.1. Let Assumptions 2.1 and 3.1 hold. Then, either Algorithm 1 stops at iteration
n+ 1, that is, wn is a solution in S(X ,G), or Algorithm 1 generates an infinite sequence {xn},
that is, every cluster point of {xn} a.s. belongs to S(X ,G).

Proof. If Algorithm 1 stops at iteration n+1, one sees that wn = ΠX(wn−µ(F̂(wn,ξn))). This
together with Lemma 2.1 (i) implies that, for all x ∈ X ,

〈F̂(wn,ξn),x−wn〉 ≥ 0. (3.25)

Noting E[ε ′n|Fn] = 0, F̂(wn,ξn) = ε
′
n +G(wn), and wn ∈Fn and taking E[·|Fn] in (3.25), one

obtains that a.s. 〈F(wn),x−wn〉 ≥ 0 for all x ∈ X . Hence, a.s. wn ∈ S(X ,F). Noting that
λ ∈ (0,1), τ ∈

(
0, 2(1−λ )

1+λ

)
, ∑

∞
n=1

1√
Sn

< ∞, and ∑
∞
n=1 ζn < ∞ and using Lemma 2.6 and (3.14),

one obtains that a.s. {‖xn− z‖2} converges and

∞

∑
n=1

E[γ2
nR(wn)

2 |Fn]< ∞. (3.26)

Accordingly, we further obtain that a.s. {‖xn−z‖2} is bounded. Hence, for every cluster point x̂
of {xn}, we can construct a subsequence {xnl}⊂ {xn} such that a.s. liml→∞ xnl = x̂. By recalling
the definition of wn and ζn, one asserts that

‖wn− xn‖= ηn‖xn− xn−1‖ ≤ ζn.

This together with ∑
∞
n=1 ζn <∞ yields that limn→∞ ‖wn−xn‖= 0. Noticing that a.s. liml→∞ xnl =

x̂, we derives that {wnl} ⊂ {wn} satisfies that a.s. liml→∞ wnl = x̂. Lemma 3.1 asserts that

E[γ2
n |Fn]≥

(
min{µ,λν}
|L (ξ )|2

)2

> 0. (3.27)

Noticing that wn ∈Fn and combining (3.26) with (3.27), we obtain that

lim
n→∞

E[R(wn)
2 |Fn] = 0. (3.28)

By replacing n with nl in (3.28), one sees that liml→∞E[R(wnl)
2] = 0, i.e.,

lim
l→∞

E[‖wnl −ΠX(wnl −G(wnl))‖
2] = 0.

Hence, the continuity of G(·) and ΠX(·) asserts that R(x̂)2 = ‖x̂−ΠX(x̂−G(x̂))‖2 = 0. From
this, we obtain that every cluster point x̂ of {xn} satisfies R(x̂)2 = 0. From Lemma 2.1 (iv), one
obtains that x̂ ∈ S(X ,G). The proof is completed. �

4. COMPLEXITY ANALYSIS AND RATES

In this section, we give explicit estimates on the convergence rate and the oracle complexity
of Algorithm 1.
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Theorem 4.1. Let Assumptions 2.1 and 3.1 hold. Let {xn} be a sequence generated by Algo-
rithm 1. Let c1,c2, and c3 be the same as in Lemma 2.5. Let χ, p,ϖ ,q(z), and ϕ(z) be the same
as in Proposition 3.2. Let σ4(·) be defined in (2.1). Give two constants u∈ (0,∞) and v∈ (0,∞)
such that 0 < v+ϖu < 1, and choose n0 ∈N such that ∑n≥n0

1√
Sn
≤ u and ∑n≥n0 ζn ≤ v. Given

z ∈M(X ,G), define, for all n ∈ N,

ρ :=
χ

2

(
min{µ,λν}
|L (ξ )|2

)2

,

B(z,u,v,n0) :=
E[‖xn0− z‖2]+ v(1+ v)+ [ϖv2 +ϕ(z)]u

1− v−ϖu
,

D(z,u,v,n0) := E[‖x0− z‖2]+ (v+ϖu)B(z,u,v,n0)+ v(1+ v)+ [ϖv2 +ϕ(z)]u,

U (z,u,v,n0) := (9+6L2)v2 +
3
ρ

D(z,u,v,n0).

Then supn≥0E[‖xn− z‖2]≤B(z,s, t,n0). Furthermore, for any ε > 0, there exists Nε ∈ N such

that Nε = 1 or E[R(xNε
)2]≤ ε ≤ U (z,n0,u,v)

Nε
.

Proof. Since wn ∈Fn, one concludes by using (3.27) obtained in Theorem 3.1 that

E[E[γ2
nR(wn)

2 |Fn]] = E[E[γ2
n |Fn]R(wn)

2]≥
(

min{µ,λν}
|L (ξ )|2

)2

E[R(wn)
2].

By recalling Proposition 3.2 and taking E[·] in (3.14), one obtains that

E[‖xn+1− z‖2]

≤
(

1+ζn +
ϖ√
Sn

)
E[‖xn− z‖2]+ζn(1+ζn)+

ϖζ 2
n +ϕ(z)√

Sn
−ρE[R(wn)

2].
(4.1)

where ρ := χ

2

(
min{µ,λν}
|L (ξ )|2

)2
. Define ψ(A ) := inf{n ≥ n0 + 1 : E[‖xn − z‖2] ≥ A } for any

A > E[‖xn0− z‖2]. Now we consider the following two cases
Case 1: Suppose that ψ(A ) = ∞. Then supn≥n0+1E[‖xn0− z‖2]≤A < ∞.
Case 2: Suppose that ψ(A )< ∞. In view of (4.1) and the definition of A , one sees that

A ≤E[‖xψ(A )− z‖2]

≤E[‖xn0− z‖2]+
ψ(A )−1

∑
n=n0

(
ζn +

ϖ√
Sn

)
A +

ψ(A )−1

∑
n=n0

[
ζn(1+ζn)+

ϖζ 2
n +ϕ(z)√

Sn

]
≤E[‖xn0− z‖2]+ (v+ϖu)A + v(1+ v)+ [ϖv2 +ϕ(z)]u.

Thus

A ≤E[‖xn0− z‖2]+ v(1+ v)+ [ϖv2 +ϕ(z)]u
1− v−ϖu

:= B(z,u,v,n0). (4.2)

It is noted that if A →∞, then (4.2) yields a contradiction. The argument above implies that any
threshold Θ, which {E[‖xn−z‖2]}n≥n0+1 eventually exceeds, is bounded above by B(z,u,v,n0),
that is, supn≥n0+1E[‖xn− z‖2]≤B(z,u,v,n0).
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On the other hand, since A > E[‖xn0 − z‖2] and v+U (z)(1+ v)u ∈ (0,1), we obtain that
sup1≤i≤n0

E[‖xn− z‖2]≤B(z,u,v,n0). Then

sup
n≥1

E[‖xn− z‖2]≤B(z,u,v,n0).

Next, we estimate the convergence rate for the sequence {R(xn)
2}. In view of (4.1), one

deduces that

ρ

k

∑
n=1

E[R(wn)
2]

≤E[‖x1− z‖2]+
k

∑
n=1

(
ζn +

ϖ√
Sn

)
E[‖xn− z‖2]+

k

∑
n=1

[
ζn(1+ζn)+

ϖζ 2
n +ϕ(z)√

Sn

]
≤E[‖x1− z‖2]+ (v+ϖu)B(z,u,v,n0)+ v(1+ v)+ [ϖv2 +ϕ(z)]u

:=D(z,u,v,n0).

Recalling the Lipschitz continuity of G(·) and Lemma 2.1 (ii), we have that

R(xn)
2 =‖xn−ΠX(xn−G(xn))‖2

≤3‖xn−wn‖2 +3R(wn)
2 +3‖ΠX(wn−G(wn))−ΠX(xn−G(xn))‖2

≤3‖xn−wn‖2 +3R(wn)
2 +3‖(wn− xn)− (G(wn)−G(xn))‖2

≤9‖xn−wn‖2 +3R(wn)
2 +6‖G(wn)−G(xn)‖2

≤(9+6L2)η2
n‖xn− xn−1‖2 +3R(wn)

2

≤(9+6L2)ζ 2
n +3R(wn)

2.

(4.3)

The fact of ∑
∞
n=1 ζn <∞ yields that limn→∞ ζn = 0. By combining (3.28) with (4.3), we conclude

that
0≤ lim

n→∞
E[R(xn)

2]≤(9+6L2) lim
n→∞

ζ
2
n +3 lim

n→∞
E[R(wn)

2] = 0. (4.4)

By summing (4.3) recursively with n running from 1 to k, one deduces that

k

∑
n=1

R(xn)
2 ≤ (9+6L2)

k

∑
n=1

ζ
2
n +3

k

∑
n=1

R(wn)
2 ≤ (9+6L2)v2 +3

k

∑
n=1

R(wn)
2,

which together with (4.3) yields

k

∑
n=1

E[R(xn)
2]≤ (9+6L2)v2 +

3
ρ

D(z,u,v,n0) := U (z,u,v,n0). (4.5)

Given ε > 0, one defines Nε := inf{n ∈ N : E[R(xn)
2] ≤ ε}. This together with (4.4) implies

that Nε is finite for any ε > 0. Suppose that Nε > 1. In this case, using the definition of Nε and
taking k := Nε in (4.5), one deduces that εNε ≤ ∑

Nε

n=0E[R(xn)
2] ≤ U (z,u,v,n0). Hence, one

concludes that

E[R(xNε
)2]≤ ε ≤ U (z,u,v,n0)

Nε

.

This completes the proof. �
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Theorem 4.2. Let Assumptions 2.1 and 3.1 hold. Let z ∈ M(X ,G) be chosen arbitrarily. Let
{xn} be a sequence generated by Algorithm 1. Let c1,c2, and c3 be the same as in Lemma 2.5.
Let χ, p,ϖ ,q(z), and ϕ(z) be the same as in Proposition 3.2. Let ρ be the same as in Theo-
rem 4.1. Let σ4(·) be defined in (2.1). Given a ∈ (1,∞) and N ∈N, let Sn := Nd(n+2)1+ae and
ςn := 1

(n+2)1+a for any n ∈ N. We make use of the following definitions for the sake of clarity:

n0 := d a

√
a(N +ϖ)

N
e, κ :=

a
N(n0 +1)a ,

B(z) :=
E[‖xn0− z‖2]+κN(1+κN)+ [ϖκ2N2 +ϕ(z)]u

1−κN−ϖκ
,

D(z) := E[‖x0− z‖2]+a
(

1+
ϖ

N

)
B(z)+a(1+a)+ [ϖa2 +ϕ(z)]

a
N
,

U (z) := (9+6L2)a2 +
3
ρ

D(z).

Given a tolerance level ε > 0, there exists Nε ∈ N (depending on ε) such that

Nε = 1 or E[R(xNε
)2]≤ ε ≤ U (z)

Nε

. (4.6)

After Nε iterations, a.s. the oracle complexity is bounded above by

Nε

∑
n=1

(1+E[kn])Sn ≤N (1+σ)
U (z)

ε

[(
U (z)

ε
+2
)1+a

+1

]
.

where kn is the number of oracle calls used in the line search scheme at iteration n.

Proof. By the definitions of {Sn} and {ζn}, we obtain that, for any n0 ∈ N,

∑
n≥n0

1
Sn
≤ a

N(n0 +1)a and ∑
n≥n0

ζn ≤
a

(n0 +1)a . (4.7)

It is enough to choose n0 = d a
√

a(N+ϖ)
N e such that 0 < v+ϖu < 1. Replacing 1 with n0 in (4.7),

one deduces that

∑
n≥1

1
Sn
≤ a

N
and ∑

n≥1
ζn ≤ a. (4.8)

Using (4.7) and (4.8), we obtain (4.6) immediately. Let kn be the number of line search in
iteration n. It follows from Lemma 3.1 that a.s. γn = µνkn ≥

(
λν

Ln

)
∧µ . From this, it yields that

a.s.

kn ≤ log 1
ν

Lnµ

(λν)∧ν
.

By using Jensen’s inequality and the concavity of x 7→ log 1
x
, we give that

E[kn]≤ E
[

log 1
ν

µLn

(λν)∧ν

]
≤ log 1

ν

µE[Ln]

(λν)∧ν
≤ log 1

ν

µL
(λν)∧ν

:= σ . (4.9)
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Indeed, (4.6) gives that Nε ≤ U (z)
ε

. Using the definition of Sn and (4.9), we see that the oracle
complexity is upper bounded by

Nε

∑
n=1

(1+E[kn])Sn ≤
Nε

∑
n=1

(1+E[kn])N
[
(n+2)1+a +1

]
≤N (1+σ)

U (z)
ε

[(
U (z)

ε
+2
)1+a

+1

]
.

The proof is completed. �

5. NUMERICAL EXAMPLES

In this section, we provide computational experiments and compare the convergence perfor-
mance between our proposed algorithm and some other existing algorithms in [16, 17, 34]. All
the programs are written in Python 3.9 on a PC Desktop Intel(R) Core(TM) i5-11300H @ 3.10
GHz(8 CPUs), 3.1 GHz, RAM 16 384 MB. In all the numerical implementations, the batch size
sequence is chosen as Sn = 2d(n+3)(ln(n+3)2e, for any n ∈ N.

Example 5.1. Consider the saddle-point problem of the form

max
x∈X1

min
y∈X2

g(x,y,ξ ) = xT Ay+a(ξ )T x+b(ξ )T y+
c
2
‖x‖2− c

2
‖y‖2,

where X1 ⊆ Rm,X2 ⊆ Rm, A is an m×m deterministic positive definite matrix, a(ξ ) ∈ Rm and
b(ξ ) ∈ Rm are random vectors with their i.i.d. entries generated uniformly from (−1,1), and
c > 0. The first order optimality condition can be written as SVI (1.1) with X = X1×X2 and
F : X×Ξ given by

F(z,ξ ) =
(

∇xg(z,ξ )
−∇yg(z,ξ )

)
=

(
Ay+a(ξ )+ cx

AT x+b(ξ )− cy

)
,∀z =

(
x
y

)
∈ X .

It is known that E[F(·,ξ )] is Lipschitz continuous with L =
√
‖A‖2 + c2. It is clear that (0,0) is

a weak solution to the corresponding SVI. It is noted that E[F(·,ξ )] is nonmonotone rather than
pseudomonotone. z belongs to the constraint set X = [−10,10]2m. We use our algorithm to solve
this problem. In all tests, the parameters ν and χ are generated randomly in (0,1). Meanwhile,
we set θ := 3, ςn := 1

(n+3)2 , and τ is chosen randomly in (0, 2(1−λ )
1+λ

). We use res(z) := ‖x−
ΠX(z− F̂(z,ξ ))‖ to measure the error of the convergence behavior of our algorithm. In all tests,
we choose the maximum iteration number of 200 or res(z)≤ 0.0005 as a common termination
criterion. Now we test two different dimensions.

Case 1: Set m = 1. For this case, we choose c = 2 and A is randomly generated from (2,4).
The i.i.d. entries of random vectors a(ξ ) and b(ξ ) are drawn randomly from the standard
Gaussian distribution. Two initial points of z are randomly generated on (0,10)2. Figure 1
demonstrates the convergence behavior of the proposed algorithm. To illustrate the computa-
tional performance, Figure 2 depicts the isometric view of g(x,y,ξ ) in a 3-D space. Obviously,
the convergence of (x,y)T to (0,0)T implies that the convergence point (0,0)T is the optimal
solution to this saddle-point problem over the set of [−10,10]2.
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FIGURE 1. Numerical Results for Example 5.1.
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FIGURE 2. The Behavior of (x,y,g) During the Iteration Process.

Case 2: Set m= 2. For this experiment, we choose c= 2 and all the entries of A are randomly
generated from (2,16). The i.i.d. entries of random vectors a(ξ ) and b(ξ ) are generated at
random from the standard Gaussian distribution. We randomly choose two starting points of z
in the range of (0,1)8. Figures 3 and 4 demonstrate the numerical behaviors of our algorithm
with two different choices of starting points.
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FIGURE 4. Numerical Results for Example 5.1.

Example 5.2. Consider the following stochastic linear complementarity problem

x ∈ Rm
+, E[F(x,ξ )]≥ 0, and xTE[F(x,ξ )] = 0.

Define a random operator F : R2
+×Ξ by

F(x,ξ ) =
[

ξ1 ξ2
ξ3 ξ4

]
x+
(

ξ5
ξ6

)
−
(

15
30

)
, (5.1)

where ξ1, · · · ,ξ6 is a random sample of 6 realizations of ξ . It is easy to verify that E[F(·,ξ )]
is nonmonotone and Lipschitz continuous with L = E[‖A(ξ )‖]. Suppose that ξ follows the
uniform distribution over the box {ξ ∈ R6 : (0,0,0,0,−6,−6) ≤ ξ ≤ (2,1,4,6,6,6)}. Note
that the problem above can be cast as SVI (1.1) with X =Rm

+ and F(·, ·) : R2×Ξ→R2 defined
as (5.1).

In this example, we compare the proposed algorithm with several previously known algo-
rithms, including the variance-based subgradient extragradient method proposed by Yang et
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al. in [17, Algorithm 1] (shortly, Method SEM), the SA based subgradient extragradient algo-
rithm with variance reduction suggested by Long and He in [16, Algorithm 1] (shortly, Method
ASEA), and the stochastic forward backward forward method presented by Boţ et al. in [34, Al-
gorithm 1] (shortly, Method FBF). The parameters of all algorithms are set as follows

• For Algorithm 1, the three parameters µ , ν , and λ are randomly generated in (0,1), τ

is chosen randomly in (0, 2(1−λ )
1+λ

), θ = 5, and ζn := 1
(n+3)2 for all n ∈ N.

• For Method SEM, α̂ and θ are randomly chosen in (0,1), and λ is randomly chosen in
(0,1/

√
3).

• For Method ASEA, µ,γ, and θ are randomly generated in (0,1).
• For Method FBF, αn is generated in (0, 1√

2L
), ∀n ∈ N.

We define the residual distance function res(xn) = ‖xn−ΠX(xn−F(xn))‖, which is equal to
zero if and only if xn is a solution to the SVI. Since we do not know the exact solution of the
problem, we use {res(xn)} to measure the n-th iteration error of all algorithms. The maximum
number of iterations of 150 is as the common stopping criterion in the following experiments.
For comparison on the convergence speed between all algorithms, we use the same random
starting points.

Now, we show the numerical results of all algorithms for two different types of the starting
points.

Case 1: x0 and x1, the fixed starting points, are taken randomly from (0,1)2 by using
numpy.random.rand(2) in Python.
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FIGURE 5. Numerical Results of All Algorithms.

TABLE 1. Comparison Results between Algorithm 1, Method SEM, Method
ASEA, and Method FBF.

Iter.

Res(xn) Method
Algorithm 1 Method SEM Method ASEA Method FBF

50 0.00057 0.01272 0.01017 0.01837
100 0.00015 0.00356 0.01123 0.00291
150 7.10160E-5 0.00086 0.00202 0.00074
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FIGURE 6. The Behavior of x = (x1,x2)
T During the Iteration Process.

To illustrate the convergence performance of all algorithms, we display the values of {res(xn)}
and {‖xn− xn−1‖} with the number of iterations in Figure 5. One can check that our algorithm
achieves a more stable and higher precision with the number of iterations, in contrast with
other methods. The test results summarized in Table 1 indicate that our algorithm enjoys a fast
convergence speed, which outperforms the convergence speed of other methods. Furthermore,
Figure 6 plots the convergence behavior of entries of {xn} for all algorithms. From this, one
sees that (0,0)T is the convergence point.

Case 2: x0 and x1, the fixed starting points, are taken randomly from (0,10)2 by using
numpy.random.uni f orm(0,10,2) in Python.
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FIGURE 7. Numerical Results of All Algorithms.

TABLE 2. Comparison Results between Algorithm 1, Method SEM, Method
ASEA, and Method FBF.

Iter.

‖xn− xn−1‖ Method
Algorithm 1 Method SEM Method ASEA Method FBF

50 0.00721 0.02604 0.00336 0.00617
100 6.29144E-5 0.00879 0.00562 0.01617
150 3.28920E-5 0.00786 0.00245 0.02166
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FIGURE 8. The Behavior of x = (x1,x2)
T During the Iteration Process.

Figure 7 demonstrates the comparison on the convergence speed between all algorithms. The
shaded area therein indicates the deviation. Meanwhile, we code the test results in Table 1. It
can be seen that our proposed algorithm has a better convergence behavior of {res(xn)} and
{‖xn− xn−1‖}. This illustrates that the speed of our algorithm with inertial effects is more
efficient than the methods without inertial effects. Besides, the convergence of res(xn) to 0
implies that {xn} converges to the solution of the SVI. Furthermore, from the results reported
in Figure 8, we observe that the convergent point is (0,0)T .

Remark 5.1. We have the following observations for Examples 5.1 and 5.2.
(i) Figures 5 and 7 demonstrate that Algorithm 1 converges faster than the methods pro-

posed in [16,17,34]. This illustrates the fact that the presence of the initial extrapolation
term plays a key role in the acceleration process.

(ii) The involved operator F is nonmonotone rather than pseudomonotone, which implies
that our algorithm have a broader scope of applications.

(iii) The numerical results are independent of the size of the dimensions and the choices of
starting points. It entails that our algorithm is efficient and robust.

(iv) Our algorithm is efficient in solving a large spectrum of problems including saddle-point
problems and linear complementarity problems.

6. CONCLUSION

In this paper, we devised an SA-based projection and contraction algorithm for approximating
to a solution of SVIs without assuming any monotonicity on the operator involved. The algo-
rithm embedded inertial terms leads to the fast convergence result. The step sizes are produced
by employing the SA version of Armijo’s line search rule. Primary numerical experiments were
presented to demonstrate the effectiveness and the computational performance of our algorithm
in contrast with some related methods in the literature. The proposed algorithm improved and
extended some earlier results from theoretical as well as practical point of view.
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[3] F. Yousefian, A. Nedić, U.V. Shanbhag, On smoothing, regularization, and averaging in stochastic approxi-
mation methods for stochastic variational inequality problems, Math. Program. 165 (2017), 391-431.

[4] B. Jadamba, A.A. Khan, F. Raciti, M. Sama, A variational inequality based stochastic approximation for
estimating the flexural rigidity in random fourth-order models, Commun. Nonlinear Sci. Numer. Simul. 111
(2022), 106406.

[5] D. Banholzer, J. Fliege, R. Werner, On rates of convergence for sample average approximations in the almost
sure sense and in mean, Math. Program. 191 (2022), 307-345.

[6] F. Sohrabi, M. Rohaninejad, M.R. Hesamzadeh, J. Bemš, Coordinated bidding of multi-product charging
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