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MULTIPLE SOLUTIONS FOR A CLASS OF KIRCHHOFF TYPE EQUATIONS
WITH ZERO MASS AND HARDY-LITTLEWOOD-SOBOLEV CRITICAL

NONLINEARITY

CHONGQING WEI, ANRAN LI∗

School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China

Abstract. In this paper, we study the multiplicity of solutions to the following Kirchhoff type equation
with zero mass and Hardy-Littlewood-Sobolev critical nonlinearity −m(

∫
RN
|∇u|2dx)∆u = λK(x) f (u)+

(∫
RN

|u(y)|2∗µ
|x− y|µ

dy

)
|u|2∗µ−2u, x ∈ RN ,

u ∈ D1,2(RN),

where N > 3, λ > 0, µ ∈ (0,min{N,4}), 2∗µ = 2N−µ

N−2 is the critical exponent in the sense of Hardy-
Littlewood-Sobolev inequality, and m satisfies some local monotonicity conditions near zero. The non-
linearity f is odd in u and satisfies some classical superlinear and quasi-critical growth conditions. For
any given k ∈ N, k pairs of nontrivial solutions are obtained for λ large enough by a version of the
symmetric mountain pass theorem and a version of the second concentration compactness principle.

Keywords. Hardy-Littlewood-Sobolev critical nonlinearity; Kirchhoff type equations; Variational method;
Zero mass.

1. INTRODUCTION AND MAIN RESULT

In this paper, we consider the following Kirchhoff type equation −m(
∫
RN
|∇u|2dx)∆u = λK(x) f (u)+

(∫
RN

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u, x ∈ RN ,

u ∈ D1,2(RN),

(1.1)

where N > 3, λ ∈ (0,+∞), and µ ∈ (0,min{N,4}) are given parameters, 2∗µ = 2N−µ

N−2 is the
critical exponent in the sense of Hardy-Littlewood-Sobolev inequality (see Lemma 2.1), and
m,K and f satisfy the following assumptions:
(m0) m ∈C([0,+∞), [0,+∞)) with m(0)> 0, and there exists σ > 0 such that m is increasing

(or decreasing) in [0,σ ];

(K0) there exists p∈ [2,2∗) such that K ∈ L∞(RN)∩L
2∗

2∗−p (RN), K(x)> 0, a.e. x∈RN , where
2∗ = 2N

N−2 is the critical exponent of Sobolev embedding;
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(K1) there exist a0,r > 0, and x0 ∈ RN such that K(x)≥ a0 for a.e. x ∈ Br(x0), where Br(x0)
is an open sphere in RN , which is centered at x0 and with a radius of r;

(f0) f ∈C(R,R) is odd;
(f1) there holds lims→0

f (s)
|s|2∗−2s

= lim|s|→∞

f (s)
|s|2∗−2s

= 0;

(f2) there exists ν ∈ (2,2∗) such that 0 < νF(s)6 s f (s), s 6= 0, where F(s) =
∫ s

0 f (t)dt.
Generally speaking, we call a nonlinear Schrödinger equation is with zero mass −∆u +

V (x)u = f (u), x ∈ RN , if V = 0 and f satisfies f ′(0) = 0 (see [1, Section 5]). Problem (1.1) is
a class of problem with zero mass, because under our assumptions the nonlinearity f can verify
the condition that f ′(0) = 0.

Our study is inspired by some works in recent years. On the one hand, various classes of
Kirchhoff type equations have been under the spotlight of research for the past two decades.
It was first proposed by Kirchhoff [2] with its origin in the theory of nonlinear vibration. In
the case m(t) = a+bt with a,b > 0, it is an extension of classical D’Alembert’s wave equation
for free vibrations of elastic strings. Since Lions in [3] proposed an abstract framework to this
problem, Kirchhoff type equations have been widely studied in extensive literatures. We refer
the readers to [4–23] and the references therein. Among them, the critical case were studied
in [12, 15, 18–23]. Particularly, by truncating the nonlocal term, the following Kirchhoff type
equation with critical growth was studied in [20]{

−m(
∫

Ω

|∇u|2dx)∆u = λ f (x,u)+µ|u|2
∗−2u, x ∈Ω,

u = 0, x ∈ ∂Ω,

where m is an increasing positive function in [0,+∞) and the nonlinearity f is odd in the second
variable and enjoys some superlinear growth conditions. By applying a version of the symmetric
mountain pass theorem and the second concentration compactness principle of Lions [24, 25],
multiple solutions depending on µ and λ were obtained in [20].

On the other hand, the following Choquard equation

−∆u+V (x)u = (Iα ∗ |u|p)|u|p−2u, x ∈ RN , (1.2)

has attracted much attentions due to its vast applications in physical models [26, 27]. The ex-
istence and uniqueness of positive solutions for (1.2) with N = 3, V (x) ≡ 1, α = 2, and p = 2
was firstly obtained by Lieb in [26]. Later, Lions [28] obtained the existence and multiplic-
ity results of normalized solutions on the same topic. Moroz and Schaftingen [29] studied the
existence, asymptotic behavior, and symmetry of solutions for Choquard equations. Gao and
Yang [30] studied the Brezis-Nirenberg type critical problems for nonlinear Choquard equations
in bounded domains. Later, in [31], some existence and multiplicity results for Choquard equa-
tions with Hardy-Littlewood-Sobolev critical exponents in bounded domains were established.
For related topics, we refer the readers to [32], a survey paper.

Recently, for the case m(t) = a+btθ−1 and θ ∈ [1,2∗µ), the following Kirchhoff type equation
in the bounded domain with Hardy-Littlewood-Sobolev critical nonlinearity was studied in [33] −

[
a+b

(∫
Ω

|∇u|2dx
)θ−1

]
∆u = λk(x)u+

(∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u, x ∈Ω,

u = 0, x ∈ ∂Ω,
(1.3)
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where Ω ⊂ RN is a bounded domain with Lipschitz boundary, 0 < µ < N, and a,b,λ are pos-

itive real parameters. The function k ∈ L
2∗

2∗−2 (Ω) is a nonnegative and continuous real valued
function. By using the genus theory, introduced by Krasnoselskii, a variant of the mountain
pass theorem for even functionals due to Rabinowitz [34], and a version of the second concen-
tration compactness principle [35], the multiplicity of solutions for problem (1.3) was obtained.
Motivated by [20] and [33], we studied the following Kirchhoff type equation in the bounded
domain with Hardy-Littlewood-Sobolev critical nonlinearity in [36] −m(

∫
Ω

|∇u|2dx)∆u = λ f (x,u)+

(∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u, x ∈Ω,

u = 0, x ∈ ∂Ω.

The assumptions on m and f in [36] were slightly weaker than those in [20]. The multiplicity
of solutions was studied in [36] via a version of the symmetric mountain pass theorem and the
truncation method.

More recently, multiplicity results for the following Choquard-Kirchhoff type equations on
RN with Hardy-Littlewood-Sobolev critical exponent were studied in [37]

−
(

a+b
∫
RN
|∇u|2dx

)
∆u = αk(x)|u|q−2u+β

(∫
RN

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u, x ∈ RN ,

where a > 0,b > 0, N > 3, α,β are positive real parameters, k ∈ Lr(RN) with r = 2∗
2∗−q if

q∈ (1,2∗) and r = ∞ if q> 2∗. The multiplicity of solutions to the equation above was obtained
by variational methods, depending on α,β , according to the different ranges of q.

As demonstrated in the literatures, various versions of concentration compactness principles
play an important role in averting the lack of compactness. Particularly, on the whole space
RN , the concentration compactness principle at infinity [38] provided some quantitative infor-
mation about the loss of mass of a sequence at infinity. Base on [24, 25, 38], the authors in [35]
established a version of the concentration compactness principle for Choquard type equations
(see [35, Lemma 2.5]). According to it, we can find that the functional associated to some
Choquard type equations with Hardy-Littlewood-Sobolev critical nonlinearity satisfies (PS)c
condition for c > 0 small enough (see Proposition 2.2 for more details).

In this paper, under assumption (m0), the equation (1.1) that we study can cover many kinds
of Kirchhoff type equations. However, since we assume that m(0) > 0, degenerate Kirchhoff
type problem (m(0) = 0) is not considered. Similar to [20, 36], the nonlinearity f just needs to
satisfy the classic Ambrosetti-Rabinowitz condition instead of some 4-superlinear conditions.

The main working space in this paper is D1,2(RN) = {u ∈ L2∗(RN) : |∇u| ∈ L2(RN)}, en-
dowed with the norm

‖u‖ :=
(∫

RN
|∇u|2dx

) 1
2

.

Lp(RN) is the usual p power Lebesgue integrable space, and we also denote by |u|p the norm
of a function u ∈ Lp(RN), for any 16 p6 ∞.

Since, under our assumption (m0), m only satisfies some local monotonicity conditions, we
first deal with problem (1.1) by truncating m, which has been successfully used to study Kirch-
hoff type equations in [4, 12, 20, 36]. Condition (m0) implies that there exists δ ∈ (0,σ) such
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that {
0 < m(0)< m(δ )< ν

2 m(0), if m is increasing;

0 < m(δ )< m(0)< ν

2 m(δ ), if m is decreasing,

where ν > 2 is from (f2). We set

mδ (t) =

{
m(t), if 06 t 6 δ ;

m(δ ), if t > δ .

It is easy to see that mδ ∈C([0,+∞),(0,+∞)). Then, we consider the truncated problem −mδ (‖u‖2)∆u = λK(x) f (u)+

(∫
RN

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u, x ∈ RN ,

u ∈ D1,2(RN).

(1.4)

As usual, the energy functional associated to problem (1.4) is given by

Jδ ,λ (u) =
1
2

Mδ (‖u‖2)−λ

∫
RN

K(x)F(u)dx− 1
2 ·2∗µ

∫
RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dydx,

where Mδ (s) :=
∫ s

0 mδ (t)dt. By (f0)–(f2), one finds that Jδ ,λ belongs to C1(D1,2(RN),R). Its
Fréchet derivative at u is given by

J′
δ ,λ (u)φ =mδ (‖u‖2)

∫
RN

∇u∇φdx−λ

∫
RN

K(x) f (u)φ(x)dx

−
∫
RN

∫
RN

|u(y)|2
∗
µ

|x− y|µ
|u(x)|2

∗
µ−2u(x)φ(x)dydx,

for every φ ∈D1,2(RN). A weak solution to problem (1.4) is the critical point of Jδ ,λ . Moreover,
by the definition of mδ , if u ∈D1,2(RN) is a weak solution to problem (1.4) and ‖u‖6 δ

1
2 , then

mδ (‖u‖2) =m(‖u‖2), which implies that u is also a weak solution to (1.1), the original problem.
Hence, in order to obtain the weak solution of problem (1.1), we look for the critical point of
Jδ ,λ with the small norm. We show that this is true if the parameter λ is large enough.

Theorem 1.1. Suppose that (m0), (K0),(K1), and (f0)–(f2) hold. Then, for any given k ∈ N,
there exists λ ∗k > 0 such that problem (1.1) has at least k pairs of nontrivial weak solutions for
every λ > λ ∗k .

The rest of the paper is organized as follows. We give some preliminaries in Section 2. The
proof of Theorem 1.1 is given in Section 3.

2. PRELIMINARY

In this section, we provide some necessary preliminary results.

Lemma 2.1. (Hardy-Littlewood-Sobolev inequality, [39]) Let p,q > 1 and µ ∈ (0,N) be such
that 1

p +
1
q +

µ

N = 2. Then, for f ∈ Lp(RN) and g ∈ Lq(RN), we have∣∣∣∣∫RN

∫
RN

f (x)g(y)
|x− y|µ

dxdy
∣∣∣∣6C(N,µ, p)| f |p · |g|q.
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Definition 2.1. If E is a real Banach space and J ∈C1(E,R), we say that J satisfies the Palais-
Smale condition at level c ∈ R ((PS)c condition for short) if every sequence {un}∞

n=1 ⊂ E such
that J(un)→ c and J′(un)→ 0 possesses a convergent subsequence. J satisfies the Palais-Smale
condition ((PS) condition for short) if J satisfies (PS)c condition for every c ∈ R.

The following version of the symmetric mountain pass theorem (see [40, 41]) is needed to
prove our main result.

Lemma 2.2. [41] Let E = V ⊕W be a real Banach space with dimV < ∞. Suppose that
J ∈C1(E,R) is an even functional with J(0) = 0 and

(J1) there exist ρ,α > 0 such that infu∈∂Bρ (0)∩W I(u)> α;
(J2) there exists a subspace V̂ ⊂ E such that dimV < dimV̂ < ∞ and maxu∈V̂ I(u) 6M for

some M > 0;
(J3) J satisfies (PS)c condition for any c ∈ (0,M) with M as in (J2).

Then J possesses at least dimV̂ −dimV pairs of nontrivial critical points.

Proposition 2.1. Suppose that f satisfies (f0)–(f2). Then every (PS)c sequence {un}∞
n=1 of Jδ ,λ

at positive level c is bounded in D1,2(RN).

Proof. Condition (m0) and the definition of mδ imply that{
0 < m(0)6 mδ (s)6 m(δ )< ν

2 m(0), if m is increasing;

0 < m(δ )6 mδ (s)6 m(0)< ν

2 m(δ ), if m is decreasing,

for s ∈ [0,+∞). Hence, for every (PS)c sequence {un}∞
n=1 of Jδ ,λ , it follows from Definition

2.1, (f2), and ν < 2∗ < 2 ·2∗µ that there exists C > 0 such that for n large enough

C+‖un‖>Jδ ,λ (un)−
1
ν

J′
δ ,λ (un)un

>

(
min{m(0),m(δ )}

2
− max{m(0),m(δ )}

ν

)
‖un‖2

=

{
(m(0)

2 −
m(δ )

ν
)‖un‖2, if m is increasing;

(m(δ )
2 −

m(0)
ν

)‖un‖2, if m is decreasing.

Therefore, {un}∞
n=1 is bounded in D1,2(RN). �

Set

S = inf
{∫

RN
|∇u|2dx : u ∈ D1,2(RN) and

∫
RN
|u(x)|2

∗
dx = 1

}
,

SH,L = inf

{∫
RN
|∇u|2dx : u ∈ D1,2(RN) and

∫
RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dydx = 1

}
.

The following result (the complete proof was given in [35]) due to Lions [24,25,38] plays an
important role in the proof that Jδ ,λ satisfies (PS)c condition with c > 0 small enough.

Lemma 2.3. [35, Lemma 2.5] Suppose that {un}∞
n=1 ⊂ D1,2(RN) is such that un ⇀ u weakly

in D1,2(RN) and |∇un|2 ⇀ ω , |un|2
∗
⇀ ζ , and (

∫
RN
|un(y)|2

∗
µ

|x−y|µ dy)|un|2
∗
µ ⇀ υ weakly in the sense of

measures, where ω , ζ , and υ are nonnegative and bounded measures on RN . Then there exist
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an at most countable index set I, which can be empty and a set of distinct points {xi}i∈I ⊂ RN

and three families of positive numbers {ωi}i∈I , {ζi}i∈I , and {υi}i∈I such that

ω > |∇u|2 +∑
i∈I

ωiδxi, ζ = |un|2
∗
+∑

i∈I
ζiδxi,υ =

(∫
RN

|un(y)|2
∗
µ

|x− y|µ
dy

)
|un|2

∗
µ +∑

i∈I
υiδxi,

with Sυ

2
2∗
i 6 ωi,SH,Lυ

1
2∗µ
i 6 ωi, and υi 6C(N,µ)ζ

2N−µ

N
i for i ∈ I. In particular, ∑i∈I υ

1
2∗µ
i < ∞,

where δx is the Dirac-mass of mass 1 concentrated at x ∈ RN . Define

ω∞ = lim
R→∞

limsup
n→∞

∫
Bc

R(0)
|∇un|2dx, ζ∞ = lim

R→∞
limsup

n→∞

∫
Bc

R(0)
|un|2

∗
dx,

υ∞ = lim
R→∞

limsup
n→∞

∫
Bc

R(0)

(∫
RN

|un(y)|2
∗
µ

|x− y|µ
dy

)
|un(x)|2

∗
µ dx.

Then

limsup
n→∞

∫
RN
|∇un|2dx = ω∞ +

∫
RN

dω, limsup
n→∞

∫
RN
|un|2

∗
dx = ζ∞ +

∫
RN

dζ ,

limsup
n→∞

∫
RN

∫
RN

|un(y)|2
∗
µ |un(x)|2

∗
µ

|x− y|µ
dydx = υ∞ +

∫
RN

dυ .

Furthermore,

Sζ

2
2∗

∞ 6 ω∞, C(N,µ)
2N

µ−2N υ

2N
2N−µ

∞ 6 ζ∞

(∫
RN

dζ +ζ∞

)
, S2

H,Lυ

2
2∗µ
∞ 6 ω∞

(∫
RN

dω +ω∞

)
.

Proposition 2.2. Under the assumptions of Theorem 1.1, functional Jδ ,λ satisfies (PS)c condi-
tion for any c > 0 small enough.

Proof. Let {un}∞
n=1 ⊂ D1,2(RN) be such that

J′
δ ,λ (un)→ 0 and Jδ ,λ (un)→ c < c∗ :=

(
1
ν
− 1

2 ·2∗µ

)
(min{m(0),m(δ )}SH,L)

2N−µ

N−µ+2 .

Proposition 2.1 indicates that {un}∞
n=1 is bounded in D1,2(RN). First of all, we can prove that

the set I given by Lemma 2.3 is empty. Indeed, suppose by contradiction that there exists some
i0 ∈ I with υi0 > 0. For any ε > 0, define φε ∈C∞

0 (RN , [0,1]) in the following way

φε(x) = 1, x ∈ B(xi0,ε),

φε(x) = 0, x ∈ RN \B(xi0 ,2ε),

|∇φε(x)|6
2
ε
, x ∈ RN .

It is easy to see that {unφε}∞
n=1 is also bounded in D1,2(RN). Thus

lim
n→∞

J′
δ ,λ (un)(unφε) = 0.
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That is,

on(1) =mδ (‖un‖2)
∫
RN

∇un∇(unφε)dx−λ

∫
RN

K(x) f (un)unφεdx

−
∫
RN

∫
RN

|un(y)|2
∗
µ |un(x)|2

∗
µ φε(x)

|x− y|µ
dydx

=mδ (‖un‖2)

(∫
RN
|∇un|2φεdx+

∫
RN

un∇un∇φεdx
)

−λ

∫
RN

K(x) f (un)unφεdx−
∫
RN

∫
RN

|un(y)|2
∗
µ |un(x)|2

∗
µ φε(x)

|x− y|µ
dydx.

(2.1)

By Hölder inequality, one has∣∣∣∣∫RN
un∇un∇φεdx

∣∣∣∣=
∣∣∣∣∣
∫

B(xi0 ,2ε)
un∇un∇φεdx

∣∣∣∣∣
6

(∫
B(xi0 ,2ε)

|∇un|2dx

) 1
2
(∫

B(xi0 ,2ε)
|un∇φε |2dx

) 1
2

6C

(∫
B(xi0 ,2ε)

|un∇φε |2dx

) 1
2

.

Since

lim
n→∞

∫
B(xi0 ,2ε)

|un∇φε |2dx =
∫

B(xi0 ,2ε)
|u∇φε |2dx

and (∫
B(xi0 ,2ε)

|u∇φε |2dx

) 1
2

6

(∫
B(xi0 ,2ε)

|u|2
∗
dx

) 1
2∗
(∫

B(xi0 ,2ε)
|∇φε |Ndx

) 1
N

6C

(∫
B(xi0 ,2ε)

|u|2
∗
dx

) 1
2∗

, where C > 0 is independent of ε,

together with the facts that {un}∞
n=1 is bounded in D1,2(RN) and mδ is continuous, we have

lim
ε→0

limsup
n→∞

mδ (‖un‖2)

∣∣∣∣∫RN
un∇un∇φεdx

∣∣∣∣= 0. (2.2)

By the definitions of φε and mδ , we have

liminf
n→∞

mδ (‖un‖2)
∫
RN
|∇un|2φεdx> lim

n→∞
min{m(0),m(δ )}

∫
B(xi0 ,2ε)

|∇un|2φεdx

=min{m(0),m(δ )}

(∫
B(xi0 ,2ε)

|∇u|2φεdx+

〈
∑
i∈I

ηiδxi,φε

〉)

>min{m(0),m(δ )}

(∫
B(xi0 ,2ε)

|∇u|2φεdx+ωi0

)
.
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According to the absolute continuity of Lebesgue integral, we see that
∫

B(xi0 ,2ε) |∇u|2φεdx→ 0
as ε → 0. Then

liminf
ε→0

liminf
n→∞

mδ (‖un‖2)
∫
RN
|∇un|2φεdx>min{m(0),m(δ )}ωi0 . (2.3)

By (f1), for every ε > 0, there exists Cε > 0 such that | f (s)s| 6 ε|s|2∗ +Cε |s|p, s ∈ R, where
p ∈ [2,2∗) is from (K0). Then∣∣∣∣∫RN

K(x) f (un)unφεdx
∣∣∣∣6 ∫B(xi0 ,2ε)

|K(x) f (un)unφε |dx

6 |K|∞
∫

B(xi0 ,2ε)
(ε|un|2

∗
+Cε |un|p)dx

6C|K|∞ε +Cε |K|∞
∫

B(xi0 ,2ε)
|un|pdx.

Since the local compact embedding theorem implies that

lim
n→∞

∫
B(xi0 ,2ε)

|un|pdx =
∫

B(xi0 ,2ε)
|u|pdx,

then

limsup
n→∞

∣∣∣∣∫RN
K(x) f (un)unφεdx

∣∣∣∣6C|K|∞ε +Cε |K|∞
∫

B(xi0 ,2ε)
|u|pdx.

Therefore, the arbitrariness of ε and the absolute continuity of Lebesgue integral lead to

lim
ε→0

limsup
n→∞

∣∣∣∣∫RN
K(x) f (un)unφεdx

∣∣∣∣= 0. (2.4)

Finally, due to the facts that (
∫
RN
|un(y)|2

∗
µ

|x−y|µ dy)|un|2
∗
µ ⇀ υ weakly in the sense of measures and

∑
i∈I

υ

1
2∗µ
i < ∞, we have

lim
ε→0

lim
n→∞

∫
RN

∫
RN

|un(y)|2
∗
µ |un(x)|2

∗
µ φε(x)

|x− y|µ
dydx

= lim
ε→0

(∫
B(xi0 ,2ε)

|u|2
∗
φεdx+

〈
∑
i∈I

υiδxi,φε

〉)
=υi0.

(2.5)

It follows from (2.1) that∫
RN

∫
RN

|un(y)|2
∗
µ |un(x)|2

∗
µ φε(x)

|x− y|µ
dydx

=mδ (‖un‖2)

(∫
RN
|∇un|2φεdx

)
−λ

∫
RN

K(x) f (un)unφεdx+on(1)

>min{m(0),m(δ )}
∫
RN
|∇un|2φεdx−mδ (‖un‖2)

∣∣∣∣∫RN
un∇un∇φεdx

∣∣∣∣
−λ

∣∣∣∣∫RN
K(x) f (un)unφεdx

∣∣∣∣+on(1).
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Then

liminf
n→∞

∫
RN

∫
RN

|un(y)|2
∗
µ |un(x)|2

∗
µ φε(x)

|x− y|µ
dydx

> liminf
n→∞

[
min{m(0),m(δ )}

∫
RN
|∇un|2φεdx−mδ (‖un‖2)

∣∣∣∣∫RN
un∇un∇φεdx

∣∣∣∣
−λ

∣∣∣∣∫RN
K(x) f (un)unφεdx

∣∣∣∣]
> liminf

n→∞
min{m(0),m(δ )}

∫
RN
|∇un|2φεdx− limsup

n→∞

mδ (‖un‖2)

∣∣∣∣∫RN
un∇un∇φεdx

∣∣∣∣
− limsup

n→∞

λ

∣∣∣∣∫RN
K(x) f (un)unφεdx

∣∣∣∣ .
By taking limits as ε → 0 on both sides of the last inequality, it follows from (2.2)–(2.5) that

υi0 >min{m(0),m(δ )}ωi0.

Because of SH,Lυ

1
2∗µ
i 6 ωi for i ∈ I, one has

υi0 > (min{m(0),m(δ )}SH,L)
2N−µ

N−µ+2 . (2.6)

It follows from Jδ ,λ (un)→ c and J′
δ ,λ (un)→ 0 that

c = lim
n→∞

(
Jδ ,λ (un)−

1
ν
〈J′

δ ,λ (un),un〉
)

> liminf
n→∞

(
1
ν
− 1

2 ·2∗µ

)∫
RN

∫
RN

|un(y)|2
∗
µ |un(x)|2

∗
µ φε(x)

|x− y|µ
dydx.

Then by taking limits as ε → 0 on both sides of the inequality above, (2.6) leads to

c>

(
1
ν
− 1

2 ·2∗µ

)
(min{m(0),m(δ )}SH,L)

2N−µ

N−µ+2 .

This is a contradiction with the fact that c < c∗. Thus I is empty.
Next, in order to obtain that

lim
n→∞

∫
RN

∫
RN

|un(y)|2
∗
µ |un(x)|2

∗
µ

|x− y|µ
dydx =

∫
RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dydx,

it suffices to show that υ∞ = 0. On the contrary, we assume that υ∞ > 0. Let ψR ∈C∞(RN , [0,1])
be a cut-off function such that

ψR(x) = 0, |x|< R; ψR(x) = 1, |x|> 2R, and |∇ψR|6
2
R
.

It is also easy to see that {unψR}∞
n=1 is bounded in D1,2(RN). Then

on(1) =mδ (‖un‖2)

(∫
RN
|∇un|2ψRdx+

∫
RN

un∇un∇ψRdx
)

−λ

∫
RN

K(x) f (un)unψRdx−
∫
RN

∫
RN

|un(y)|2
∗
µ |un(x)|2

∗
µ ψR(x)

|x− y|µ
dydx.

(2.7)
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By Hölder inequality, we have∣∣∣∣∫RN
un∇un∇ψRdx

∣∣∣∣= ∣∣∣∣∫{x: R6|x|62R}
un∇un∇ψRdx

∣∣∣∣
6

(∫
{x: R6|x|62R}

|∇un|2dx
) 1

2
(∫
{x: R6|x|62R}

|un∇ψR|2dx
) 1

2

6C
(∫
{x: R6|x|62R}

|un∇ψR|2dx
) 1

2

.

Since
lim
n→∞

∫
{x: R6|x|62R}

|un∇ψR|2dx =
∫
{x: R6|x|62R}

|u∇ψR|2dx,

(∫
{x: R6|x|62R}

|u∇ψR|2dx
) 1

2

6

(∫
{x: R6|x|62R}

|u|2
∗
dx
) 1

2∗
(∫
{x: R6|x|62R}

|∇ψR|Ndx
) 1

N

6C
(∫
{x: R6|x|62R}

|u|2
∗
dx
) 1

2∗

→ 0,

as R→ ∞, and the sequence {mδ (‖un‖2)}∞
n=1 is bounded in R, we arrive at

lim
R→∞

limsup
n→∞

mδ (‖un‖2)

∣∣∣∣∫RN
un∇un∇ψRdx

∣∣∣∣= 0. (2.8)

By the definition of ψR, we see that∫
RN
|∇un|2ψRdx>

∫
Bc

2R(0)
|∇un|2dx,

where Bc
2R(0) = {x ∈ RN : |x|> 2R}. Thus, the definition of mδ leads to

limsup
n→∞

mδ (‖un‖2)
∫
RN
|∇un|2ψRdx> limsup

n→∞

min{m(0),m(δ )}
∫

Bc
2R(0)
|∇un|2dx.

Therefore, the definition of ω∞ implies that

limsup
R→∞

limsup
n→∞

mδ (‖un‖2)
∫
RN
|∇un|2ψRdx>min{m(0),m(δ )}ω∞. (2.9)

In view of (f1), for any fixed ε > 0, we see that there exists Cε > 0 such that

| f (s)s|6 ε|s|2
∗
+Cε |s|p, s ∈ R,

where p ∈ [2,2∗) is from (K0). It follows that∣∣∣∣∫RN
K(x) f (un)unψRdx

∣∣∣∣6 ∫Bc
R(0)
|K(x) f (un)unψR|dx

6 |K|∞ε

∫
Bc

R(0)
|un|2

∗
dx+Cε

∫
Bc

R(0)
K(x)|un|pdx.

On account of K ∈ L
2∗

2∗−p (RN) and |un|p ⇀ |u|p in L
2∗
p (Bc

R(0)), we conclude that

lim
n→∞

∫
Bc

R(0)
K(x)|un|pdx =

∫
Bc

R(0)
K(x)|u|pdx.
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Then

limsup
n→∞

∣∣∣∣∫RN
K(x) f (un)unψRdx

∣∣∣∣6C|K|∞ε +Cε

∫
Bc

R(0)
K(x)|u|pdx.

Since limR→∞

∫
Bc

R(0)
K(x)|u|pdx = 0, for the above ε > 0, we have that there exists Rε > 0 such

that

Cε

∫
Bc

R(0)
K(x)|u|pdx < ε, R > Rε .

Thus, the arbitrariness of ε implies that

lim
R→∞

limsup
n→∞

∣∣∣∣∫RN
K(x) f (un)unψRdx

∣∣∣∣= 0. (2.10)

Then, by the definitions of ψR and υ∞, we have

lim
R→∞

limsup
n→∞

∫
RN

∫
RN

|un(y)|2
∗
µ |un(x)|2

∗
µ ψR(x)

|x− y|µ
dydx

= lim
R→∞

limsup
n→∞

∫
Bc

R(0)

(∫
RN

|un(y)|2
∗
µ

|x− y|µ
dy

)
|un(x)|2

∗
µ dx

=υ∞.

(2.11)

It follows from (2.7) that

limsup
n→∞

∫
RN

∫
RN

|un(y)|2
∗
µ |un(x)|2

∗
µ ψR(x)

|x− y|µ
dydx

> limsup
n→∞

[
min{m(0),m(δ )}

∫
RN
|∇un|2ψRdx−mδ (‖un‖2)

∣∣∣∣∫RN
un∇un∇ψRdx

∣∣∣∣
−λ

∣∣∣∣∫RN
K(x) f (un)unψRdx

∣∣∣∣]
> limsup

n→∞

min{m(0),m(δ )}
∫
RN
|∇un|2ψRdx

− limsup
n→∞

mδ (‖un‖2)

∣∣∣∣∫RN
un∇un∇ψRdx

∣∣∣∣− limsup
n→∞

λ

∣∣∣∣∫RN
K(x) f (un)unψRdx

∣∣∣∣ .
By taking limits as R→+∞ on both sides of the above inequality, (2.8)-(2.11) lead to

υ∞ >min{m(0),m(δ )}ω∞. (2.12)

For each

c ∈

 (0, νm(0)−2m(δ )
2ν

S
2), if m is increasing;

(0, νm(δ )−2m(0)
2ν

S
2), if m is decreasing,
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similarly to the proof of Proposition 2.1, we can obtain that |un|2∗ 6 1 for n large enough. Then
Hardy-Littlewood-Sobolev inequality (Lemma 2.1) and Lemma 2.3 lead to

υ∞ = lim
R→∞

limsup
n→∞

∫
Bc

R(0)

(∫
RN

|un(y)|2
∗
µ

|x− y|µ
dy

)
|un(x)|2

∗
µ dx

6 lim
R→∞

limsup
n→∞

[
C(N,µ)|un|

2∗µ
2∗

(∫
Bc

R(0)
|un(x)|2

∗
dx
) 2N−µ

2N
]

6C(N,µ)ζ
2∗µ
2∗

∞ .

(2.13)

Since Sζ

2
2∗

∞ 6 ω∞ and µ < 4, (2.12) and (2.13) imply that

ω∞ >

min{m(0),m(δ )}S
2∗µ
2

C(N,µ)

 2
2∗µ−2

.

Then, by choosing

c ∈


(0,min{νm(0)−2m(δ )

2ν

S
2 ,

νm(0)−2m(δ )
2ν

(m(0)S
2∗µ
2

C(N,µ) )
2

2∗µ−2}), if m is increasing;

(0,min{νm(δ )−2m(0)
2ν

S
2 ,

νm(δ )−2m(0)
2ν

(m(δ )S
2∗µ
2

C(N,µ) )
2

2∗µ−2}), if m is decreasing,

we find a contradiction respectively. In fact, for the case that m is increasing, since

c = lim
n→∞

(
Jδ ,λ (un)−

1
ν
〈J′

δ ,λ (un),un〉
)
> limsup

n→∞

(
m(0)

2
− m(δ )

ν

)∫
RN
|∇un|2dx

>

(
m(0)

2
− m(δ )

ν

)
limsup

n→∞

∫
RN
|∇un|2ψRdx,

by taking limits as R→ ∞ on both sides of the above inequality, we see that

c>
(

m(0)
2
− m(δ )

ν

)
ω∞ >

νm(0)−2m(δ )

2ν

m(0)S
2∗µ
2

C(N,µ)

 2
2∗µ−2

.

Similarly, for the case that m is decreasing, we have

c = lim
n→∞

(
Jδ ,λ (un)−

1
ν
〈J′

δ ,λ (un),un〉
)

>

(
m(δ )

2
− m(0)

ν

)
lim

R→∞
limsup

n→∞

∫
RN
|∇un|2ψRdx

=

(
m(δ )

2
− m(0)

ν

)
ω∞

>
νm(δ )−2m(0)

2ν

m(δ )S
2∗µ
2

C(N,µ)

 2
2∗µ−2

.
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Therefore, it results that υ∞ = 0, for every

c ∈


(0,min{νm(0)−2m(δ )

2ν

S
2 ,

νm(0)−2m(δ )
2ν

(m(0)S
2∗µ
2

C(N,µ) )
2

2∗µ−2}), if m is increasing;

(0,min{νm(δ )−2m(0)
2ν

S
2 ,

νm(δ )−2m(0)
2ν

(m(δ )S
2∗µ
2

C(N,µ) )
2

2∗µ−2}), if m is decreasing.

Furthermore, from the above analyses, for every

c ∈


(0,min{c∗, νm(0)−2m(δ )

2ν

S
2 ,

νm(0)−2m(δ )
2ν

(m(0)S
2∗µ
2

C(N,µ) )
2

2∗µ−2}), if m is increasing;

(0,min{c∗, νm(δ )−2m(0)
2ν

S
2 ,

νm(δ )−2m(0)
2ν

(m(δ )S
2∗µ
2

C(N,µ) )
2

2∗µ−2}), if m is decreasing,

we have

lim
n→∞

∫
RN

∫
RN

|un(y)|2
∗
µ |un(x)|2

∗
µ

|x− y|µ
dydx =

∫
RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dydx. (2.14)

Finally, we see that un→ u in D1,2(RN). On the one hand, (f1), (K0), and the definition of

the weak convergence in L
2∗
p (RN) also imply that∫

RN
K(x) f (un)undx→

∫
RN

K(x) f (u)udx, n→ ∞.

Together with J′
δ ,λ (un)un = on(1) and (2.14), we have

lim
n→∞

(mδ (‖un‖2)‖un‖2) = λ

∫
RN

K(x) f (u)udx+
∫
RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dydx. (2.15)

On the other hand, by J′
δ ,λ (un)u = on(1) and the definition of the weak convergence, we can

obtain

lim
n→∞

mδ (‖un‖2)‖u‖2 = λ

∫
RN

K(x) f (u)udx+
∫
RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dydx. (2.16)

(2.15) and (2.16) imply that

lim
n→∞

mδ (‖un‖2) lim
n→∞
‖un‖2 = lim

n→∞
(mδ (‖un‖2)‖un‖2) = lim

n→∞
mδ (‖un‖2)‖u‖2.

Since mδ (t) > min{m(0),m(δ )} > 0 for t ∈ [0,+∞), then limn→∞ ‖un‖2 = ‖u‖2. Therefore, it
follows from D1,2(RN) is a Hilbert space that un→ u in D1,2(RN). �

3. PROOF OF THEOREM 1.1

In this section, we prove our main result. The main tool is Lemma 2.2 with V = {0} and W =
D1,2(RN). First of all, similar to [20], we verify that the functional Jδ ,λ satisfies conditions (J1)
and (J2).

Proposition 3.1. Under the assumptions of Theorem 1.1,

(1) for each λ > 0, there exist ρλ ,αλ > 0 such that infu∈∂Bρ
λ
(0)

Jδ ,λ (u)> αλ ;
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(2) for any given k ∈ N and M > 0, there exists λk,M > 0 with the following property: for
any λ > λk,M one can find a subspace V λ

k ⊂ D1,2(RN) with dimV λ
k = k such that

max
u∈V λ

k

Jδ ,λ (u)< M.

Proof. (1) By (f0) and (f1), there exists C > 0 such that F(s) 6C|s|2∗, s ∈ R. Hence, for u ∈
D1,2(RN),

Jδ ,λ (u)>
min{m(0),m(δ )}

2
‖u‖2−C|K|∞λ |u|2

∗
2∗−

1
2 ·2∗µ

∫
RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dydx

>
min{m(0),m(δ )}

2
‖u‖2−C1λ‖u‖2∗−C2‖u‖2·2∗µ ,

where Ci, i = 1,2 are positive constants independent of λ . Since 2 < 2∗ < 2 ·2∗µ , the first result
can be easily obtained if we choose ρλ > 0 small enough.

(2) Let ϕ ∈ C∞
0 (B1(0),R). We choose {x1, · · · ,xk} ⊂ Br(x0) and τ > 0 such that Bτ(xi) ⊂

Br(x0) with Bτ(xi)∩Bτ(x j) = /0 if i, j ∈ {1, · · · ,k} and i 6= j. For each i ∈ {1, · · · ,k}, we set
ϕτ

i (x) := ϕ(x−xi
τ

), x ∈ Bτ(xi). Then

Aτ :=
‖ϕτ

i ‖2

|ϕτ
i |2ν

= τ
N−2− 2N

ν
‖ϕ‖2

|ϕ|2ν
. (3.1)

Since Rk is finite dimensional, there exists d1 = d1(k,ν)> 0 such that

k

∑
i=1
|yi|ν > d1

(
k

∑
i=1
|yi|2

) ν

2

, (y1,y2, · · · ,yk) ∈ Rk. (3.2)

Hence, set Vk,τ := span{ϕτ
1 , · · · ,ϕτ

k }. By (3.1) and (3.2), there holds∫
RN
|u|νdx =

∫
∪k

i=1Bτ (xi)

∣∣∣∣∣ k

∑
i=1

αiϕ
τ
i

∣∣∣∣∣
ν

dx =
k

∑
i=1
|αiϕ

τ
i |νν

> d1

(
k

∑
i=1
|αiϕ

τ
i |2ν

) ν

2

= d1

(
k

∑
i=1

A−1
τ ‖αiϕ

τ
i ‖2

) ν

2

= d2τ
−(N−2− 2N

ν
) ν

2 ‖u‖ν ,

(3.3)

for every u=
k
∑

i=1
αiϕ

τ
i , αi ∈R, where d2 = d1|ϕ|νν‖ϕ‖−ν . By (f1) and (f2), there exist d3,d4 > 0

such that F(s)> d3|s|ν −d4, s ∈ R. On account of (3.3) and (K1), we have

Jδ ,λ (u)6
max{m(0),m(δ )}

2
‖u‖2−λa0

k

∑
i=1

∫
Bτ (xi)

F(u)dx

6
max{m(0),m(δ )}

2
‖u‖2−λd2d3a0τ

−(N−2− 2N
ν
) ν

2 ‖u‖ν +λd4ka0τ
N

ωN ,
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where ωN is the volume of the unitary ball in RN . Setting γ := N +ν− Nν

2 , d5 = a0d2d3,d6 =
a0d4kωN , one has

Jδ ,λ (u)6
max{m(0),m(δ )}

2
‖u‖2−λd5τ

γ‖u‖ν +λd6τ
N , u ∈Vk,τ . (3.4)

Since ν < 2∗, we have that 0 < γ < N. Then we can choose γ0 ∈ (γ,N) and set λ = τ−γ0 . We
consider the function

hτ(t) :=
max{m(0),m(δ )}

2
t2−d5τ

−γ0+γtν +d6τ
−γ0+N , t > 0.

It obtains its maximum at

tτ = [max{m(0),m(δ )}(d5ν)−1
τ

γ0−γ ]
1

ν−2 .

This fact and γ0 ∈ (γ,N) imply that tτ → 0, τ → 0+. Then hτ(tτ)→ 0, τ → 0+. Thus, for any
M > 0, there exists τ∗ = τ∗(k,ν ,N,δ ,M)> 0 such that

hτ(tτ) = max
t>0

hτ(t)6
M
2
, τ ∈ (0,τ∗]. (3.5)

By choosing λk,M = (τ∗)−γ0 , we set V λ
k := V

k,λ
− 1

γ0
for every λ > λk,M. It is a subspace of

D1,2(RN) and its dimension is k. Since λ > λk,M implies that τ 6 τ∗, it follows from (3.4) and
(3.5) that

Jδ ,λ (u)6max
t>0

hτ(t)6
M
2

< M, for u ∈V λ
k .

�

Proof of Theorem 1.1 It follows from Proposition 3.1 that the (J1) and (J2) in Lemma 2.2 hold.
Condition (J3) follows from Proposition 2.2 with

M0 =


min{c∗, νm(0)−2m(δ )

2ν

S
2 ,

νm(0)−2m(δ )
2ν

(m(0)S
2∗µ
2

C(N,µ) )
2

2∗µ−2 , νm(0)−2m(δ )
2ν

δ}, m is increasing;

min{c∗, νm(δ )−2m(0)
2ν

S
2 ,

νm(δ )−2m(0)
2ν

(m(δ )S
2∗µ
2

C(N,µ) )
2

2∗µ−2 , νm(δ )−2m(0)
2ν

δ}, m is decreasing.

Since (f0) and (f1) imply that Jδ ,λ (0) = 0 and Jδ ,λ is even, Lemma 2.2 implies that the truncated
problem (1.4) with λ > λ ∗k := λk,M0 enjoys at least k pairs of nontrivial solutions for every k∈N.
Let u ∈ D1,2(RN) be one of these solutions. Since Jδ ,λ (u)6M0, we find from (f2) that

νm(0)−2m(δ )

2ν
δ >M0 > Jδ ,λ (u)−

1
ν

J′
δ ,λ (u)u>

νm(0)−2m(δ )

2ν
‖u‖2, if m is increasing;

νm(δ )−2m(0)
2ν

δ >M0 > Jδ ,λ (u)−
1
ν

J′
δ ,λ (u)u>

νm(δ )−2m(0)
2ν

‖u‖2, if m is decreasing.

Hence, ‖u‖2 6 δ and it follows from the definition of mδ that mδ (‖u‖2) = m(‖u‖2), that is, u
is also a weak solution to problem 1.1. The proof is completed. �
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