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Abstract. This paper is concerned with a distributed optimal control problem for a phase field model
describing tumor growth with chemotaxis and active transport. First, comparing with the results in [H.
Garcke, K.F. Lam, Well-posedness of a Cahn-Hilliard system modelling tumour growth with chemotaxis
and active transport, European J. Appl. Math. 28 (2017), 284–316], we prove the existence of solutions
for such a system with more general potential, the regularity of solutions and the continuous dependence
of initial data as well as control variable with respect to a strong topology. It is worth pointing out that the
potentials cover the case of classical quartic double-well potential, which is the standard approximation
for the physical relevant logarithmic potential. Furthermore, the existence of an optimal control is proved
by monotonicity arguments and compactness theorems. Beyond that, by overcoming some difficulties
in mathematical analysis and calculation, especially in the proof of the Fréchet differentiability of the
control-to-state operator, we derive the corresponding first-order necessary conditions of optimality in
terms of the adjoint variables and the usual variational inequality.
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1. INTRODUCTION

In the recent several years, there has been a great development in phase field models for tumor
growth. Based on the continuum mixture theory, many models involving transport and reaction
terms have been derived to describe the evolution of a tumor colony surrounded by healthy tis-
sues, which experience biological mechanisms, such as proliferation via nutrient consumption,
apoptosis, chemotaxis, and active transport of specific chemical species. For the case of a young
tumor, before the development of quiescent cells, the phase field models often consist of a Cahn-
Hilliard equation coupled with a reaction-diffusion equation for the nutrient [10, 22, 24, 25, 34].
One may also consider the effects of fluid flow into the evolution of the tumor, leading to the
development of Cahn-Hilliard-Darcy systems [2, 11, 12, 14, 22, 28, 42].
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In this paper, we mainly investigate the following model for tumor growth originally proposed
in [22]: 

∂tϕ = ∆µ +(λpσ −λa−u)h(ϕ), (x, t) ∈ Q,

µ =−∆ϕ +F ′(ϕ)−χϕσ , (x, t) ∈ Q,

∂tσ = χσ ∆σ −χϕ∆ϕ−λcσh(ϕ), (x, t) ∈ Q,

∂νϕ = ∂ν µ = 0, χσ ∂νσ = K(σ∗−σ), (x, t) ∈ Σ,

ϕ(x,0) = ϕ0(x), σ(x,0) = σ0(x), x ∈Ω.

(1.1)

Here, Ω ⊂ R3 is an open and bounded domain with smooth boundary Γ. We denote by ∂ν the
outward normal derivative on Γ. Let T > 0 be a fixed final time and

Q := Ω× (0,T ), Σ := Γ× (0,T ).

ϕ represents the local concentration of tumor cells, where ϕ =±1, with ϕ = 1 denoting the tu-
mor phase and ϕ =−1 representing the healthy phase. µ, u, and σ denote a chemical potential
associated to ϕ, the concentration of cytotoxic drugs, and the concentration of an unspecified
chemical species acting as nutrient for the tumor cells, respectively. Moreover, F(ϕ) is a poten-
tial function describing the phase separations. The typical potentials are the regular potential,
the logarithmic potential, and the double obstacle potential are defined as:

Fpol(r) :=
1
4
(r2−1)2, r ∈ R,

Flog(r) :=


θ

2 [(1+ r)ln(1+ r)+(1− r)ln(1− r)]− θ0
2 r2, r ∈ (−1,1), 0 < θ < θ0,

θ ln2− θ0
2 , r ∈ {−1,1},

+∞, otherwise,

Fdob(r) :=

{
c(1− r2) r ∈ [−1,1],
+∞ otherwise.

c > 0.

The given function h(ϕ) is an interpolation function such that h(−1)= 0 and h(1)= 1, and σ∗ is
the nutrient supply on the boundary Γ. The parameters λa,λc,λp, and K denote tumor apoptosis
rate, nutrient consumption rate, the constant tumor proliferation rate, and nutrient supply rate,
respectively. χσ ≥ 0 represents the diffusivity of the nutrient, χϕ ≥ 0 denotes the parameter for
transport mechanisms such as chemotaxis and active uptake.

Now, let us briefly describe the role of the occurring terms from a modeling viewpoint and
more details can be found in [19,22]. The terms λpσh(ϕ) and λah(ϕ) stand for the proliferation
of tumor cells and the apoptosis of tumor cells, whereas λcσh(ϕ) indicates the consumption
of the nutrient only by the tumor cells. The term −uh(ϕ) in the first equation of problem
(1.1) models the elimination of tumor cells by cytotoxic drugs and the function u will act as
our control. In addition, let us point out that the contributions χσ ∆σ and χϕ∆ϕ model pure
chemotaxis, namely, the movement of tumor cells towards regions of high nutrients, and the
active transport that describes the movement of the nutrient towards the tumor cells.

To the best of our knowledge, there are four ways of treatments for cancer including surgery,
immunotherapy (strengthening the immune system), radiotherapy (using radiation to kill cancer
cells), and chemotherapy (using drugs to kill cancer cells). The latter three treatments are typ-
ically conducted in cycles to shrink the tumor into a more manageable size for which surgery
can be applied. The so-called a cycle is a period of treatment followed by a (longer) period of
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rest, so that the patient’s body can build new healthy cells. Moreover, further therapeutic treat-
ments may be necessary to destroy the cancer cells that may remain after the surgery. Hence,
in this paper, we consider the following optimal distribution control problem involving a cancer
treatment with cytotoxic drugs.

(CP) Minimize the cost functional

J ((ϕ,µ,σ);u) =
α0

2

∫
Q
|ϕ(x, t)−ϕQ(x, t)|2 dxdt +

α1

2

∫
Ω

|ϕ(x,T )−ϕΩ(x)|2 dx

+
β0

2

∫
Q
|σ(x, t)−σQ(x, t)|2 dxdt +

β1

2

∫
Ω

|σ(x,T )−σΩ(x)|2 dx

+
β2

2

∫
Q
|u(x, t)|2 dxdt

subject to the condition that (ϕ,µ,σ) solves the state system (1.1) with a control

u ∈Uad = {u ∈ L2(Q) : umin ≤ u≤ umax, a.e.(x, t) ∈ Q}. (1.2)

Here, α0, α1, β0, β1, and β2 are some fixed constants that do not vanish simultaneously, ϕQ, σQ,
and ϕΩ, σΩ indicate some target functions, and umin, umax denote some prescribed functions.

In the past several decades, there have been many recent contributions regarding the well-
posedness, asymptotic behavior, and optimal control for phase field tumor growth models; see,
for example, [3–9,15,18–21,23,32–34,36–39] where the velocity contributions were neglected,
and [12, 13, 16, 17, 27–31, 43] considering the velocity contributions. In this paper, we focus on
the case that velocity contributions are neglected. We now compare (1.1) with the other models
for tumour growth studied in the literature. Assuming different linear phenomenological laws
for chemical reactions, the authors in [25] (see also [26, 34]) introduced the following different
thermodynamically consistent model

α∂t µ +∂tϕ = ∆µ + p(ϕ)(χσ σ +χϕ(1−ϕ)−µ), (x, t) ∈ Q,

µ = β∂tϕ−∆ϕ +F ′(ϕ)−χϕσ , (x, t) ∈ Q,

∂tσ = χσ ∆σ −χϕ∆ϕ− p(ϕ)(χσ σ +χϕ(1−ϕ)−µ), (x, t) ∈ Q,

∂νϕ = ∂ν µ = 0, χσ ∂νσ = K(σ∗−σ), (x, t) ∈ Σ,

ϕ(x,0) = ϕ0(x), µ(x,0) = µ0(x), σ(x,0) = σ0(x), x ∈Ω.

(1.3)

When α = β = 0, it is not difficult to verify that system (1.3) possesses a Lyapunov-type energy
functional which means the standard a priori estimates can be obtained even in the case that F
has polynomial growth of order 6. Hence, the authors in [3, 6, 23] analysed the well-posedness,
long-time behavior, and optimal control problem for system (1.3) with regular potentials having
polynomial growth of order 6. When α,β > 0, we call these extension models of the case
α = β = 0. Thanks to the regularizing effect of the artificial relaxation terms α∂t µ and β∂tϕ , a
uniform separation principle for phase variable can be verified, which is a key property to handle
singular potential. Hence, the well-posedness, vanishing viscosity limits, and optimal control
problems of these extension models with more general potentials including singular potentials
were established in [4, 5, 8, 9, 36–38].

For system (1.1), neglecting the effects of chemotaxis and active transport, i.e., χϕ = 0,
the authors in [20, 32] considered the well-posedness, long time behavior (in terms of global
attractors), and optimal control of treatment time and cytotoxic drug with more general regular
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potentials having at least cubic and at most exponential growth at infinity. While χϕ > 0,
the extension models of problem (1.1) with general potentials were considered in [7, 39]. In
particular, the authors in [7] studied a distributed optimal control problem with two control
variables. The sparse optimal control, i.e, the cost functional contains a non-differentiable but
convex contribution like L1-norm, was established in [39]. For system (1.1), the authors [19]
established the well-posedness and its quasi-static limits of system (1.1) with at most quadratic
potentials. Specifically, in the case of the non-constant mobility, they obtained the existence of
weak solutions by a Faedo-Galerkin scheme along with a priori estimates wherein they had to
restrict the regular potentials with at most quadratic growth in order to estimate the mean of µ

via the Poincaré inequality. Furthermore, they showed continuous dependence on initial data
under the additional assumptions concluding the mobilities are constants. Later on, to improve
the restriction of growth order of potential, they replaced the Neumann boundary conditions in
system (1.1) with non-zero Dirichlet boundary conditions [18]. They proved the existence of
weak solutions with the regular potentials having arbitrary polynomial growth, and verified the
regularity and continuous dependence on initial data with the regular potentials with polynomial
growth of order up to six in three dimensions.

In this paper, comparing with the results in [19], under the assumptions of more general
potentials (see Assumptions (A2) in Section 2), we improve the well-posedness result in [19],
and further study the optimal distributed control problem of system (1.1). Due to the presence of
chemotaxis and active transport terms, the nonlinear function F with growth order greater than
two is indeed the key challenge in the analysis. Here let us emphasize the following differences
and give some comments on the problem discussed in [19]:

(i) When the mobilities are constants, we prove the existence of weak solutions for the
system (1.1) with the Neumann boundary conditions and the nonlinear function F un-
der assumption (A4) which includes the classical quartic double-well potential, the stan-
dard approximation for the physical relevant logarithmic potential. In this case, to esti-
mate the free energy functional, we have to first establish the a priori estimate of σ in
L∞(0,T ;L2)∩L2(0,T ;H1) by choosing suitable testing functions.

(ii) We first establish the regularity of the solution component ϕ via the regularity theory of
elliptic equations and the bootstrapping method. Then, we prove the stability estimates on
both initial data and control parameter in the space that the solution belongs to.

(iii) We investigate the optimal control problem of system (1.1). In particular, our stability esti-
mates are allowed to prove the Fréchet differentiability (in suitable spaces) of the control-
to-state mapping, which can be used to study the optimal control problem of cost func-
tional involved the L2-norm of ∇ϕ . For the sake of simplicity, we here only focus on the
case of cost functional with L2-norm of ϕ , but the scheme proposed in this paper can be
applied to the cost functional with the H1-norm of ϕ as well.

(iv) It is possible to extend the results in this paper to the optimal time control problem, namely,
the terminal time in the cost functional is free, which penalises long treatment time. In ad-
dition, it also can be used to deal with the sparse optimal control problem with a cost
functional containing a non-differentiable term like L1-norm describing the sparsity ef-
fects. These works will be illustrated in the forthcoming papers.

The remaining part of this paper is organized as follows: In Section 2, we state some useful
lemmas and basic assumptions. The well-posedness result for system (1.1) is addressed in
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Section 3. Section 4 states the optimal control problem (CP), the Fréchet differentiability of the
control-to-state operator, as well as the first-order necessary optimality conditions for problem
(CP).

2. PRELIMINARIES AND ASSUMPTIONS

For simplification, we denote Lp the standard Lebesgue space Lp(Ω) equipped with the norms
‖·‖Lp and W k,p the Sobolev spaces W k,p(Ω) equipped with the norms ‖·‖W k,p for any p∈ [1,∞]
and k > 0. In the case that p = 2, we use Hk :=W k,2 and the norm ‖ ·‖Hk . By Fubini’s theorem,
we use the notation Lp(Q) to denote the space Lp(Ω× (0,T )) for 1 ≤ p < ∞. Moreover, the
dual space of a Banach space X is denoted by X∗, and the duality pairing between X and X∗

is written by 〈·, ·〉X , whereas, the L2-inner product is written by (·, ·). In the rest of this paper,
unless otherwise stated, we shall denote by C a generic positive constant which may change
from line to line.

2.1. Useful preliminaries. Throughout this paper, we make repeated use of the following
Gagliardo-Nirenberg interpolation inequality in dimension d (see [1]): let Ω⊂Rd be a bounded
domain with Cm boundary, f ∈W m,r∩Lq with 1≤ q, r ≤ ∞. For any integer j with 0≤ j < m,
suppose that there exists α ∈ [0,1] such that

1
p
=

j
d
+(

1
r
− m

d
)α +

1−α

q
,

j
m
≤ α ≤ 1.

If r ∈ (1,∞) and m− j− d
r is a non-negative integer, we in addition assume α 6= 1. Under these

assumptions, there exists a positive constant C depending only on Ω,m, j,q,r and α, such that

‖D j f‖Lp ≤C‖ f‖α
W m,r‖ f‖1−α

Lq .

Let us also recall the Poincaré inequality and a weak version of dominated convergence
theorem.

Lemma 2.1. [40] Let Ω⊂Rd with d ≥ 1 be a bounded domain with Lipschitz boundary. Then
there exists a positive constant C1 depending only on Ω and d, such that

‖u‖L2 ≤C1

(
‖∇u‖L2 +‖u‖L2(Γ)

)
,

‖u−M(u)‖L2 ≤C1‖∇u‖L2,

for any u ∈ H1, where the operator M : L1→ R is defined by

M( f ) =
1
|Ω|

∫
Ω

f (x)dx

for any f ∈ L1.

Lemma 2.2. [35] Let Ω⊂Rd with d≥ 1 be a bounded domain and {gn}⊂ Lq, where 1< q<∞

is given. Assume that there exist a positive constant L independent of n and g ∈ Lq, such that
‖gn‖Lq ≤ L for any natural number n. Moreover, gn → g almost everywhere in Ω as n→ ∞.
Then gn→ g weakly in Lq as n→ ∞.
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2.2. Assumptions. Now, we make the following assumptions on the data of the state system.

(A1) λp, λa, λc, and χϕ are fixed non-negative constants, and χσ , and K are fixed positive
constants.

(A2) The initial and boundary data satisfy

ϕ0 ∈ H1, σ0 ∈ L2, σ
∗ ∈ L2(Σ).

(A3) For any s∈R, the functions h(s), h′(s) are Lipschitz continuous with Lipschitz constant
Lh, and there exists a positive constant h0, such that

0≤ h(t)≤ h0, ∀ t ∈ R.

(A4) The potential function F ∈C 3(R) satisfies that there exist exponent p∈ (2,6) and some
positive constants Li > 0(i = 1,2,3,4) such that

L1|s|p−2−L2 ≤ F ′′(s)≤ L3(1+ |s|p−2), ∀s ∈ R,

|F ′′′(s)−F ′′′(r)| ≤ L4(1+ |s|2 + |r|2)|s− r|, ∀s,r ∈ R.

Remark 2.1. Assumption (A4) is weaker than the one supposed in [19]. Obviously, the double
well potential F(s) = 1

4(s
2 − 1)2 satisfies assumption (A4). For convenience, we can easily

deduce from assumption (A4) that there exist constants Li > 0 (i = 5,6,7) such that

L5|s|p−L6 ≤ F(s)≤ L7(1+ |s|p), ∀ s ∈ R. (2.1)

Remark 2.2. Notice that, here we just assume the initial data satisfies assumption (A2). If
we ask the initial data with higher regularity, e.g., ϕ0 ∈ H2, the component ϕ of the solution
(ϕ,µ,σ) will belong to L∞(0,T ;H2(Ω) as in [7], which implies that ϕ ∈ L∞(0,T ;L∞(Ω) by the
Sobolev embedding theorem H2(Ω) ⊂ L∞(Ω) for Ω ⊂ R3. To this point, F ′′(ϕ(t)) is bounded
and Lipschitz continuous in ϕ for t ≥ 0, such that the growth condition of F ′′ and the locally
Lipschitz continuity of F ′′′ in assumption (A4) can be removed.

Moreover, for the optimal control problem under investigation, we make the following gen-
eral assumptions:

(A5) α0, α1, β0, β1, and β2 are non-negative but not all zero.
(A6) ϕQ ∈ L2(0,T ;H1), σQ ∈ L2(Q), ϕΩ ∈H1, σΩ ∈ L2, umin, umax ∈ L∞(Q) with umin≤ umax

for almost everywhere (x, t) ∈ Q.
(A7) U is nonempty open and bounded subset of L2(Q) containing Uad, and there exists a

constant R > 0, such that ‖u‖L∞(Q) ≤ R for all u ∈U .

Remark 2.3. From inequality (1.2), we know that the set of admissible controls Uad is a
nonempty, closed, bounded, and convex subset in L2(Q). Thus, Uad is weakly closed, i.e., it
contains its all the weak limits.

3. THE WELL-POSEDNESS OF THE STATE SYSTEM

In this section, we state our results about the existence of a weak solution to (1.1) by a suitable
Galerkin approximation scheme and give the continuous dependence on both the initial data and
control parameter.
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3.1. The existence of weak solutions. We are now in a position to present the result regard-
ing the existence of weak solutions to the state system (1.1) whose proof relies on a suitable
Galerkin procedure introduced in [40] and suitable a priori high-order energy estimates. In
what follows, in order to estimate the free energy functional, we have to establish the a priori
estimate of σ in L∞(0,T ;L2)∩L2(0,T ;H1).

Theorem 3.1. Suppose that hypotheses (A1)-(A4) are satisfied. For any T > 0, there exists at
least one global weak solution (ϕ,µ,σ) to problem (1.1) with initial data (ϕ0,σ0) on [0,T ],
such that

ϕ ∈ L∞(0,T ;H1)∩L2(0,T ;H3)∩H1(0,T ;(H1)∗),

µ ∈ L2(0,T ;H1),

σ ∈ L∞(0,T ;L2)∩L2(0,T ;H1)∩H1(0,T ;(H1)∗).

Moreover, the triple (ϕ,µ,σ) satisfies

〈∂tϕ,ψ〉H1 +(∇µ,∇ψ) = ((λpσ −λa−u)h(ϕ),ψ) ,

(∇ϕ,∇η)+
(
F ′(ϕ)−χϕσ ,η

)
= (µ,η) ,

〈∂tσ ,φ〉H1 +
(
χσ ∇σ −χϕ∇ϕ,∇φ

)
+λc (σh(ϕ),φ)+K (σ −σ

∗,φ)L2(Γ) = 0

and

ϕ(0) = ϕ0, (σ(0),φ) = (σ0,φ)

for any ψ, η , φ ∈ H1 and a.e. t ∈ (0,T ).

Proof. We consider the eigenvalue problem −∆ω = λω subject to the homogeneous Neumann
boundary condition ∂νω = 0. From the standard spectral theory, we know that there exists two
sequences {λn}∞

n=1 and {ωn}∞
n=1, such that, for every n≥ 1, λn ≥ 0 is an eigenvalue and ωn 6= 0

is the corresponding eigenfunction, the sequence {λn} is nondecreasing, tending to infinity as
n→+∞, and the sequence {ωn} forms orthonormal basis of L2 and is also an orthogonal basis
of H1. We notice that λ = 0 is an eigenvalue. If λ1 = 0, we choose ω1 = 1. For any n≥ 1, we
introduce a finite-dimensional space Wn = span{ω1, ...,ωn} ⊂ H1 and let Pn be the orthogonal
projection from L2 to Wn.

Then we seek for the approximate solution (φ n(t),µn(t),σn(t)) in the form

φ
n(t) =

n

∑
i=1

αi(t)ωi, µ
n(t) =

n

∑
i=1

βi(t)ωi, σ
n(t) =

n

∑
i=1

γi(t)ωi,

by solving the following problem
(∂tϕ

n,ψ) =−(∇µn,∇ψ)+((λpσn−λa−u)h(ϕn),ψ) ,

(µn,η) = (∇ϕn,∇η)+(F ′(ϕn),η)−χϕ (σ
n,η) ,

(∂tσ
n,φ) =

(
χϕ∇ϕn−χσ ∇σn,∇φ

)
− (λcσnh(ϕn),φ)−K

∫
Γ
(σn−σ∗)φ dS,

αi(0) = (ϕ0,ωi), γi(0) = (σ0,ωi), i = 1,2, · · · ,n

(3.1)

for any ψ, η , φ ∈Wn.
Thanks to the continuity of F ′(·) and h(·), there exists a local solution (ϕn,µn,σn) of the ap-

proximating problem (3.1). In what follows, we show that (ϕn,µn,σn) are uniformly bounded
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with respect to n in suitable function spaces. Below, the symbol K (T ) denotes a generic posi-
tive constant that independent of the parameter n and may vary from line by line.

First estimate. Letting ψ = ϕn, η =−∆ϕn, and φ = σn in system (3.1), we find

1
2

d
dt

(
‖ϕn‖2

L2 +‖σn‖2
L2

)
+‖∆ϕ

n‖2
L2 +

∫
Ω

F ′′(ϕn)|∇ϕ
n|2 dx

+χσ

∫
Ω

|∇σ
n|2 dx+λc

∫
Ω

h(ϕn)|σn|2 dx+K
∫

Γ

|σn|2 dS

=
∫

Ω

(λpσ
n−λa−u)h(ϕn)ϕn dx−2χϕ

∫
Ω

σ
n
∆ϕ

n dx+K
∫

Γ

σ
n
σ
∗ dS.

Along with the Hölder’s inequality, Young’s inequality, and assumption (A4), we derive that,
for any t ∈ [0,T ],

1
2

d
dt

(
‖ϕn‖2

L2 +‖σn‖2
L2

)
+‖∆ϕ

n‖2
L2 +χσ‖∇σ

n‖2
L2 +K‖σn‖2

L2(Γ)

≤λph0‖σn‖L2‖ϕn‖L2 +λah0|Ω|
1
2‖ϕn‖L2 +h0‖u‖L2‖ϕn‖L2 +2χϕ‖σn‖L2‖∆ϕ

n‖L2

+K‖σn‖L2(Γ)‖σ∗‖L2(Γ)+L2‖∇ϕ
n‖2

L2.

It follows from the interpolation inequality and the boundary trace imbedding theorem that

d
dt

(
‖ϕn‖2

L2 +‖σn‖2
L2

)
+‖∆ϕ

n‖2
L2 +χσ‖∇σ

n‖2
L2 +K‖σn‖2

L2(Γ)

≤C
(

1+‖ϕn‖2
L2 +‖σn‖2

L2 +‖σ∗‖2
L2(Γ)+‖u‖

2
L2

)
.

Therefore, a Gronwall argument yields that, for any t ∈ (0,T ],

‖ϕn(t)‖2
L2 +‖σn(t)‖2

L2 +
∫ t

0
‖∆ϕ

n(s)‖2
L2 +χσ‖∇σ

n(s)‖2
L2 +K‖σn(s)‖2

L2(Γ) ds

≤
(
‖ϕ0‖2

L2 +‖σ0‖2
L2 +CT +C

∫ T

0
‖σ∗(s)‖2

L2(Γ)+‖u(s)‖
2
L2 ds

)
eM1T

=:K1(T ). (3.2)

Second estimate. Let η = 1 in the second equality of equality (3.1). From assumption (A4),
inequality (2.1), and Hölder’s inequality, we find that∣∣∣∣∫

Ω

µ
n dx
∣∣∣∣≤C

(
‖σn‖L2 +1+‖ϕn‖p−1

Lp

)
≤C

(
‖σn‖L2 +1+

∫
Ω

F(ϕn)dx
)
. (3.3)

Moreover, let ψ = µn +χϕσn and η = ∂tϕ
n in (3.1). By Hölder’s inequality, we have

d
dt

(
1
2
‖∇ϕ

n‖2
L2 +

∫
Ω

F(ϕn)dx
)
+‖∇µ

n‖2
L2

=−χϕ

∫
Ω

∇µ
n ·∇σ

n dx+
∫

Ω

(λpσ
n−λa−u)h(ϕn)(µn +χϕσ

n)dx

≤χϕ‖∇µ
n‖L2‖∇σ

n‖L2 +(λp‖σn‖L2 +λa|Ω|
1
2 +‖u‖L2)h0(‖µn‖L2 +χϕ‖σn‖L2).
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Therefore, we conclude from Young’s inequality, Poincaré’s inequality, and inequality (3.3) that

d
dt

(
‖∇ϕ

n‖2
L2 +2

∫
Ω

F(ϕn)dx
)
+‖∇µ

n‖2
L2

≤C(‖σn‖2
L2 +‖u‖2

L2 +1)
∫

Ω

F(ϕn)dx+C(1+‖σn‖2
L2 +‖u‖2

L2 +‖∇σ
n‖2

L2).

Using the classical Gronwall inequality and inequalities (2.1) and (3.2) yields

‖∇ϕ
n(t)‖2

L2 +2
∫

Ω

F(ϕn(x, t))dx+
∫ t

0
‖∇µ

n(s)‖2
L2 ds≤C

(
‖ϕ0‖p

H1 +K1(T )
)

eCK1(T ),

which implies

‖ϕn‖L∞(0,T ;H1)+‖F(ϕn)‖L∞(0,T ;L1)+‖σn‖L∞(0,T ;L2)∩L2(0,T ;H1)+‖µn‖L2(0,T ;H1)

≤K (T ). (3.4)

This uniform estimate (3.4) ensures that we can extend (ϕn,µn,σn) to the full time interval
[0,T ] for all n ∈ N.

Third estimate. Now, we establish the higher order estimates for ϕn via regularity theory of
elliptic equations and the bootstrapping method (see for example [17, 18]).

Denote by g = µn +χϕσn +ϕn−F ′(ϕn). Then ϕn satisfies the following equation{
−∆ϕn +ϕn = g, x ∈Ω,

∂νϕn = 0, x ∈ Γ.
(3.5)

From inequality (3.4), we know that µn + χϕσn +ϕn ∈ L2(0,T ;H1). Therefore, it suffices to
prove that F ′(ϕn) ∈ L2(0,T ;H1). To do this, we define a sequence of numbers {` j} j∈Z+ by
`1 = 1 and for any j ≥ 1,

` j+1 =
6` j

6− (6− p)` j
. (3.6)

Define f (x) = 6x
6−(6−p)x . Then f is strictly increasing and positive in [1, 6

6−p). Hence, ` j < ` j+1

for any j ≥ 1 and ` j > 1 for any j ≥ 2. We derive from the assumption (A4) that(∫
Ω

|F ′(ϕn)|`1 dx
) 2

`1
≤C(1+‖ϕn‖2(p−1)

L(p−1)`1
)≤C(1+‖ϕn‖2(p−1)

H1 ).

Since ϕn ∈ L∞(0,T ;H1), we obtain F ′(ϕn) ∈ L2(0,T ;L`1). Furthermore, using the Sobolev
embedding theorem L2(0,T ;H1)⊂ L2(0,T ;L`1), we know g∈ L2(0,T ;L`1). Therefore, we con-
clude from the regularity theory of the elliptic equation of second order that ϕn ∈L2(0,T ;W 2,`1).
From the Gagliardo-Nirenberge inequality, one can see that

‖ϕn‖2(p−1)

L(p−1)` j+1
≤C‖ϕn‖2

W 2,` j‖ϕ
n‖2(p−2)

H1
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for any ϕn ∈W 2,` j ∩H1. Therefore, for each j ≥ 1, we have∫ T

0

(∫
Ω

|F ′(ϕn)|` j+1 dx
) 2

` j+1
dt ≤C

∫ T

0

(∫
Ω

(1+ |ϕn|(p−1)` j+1)dx
) 2

` j+1
dt

≤C
∫ T

0
(1+‖ϕn‖2(p−1)

L(p−1)` j+1
)dt

≤C(1+‖ϕn‖2
L2(0,T ;W 2,` j )

‖ϕn‖2(p−2)
L∞(0,T ;H1)

).

i.e., F ′(ϕn) ∈ L2(0,T ;L` j+1), which further implies that ϕn ∈ L2(0,T ;W 2,` j+1). Since 6
7−p <

6
6−p , we infer that ` j ≥ 6

7−p after a finite number of steps. At this point, the bootstrapping
procedure will be stopped and ` j+1 ≥ 6. Therefore, we obtain ϕn ∈ L2(0,T ;W 2,6).

In what follows, we will prove that F ′(ϕn) ∈ L2(0,T ;H1). With the combination of the
Gagliardo-Nirenberge inequality and ϕn ∈ L2(0,T ;W 2,6), we obtain∫ T

0

∫
Ω

|F ′(ϕn)|2 dxdt ≤C
(

1+
∫ T

0
‖ϕn‖2(p−1)

L2(p−1) dt
)

≤C
(

1+‖ϕn‖2

L2(0,T ;W
2, 6

9−p )
‖ϕn‖2(p−2)

L∞(0,T ;H1)

)
≤C
(

1+‖ϕn‖2
L2(0,T ;W 2,6)‖ϕ

n‖2(p−2)
L∞(0,T ;H1)

)
and ∫ T

0

∫
Ω

|F ′′(ϕn)|2|∇ϕ
n(x, t)|2 dxdt ≤C

(
1+

∫ T

0

∫
Ω

|ϕn|2(p−2)|∇ϕ
n(x, t)|2 dt

)
≤C
(

1+‖ϕn‖2(p−2)
L2(p−2)(0,T ;L∞)

‖ϕn‖2
L∞(0,T ;H1)

)
≤C
(

1+‖ϕn‖
p−2

2
L2(0,T ;W 2,6)

‖ϕn‖
3p−2

2
L∞(0,T ;H1)

)
,

i.e., F ′(ϕn) ∈ L2(0,T ;H1). Then by the regularity theory of the system (3.5), we obtain that

‖ϕn‖H3 ≤C(‖µn‖H1 +‖F ′(ϕn)‖H1 +‖σn‖H1 +‖ϕn‖L2),

which together with inequality (3.4) yields

‖ϕn‖L2(0,T ;H3)+‖F ′(ϕn)‖L2(0,T ;H1) ≤K (T ). (3.7)

Estimates on time derivatives. From the first and third equations of (3.1), we find

‖∂tϕ
n‖(H1)∗ ≤ ‖∇µ

n‖L2 +λph0‖σn‖L2 +λah0|Ω|
1
2 +h0‖u‖L2,

‖∂tσ
n‖(H1)∗ ≤ χσ‖∇σ

n‖L2 +χϕ‖∇ϕ
n‖L2 +λch0‖σn‖L2 +K‖σn‖L2(Γ)+K‖σ∗‖L2(Γ).

Recalling the assumption (A4) and inequality(3.4), we have∫ T

0
‖∂tσ

n(t)‖2
(H1)∗ dt +

∫ T

0
‖∂tϕ

n(t)‖2
(H1)∗ dt +

∫ T

0
‖F ′(ϕn(t))‖

p
p−1

L
p

p−1
dt

+
∫ T

0
‖µn(t)‖2

L2 dt ≤K (T ). (3.8)
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In view of (3.4), (3.7), and (3.8), we can obtain the existence of a weak solution for problem
(1.1) by the standard (weak-) compactness results and monotone arguments as in [19]. �

3.2. Continuous dependence on initial data and control parameter. Now, we state the sta-
bility property of weak solutions (i.e., continuous dependence) with respect to the initial data
and the control parameter u in a strong topology. It not only implies the uniqueness of the
weak solution (1.1), but also helps to verify the Fréchet differentiability of the control-to-state
mapping.

Theorem 3.2. Assume that (A1)-(A4) hold. Let (ϕ1,µ1,σ1), (ϕ2,µ2,σ2) be two weak solutions
to problem (1.1) with the initial data (ϕ01,σ01), (ϕ02,σ02) and the functions u1, u2, respectively,
and denote by (ϕ,µ,σ ,u) = (ϕ1−ϕ2,µ1− µ2,σ1−σ2,u1− u2). Then there exists a constant
K2 > 0 depending only on some physical parameters and the initial data (ϕ01,σ01), (ϕ02,σ02)
of problem (1.1), such that

‖ϕ(t)‖2
L∞(0,T ;H1)∩L2(0,T ;H3)+‖σ(t)‖2

L∞(0,T ;L2)∩L2(0,T ;H1)

≤K2

(
‖ϕ01−ϕ02‖2

H1 +‖σ01−σ02‖2
L2 +‖u‖2

L2(Q)

)
,

which implies that the weak solution to problem (1.1) is unique.

Proof. It is easy to verify that (ϕ,µ,σ ,u) satisfies the following system

〈∂tϕ,ψ〉+(∇µ,∇ψ) = ((λpσ −u)h(ϕ1),ψ)+((λpσ2−λa−u2)(h(ϕ1)−h(ϕ2)),ψ) ,

(µ,η) = (∇ϕ,∇η)+
(
F ′(ϕ1)−F ′(ϕ2)−χϕσ ,η

)
,

〈∂tσ ,φ〉+
(
χσ ∇σ −χϕ∇ϕ,∇φ

)
=−λc (σh(ϕ1),φ)−λc (σ2(h(ϕ1)−h(ϕ2)),φ)

−K (σ −σ∗,φ)L2(Γ) ,

ϕ(x,0) = ϕ0(x), σ(x,0) = σ0(x)

for any ψ,η ,φ ∈ H1 and a.e. t ∈ (0,T ). Let ψ = 2ϕ − 2∆ϕ , η = −∆ϕ , and φ = 2δσ in the
above system, where the constant δ ≥ 1 will be specified later. Then

d
dt

(
‖ϕ‖2

H1 +δ‖σ‖2
L2

)
+2‖∆ϕ‖2

H1 +2δ χσ‖∇σ‖2
L2 +2δK‖σ‖2

L2(Γ)+2λcδ

∫
Ω

h(ϕ1)|σ |2 dx

=−2(1+δ )χϕ

∫
Ω

σ∆ϕ dx−2δλc

∫
Ω

σ2(h(ϕ1)−h(ϕ2))σ dx−2χϕ

∫
Ω

∇σ ·∇∆ϕ dx

+2
∫

Ω

(λpσ −u)h(ϕ1)(ϕ−∆ϕ)dx+2
∫

Ω

(λpσ2−λa−u2)(h(ϕ1)−h(ϕ2))(ϕ−∆ϕ)dx

+2
∫

Ω

(F ′(ϕ1)−F ′(ϕ2))∆ϕ dx+2
∫

Ω

(F ′′(ϕ1)−F ′′(ϕ2))∇ϕ1 ·∇∆ϕ dx

+2
∫

Ω

F ′′(ϕ2)∇ϕ ·∇∆ϕ dx

=:
8

∑
j=1

J j. (3.9)

Now, we estimate each term of the right hand side of (3.9) one by one.
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Applying (A3)-(A4), Hölder’s inequality, and Poincaré inequality, one can derive

|J1| ≤2(1+δ )χϕ‖σ‖L2‖∆ϕ‖L2,

|J2| ≤2δλcLh‖σ2‖L4‖σ‖L2‖ϕ‖L4 ≤Cδ‖σ2‖H1‖σ‖L2‖ϕ‖H1,

|J3| ≤2χϕ‖∇σ‖L2‖∇∆ϕ‖L2,

|J4| ≤h0(λp‖σ‖L2 +‖u‖L2)(‖ϕ‖L2 +‖∆ϕ‖L2),

|J5| ≤C(1+‖σ2‖L2 +‖u2‖L2)‖ϕ‖2
H1 +C(1+‖σ2‖L2 +‖u2‖L2)‖ϕ‖L6‖∆ϕ‖L3

≤C(1+‖σ2‖L2 +‖u2‖L2)‖ϕ‖2
H1 +C(1+‖σ2‖H1 +‖u2‖L2)‖ϕ‖H1‖∆ϕ‖H1 .

Using Gagliardo-Nirenburg inequality yields

|J6|=
∣∣∣∣∫

Ω

∫ 1

0
F ′′(rϕ1 +(1− r)ϕ2)dr ϕ∆ϕ dx

∣∣∣∣
≤C(1+‖ϕ1‖4

L6 +‖ϕ2‖4
L6)‖ϕ‖L6‖∆ϕ‖L6

≤C(1+‖ϕ1‖4
H1 +‖ϕ2‖4

H1)‖ϕ‖H1‖∆ϕ‖H1,

|J7|=
∣∣∣∣∫

Ω

∫ 1

0
F ′′′(rϕ1 +(1− r)ϕ2)dr ϕ∇ϕ1 ·∇∆ϕ dx

∣∣∣∣
≤C(1+‖ϕ1‖3

L12 +‖ϕ2‖3
L12)‖ϕ‖L6‖∇ϕ1‖L12‖∇∆ϕ‖L2

≤C(1+‖ϕ1‖
21
8

H1‖ϕ1‖
3
8
H3 +‖ϕ2‖

21
8

H1‖ϕ2‖
3
8
H3)‖ϕ1‖

3
8
H1‖‖ϕ1‖

5
8
H3‖ϕ‖H1‖∆ϕ‖H1

≤C(1+‖ϕ2‖
7
2
H1‖ϕ2‖

1
2
H3)(‖ϕ‖H1 +‖ϕ‖

1
2
H1‖∆ϕ‖

1
2
H1)‖∆ϕ‖H1,

|J8| ≤‖F ′′(ϕ2)‖L3‖∇ϕ‖L6‖∇∆ϕ‖L2

≤C(1+‖ϕ2‖4
L12)(‖ϕ‖H1 +‖ϕ‖

1
2
H1‖∇∆ϕ‖

1
2
L2)‖∆ϕ‖H1.

Therefore, we conclude that there exists a positive constant K independent of δ , such that
d
dt

(
‖ϕ‖2

H1 +δ‖σ‖2
L2

)
+‖∇∆ϕ‖2

L2 +‖∆ϕ‖2
L2 +δ χσ‖∇σ‖2

L2 +δK‖σ‖2
L2(Γ)

≤K Lδ (t)
(
‖ϕ‖2

H1 +δ‖σ‖2
L2

)
+K ‖u‖2

L2 +K χσ‖∇σ‖2
L2,

where

Lδ (t) = δ

(
1+δ‖σ2‖2

H1 +(1+‖ϕ1‖6
H1 +‖ϕ2‖14

H1)(1+‖ϕ1‖2
H3 +‖ϕ2‖2

H3)+‖u2‖2
L2

)
.

Letting δ = K +1, we have
d
dt

(
‖ϕ‖2

H1 +(K +1)‖σ‖2
L2

)
+‖∇∆ϕ‖2

L2 +‖∆ϕ‖2
L2 +χσ‖∇σ‖2

L2 +K‖σ‖2
L2(Γ)

≤K LK +1(t)
(
‖ϕ‖2

H1 +(K +1)‖σ‖2
L2

)
+K ‖u‖2

L2,

where LK +1(t) ∈ L1(0,T ). Hence, applying the classical Gronwall inequality, we obtain

‖ϕ(t)‖2
H1 +(K +1)‖σ(t)‖2

L2 +
∫ t

0

(
‖∇∆ϕ(s)‖2

L2 +‖∆ϕ(s)‖2
L2 +χσ‖∇σ(s)‖2

L2

)
ds

≤eK
∫ t

0 LK +1(s)ds
(
‖ϕ0‖2

H1 +(K +1)‖σ0‖2
L2 +K ‖u(s)‖2

L2(Q)

)
. (3.10)

Therefore, we infer from inequality (3.10) that the weak solution to problem (1.1) is unique. �
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From Theorem 3.2, we infer that the control-to-state mapping S : u → (ϕ,µ,σ) is well-
defined and a locally Lipschitz continuous mapping from L2(Q) into Y = X2×L2(0,T ;H1)×
X1, where X2 = H1(0,T ;(H1)∗)∩L2(0,T ;H3) and X1 = H1(0,T ;(H1)∗)∩L2(0,T ;H1).

4. THE OPTIMAL CONTROL PROBLEM

In this section, we are in a position to consider the optimal control problem (CP) under
assumptions (A1)-(A7). The main results are the existence of an optimal control and the corre-
sponding first-order necessary conditions for optimality.

4.1. The existence of an optimal control. For optimal control problem (CP), we next demon-
strate the following existence result.

Theorem 4.1. Assume that (A1)-(A7) are in force. Then optimal control problem (CP) admits
at least one solution.

Proof. The proof makes use of the direct method from the calculus of variations. In fact, the
cost functional is non-negative, convex, and weakly lower semi-continuous. To this end, let
{un}∞

n=1 ⊂ Uad be a minimizing sequence for problem (CP), and let (ϕn,µn,σn) = S(un) for
each n ∈ N. From Theorem 3.1 and assumption (A4), we conclude that there exists

u ∈ L2(Q),

ϕ ∈ L∞(0,T ;H1)∩L2(0,T ;H3)∩H1(0,T ;(H1)∗),

µ ∈ L2(0,T ;H1),

σ ∈ L∞(0,T ;L2)∩L2(0,T ;H1)∩H1(0,T ;(H1)∗),

χ ∈ L
p

p−1 (0,T ;L
p

p−1 ),

such that we can extract a subsequence {(un j ,ϕn j ,µn j ,σn j ,F
′(φn j))}∞

j=1 of {(un,ϕn,µn,σn,

F ′(φn))}∞
n=1 satisfying

un j ⇀ u weakly in L2(Q),

ϕn j ⇀ ϕ weakly in L2(0,T ;H3)∩H1(0,T ;(H1)∗),

µn j ⇀ µ weakly in L2(0,T ;H1),

σn j ⇀ σ weakly in L2(0,T ;H1)∩H1(0,T ;(H1)∗),

F ′(φn j)⇀ χ weakly in L
p

p−1 (0,T ;L
p

p−1 ).

Since Uad is weakly closed, we obtain u ∈ Uad. Using the similar proof of Theorem 3.1, it
is easy to prove that (ϕ,µ,σ) is the weak solution to the problem (1.1) with the control u,
i.e., (ϕ,µ,σ) = S(u), which implies that (u,(ϕ,µ,σ)) is admissible for problem (CP). It then
follows from the weakly lower sequential semicontinuity of cost functional J that u is in fact
an optimal control for problem (CP). �

4.2. First-order necessary optimality conditions. In what follows, we firstly derive the first-
order necessary optimality conditions for (CP) in form. It follows from the quadratic form of
J and the chain rule that the Fréchet derivative of the reduced cost functional

J(u) = J (S(u),u)
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at every ū ∈U is

DJ(ū) = D(ϕ,µ,σ)J (S(ū), ū)◦DS(ū)+DuJ (S(ū), ū).

Thanks to the convexity of Uad, we deduce the formal first-order necessary condition for opti-
mality characterized by the following variational inequality:

DJ(ū)(u− ū)≥ 0, ∀ u ∈Uad (4.1)

for any minimizer ū of J in Uad.

4.2.1. Well-posedness of linearized system. To verify the above inference, we have to prove the
Fréchet differentiability of the reduced cost functional J. Thanks to the Fréchet differentiability
of J , it suffices to prove that S is Fréchet differentiable. In fact, assume that ū ∈ Uad and
(ϕ̄, µ̄, σ̄) stands for its associated state. It is necessary to establish the well-posedness of the
following linearized system:

∂tρ = ∆η +(λpθ −g)h(ϕ̄)+h′(ϕ̄)ρ(λpσ̄ −λa− ū),
η =−∆ρ +F ′′(ϕ̄)ρ−χϕθ ,

∂tθ = χσ ∆θ −χϕ∆ρ−λch(ϕ̄)θ −λch′(ϕ̄)ρσ̄ ,

∂νρ = ∂νη = 0, χσ ∂νθ +Kθ = 0,
ρ(x,0) = 0, θ(x,0) = 0

(4.2)

for any fixed g ∈ L2(Q).

Theorem 4.2. Assume that g ∈ L2(Q). Then there exists a unique weak solution (ρ,η ,θ) to
problem (4.2) with the control term g on [0,T ]. Furthermore, there exists a constant K3 > 0
depending only on R, T, L5, L7, |Ω|, and the initial data (ϕ0,σ0) of problem (1.1), such that

‖ρ‖2
X2

+‖η‖2
L2(0,T ;H1)+‖θ‖

2
X1
≤ K3‖g‖2

L2(Q). (4.3)

Proof. It is similar with the proof of Theorem 3.1 to seek for the following approximate solution
(ρn(t),ηn(t),θ n(t)) in the form

ρ
n(t) =

n

∑
i=1

αi(t)ωi, η
n(t) =

n

∑
i=1

βi(t)ωi, θ
n(t) =

n

∑
i=1

γi(t)ωi,

by solving the following problem

〈∂tρ
n,ψ〉+(∇ηn,∇ψ) = (h(ϕ̄)(λpθ n−g)+h′(ϕ̄)ρn(λpσ̄ −λa− ū),ψ) ,

(ηn,ξ ) = (∇ρn,∇ξ )+(F ′′(ϕ̄)ρn,ξ )−
(
χϕθ n,ξ

)
,

〈∂tθ
n,φ〉+χσ (∇θ n,∇φ) = χϕ (∇ρn,∇φ)−λc (h(ϕ̄)θ n +h′(ϕ̄)ρnσ̄ ,φ)

−K (θ n,φ)L2(Γ) ,

αi(0) = 0, γi(0) = 0, i = 1,2, · · · ,n

(4.4)

for any ψ, ξ , φ ∈Wn. Now, we establish some a priori estimates for (ρn(t),ηn(t),θ n(t)).
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First estimate. Taking ψ = ρn, ξ =−∆ρn, and φ = θ n in system (4.4), we obtain
1
2

d
dt

(
‖ρn‖2

L2 +‖θ n‖2
L2

)
+‖∆ρ

n‖2
L2 +χσ‖∇θ

n‖2
L2 +K‖θ n‖2

L2(Γ)+λc

∫
Ω

h(ϕ̄)|θ n|2 dx

=−2χϕ

∫
Ω

θ
n
∆ρ

n dx+
∫

Ω

F ′′(ϕ̄)ρn
∆ρ

n +
∫

Ω

h′(ϕ̄)ρn(λpσ̄ −λa− ū)ρn dx

−λc

∫
Ω

h′(ϕ̄)ρn
σ̄θ

n dx+
∫

Ω

h(ϕ̄)(λpθ
n−g)ρn dx

=:
5

∑
i=1

Ji.

From Hölder’s inequality and Gagliardo-Nirenberge inequality, we deduce

|J1| ≤2χϕ‖θ n‖L2‖∆ρ
n‖L2,

|J2| ≤‖F ′′(ϕ̄)‖L3‖ρn‖L6‖∆ρ
n‖L2 ≤ (1+‖ϕ̄‖

7
2
H1‖ϕ̄‖

1
2
H3)(‖ρn‖L2 +‖ρn‖

1
2
L2‖∆ρ

n‖
1
2
L2)‖∆ρ

n‖L2,

|J3| ≤Lh‖ρn‖2
L4‖λpσ̄ −λa− ū‖L2,

|J4| ≤Lhλc‖ρn‖L6‖σ̄‖L3‖θ n‖L2 ≤ Lhλc(‖ρn‖L2 +‖ρn‖
1
2
L2‖∆ρ

n‖
1
2
L2)‖σ̄‖H1‖θ n‖L2,

|J5| ≤h0(λp‖θ n‖L2 +‖g‖L2)‖ρn‖L2 ≤ h0(λp‖θ n‖L2 +‖g‖L2)‖ρn‖L2 .

In view of Young’s inequality, we have
d
dt

(
‖ρn‖2

L2 +‖θ n‖2
L2

)
+‖∆ρ

n‖2
L2 +χσ‖∇θ

n‖2
L2 +K‖θ n‖2

L2(Γ)

≤C(1+‖σ̄‖2
H1 +‖ū‖2

L2 +‖ϕ̄‖14
H1‖ϕ̄‖2

H3)(‖ρn‖2
L2 +‖θ n‖2

L2)+C‖g‖2
L2 .

We derive from the classical Gronwall inequality that, for any t ∈ [0,T ],

‖ρn(t)‖2
L2 +‖θ n(t)‖2

L2 +
∫ t

0

(
‖∆ρ

n(s)‖2
L2 +χσ‖∇θ

n(s)‖2
L2

)
ds

≤C‖g‖2
L2(Q) exp

(∫ T

0
L (r)dr

)
, (4.5)

where

L (t) = K1(1+‖σ̄‖2
H1 +‖ū‖2

L2 +‖ϕ̄‖14
H1‖ϕ̄‖2

H3) ∈ L1(0,T ).

Second estimate. Let ψ = −∆ρn in the first equation of problem (4.4). Accounting for
Hölder’s inequality, it is easy to see that

d
dt
‖∇ρ

n‖2
L2 +2‖∇∆ρ

n‖2
L2

≤2λph0 (‖θ n‖L2 +‖g‖L2)‖∆ρ
n‖L2 +2Lh‖ρn‖L6‖λpσ̄ −λa− ū‖L2‖∆ρ

n‖L3

+2(‖F ′′(ϕ̄)‖L3‖∇ρ
n‖L6 +‖F ′′′(ϕ̄)‖L4‖∇ϕ̄‖L12‖ρn‖L6)‖∇∆ρ

n‖L2

+2χϕ‖∇θ
n‖L2‖∇∆ρ

n‖L2.

Young’s inequality along with Gagliardo-Nirenberge inequality leads us to
d
dt
‖∇ρ

n‖2
L2 +‖∇∆ρ

n‖2
L2 +‖∇ρ

n‖2
L2

≤C(1+‖σ̄‖2
L2‖ū‖2

L2 +‖F ′′′(ϕ̄)‖2
L4‖∇ϕ̄‖2

L12 +‖F ′′(ϕ̄)‖4
L3)‖ρn‖2

H1 +C(‖θ n‖2
L2 +‖g‖2

L2)
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and

‖F ′′′(ϕ̄)‖2
L4‖∇ϕ̄‖2

L12 ≤C(1+‖ϕ̄‖
21
4

H1‖ϕ̄‖
3
4
H3)‖ϕ̄‖

3
4
H1‖ϕ̄‖

5
4
H3 ≤ (1+‖ϕ̄‖6

H1)‖ϕ̄‖2
H3,

‖F ′′(ϕ̄)‖4
L3 ≤C(1+‖ϕ‖14

H1‖ϕ‖2
H3).

At this point, we collect the above estimates, and apply the classical Gronwall’s inequality, to
conclude that there exists a positive constant D2(T ) such that, for any t ∈ [0,T ],

‖∇ρ
n(t)‖2

L2 +
∫ t

0
‖∇∆ρ

n(s)‖2
L2 ds+

∫ t

0
‖∇ρ

n(s)‖2
L2 ds≤ D2(T )‖g‖2

L2(Q). (4.6)

Inserting ξ =−∆ηn, we arrive at

‖∇η
n‖2

L2 =−
∫

Ω

(
∇∆ρ

n ·∇η
n−∇(F ′′(ϕ̄)ρn) ·∇η

n +χϕ∇θ
n ·∇η

n) dx

≤(‖F ′′(ϕ̄)‖L3‖∇ρ
n‖L6 +‖F ′′′(ϕ̄)‖L4‖∇ϕ̄‖L12‖ρn‖L6 +‖∇∆ρ

n‖L2)‖∇η
n‖L2

+χϕ‖∇θ
n‖L2‖∇η

n‖L2,

which implies that

‖∇η
n‖2

L2 ≤C
(
1+‖F ′′(ϕ̄)‖4

L3 +‖F ′′′(ϕ̄)‖2
L4‖∇ϕ̄‖2

L12

)
‖ρn‖2

H1

+C
(
‖∇∆ρ

n‖2
L2 +‖∇θ

n‖2
L2

)
.

Furthermore, letting ξ = 1, one obtains that∣∣∣∣∫
Ω

η
n(x, t)dx

∣∣∣∣≤ χϕ‖θ n‖L2|Ω|
1
2 +‖F ′′(ϕ̄)‖L3‖ρn‖

L
3
2
.

In view of Lemma 2.1, one sees that

‖ηn(t)‖L2 ≤‖ηn−M(ηn)‖L2 + |M(ηn)||Ω|
1
2

≤C
(
‖∇η

n‖L2 +‖θ n‖L2 +‖F ′′(ϕ̄)‖L3‖ρn‖H1
)
.

We infer from the above inequalities and Theorem 3.1 that there exists a positive constant D3(T )
such that ∫ t

0
‖ηn(s)‖2

H1 ds≤ D3(T )‖g‖2
L2(Q). (4.7)

Estimates on time derivatives. From the first and third equations of problem (4.4), we find

‖∂tρ
n‖(H1)∗ ≤ λph0‖θ n‖L2 +h0‖g‖L2 +‖∇η

n‖L2 +Lh‖λpσ̄ −λa− ū‖L2‖ρn‖L3

and

‖∂tθ
n‖(H1)∗ ≤χσ‖∇θ

n‖L2 +χϕ‖∇ρ
n‖L2 +λch0‖θ n‖L2 +λcLh‖σ̄‖L3‖ρn‖L2

+K‖θ n‖L2(Γ).

Consequently, there exists a positive constant D4(T ), such that∫ T

0
‖∂tρ

n(t)‖2
(H1)∗ dt +

∫ T

0
‖∂tθ

n(t)‖2
(H1)∗ dt ≤ D4(T )‖g‖2

L2(Q). (4.8)

Therefore, we can obtain the existence of a weak solution for problem (4.2) by combining
the above inequalities and compactness theorem. Moreover, we conclude from inequalities
(4.5)-(4.8) and the lower semi-continuity of norms that inequality (4.3) is valid.
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In what follows, we demonstrate the uniqueness of weak solutions to problem (4.2). Suppose
that (ρ1,η1,θ1) and (ρ2,η2,θ2), respectively, are two weak solutions to problem (4.2). Let
(ρ,η ,θ) = (ρ1−ρ2,η1−η2,θ1−θ2). Then (ρ,η ,θ) satisfies the following equations

∂tρ = ∆η +λph(ϕ̄)θ +h′(ϕ̄)ρ(λpσ̄ −λa− ū),
η =−∆ρ +F ′′(ϕ̄)ρ−χϕθ ,

∂tθ = χσ ∆θ −χϕ∆ρ−λch(ϕ̄)θ −λch′(ϕ̄)ρσ̄ ,

∂νρ = ∂νη = 0, χσ ∂νθ +Kθ = 0,
ρ(x,0) = 0, θ(x,0) = 0.

Repeating the proof of inequality (4.5) with g≡ 0, we obtain

(ρ1(x, t),η1(x, t),θ1(x, t)) = (ρ2(x, t),η2(x, t),θ2(x, t))

for almost everywhere (x, t) ∈ Q. �

4.2.2. Fréchet differentiability. Based on Theorem 3.2, we are in a position to verify the Fréchet
differentiability of operator S.

Theorem 4.3. Assume that (A1)-(A7) are satisfied. Then the following two conclusions hold:

(i) For any ū ∈ Uad, the control-to-state mapping S is Fréchet differentiable in U as a
mapping from L∞(Q) into Y . Moreover, the Fréchet derivative DS(ū) ∈L (L∞(Q),Y )
is defined as follows: for any g ∈ L∞(Q), DS(ū)g = (ρ,η ,θ), where (ρ,η ,θ) is the
unique weak solution to the linearized system (4.2) associated with g.

(ii) The mapping DS : U →L (L∞(Q),Y ) is Lipschitz continuous on U in the following
sense: there is a constant K4 > 0 such that, for any u, ū ∈U and any g ∈ L∞(Q),

‖DS(u)g−DS(ū)g‖Y ≤ K4‖u− ū‖L2(Q)‖g‖L∞(Q). (4.9)

Proof. For any fixed ū∈U , let (ϕ̄, µ̄, σ̄) = S(ū)∈Y be the associated solution to system (1.1).
Since U is an open subset of L∞(Q), there exists some δ > 0 such that, for any g ∈ L∞(Q) with
‖g‖L∞(Q) ≤ δ , ū+g ∈U . Let (ϕg,µg,σg) be the unique weak solution to the state system (1.1)
with ū+ g and (ρ,η ,θ) be the unique weak solution to the linearized system (4.2) associated
with g.

For convenience, denote by ϕ(t) := ϕg(t)− ϕ̄(t), µ(t) := µg(t)− µ̄(t), σ(t) := σg(t)−
σ̄(t), ψ(t) := ϕ(t)−ρ(t), χ(t) := µ(t)−η(t), ξ (t) := σ(t)−θ(t), F (t) = F ′(ϕg)−F ′(ϕ̄)−
F ′′(ϕ̄)ρ , and H (t) := h(ϕg(t))−h(ϕ̄)(t)−h′(ϕ̄(t))ρ(t) for any t ≥ 0. Then (ψ,χ,ξ ) satisfies
the following equations:

〈∂tψ,Ψ〉+(∇χ,∇Ψ) = (λph(ϕ̄)ξ ,Ψ)+(H (λpσ̄ −λa− ū),Ψ)

+((λpσ −g)(h(ϕg)−h(ϕ̄)),Ψ) ,

(χ,Θ)+(∇ψ,∇Θ) =
(
F −χϕξ ,Θ

)
,

〈∂tξ ,Φ〉+
(
χσ ∇ξ −χϕ∇ψ,∇Φ

)
=−(λch(ϕ̄)ξ ,Φ)−λc (H σ̄ ,Φ)

−λc ((h(ϕg)−h(ϕ̄))σ ,Φ)−K (ξ ,Φ)L2(Γ) ,

ψ(x,0) = 0, ξ (x,0) = 0

(4.10)

for any Ψ,Θ,Φ ∈ H1, and a.e. t ∈ (0,T ).
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First estimates. Inserting Ψ = ψ , Θ =−∆φ , and Φ = ξ in system (4.10), we obtain

1
2

d
dt

(
‖ψ‖2

L2 +‖ξ‖2
L2

)
+‖∆ψ‖2

L2 +χσ‖∇ξ‖2
L2 +K‖ξ‖2

L2(Γ)+λc

∫
Ω

h(ϕ̄)|ξ |2 dx

=
∫

Ω

F∆ψ dx−λc

∫
Ω

H σ̄ξ dx+λp

∫
Ω

h(ϕ̄)ξ ψ dx+
∫

Ω

H (λpσ̄ −λa− ū)ψ dx

+
∫

Ω

(λpσ −g)(h(ϕg)−h(ϕ̄))ψ dx−λc

∫
Ω

(h(ϕg)−h(ϕ̄))σξ dx

−2χϕ

∫
Ω

∆ψξ dx. (4.11)

Now, we estimate each term of the right hand side of inequality (4.11) one by one. Thanks to

f (ϕg)− f (ϕ̄)− f ′(ϕ̄)ρ =

(∫ 1

0
( f ′(rϕ

g +(1− r)ϕ̄)− f ′(ϕ̄))dr
)

ϕ + f ′(ϕ̄)ψ (4.12)

for any function f ∈ C 1(R), Hölder inequality, Gagliardo-Nirenberge inequality, and assump-
tion (A4), we infer that∣∣∣∣∫

Ω

F∆ϕ dx
∣∣∣∣≤C(1+‖ϕg‖3

L18 +‖ϕ̄‖3
L18)‖ϕ‖2

L6‖∆ψ‖L2 +‖F ′′(ϕ̄)‖L3‖ψ‖L6‖∆ψ‖L2

≤C(1+‖ϕg‖
5
2
H1‖ϕg‖

1
2
H3 +‖ϕ̄‖

5
2
H1‖ϕ̄‖

1
2
H3)‖ϕ‖2

H1‖∆ψ‖L2

+C(1+‖ϕ̄‖
7
2
H1‖ϕ̄‖

1
2
H3)(‖ψ‖L2 +‖ψ‖

1
2
L2‖∆ψ‖

1
2
L2)‖∆ψ‖L2 (4.13)

and ∣∣∣∣∫
Ω

H σ̄ξ dx
∣∣∣∣≤Lh‖ϕ‖2

L6‖σ̄‖L2‖ξ‖L6 +Lh‖ψ‖L2‖σ̄‖L3‖ξ‖L6

≤C
(
‖ϕ‖2

H1‖σ̄‖L2‖ξ‖H1 +‖ψ‖L2‖σ̄‖H1‖ξ‖H1
)
. (4.14)

Similarly, we can prove that∣∣∣∣∫
Ω

H (λpσ̄ −λa− ū)ψ dx
∣∣∣∣

≤C‖ϕ‖2
H1(1+‖σ̄‖L2 +‖ū‖L2)(‖ψ‖L2 +‖ψ‖

1
2
L2‖∆ψ‖

1
2
L2)

+C(1+‖σ̄‖L2 +‖ū‖L2)(‖ψ‖2
L2 +‖ψ‖

5
4
L2‖∆ψ‖

3
4
L2). (4.15)

In addition, we obtain ∣∣∣∣∫
Ω

(λpσ −g)(h(ϕg)−h(ϕ̄))ψ dx
∣∣∣∣

≤(‖σ‖L2 +‖g‖L2)‖ϕ‖L3‖ψ‖L6

≤(‖σ‖L2 +‖g‖L2)‖ϕ‖H1(‖ψ‖L2 +‖ψ‖
1
2
L2‖∆ψ‖

1
2
L2) (4.16)

and ∣∣∣∣∫
Ω

(h(ϕg)−h(ϕ̄))σξ dx
∣∣∣∣≤C‖ϕ‖H1‖σ‖L2(‖ξ‖L2 +‖ξ‖

1
2
L2‖∇ξ‖

1
2
L2). (4.17)
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It follows from Young’s inequality, Hölder’s inequality, and inequalities (4.11), (4.13)-(4.17)
that

d
dt

(
‖ψ‖2

L2 +‖ξ‖2
L2

)
+‖∆ψ‖2

L2 +χσ‖∇ξ‖2
L2 +K‖ξ‖2

L2(Γ)

≤H1(t)(‖ψ‖2
L2 +‖ξ‖2

L2)+H2(t),

where

H1(t) =C(1+‖ϕ̄‖14
H1‖ϕ̄‖2

H3 +‖σ̄‖2
H1 +‖ū‖2

L2),

H2(t) =C(1+‖ϕg‖5
H1‖ϕg‖H3 +‖ϕ̄‖5

H1‖ϕ̄‖H3 +‖σ̄‖2
L2 +‖ū‖2

L2)(‖ϕ‖4
H1 +‖σ‖4

L2)

+‖g‖4
L2.

From the classical Gronwall inequality, Theorem 3.1, and Theorem 3.2, we deduce that there
exists a positive constant D5(T ) such that, for any t ∈ [0,T ],

‖ψ(t)‖2
L2 +‖ξ (t)‖2

L2 +χσ

∫ t

0
‖∇ξ (s)‖2

L2 ds+
∫ t

0
‖ψ(s)‖2

H2 ds+K
∫ t

0
‖ξ (s)‖2

L2(Γ) ds

≤D5(T )‖g‖4
L2(Q). (4.18)

Second estimates. Letting Ψ =−∆ψ in the first equation of system (4.10), one sees that

d
dt
‖∇ψ‖2

L2 +‖∇∆ψ‖2
L2 +2‖∇χ‖2

L2

=−2
∫

Ω

∇
(
F −χϕξ

)
· (∇∆ψ +∇χ)dx−2

∫
Ω

H (λpσ̄ −λa− ū)∆ψ dx

−2λp

∫
Ω

h(ϕ̄)ξ ∆ψ dx−2
∫

Ω

(λpσ −g)(h(ϕg)−h(ϕ̄))∆ψ dx

With the help of Hölder’s inequality and inequality (4.12), we obtain

d
dt
‖∇ψ‖2

L2 +‖∇∆ψ‖2
L2 +‖∇χ‖2

L2

≤
(
‖∇F‖L2 +χϕ‖∇ξ‖L2

)
(‖∇∆ψ‖L2 +‖∇χ‖L2)+2Lh(‖σ‖L2 +‖g‖L2)‖ϕ‖L6‖∆ψ‖L3

+C(‖ϕ‖2
L6 +‖ψ‖L6)‖λpσ̄ −λa− ū‖L2‖∆ψ‖L3 +2λph0‖ξ‖L2‖∆ψ‖L2. (4.19)

Next, we estimate the term ‖∇F‖L2 by inequality (4.12) and Hölder’s inequality.

‖∇F‖L2 =‖∇(F ′(ϕg)−F ′(ϕ̄)−F ′′(ϕ̄)ρ)‖L2

≤‖(F ′′(ϕg)−F ′′(ϕ̄)−F ′′′(ϕ̄)ρ)∇ϕ
g‖L2 +‖F ′′(ϕ̄)∇ψ‖L2 +‖F ′′′(ϕ̄)ρ∇ϕ‖L2

≤C(1+‖ϕg‖2
L24 +‖ϕ̄‖2

L24)‖ϕ‖2
L6‖∇ϕ

g‖L12 +‖F ′′′(ϕ̄)‖L6‖∇ϕ
g‖L6‖ψ‖L6

+‖F ′′(ϕ̄)‖L3‖∇ψ‖L6 +‖F ′′′(ϕ̄)‖L6‖∇ϕ‖L6‖ρ‖L6. (4.20)

Concluding from the classical Gronwall inequality, Theorem 3.1, Theorem 3.2, Theorem 4.2,
inequalities (4.18)-(4.20), and Gagliardo-Nirenberge inequality, we know that there exists a
positive constant D6(T ) such that, for any t ∈ [0,T ],

‖∇ψ(t)‖2
L2 +

∫ t

0
‖∇∆ψ(s)‖2

L2 ds+
∫ t

0
‖∇χ(s)‖2

L2 ds≤ D6(T )‖g‖4
L2(Q). (4.21)
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Estimates on time derivatives. From the first and third equations of system (4.10), we find

‖∂tψ‖(H1)∗ ≤‖∇χ‖L2 +λph0‖ξ‖L2 +C‖ϕ‖2
L6‖λpσ̄ −λa− ū‖L2

+Lh‖ψ‖L6‖λpσ̄ −λa− ū‖L2 +C(‖σ‖L2 +‖g‖L2)‖ϕ‖H1 (4.22)

and

‖∂tξ‖(H1)∗ ≤χσ‖∇ξ‖L2 +χϕ‖∇ψ‖L2 +λch0‖ξ‖L2 +C‖ϕ‖2
L6‖σ̄‖L6 +Lhλc‖ψ‖L6‖σ̄‖L3

+λcLh‖ϕ‖L3‖σ‖L2 +K‖ξ‖L2(Γ). (4.23)

With the help of Theorem 3.1, Theorem 3.2, and inequalities (4.18), (4.21)-(4.23), we infer that
there exists a generic positive constant D7(T ) such that, for any t ∈ [0,T ],∫ t

0
‖∂tψ(s)‖2

(H1)∗ ds+
∫ t

0
‖ξt(s)‖2

(H1)∗ ds≤ D7(T )‖g‖4
L2(Q). (4.24)

Hence, we obtain the validity of (i).
Now, we prove the validity of (ii). For any fixed ū ∈U , let k ∈ L∞(Q) satisfy ū+k ∈U . De-

note by (ϕk,µk,σ k) = S(ū+ k), (ϕ̄, µ̄, σ̄) = S(ū) and (ϕ,µ,σ) = (ϕk− ϕ̄,µk− µ̄,σ k− σ̄) =
S(ū + k)− S(ū). For any fixed g ∈ L2(Q), we write (ρg,ηg,θ g) = DS(ū + k)g, (ρ̄, η̄ , θ̄) =
DS(ū)g, and (ρ,η ,θ) = (ρg− ρ̄,ηg− η̄ ,θ g− θ̄) = DS(ū+ k)g−DS(ū)g. Then, (ρ,η ,θ) sat-
isfies the following system:

〈∂tρ,Ψ〉+(∇η ,∇Ψ) =
(
(h(ϕk)−h(ϕ̄))(λpθ g−g)+λph(ϕ̄)θ ,Ψ

)
+
(
h′(ϕ̄)ρ̄(λpσ − k)+h′(ϕ̄)ρ(λpσ k−λa− ū− k),Ψ

)
+
(
(h′(ϕk)−h′(ϕ̄))ρg(λpσ k−λa− ū− k),Ψ

)
,

(η ,Θ)+(∇ρ,∇Θ) =
(
(F ′′(ϕk)−F ′′(ϕ̄))ρg +F ′′(ϕ̄)ρ−χϕθ ,Θ

)
,

〈∂tθ ,Φ〉+
(
χσ ∇θ −χϕ∇ρ,∇Φ

)
=−λc

(
(h(ϕk)−h(ϕ̄))θ g +h(ϕ̄)θ ,Φ

)
−λc

(
h′(ϕ̄)ρσ k +(h′(ϕk)−h′(ϕ̄))ρgσ k +h′(ϕ̄)ρ̄σ ,Φ

)
−K (θ ,Φ)L2(Γ) ,

ρ(x,0) = 0, θ(x,0) = 0

(4.25)

for any Ψ,Θ,Φ ∈ H1 and a.e. t ∈ (0,T ).
Here, we do not provide the details of the proof of inequality (4.9) since the process is quite

similar to the proof of (i) by establishing some a priori estimates of the solutions to system
(4.25). �

4.2.3. Variational inequality. By the above results, we can first reduce the formal first-order
necessary condition (4.1) as follows.

Theorem 4.4. Let (A1)-(A7) hold. If ū ∈ Uad is an optimal control for the optimal control
problem (CP) with associated state (ϕ̄, µ̄, σ̄) = S(ū) ∈ Y , then, for any u ∈Uad,

α0

∫
Q
(ϕ̄(x, t)−ϕQ)ρ(x, t)dxdt +α1

∫
Ω

(ϕ̄(x,T )−ϕΩ)ρ(x,T )dx

+β0

∫
Q
(σ̄(x, t)−σQ)θ(x, t)dxdt +β1

∫
Ω

(σ̄(x,T )−σΩ)θ(x,T )dx

+β2

∫
Q

ū(x, t)(u(x, t)− ū(x, t))dxdt ≥ 0, (4.26)
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where (ρ,η ,θ) = DS(ū)(u− ū) ∈ Y is the unique weak solution to the linearized system (4.2)
with g = u− ū.

4.2.4. Well-posedness of the adjoint system. In order to simplify variational inequality (4.26)
by eliminating the linearized variables ρ,θ , we should first introduce the following (formal)
version of the adjoint system to (4.2) which can be obtained by the formal Lagrangian method
described, e.g., in [41]:

∂tψ =−∆χ− (λpσ̄ −λa− ū)h′(ϕ̄)ψ +F ′′(ϕ̄)χ +χϕ∆ζ +λch′(ϕ̄)ζ σ̄

−α0(ϕ̄(x, t)−ϕQ),

χ =−∆ψ,

∂tζ =−χσ ∆ζ −λph(ϕ̄)ψ−χϕ χ +λch(ϕ̄)ζ −β0(σ̄(x, t)−σQ),

∂νψ = ∂ν χ = 0, χσ ∂νζ +Kζ = 0,
ψ(x,T ) = α1(ϕ̄(x,T )−ϕΩ),

ζ (x,T ) = β1(σ̄(x,T )−σΩ).

(4.27)

Moreover, we have the following well-posedness result.

Theorem 4.5. Let (A1)-(A7) hold. If ū ∈ Uad is an optimal control for the optimal control
problem (CP) with the associated state (ϕ̄, µ̄, σ̄) = S(ū) ∈ Y , then the adjoint state system
(4.27) has a unique solution (ψ,χ,ζ ) ∈ Y .

Proof. A similar result on the existence, uniqueness, and regularity was proved in Theorem 3.1.
Here, we do not provide the details to prove the well-posedness of the adjoint system (4.27). �

4.2.5. The simplified variational inequality. At the end of this section, we would like to employ
the adjoint variables to eliminate the linearized variables ρ,θ from variational inequality (4.26).

Theorem 4.6. Under the same assumptions of Theorem 4.5, we have∫
Q
(β2ū−h(ϕ̄)ψ)(u− ū)dxdt ≥ 0 (4.28)

for any u ∈Uad.

Proof. Denote by (ρ,η ,θ) the weak solution of (4.2) with g = u− ū for any u ∈ Uad . Let
(ψ,χ,ζ ) be the weak solution to (4.27). Multiplying the first, the second, and the third equa-
tions of (4.2) with g = u− ū by ψ, χ , and ζ , respectively, and integrating by parts, we derive
that ∫

Q
∂tρψ dxdt +

∫
Q

∇η ·∇ψ dxdt−
∫

Q
h(ϕ̄)(λpθ − (u− ū))ψ dxdt +

∫
Q

F ′′(ϕ̄)ρχ dxdt

−
∫

Q
h′(ϕ̄)ρ(λpσ̄ −λa− ū)ψ dxdt−

∫
Q

ηχ dxdt +
∫

Q
∇ρ ·∇χ dxdt−χϕ

∫
Q

θ χ dxdt

+
∫

Q
∂tθζ dxdt +χσ

∫
Q

∇θ ·∇ζ dxdt−χϕ

∫
Q

∇ρ ·∇ζ dxdt +λc

∫
Q

h(ϕ̄)θζ dxdt

+λc

∫
Q

h′(ϕ̄)ρσ̄ζ dxdt +K
∫

Σ

θζ dSdt = 0. (4.29)
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Meanwhile, multiplying the first, the second, and the third equation of (4.27) by ρ, η , and θ ,
respectively, and integrating by parts, we find

−
∫

Q
∂tψρ dxdt +

∫
Q

∇χ ·∇ρ dxdt−
∫

Q
(λpσ̄ −λa− ū)h′(ϕ̄)ψρ dxdt

+
∫

Q
F ′′(ϕ̄)χρ dxdt−χϕ

∫
Q

∇ζ ·∇ρ dxdt +λc

∫
Q

h′(ϕ̄)ζ σ̄ρ dxdt−
∫

Q
χη dxdt

+
∫

Q
∇ψ ·∇η dxdt−

∫
Q

∂tζ θ dxdt +χσ

∫
Q

∇ζ ·∇θ dxdt +K
∫

Σ

ζ θ dSdt

−λp

∫
Q

h(ϕ̄)ψθ dxdt−χϕ

∫
Q

χθ dxdt +λc

∫
Q

h(ϕ̄)ζ θ dxdt

=β0

∫
Q
(σ̄(x, t)−σQ)θ dxdt +α0

∫
Q
(ϕ̄(x, t)−ϕQ)ρ dxdt. (4.30)

Adding (4.29) to (4.30), one sees that, for any u ∈Uad,

α0

∫
Q
(ϕ̄(x, t)−ϕQ)ρ(x, t)dxdt +α1

∫
Ω

(ϕ̄(x,T )−ϕΩ)ρ(x,T )dx

+β0

∫
Q
(σ̄(x, t)−σQ)θ(x, t)dxdt +β1

∫
Ω

(σ̄(x,T )−σΩ)θ(x,T )dx

=−
∫

Q
h(ϕ̄)(u− ū)ψ dxdt. (4.31)

Therefore, inserting inequality (4.31) into inequality (4.26), we obtain∫
Q
(β2ū−h(ϕ̄)ψ)(u− ū)dxdt ≥ 0

for any u ∈Uad. �

According to inequality (4.28), we immediately conclude the following results as in [41].

Corollary 4.1. Since Uad is a nonempty, closed, and convex subset of L2(Q), from the standard
arguments and inequality (4.28), we obtain the following conclusions:

(i) If β2 > 0, the optimal control ū is nothing but the L2(Q) orthogonal projection of h(ϕ̄)ψ
β2

onto Uad. In other words,

ū(x, t) = P(
h(ϕ̄)ψ

β2
),

where P is the orthogonal projector in L∞(Q) onto Uad. Applying the standard argu-
ments, it follows from this projection property that the pointwise condition

ū(x, t) = max{umin,min{h(ϕ̄)ψ
β2

,umax}}, for a.e. (x, t) ∈ Q.

(ii) If β2 = 0, then

ū(x, t) =

{
umin, if h(ϕ̄)ψ > 0,
umax, if h(ϕ̄)ψ < 0.

Based on the stability estimates of higher order both on the initial data and control parameter
established in Theorem 3.2, we are eager to give the following remarks at the end of this paper.
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Remark 4.1. In Theorem 4.3, we have demonstrated the Fréchet differentiability of the control-
to-state mapping from L∞(Q) to Y . If the cost functional is given by

J ((ϕ,µ,σ);u) =
α0

2

∫
Q
|∇ϕ(x, t)−∇ϕQ(x, t)|2 dxdt +

β0

2

∫
Q
|σ(x, t)−σQ(x, t)|2 dxdt

+
α1

2

∫
Ω

|∇ϕ(x,T )−∇ϕΩ(x)|2 dx+
β1

2

∫
Ω

|σ(x,T )−σΩ(x)|2 dx

+
β2

2

∫
Q
|u(x, t)|2 dxdt,

then, under the same assumptions in Theorem 4.6 but ϕΩ ∈H3, by the similar proof of Theorem
4.1 and Theorem 4.4, the conclusion of Theorem 4.6 still holds true for the component ψ of
the solution to the problem (4.27) with (−α0(ϕ̄(x, t)− ϕQ),α1(ϕ̄(x,T )− ϕΩ)) replacing by
(α0∆(ϕ̄(x, t)−ϕQ),−α1∆(ϕ̄(x,T )−ϕΩ)).

Remark 4.2. Inspired by the idea of the so-called “two-norm discrepancy” (see [41]), we will
be able to prove the twice Fréchet differentiability of the control-to-state mapping S by some
tedious calculations. Furthermore, we can establish the second-order sufficient optimality con-
ditions of the optimal control problem (CP) by some similar arguments as in [41].

5. CONCLUSION

In this work, we studied a phase field model for tumour growth with chemotaxis and active
transport. In contrast to other models for tumour growth studied in the literatures, the model
presented here admits an energy equality with non-dissipative right-hand sides and allows for
some realistic source terms. We presented some theoretical results including the well-posedness
of the system and the corresponding optimal distributed control problem under more general
growth assumptions on the potential F than the ones in [19]. We pointed out that F can be
the classical quartic double-well potential, which is the standard approximation for the physical
relevant logarithmic potentials. Therefore, our results can play a role in dealing with singular
potentials for phase field models for tumour growth with chemotaxis and active transport.
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