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Abstract. In this paper, we study the following fractional Schrödinger-Poisson system{
(−∆)su+V (x)u+φu = (Iµ ∗F(u)) f (u)+ |u|2∗s−2u, in R3,

(−∆)tφ = u2, in R3,

where 0 < s, t < 1, 2(s+ t)> 3,µ ∈ (s+ t,3), s ∈ [3
4 ,1), and 2∗s =

6
3−2s is the fractional critical Sobolev

exponent. By using a monotonicity argument and the global compactness lemma, we obtain the existence
of a ground state solution for this system.
Keywords. Critical growth; Choquard equation; Fractional Schrödinger-Poisson system; Ground state
solution; Pohoz̆aev identity.

1. INTRODUCTION

In this paper, we study the following fractional Schrödinger-Poisson system{
(−∆)su+V (x)u+φu = (Iµ ∗F(u)) f (u)+ |u|2∗s−2u, in R3,

(−∆)tφ = u2, in R3,
(1.1)

where 0 < s, t < 1, 2(s+ t) > 3, µ ∈ (s+ t,3), s ∈ [3
4 ,1), F(t) =

∫ t
0 f (τ)dτ, 2∗s =

6
3−2s is the

fractional critical Sobolev exponent, and (−∆)s is the fractional Laplacian operator defined as

(−∆)su(x) =CsP.V.
∫
R3

u(x)−u(y)
|x− y|3+2s dy, x ∈ R3,

where Cs =
(∫

R3
1−cosζ1
|ζ |3+2s dζ

)−1
is a suitable normalization constant (see [1]), P.V. is a commonly

used abbreviation for the principal value sense, and Iµ : R3 \ {0} → R is the Riesz potential
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defined by

Iµ(x) =
Γ(3−µ

2 )

Γ(µ

2 )π
3
2 2µ |x|3−µ

, x ∈ R3\{0},

where Γ is the Gamma function, and V and f satisfy the following assumptions:
(V1) V ∈ C 1(R3)∩L∞(R3) and 2sV (x)+(∇V (x),x)≥ 0 for any x ∈ R3;
(V2)V (x)≤ liminf|y|→+∞V (y) =V∞ ∈R+ for all x∈R3 and the inequality is strict in a subset

of positive Lebesgue measure;
(V3) there exits a constant α0 > 0 such that

α0 = inf
u∈Hs(R3)\{0}

∫
R3

(
|(−∆)

s
2 u|2 +V (x)|u|2

)
dx∫

R3 |u|2dx
> 0;

( f1) f ∈ C (R,R), f (τ)≡ 0 for all τ ∈ (−∞,0), and there exits C0 > 0 and 1+ µ

3 < q < 2∗µ,s
such that, for every t ∈ R,

| f (t)| ≤C0(|t|
µ

3 + |t|q−1),

where 2∗µ,s =
µ+3
3−2s is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality;

( f2) limτ→0+
f (τ)
τµ/3 = limτ→+∞

f (τ)

τ
2∗µ,s−1 = 0;

( f3) [2(s+t) f (τ)τ−(3+µ)F(τ)]/τ(6+µ)/2(s+t) is non-decreasing on (0,+∞), where F(τ)=∫
τ

0 f (u)du;
( f4) there exist ν > 0 and p ∈ (2,2∗µ,s) such that f (τ)≥ ντ p−1 for any τ ≥ 0.

Remark 1.1. An exemple of V satisfying (V1) and (V2) can be found in [2, Remark 1.3].

When s = t = 1, the Schrödinger-Poisson type problem{
−∆u+V (x)u+φu = (Iµ ∗ f (u))F(u), in R3,

−∆φ = u2, in R3,
(1.2)

has been widely studied in recent years, where V ∈ C (R3, [0,+∞)) and f ∈ C (R,R); see [3, 4,
5] and the references therein.

When φ(x) = 0, system (1.2) reduces to the Choquard equation

−∆u+V (x)u = (Iµ ∗ f (u))F(u), u ∈ H1(R3). (1.3)

For the case that µ = 2, p = 2, V (x)≡ 1, and f (u) = u, (1.3) is known as the Choquard-Pekar
equation or the stationary Hartree equation, which was first introduced by Pekar [6] to describe
the quantum mechanics of static polarons. Later, Choquard rediscovered it as an approximation
of Hartree-Fock’s theory of single-component plasma [7] on the modeling of an electron trapped
in its own hole. For more details and applications, one refers to [8, 9, 10, 11, 12, 13, 14]. For the
case that V ≡ 1 and f (u) = |u|p−2u, Moroz and Van Schaftingen[9] obtained a solution to (1.3)
when 1+ µ

3 < p < 3+ µ , where 1+ µ

3 and 3+ µ are the lower and upper critical exponents.
Afterwards, these results were extended to the case of general functions F , almost optimal in
the sense of Berestyski-Lions or the more general potential V ; see [15, 16, 17, 18]
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When V ≡ 1, Xie, Chen, and Wu [19] studied the following Schrödinger-Poisson system with
Hartree-type nonlinearity{

−∆u+u+λφu = (Iµ ∗ |u|p)|u|p−2u, in R3,

−∆φ = u2, in R3,

where λ > 0, 0 < µ < 3, Iµ is the Riesz potential, and 3+µ

3 < p < 3+µ . Using the Pohožaev
type identity and the filtration of Nehari manifold, they obtained the existence of positive ground
state solutions.

In recent years, researchers paid much more attention to the existence of positive solutions,
ground state solutions, multiple solutions, nodal solutions, and semi-classical states of fractional
Schrödinger-Poisson systems such as{

(−∆)su+V (x)u+K(x)φ |u|q−2u = (Iµ ∗ |u|p)|u|p−2u, in R3,

(−∆)tφ = K(x)|u|q, in R3,
(1.4)

where 3+µ

3 < p < 3+µ

3−2s , 1 < q < p. For instance, Teng and Agarwal [20] established the ex-
istence of non-negative ground state solution and also discussed the nonexistence of ground
states to (1.4) with subcritical Choquard nonlinearity. Che, Su, and Chen [21] obtained the ex-
istence of ground state solutions for fractional Choquard equations with competing potentials.
The authors in [22, 23] recently studied quasilinear versions of the Choquard equation with the
p-Laplace operator, and obtained the existence and nonexistence of positive solutions for the
quasilinear elliptic inequalities and systems with nonlocal terms.

Inspired by the results above, when K(x) ≡ 1 and q = 2, we study the general convolution
term to (1.4). To the best of our knowledge, there is no result for the existence of non nega-
tive least energy solutions for the fractional Choquard-Schrödinger-Poisson systems (1.1) with
critical growth. Next, we list our main result.

Theorem 1.1. Assume that (V1)− (V3) and ( f1)− ( f4) hold and 2(s+ t) > 3, µ ∈ (s+ t,3),
and s ∈ [3

4 ,1).
(i) If p ∈ (2,2∗s − 1], then there exists ν1 > 0 such that, for ν > ν1, system (1.1) has a non-

negative ground state solution.
(ii) If p ∈ (2∗s − 1,2∗µ,s), then, for any ν > 0, system (1.1) has a nonnegative ground state

solution.

Since f does not satisfy the Ambrosetti-Rabinowitz condition and V (x) is not a constant, it is
difficult to obtain the boundedness of (PS) sequences. In order to overcome this difficulty, we
use a subtle approach developed by Jeanjean [24].

Lemma 1.1. Let X be a Banach space and Λ ⊂ R+ an interval. Consider a family of C 1

functional ϕλ on X with the form ϕλ (u) = A(u)−λB(u) for all λ ∈ Λ, where B(u)≥ 0 for all
u ∈ X, such that either A(u)→ +∞ or B(u)→ +∞ as ‖u‖X → +∞. If there exists v1, v2 ∈ X
such that

cλ = inf
γ∈Γ

max
t∈[0,1]

ϕλ (γ(t))> max{ϕλ (v1), ϕλ (v2)}, ∀λ ∈ Λ

where Γ = {γ ∈ C ([0,1],X) : γ(0) = v1, γ(1) = v2}, then, for almost every λ ∈ Λ, there exists
a sequence {vn} ⊂ X such that
(i) {vn} is bounded;
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(ii) ϕλ (vn)→ cλ ;
(iii) ϕ ′

λ
(vn)→ 0 in the dual X ′ of X.

Moreover, λ 7→ cλ is left continuous.

We point out that, for applying Lemma 1.1 to system (1.1), the corresponding limit problem
plays an important role. Therefore, we consider the limit problem{

(−∆)su+V∞u+φu = (Iµ ∗F(u)) f (u)+ |u|2∗s−2u, in R3,

(−∆)tφ = u2, in R3.
(1.5)

We obtain the following result.

Theorem 1.2. Assume that (V1)− (V3) and ( f1)− ( f4) hold and 2(s+ t) > 3, µ ∈ (s+ t,3),
and s ∈ [3

4 ,1).
(i) If p ∈ (2,2∗s −1], then there exists ν1 > 0 such that for ν > ν1, system (1.5) has a nonneg-

ative ground state solution.
(ii) If p ∈ (2∗s − 1,2∗µ,s), then, for any ν > 0, system (1.5) has a nonnegative ground state

solution.

In this paper, we use the following notations:
• Lp(R3),1 ≤ p ≤ +∞ ,denotes a Lebesgue space, and the norm in Lp(R3) is denoted by
‖ · ‖Lp(R3).
• For any x ∈ R3 and R > 0, BR(x) := {y ∈ R3 : |y− x|< R};
•C and Ci denote (possible different) any positive constant.
The rest of this paper is organized as follows. In Section 2, we introduce some preliminaries

results. In Section 3, we investigate the limit problem. Section 4 is devoted to the existence of
ground state solutions to system (1.1).

2. PRELIMINARIES

First, we introduce some notations and some necessary properties of the local term φu for
studying Eq. (1.1). Define the homogeneous fractional Sobolev space D s,2(R3) as

D s,2(R3) :=

{
u ∈ L2∗s (R3) :

|u(x)−u(y)|
|x− y| 3+2s

2
∈ L2 (R3×R3)}

which is the completion of C ∞
0 (R3) with the norm

‖u‖D s,2(R3) :=
(∫

R3
|(−∆)

s
2 u|2dx

) 1
2

.

The fractional Sobolev space Hs(R3) is defined by

Hs(R3) :=

{
u ∈ L2(R3) :

|u(x)−u(y)|
|x− y| 3+2s

2
∈ L2(R3×R3)

}
endowed with the norm

‖u‖Hs(R3) =

(∫
R3

(
|(−∆)

s
2 u|2 +u2

)
dx
) 1

2

.
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It follows from [25, Proposition 3.4, Proposition3.6] that∫
R3

∣∣∣(−∆)
s
2 u
∣∣∣2 dx =

1
C(s)

∫
R3

∫
R3

|u(x)−u(y)|2

|x− y|3+2s dxdy.

It is well known that the embedding D s,2(R3) ↪→ L2∗s (R3) is continuous and the best constant
Ss can be defined as

Ss = inf
u∈D s,2(R3)\{0}

∫
R3 |(−∆)

s
2 u|2dx

(
∫
R3 |u(x)|2∗s dx)

2
2∗s

. (2.1)

From (V2)− (V3), we consider the work space Hs(R3) with the norm

‖u‖ :=
(∫

R3
|(−∆)

s
2 u|2dx+

∫
R3

V (x)u2dx
) 1

2

,

which is equivalent to ‖ · ‖Hs(R3).
For u ∈ Hs(R3), define the linear function as follows Lu(v) in D t,2(R3) by

Lu(v) =
∫
R3

u2vdx.

From Hölder’s inequality, Sobolev embedding theorem, and (2.1), we obtain

|Lu(v)| ≤
(∫

R3
|u(x)|

12
3+2t

) 3+2t
6
(∫

R3
|v(x)|2

∗
t

) 1
2∗t

≤ S
− 1

2
t

(∫
R3
|u(x)|

12
3+2t

) 3+2t
6

‖u‖D t,2(R3) ≤CS
− 1

2
t ‖u‖2‖u‖D t,2(R3).

(2.2)

It follows from the Lax-Milgram theorem that there exists a unique φ t
u ∈D t,2(R3) such that∫

R3
(−∆)

t
2 φ

t
u(−∆)

t
2 vdx =

∫
R3

u2vdx, ∀v ∈D t,2(R3), (2.3)

which implies that φ t
u is a weak solution to (−∆)tφ = u2, x∈R3, and the representation formula

holds

φ
t
u(x) = ct

∫
R3

u2(y)
|x− y|3−2t dy, (2.4)

which is called t-Riesz potential, Here, ct > 0 is a constant. It is easy to see that φ t
u ≥ 0 for all

x ∈ R3. Combining (2.3) and (2.2), we obtain

‖φ t
u‖2

D t,2(R3) =
∫
R3

φ
t
uu2dx≤CS

− 1
2

t ‖u‖2‖φ t
u‖D t,2(R3), (2.5)

which implies that ‖φ t
u‖D t,2(R3) ≤CS

− 1
2

t ‖u‖2. This together with (2.5) obtains∫
R3

φ
t
uu2dx≤CS

− 1
2

t ‖u‖2‖φ t
u‖D t,2(R3) ≤C‖u‖4.

Substituting φ t
u into the first equation of (1.1), we obtain the next fractional Schrödinger equa-

tion
(−∆)su+V (x)u+φ

t
uu = (Iµ ∗F(u)) f (u)+ |u|2

∗
s−2u, x ∈ R3. (2.6)

In order to investigate the non-local term
∫
R3(Iµ ∗ F(u))F(u)dx, we recall the following

Hardy-Littlewood-Sobolev inequality [26].
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Lemma 2.1. Let µ ∈ (0,3), p, q > 1 and 1≤ r < α <+∞ be such that

1
p
+

1
q
= 1+

µ

3
,

1
r
− 1

α
=

µ

3
.

(i) For any f ∈ Lp(R3) and g ∈ Lq(R3), one has∣∣∣∣∫R3

∫
R3

f (x)g(y)
|x− y|3−µ

dxdy
∣∣∣∣≤C(µ, p)‖ f‖Lp(R3)‖g‖Lq(R3).

(ii) For any f ∈ Lr(R3) one has∥∥∥∥ 1
| · |3−µ

∗ f
∥∥∥∥

Lα (R3)

≤C(µ,r)‖ f‖Lr(R3).

Remark 2.1. From ( f1), Lemma 2.1, Sobolev embedding theorem, and (2.4), we can conclude
that ∣∣∣∣∫R3

(Iµ ∗F(u))F(u)dx
∣∣∣∣≤C‖F(u)‖2

L
6

3+µ (R3)

≤C
[∫(
|u|

3+µ

3 + |u|q
) 6

3+µ

] 3+µ

3

≤C

(
‖u‖

2(3+µ)
3

L2(R3)
+‖u‖2q

L
6q

3+µ (R3)

)
.

(2.7)

∣∣∣∣∫R3
(Iµ ∗F(u)) f (u)vdx

∣∣∣∣
≤C(µ)

(∫
R3
|F(u)|

6
3+µ dx

) 3+µ

6
(∫

R3
| f (u)v|

6
3+µ dx

) 3+µ

6

≤C

(
‖u‖

3+µ

3
L2(R3)

+‖u‖q

L
6q

3+µ (R3)

)(
‖u‖

µ

3
L2(R3)

‖v‖L2(R3)+‖u‖
q−1

L
6q

3+µ (R3)

‖v‖
L

6q
3+µ (R3)

)
,

(2.8)

and ∫
R3

φ
t
vv2dx = ct

∫
R3

∫
R3

|v(x)|2|v(y)|2

|x− y|3−2t dxdy≤C‖v‖4

L
12

3+2t (R3)
, v ∈ L

12
3+2t (R3). (2.9)

Hence, the energy functional Φ : Hs(R3)→ R associated with (2.6)

Φ(u)=
1
2

∫
R3
(|(−∆)

s
2 u|2+V (x)u2)dx+

1
4

∫
R3

φ
t
uu2dx− 1

2

∫
R3
(Iµ ∗F(u))F(u)dx− 1

2∗s

∫
R3
|u|2

∗
s dx

is well defined on Hs(R3) and Φ ∈ C 1(Hs(R3),R). Moreover, for any v ∈ Hs(R3),

〈Φ′(u),v〉=
∫
R3

[
(−∆)

s
2 u(−∆)

s
2 v+V (x)uv+φ

t
uuv− (Iµ ∗F(u)) f (u)v−|u|2

∗
s−1uv

]
dx.

It is clear that the critical points of Φ are the solutions to problem (2.6). Obviously, (u,φ t
u) is a

solution to system (1.1) if u is a solution to problem (2.6).
Define the Nehari-Pohoz̆aev manifold (see [5]) by

M := {u ∈ Hs(R3)\{0} : G(u) = 0},
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where

G(u) :=
4s+2t−3

2
‖u‖2

D s,2(R3)+
1
2

∫
R3
[(2s+2t−3)V (x)− (∇V (x),x)]u2dx+

4s+2t−3
4

∫
R3

φ
t
uu2dx

+
1
2

∫
R3
(Iµ ∗F(u))[(3+µ)F(u)− (2s+2t) f (u)u]dx− (s+ t)2∗s −3

2∗s

∫
R3
|u|2

∗
s dx.

Combining [2, Lemma 2.6], [15, Lemma 5.1], [16, Lemma 2.2], and [24], we can obtain the
next Brezis-Lieb type lemma.

Lemma 2.2. Assume that 2s+2t > 3. If un ⇀ u in Hs(R3) and un→ u a.e. in R3, then

Φ(un) = Φ(u)+Φ(un−u)+o(1), G(un) = G(u)+G(un−u)+on(1), (2.10)

Φ
′(un) = Φ

′(u)+Φ
′(un−u)+on(1), (2.11)

and

〈Φ′(un),un〉= 〈Φ′(u),u〉+ 〈Φ′(un−u),un−u〉+on(1).

Now, we recall a fractional version of Lions vanishing Lemma [18].

Lemma 2.3. Assume that {un} is bounded in Hs(R3) and

lim
n→+∞

sup
y∈R3

∫
BR(y)
|un|2dx = 0,

for some R > 0. Then un→ 0 in Lr(R3) for all r ∈ (2,2∗s ).

The following general mini-max principle [27, proposition 2.8] is crucial in proving the ex-
istence of nontrivial solutions, which is a powerful variant of [28, Theorem 2.8].

Lemma 2.4. Let X be a Banach space. Let D0 be a closed subspace of the metric space D, and
let Γ0 ⊂ C (D0,X). Define Γ̃ := {γ ∈ C (D,X) : γ|D0 ∈ Γ0}. If ϕ ∈ C 1(X ,R) verifies

b := sup
γ0∈Γ0

sup
u∈D0

ϕ(γ0(u))< c := inf
γ∈Γ̃

sup
u∈D

ϕ(γ(u))< ∞,

then, for every σ ∈ (0,(c− b)/2), δ > 0 and γ ∈ Γ̃ satisfying supD ϕ ◦ γ ≤ c+σ , there exists
u ∈ X such that
(a) c−2σ ≤ ϕ(u)≤ c+2σ ;
(b) dist(u,γ(D))≤ 2δ ;
(c) ‖ϕ ′(u)‖X ′ ≤ 8σ/δ .

3. THE LIMIT PROBLEM

At the beginning of this section, we establish some key inequalities.

Lemma 3.1. Assume that ( f1) and ( f3) hold. Then, for all θ > 0 and τ ∈ R,

g(θ ,τ) :=
3

θ
3+µ

2

F(θ s+t
τ)+

(
1−θ

3
2

)
[2(s+ t) f (τ)τ− (3+µ)F(τ)]−3F(τ)≥ 0.
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Proof. Clearly, g(θ ,0)≥ 0 for θ > 0. From ( f3), for τ 6= 0, we obtain that

d
dθ

g(θ ,τ)

=
3θ

1
2 |τ|

6+µ

2(s+t)

2

2(s+ t) f (θ s+tτ)θ s+tτ− (3+µ)F(θ s+tτ)

|θ s+tτ|
6+µ

2(s+t)

− 2(s+ t) f (τ)τ− (3+µ)F(τ)

|τ|
6+µ

2(s+t)


{
≥ 0, θ ≥ 1,
< 0, 0 < θ < 1,

which implies that g(θ ,τ)≥ g(1,τ) = 0 for all θ ∈ (0,+∞) and τ ∈ (−∞,0)∪ (0,+∞). �

Lemma 3.2. Assume that ( f1)− ( f3) hold. Then

F(θ)

θ (8s+4t+µ−6)/2(s+t)
is nondecreasing on (0,+∞).

Proof. On account of ( f2), Lemma 3.1, and 2(s+ t)> 3, we obtain that

lim
θ→0

g(θ ,τ) = 2(s+ t) f (τ)τ− (6+µ)F(τ)≥ 0. (3.1)

Note that

d
dθ

(
F(θ)

θ (8s+4t+µ−6)/2(s+t)

)
=

1
2(s+ t)θ (10s+6t+µ−6)/2(s+t)

[2(s+ t) f (θ)θ − (8s+4t +µ−6)F(θ)]≥ 0.

This completest the proof. �

Lemma 3.3. Assume that ( f1)− ( f3) hold. Then

h(θ ,u)

:=
∫
R3

{
4s+2t−3

θ 3+µ
(Iµ ∗F(θ s+tu))F(θ s+tu)

+(1−θ
4s+2t−3)(Iµ ∗F(u))[(2s+2t) f (u)u− (3+µ)F(u)]− (4s+2t−3)(Iµ ∗F(u))F(u)

}
dx

≥ 0, ∀θ > 0, u ∈ Hs(R3).

Proof. It follows from ( f1) and Lemma 3.2 that

Iµ ∗
(

F(θ s+tu)
|θ |(8s+4t+µ−6)/2

)
− Iµ ∗F(u)

{
≥ 0, θ ≥ 1,
≤ 0, 0 < θ < 1.

(3.2)
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From ( f1), ( f3), and (3.2), we obtain that

d
dθ

h(θ ,u)

=
∫
R3

{
2(4s+2t−3)(s+ t)

θ 3+µ
(Iµ ∗F(θ s+tu)) f (θ s+tu)θ s+t−1u

− (4s+2t−3)(3+µ)

θ µ+4 (Iµ ∗F(θ s+tu))F(θ s+tu)

− (4s+2t−3)θ 4s+2t−4(Iµ ∗F(u))[(2s+2t) f (u)u− (3+µ)F(u)]
}

dx

= (4s+2t−3)θ 4s+2t−4
∫
R3
|u|(6+µ)/2(s+t)

{(
Iµ ∗

(
F(θ s+tu)

|θ |(8s+4t+µ−6)/2

))
2(s+ t) f (θ s+tu)θ s+tu− (3+µ)F(θ s+tu)

|θ s+tu|(6+µ)/2(s+t)
− (Iµ ∗F(u))

(2s+2t) f (u)u− (3+µ)F(u)
|u|(6+µ)/2(s+t)

}
dx{

≥ 0, θ ≥ 1,
≤ 0, 0 < θ < 1,

which yields h(θ ,u)≥ h(1,u) = 0 for all θ > 0 and u ∈ Hs(R3). �

Noting that lim|x|→∞V (x) =V∞, we consider the limit problem

{
(−∆)su+V∞u+φ t

uu = (Iµ ∗F(u)) f (u)+ |u|2∗s−2u, in R3,

u ∈ Hs(R3), u > 0, in R3,
(3.3)

whose energy functional is defined by

Φ∞(u)

=
1
2

∫
R3
(|(−∆)

s
2 u|2 +V∞u2)dx+

1
4

∫
R3

φ
t
uu2dx− 1

2

∫
R3
(Iµ ∗F(u))F(u)dx− 1

2∗s

∫
R3
|u|2

∗
s dx.

(3.4)
Set uθ = θ s+tu(θx). By direct calculation, we deduce that

γ(θ) = Φ∞(uθ )

=
θ 4s+2t−3

2

∫
R3
|(−∆)

s
2 u|2dx+

θ 2s+2t−3

2

∫
R3

V∞u2dx+
θ 4s+2t−3

4

∫
R3

φ
t
uu2dx

− 1
2θ 3+µ

∫
R3
(Iµ ∗F(θ s+tu))F(θ s+tu)dx− θ (s+t)2∗s −3

2∗s

∫
R3
|u|2

∗
s dx

(3.5)

which implies that Φ∞(uθ )→−∞ as θ →+∞. We obtain the following lemma.

Lemma 3.4. Φ∞ is not bounded from below.
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Define M∞ = {u ∈ Hs(R3)\{0} : G∞(u) = 0}, where

G∞(u)

=
4s+2t−3

2

∫
R3
|(−∆)

s
2 u|2dx+

2s+2t−3
2

∫
R3

V∞u2dx+
4s+2t−3

4

∫
R3

φ
t
uu2dx

+
3+µ

2

∫
RN

(Iµ ∗F(u))F(u)dx− (s+ t)
∫
R3
(Iµ ∗F(u)) f (u)udx− 4s+2t−3

2

∫
R3
|u|2

∗
s dx

=
dΦ∞(uθ )

dθ
|θ=1.

(3.6)
Set

ξ (θ) :=
1−θ 2s+2t−3

2
− (2s+2t−3)(1−θ 4s+2t−3)

2(4s+2t−3)
and

ζ (θ) :=
1−θ 4s+2t−3

2
− 1−θ (s+t)2∗s−3

2∗s
, ∀θ > 0.

It is easy to check that

ξ (θ)> 0, ζ (θ)> 0, θ ∈ (0,1)∪ (1,+∞). (3.7)

Lemma 3.5. For any u ∈ Hs(R3) and θ > 0, the following inequality holds

Φ∞(u)≥Φ∞(uθ )+
1−θ 4s+2t−3

4s+2t−3
G∞(u)+ξ (θ)

∫
R3

V∞u2dx+ζ (θ)
∫
R3
|u|2

∗
s dx.

Proof. From (3.4)-(3.7) and Lemma 3.3, we obtain that

Φ∞(u)−Φ∞(uθ )−
1−θ 4s+2t−3

4s+2t−3
G∞(u)

= ξ (θ)
∫
R3

V∞u2dx+
1

2(4s+2t−3)

∫
R3

{
4s+2t−3

θ 3+µ
(Iµ ∗F(θ s+tu))F(θ s+tu)

+(1−θ
4s+2t−3)(Iµ ∗F(u))[2(s+ t) f (u)u− (3+µ)F(u)]− (4s+2t−3)(Iµ ∗F(u))F(u)

}
dx

+ζ (θ)
∫
R3
|u|2

∗
s dx

≥ 0,

which yields the conclusion. �

Lemma 3.6. Assume that 2s+ 2t > 3. For any u ∈ Hs(R3)\{0}, there exists a unique θ0 > 0
such that uθ0 ∈M∞. Moreover, Φ∞(uθ0) = maxθ≥0 Φ∞(uθ ).

Proof. Letting u ∈ Hs(R3)\{0} be fixed, we observe that

γ
′(θ) = 0 ⇔ θγ

′(θ) = 0 ⇔ uθ ∈M∞, for θ > 0.

By (V2),( f2), (2.7), and q > 1+ µ

3 > 1+ µ

2(s+t) , we obtain limθ→0+ γ(θ) = 0, γ(θ) > 0 for
θ > 0 small and γ(θ) < 0 for θ large. Hence, maxθ>0 γ(θ) is achieved at θ = θ0(u) > 0 such
that γ ′(θ0) = 0 and uθ0 ∈M∞.
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Next, we prove that θ0 is unique for any u ∈Hs(R3)\{0}. Suppose on the contrary that there
exist θ1,θ2 > 0 such that γ ′(θ1) = γ ′(θ2) = 0. It follows from G∞(uθ1) = G∞(uθ2) = 0 and
Lemma 3.5 that

Φ∞(θ
s+t
1 u(θ1x))

≥Φ∞(θ
s+t
2 u(θ2x))+

θ
4s+2t−3
1 −θ

4s+2t−3
2

(4s+2t−3)θ 4s+2t−3
1

G∞(θ
s+t
1 u(θ1x))

+ξ (θ2/θ1)θ
2s+2t−3
1

∫
R3

V∞u2dx+ζ (θ2/θ1)θ
(4s+2t−3)3

3−2s
1

∫
R3
|u|2

∗
s dx

≥Φ∞(θ
s+t
2 u(θ2x))+ξ (θ2/θ1)θ

2s+2t−3
1

∫
R3

V∞u2dx+ζ (θ2/θ1)θ
(4s+2t−3)3

3−2s
1

∫
R3
|u|2

∗
s dx

(3.8)

and

Φ∞(θ
s+t
2 u(θ2x))

≥Φ∞(θ
s+t
1 u(θ1x))+

θ
4s+2t−3
2 −θ

4s+2t−3
1

(4s+2t−3)θ 4s+2t−3
2

G∞(θ
s+t
2 u(θ2x))

+ξ (θ1/θ2)θ
2s+2t−3
2

∫
R3

V∞u2dx+ζ (θ1/θ2)θ
(4s+2t−3)3

3−2s
2

∫
R3
|u|2

∗
s dx

≥Φ∞(θ
s+t
1 u(θ1x))+ξ (θ1/θ2)θ

2s+2t−3
2

∫
R3

V∞u2dx+ζ (θ1/θ2)θ
(4s+2t−3)3

3−2s
2

∫
R3
|u|2

∗
s dx.

(3.9)

Therefore, from (3.8) and (3.9), we obtain θ1 = θ2. That is, θ0 is unique for any u∈Hs(R3). �

Lemma 3.7. The manifold M∞ satisfies the following properties:
(1) there exists ρ > 0 such that ‖u‖ ≥ ρ, ∀u ∈M∞;
(2) m∞ = infu∈M∞

Φ∞(u)> 0.

Proof. (1) From (2.7)-(2.8) and the Sobolev embedding theorem, we obtain that

2s+2t−3
2

‖u‖2

≤ 4s+2t−3
2

∫
R3
|(−∆)

s
2 u|2dx+

2s+2t−3
2

∫
R3

V∞u2dx+
4s+2t−3

4

∫
R3

φ
t
uu2dx

=
1
2

∫
R3
(Iµ ∗F(u))[2(s+ t) f (u)u− (3+µ)F(u)]dx+

4s+2t−3
2

∫
R3
|u|2

∗
s dx

≤C(‖u‖2+ 2µ

3 +‖u‖2q +‖u‖2∗s ),

which implies

‖u‖ ≥ ρ, ∀u ∈M∞. (3.10)

(2) Let {un} ⊂M∞ be such that Φ∞(un)→ m∞. There exist two possible scenarios:
(i) infn∈N ‖un‖L2(R3) > 0; or
(ii) infn∈N ‖un‖L2(R3) = 0.
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Case (i) infn∈N ‖un‖L2(R3) = ρ1 > 0. It follows from (3.4), (3.6), and (3.1) that

m∞ = Φ∞(un) = Φ∞(un)−
1

4s+2t−3
G∞(un)

=
3−2t

4s+2t−3

∫
R3

V∞u2
ndx

+
1

2(4s+2t−3)

∫
R3
(Iµ ∗F(un))[2(s+ t) f (un)un− (4s+2t +µ)F(un)]dx

+

(
1
2
− 1

2∗s

)∫
R3
|un|2

∗
s dx

≥ (3−2t)V∞

4s+2t−3
ρ

2
1 .

(3.11)

Case (ii) infn∈N ‖un‖L2(R3) = 0. According to (3.10), passing to a sub-sequence, we obtain

‖un‖L2(R3)→ 0, ‖un‖D s,2(R3) ≥
ρ

2
. (3.12)

It follows from ( f1)− ( f2) that, for any ε > 0, there exists Cε > 0 such that

|F(τ)| ≤Cε |τ|1+
µ

3 + ε|τ|2
∗
µ,s, ∀τ ∈ R. (3.13)

From (2.1), (2.7), and (3.13), we deduce that∫
R3
(Iµ ∗F(u))F(u)≤CCε‖u‖

2+ 2µ

3
L2(R3)

+CεS
− 2∗s

2
s ‖u‖

2∗s (3+µ)
3

D s,2(R3)
. (3.14)

Let

θn =

[
(2∗s )

3−2s
2s S

3
2s
s ‖un‖−2

D s,2(R3)

] 1
4s+2t−3

.

Then, due to (3.12), {θn} is bounded. Applying Lemma 3.5, (3.5), (3.12), and (3.14), we deduce
that

m∞ +on(1) = Φ∞(un)≥Φ∞((un)θn)

=
θ 4s+2t−3

n
2

∫
R3
|(−∆)

s
2 un|2dx+

θ 2s+2t−3
n

2

∫
R3

V∞u2
ndx+

θ 4s+2t−3
n

4

∫
R3

φ
t
un

u2
ndx

− 1

2θ
3+µ
n

∫
R3
(Iµ ∗F(θ s+t

n un))F(θ s+t
n un)dx− θ

3(4s+2t−3)
3−2s

n

2∗s

∫
R3
|un|2

∗
s dx

≥ θ 4s+2t−3
n

2
‖un‖2

D s,2(R3)−CCε

(
θ

2s+2t−3
n ‖un‖2

L2(R3)

) 3+µ

3

−CεS
− 2∗s

2
s

(
θ

4s+2t−3
n ‖un‖2

D s,2(R3)

) 3+µ

3−2s − S
− 2∗s

2
s

2∗s

(
θ

4s+2t−3
n ‖un‖2

D s,2(R3)

) 3
3−2s

=
θ 4s+2t−3

n ‖un‖2
D s,2(R3)

4

2− S
− 2∗s

2
s

2∗s

(
θ

4s+2t−3
n ‖un‖2

D s,2(R3)

) 2s
3−2s

+on(1)

=
1
4
(2∗s )

3−2s
2s S

3
2s
s +on(1).

It follows from Case (i) and Case (ii) that m∞ = infu∈M∞
Φ∞(u)> 0. �
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By Lemmas 3.6 and 3.7, we easily derive the following results.

Lemma 3.8. The following equality holds m∞ = c̄∞ := infu6=0 maxθ>0 Φ∞(uθ ).

Lemma 3.9. Every critical point of Φ∞|M∞
is a critical point of Φ∞.

Proof. The proof is similar to that of [2, Lemma 3.2]. Thus the proof is omitted here. �

Inspired by Jeanjean [24], we use Lemma 2.4 to obtain a Cerami sequence for the functional
Φ∞ with G∞(un)→ 0, where Φ∞, G∞(un) are given in (3.4) and (3.6), respectively.

Lemma 3.10. There exists a sequence {un} ⊂ Hs(R3) such that

Φ∞(un)→ c∞ > 0, ‖Φ′∞‖(1+‖un‖)→ 0 and G∞(un)→ 0, (3.15)

where

c∞ := inf
γ∈Γ

max
t∈[0,1]

Φ∞(γ(t)), Γ :=
{

γ ∈ C ([0,1],Hs(R3)) : γ(0) = 0,Φ∞(γ(1))< 0
}
.

Proof. For u ∈ Hs(R3)\{0}, By ( f2), one has Φ∞(τu) → −∞ as τ → ∞. By the standard
arguments, one sees that Γ 6= /0 and c∞ < ∞. Furthermore, it is easy to check that there exit
ρ0,α0 > 0 such that Φ∞(u)≥ 0 for all u with ‖u‖ ≤ ρ0 and Φ∞(u)≥ α0 for all u with ‖u‖= ρ0.
Together with the definition of Γ, we obtain ‖γ(1)‖> ρ0. From the continuity of γ(tτ) and the
intermediate value theorem, there exists τγ ∈ (0,1) such that ‖γ(τγ)‖= ρ0. Hence, we obtain

sup
τ∈[0,1]

Φ∞(γ(τ))≥Φ∞(γ(τγ))≥ α0 > 0,

which implies
∞ > c∞ = inf

γ∈Γ
sup

τ∈[0,1]
Φ∞(γ(τ))≥ α0 > 0.

Define the continuous map

η : R×Hs(R3)→Hs(R3), η(τ,v)(x) = e(s+t)τv(eτx), for τ ∈R, v ∈Hs(R3) and x ∈R3,

where R×Hs(R3) is the Banach space with the product norm ‖(τ,v)‖ := (|τ|2 + ‖v‖2)
1
2 . We

define the following auxiliary functional:

Φ̃∞(τ,v) = Φ∞(η(τ,v))

=
1
2

∫
R3
(|(−∆)

s
2 η(τ,v)|2 +V∞|η(τ,v)|2)dx+

1
4

∫
R3

φ
t
η(τ,v)|η(τ,v)|2dx

− 1
2

∫
R3
(Iµ ∗F(η(τ,v)))F(η(τ,v))dx− 1

2∗s

∫
R3
|η(τ,v)|2

∗
s dx

=
e(4s+2t−3)τ

2
‖v‖2

D s,2(R3)+
e(2s+2t−3)τ

2
V∞‖v‖2

L2(R3)+
e(4s+2t−3)τ

2

∫
R3

φ
t
vv2dx

− e−(3+µ)τ

2

∫
R3
(Iµ ∗F(e(s+t)τv))F(e(s+t)τv)dx− e[2

∗
s (s+t)−3]τ

2∗s
‖v‖2∗s

L2∗s (R3)
.

Moreover, by direct calculations, we obtain Φ̃∞ ∈ C 1(R×Hs(R3),R), and

∂τΦ̃∞(τ,v) = G∞(η(τ,v)), ∂vΦ̃∞(τ,v)w = Φ
′
∞(η(τ,v))η(τ,w)
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for all τ ∈ R and v,w ∈ Hs(R3). We define the mini-max value c̃∞ for Φ̃ by

c̃∞ = inf
γ̃∈Γ̃

max
τ∈[0,1]

Φ̃∞(γ̃(τ)),

where Γ̃= {γ̃ ∈C ([0,1],R×Hs(R3)) : γ̃(0) = (0,0),Φ̃∞(γ̃(1))< 0}. Since Γ= {η ◦ γ̃ : γ̃ ∈ Γ̃},
we deduce that c∞ = c̃∞. By the definition of c∞, there exists γn ∈ Γ such that, for any n ∈ N,

max
t∈[0,1]

Φ̃∞(0,γn(t)) = max
t∈[0,1]

Φ∞(γn(t))≤ c∞ +
1
n2 .

Applying Lemma 2.4 to Φ̃∞, and setting D = [0,1], D0 = {0,1}, B =R×Hs(R3), σ = 1
n2 , δ =

1
n and γ̃n(τ) = (0,γn(τ)), we conclude that there exist (τn,vn) ∈ R×Hs(R3) such that

Φ̃∞(τn,vn)→ c∞,

‖Φ̃′∞(τn,vn)‖(1+‖(τn,vn)‖)→ 0, (3.16)

dist((τn,vn),{0}× γn([0,1]))→ 0, (3.17)

as n→ ∞. Thus, (3.17) implies τn→ 0. It is easy to see that, for all (τ,w) ∈ R×Hs(R3),

〈Φ̃′∞(τn,vn),(ι ,w)〉= 〈Φ′∞(η(τn,vn)),η(τn,w)〉+G∞(η(τn,vn))ι . (3.18)

Set un = η(τn,vn). If we take ι = 1 and w = 0 in (3.18), we obtain G∞(un)→ 0 as n→ ∞. For
each v ∈ Hs(R3), let ι = 0 and wn = e−(s+t)τnv(e−τnx) in (3.18). We deduce from (3.16)-(3.17)
that ∣∣〈Φ′∞(un),v〉

∣∣(1+‖un‖) =
∣∣〈Φ′∞(η(τn,vn)),η(τn,wn)〉

∣∣(1+‖un‖) = o(1)‖wn‖

as n→ ∞. Therefore, (3.15) holds. �

Lemma 3.11. c∞ < s
3S

3
2s
s , where Ss is given in (2.1).

Proof. Let χ(x) ∈ C ∞
0 (R3) be a cut-off function such that 0≤ χ(x)≤ 1 in R3, χ ≡ 1 in B1(0),

and χ ≡ 0 in R3 \B2(0). It is known that Ss is achieved by

ũ := κ(σ2 + |x− x0|2)−
3−2s

2

for any κ ∈ R, σ > 0, and x0 ∈ R3. Then, taking x0 = 0, we define

uε(x) := χ(x)Uε(x), x ∈ R3,

where

Uε(x) = ε
− (3−2s)

2 u∗(x/ε), u∗(x) =
ũ
(

x/S1/(2s)
s

)
‖ũ‖L2∗s (R3)

.

As in [29, 30], we obtain that

Aε :=
∫
R3
|(−∆)

s
2 uε |2dx≤ S

3
2s
s +O(ε3−2s) (3.19)

and

Bε :=
∫
R3
|uε |2

∗
s dx = S

3
2s
s +O(ε3). (3.20)
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By a simple calculation, we observe

Dε :=
∫
R3
|uε |rdx =


O(ε

3(2−r)+2sr
2 ), r > 3

3−2s ,

O(ε
3(2−r)+2sr

2 | logε|), r = 3
3−2s ,

O(ε
(3−2s)r

2 ), r < 3
3−2s .

(3.21)

Since supτ≥0 Φ∞(τuε) = Φ∞(τεuε)≥ α0 > 0, we see that there exists T1 > 0 such that τε > T1.
Moreover, we infer from Φ∞(τuε)→−∞ as τ → ∞ that there exists T2 > 0 such that τε < T2.
Then T1 < τε < T2. Note that

Φ∞(τεuε)≤
τ2

ε

2

∫
R3
(|(−∆)

s
2 uε |2 +V∞|uε |2)dx+

τ4
ε

4

∫
R3

φ
t
uε
|uε |2dx

− τ
2p
ε ν2

2p2

∫
R3
(Iµ ∗ |uε |p)|uε |pdx− τ

2∗s
ε

2∗s

∫
R3
|uε |2

∗
s dx

=
τ2

ε

2
Aε +

τ2
ε

2
V∞

∫
R3
|uε |2dx+

τ4
ε

4

(∫
R3
|uε |

12
3+2t dx

) 3+2t
3

− τ
2p
ε

2p2 ν
2
∫
R3

∫
R3

|uε(x)|p|uε(y)|p

|x− y|3−µ
dxdy− τ

2∗s
ε

2∗s
Bε .

(3.22)

Define

Jε(τ) :=
τ2

2
Aε −

τ2∗s

2∗s
Bε .

According to (3.19)-(3.20), it is easy to verify that

sup
τ≥0

Jε(τ)≤
s
3

S
3
2s
s +O(ε3−2s). (3.23)

By (3.22), (3.23), (3.24), and (3.25), we discuss two different situations.
Case 1. s > 3

4 , which yields 3
3−2s > 2.

Φ∞(τεuε)≤
s
3

S
3
2s
s +O(ε3−2s)+C

(∫
R3
|uε |

12
3+2t dx

) 3+2t
3

−Cν
2
∫
R3

∫
R3

|uε(x)|p|uε(y)|p

|x− y|3−µ
dxdy.

Case 2. s = 3
4 , which yields 3

3−2s = 2.

Φ∞(τεuε)≤
s
3

S
3
2s
s +O(ε2s| logε|)+C

(∫
R3
|uε |

12
3+2t dx

) 3+2t
3

−Cν
2
∫
R3

∫
R3

|uε(x)|p|uε(y)|p

|x− y|3−µ
dxdy.

Case 1. s > 3
4 . Furthermore, (2.9) and (3.21) yield

lim
ε→0+

(∫
R3 |uε |

12
3+2t dx

) 3+2t
3

ε3−2s =


limε→0+

O(ε2t+4s−3)
ε3−2s = 0, 12

3+2t >
3

3−2s ,

limε→0+
O(ε2t+4s−3| logε|

3+2t
3 )

ε3−2s = 0, 12
3+2t =

3
3−2s ,

limε→0+
O(ε2(3−2s))

ε3−2s = 0, 12
3+2t <

3
3−2s .

(3.24)
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By virtue of (2.7) and (3.21), for any p ∈ (2,2∗s ), we obtain∫
R3

∫
R3

|uε(x)|p|uε(y)|p

|x− y|3−µ
dxdy

≥C
∫

B1(
x0
ε )

∫
B1(

x0
ε )
|Uε(x)|p|Uε(y)|pdxdy

=C

(
ε

3− (3−2s)p
2

∫ 1

εS1/(2s)
s

0

r2

(σ2 + r2)
(3−2s)p

2

dr

)2

=


O(ε6−(3−2s)p), p > 3

3−2s ,

O(ε6−(3−2s)p| logε|2), p = 3
3−2s ,

O(ε(3−2s)p), p < 3
3−2s .

(3.25)

If 2∗µ,s > p > 2∗s−1, then 0 < 6−(3−2s)p < 3−2s, which implies that, for any fixed ν2 > 0,

c∞ < s
3S

3
2s
s for ε > 0 small. If 2 < p≤ 2∗s −1 and ν2 ≥ ε(

1
2−p)(3−2s), we also obtain c∞ < s

3S
3
2s
s .

Case 2. s = 3
4 . According to 12

3+2t > 2 = 3
3−2s and 2t +2s > 3, we obtain that

lim
ε→0+

(∫
R3 |uε |

12
3+2t dx

) 3+2t
3

ε2s| logε|
≤ lim

ε→0+

O(ε2t+4s−3)

ε2s| logε|
= 0.

Since p > 2 = 3
3−2s , arguing as Case 1, we also obtain if 2∗µ,s > p > 2∗s −1, then, for any fixed

ν2 > 0, c∞ < s
3S

3
2s
s for ε > 0 small. If 2 < p ≤ 2∗s − 1 and ν2 ≥ ε(3−2s)p−6, we also obtain

c∞ < s
3S

3
2s
s . �

Lemma 3.12. The following equality holds

inf
γ∈Γ

sup
τ∈[0,1]

Φ∞(γ(τ)) = c∞ = c̄∞ = inf
u6=0

max
θ>0

Φ∞(uθ ).

Proof. From Lemma 3.4, we can see that Φ∞(uθ ) < 0 for u ∈ R×Hs(R3) \ {0} and θ large
enough. This implies c∞ ≤ c̄∞. Then, we show c∞ ≥ c̄∞. We claim that, for any γ ∈ Γ, γ([0,1]∩
M∞) 6= /0. Indeed, from (3.11), we obtain that, for any γ ∈ Γ,

G∞(γ(1))≤ (4s+2t−3)Φ∞(γ(1))− (3−2t)V∞ρ
2
1 < 0.

For any u ∈ Hs(R3) \ {0}, from (3.6), (2.7) -(2.8), and the Sobolev embedding theorem, we
deduce that

G∞(u) =
4s+2t−3

2

∫
R3
|(−∆)

s
2 u|2dx+

2s+2t−3
2

∫
R3

V∞u2dx+
4s+2t−3

4

∫
R3

φ
t
uu2dx

− 1
2

∫
R3
(Iµ ∗F(u))[2(s+ t) f (u)u− (3+µ)F(u)]dx− 4s+2t−3

2

∫
R3
|u|2

∗
s dx

≥ 2s+2t−3
2

‖u‖2−C‖u‖2+ 2µ

3 −C‖u‖2q−C‖u‖2∗s ,

which yields that there exists ρ2 ∈ (0,‖γ(1)‖) and σ2 > 0 such that G∞(u) ≥ σ2 for ‖u‖ = ρ2.
This implies that there exists τ0 ∈ (0,1) such that G∞(γ(τ0)) ≥ σ2. Therefore, the curve γ ∈ Γ

must cross M∞, which indicates c∞ ≥ m∞. Together with Lemma 3.8, we obtain c∞ ≥ c̄∞. �
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Proof of Theorem 1.2. By Lemma 3.10, there exists a sequence {un}⊂Hs(R3) satisfying (3.15).
It follows from (3.11) and (3.1) that

c∞ = Φ∞(un) = Φ∞(un)−
1

4s+2t−3
G∞(un)≥

3−2t
4s+2t−3

∫
R3

V∞u2
ndx+

(
1
2
− 1

2∗s

)∫
R3
|un|2

∗
s dx.

Combining with the Hölder inequality, we deduce that {un} is bounded in Lr(R3) for r ∈ [2,2∗s ].
Then, by G∞(un)→ 0, (2.7), and (2.8), we can see that

4s+2t−3
2

∫
R3
|(−∆)

s
2 un|2dx

≤ 1
2

∫
R3
(Iµ ∗F(un))[2(s+ t) f (un)un− (3+µ)F(un)]dx+

4s+2t−3
2

∫
R3
|un|2

∗
s dx

≤C(‖un‖
2+ 2µn

3
L2(R3)

+‖un‖2q

L
6q

3+µ (R3)

+‖un‖
2∗s
L2∗s (R3)

)≤C.

This implies that {un} is bounded in Hs(R3). Now, we claim that

lim
n→∞

sup
y∈R3

∫
B1(y)
|un|2dx > 0.

If it does not occur, then it follows from Lemma 2.3 that un→ 0 in Lr(R3) for r ∈ (2,2∗s ). Hence,
we obtain that

on(1) = 〈Φ′∞(un),un〉= ‖un‖2
D s,2(R3)+V∞‖un‖2

L2(R3)−‖un‖
2∗s
L2∗s (R3)

+on(1),

as n→ ∞. Since {un} is bounded in Hs(R3) and c∞ > 0, we may assume that up to a sub-
sequence, as n→ ∞, for some l > 0,

‖un‖2
D s,2(R3)+V∞‖un‖2

L2(R3)→ l, ‖un‖
2∗s
L2∗s (R3)

→ l. (3.26)

In view of (3.26) and (2.1), we obtain that

l = lim
n→∞

(
‖un‖2

D s,2(R3)+V∞‖un‖2
L2(R3)

)
≥ lim

n→∞
‖un‖2

D s,2(R3) ≥ Ss‖un‖2
L2∗s (R3)

= Ssl
2

2∗s ,

which implies

l ≥ S
3
2s
s . (3.27)

Combining the fact

c∞+on(1) = Φ∞(un) =
1
2

(
‖un‖2

D s,2(R3)+V∞‖un‖2
L2(R3)

)
− 1

2∗s
‖un‖

2∗s
L2∗s (R3)

+on(1) =
s
3

l+on(1)

and (3.27), we observe that c∞ ≥ s
3S

3
2s
s , which contradicts Lemma 3.11. Hence, there exists

δ > 0 and a sequence {yn} ⊂ R3 such that
∫

B1(yn)
|un|2dx > δ . Let vn(x) = un(x+ yn). Then, as

n→ ∞,
Φ∞(vn)→ c∞, Φ

′
∞(vn)→ 0, G∞(vn)→ 0

and
∫

B1(0) |vn|2dx > δ . Hence, passing to a sub-sequence, there exists v ∈ Hs(R3) such that
vn ⇀ v in Hs(R3),

vn→ v in Lr
loc(R

3) for r ∈ [1,2∗s ),
vn→ v a.e. in R3.
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By using standard arguments, we obtain that Φ′∞(v) = 0 and Φ∞(v) ≥ c̄∞. Therefore, v is a
nontrivial solution to (3.3). In view of Lemma 3.12, (3.1), and Fatou’s Lemma, we obtain that

c̄∞ = c∞ = lim
n→∞

Φ∞(vn) = lim
n→∞

[
Φ∞(vn)−

1
4s+2t−3

G∞(vn)

]
= lim

n→∞

{
(3−2t)V∞‖vn‖L2(R3)

4s+2t−3

+
1

2(4s+2t−3)

∫
R3
(Iµ ∗F(vn))[2(s+ t) f (vn)vn− (4s+2t +µ)F(vn)]dx

+

(
1
2
− 1

2∗s

)∫
R3
|vn|2

∗
s dx
}

≥ (3−2t)V∞

4s+2t−3

∫
R3

v2dx

+
1

2(4s+2t−3)

∫
R3
(Iµ ∗F(v))[2(s+ t) f (v)v− (4s+2t +µ)F(v)]dx

+

(
1
2
− 1

2∗s

)∫
R3
|v|2

∗
s dx

= Φ∞(v)−
1

4s+2t−3
G∞(v)≥ c̄∞,

which implies that Φ∞(v) = c̄∞ = m∞ by recalling Lemma 3.8. �

4. EXISTENCE OF GROUND STATE SOLUTIONS TO (1.1)

In this section, our aim is to find ground state solution to (1.1), whose potential is not a
constant. In order to use Jeanjean’s monotonicity argument, i.e. Lemma 1.1, for λ ∈ Λ = [1

2 ,1],
we introduce a family of functionals Φλ : Hs(R3)→ R defined by

Φλ (u)

=
1
2

∫
R3
(|(−∆)

s
2 u|2 +V (x)u2)dx+

1
4

∫
R3

φ
t
uu2dx− λ

2

[∫
R3
(Iµ ∗F(u))F(u)dx+

2
2∗s

∫
R3
|u|2

∗
s dx
]
.

Set

Gλ (u) =
4s+2t−3

2

∫
R3
|(−∆)

s
2 u|2dx+

4s+2t−3
4

∫
R3

φ
t
uu2dx

+
1
2

∫
R3
[(2s+2t−3)V (x)− (∇V (x),x)]u2dx

+
λ

2

{∫
R3
(Iµ ∗F(u))[(3+µ)F(u)−2(s+ t) f (u)u]dx− (4s+2t−3)

∫
R3
|u|2

∗
s dx
}
.

(4.1)
Let us set Φλ (u) = A(u)−λB(u), where

A(u) =
1
2

∫
R3
(|(−∆)

s
2 u|2 +V (x)u2)dx+

1
4

∫
R3

φ
t
uu2dx→+∞,
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as ‖u‖→+∞ and

B(u) =
1
2

∫
R3
(Iµ ∗F(u))F(u)dx+

1
2∗s

∫
R3
|u|2

∗
s dx≥ 0.

We can easily verify all the conditions of Lemma 1.1.

Lemma 4.1. The functional Φλ satisfies the following properties:
(i) there exists e > 0 such that Φλ (e)< 0 for all λ ∈ Λ.
(ii) cλ = infγ∈Γ maxt∈[0,1]Φλ (γ(t))> max{Φλ (0),Φλ (e)} for all λ ∈ Λ, where

Γ = {γ ∈ C ([0,1],Hs(R3)) : γ(0) = 0,γ(1) = e}.

Proof. (i) For u ∈ Hs(R3)\{0} fixed and λ ∈ Λ, we define

Φ
∞

λ
(u) =

1
2

∫
R3
(|(−∆)

s
2 u|2 +V∞u2)dx+

1
4

∫
R3

φ
t
uu2dx

−λ

[
1
2

∫
R3
(Iµ ∗F(u))F(u)dx+

1
2∗s

∫
R3
|u|2

∗
s dx
]
.

(4.2)

Thus, from (V2), we obtain Φλ (u) ≤ Φ∞

λ
(u). Set uθ = θ (s+t)u(θx) for all θ > 0. It follows

from Lemma 3.4 that Φ∞

λ
(uθ )→−∞ as θ → +∞. Take e = uθ for θ large enough, (i) follows

immediately.
(ii) From (2.7) and the Sobolev embedding theorem, we obtain that

Φλ (u)≥
1
2
‖u‖2−C(‖u‖2+ 2µ

3 +‖u‖2q +‖u‖2∗s ),

which implies that there exist α > 0 and ρ > 0 such that

Φλ (u)≥ α > 0, ∀ ‖u‖= ρ, for any λ ∈ Λ.

Thus, for any λ ∈ Λ, there exists t0 ∈ (0,1) such that ‖γ(t0)‖= ρ and

max
t∈[0,1]

Φλ (γ(t))≥Φλ (γ(t0))≥ α > max{Φλ (0),Φλ (e)},

which yields cλ > 0. �

Combining Lemma 1.1 and Lemma 4.1, for almost all λ ∈Λ, there exists a bounded sequence
{un} ⊂ Hs(R3) such that

Φλ (un)→ cλ , Φ
′
λ
(un)→ 0.

To prove that the above sequence {un} satisfies the (PS) condition, we consider the following
limit problem{

(−∆)su+V∞u+φ t
uu = λ (Iµ ∗F(u)) f (u)+λ |u|2∗s−2u, in R3,

u ∈ Hs(R3), u > 0, in R3.
(4.3)

By Theorem 1.2, system (4.3) admits a ground state solution u∞

λ
∈ Hs(R3), i.e. for any λ ∈ Λ,

there exists u∞

λ
∈M ∞

λ
such that

(Φ∞

λ
)′(u∞

λ
) = 0, Φ

∞

λ
(u∞

λ
) = m∞

λ
= inf

u∈∈M ∞

λ

Φ
∞

λ
(u),
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where Φ∞

λ
(u) defined in (4.2), M ∞

λ
= {u ∈ Hs(R3)\{0} : G∞

λ
(u) = 0}, and

G∞

λ
(u) =

4s+2t−3
2

∫
R3
|(−∆)

s
2 u|2dx+

2(s+ t)−3
2

∫
R3

V∞u2dx+
4s+2t−3

4

∫
R3

φ
t
uu2dx

+
λ

2

∫
R3
(Iµ ∗F(u))[(3+µ)F(u)dx−2(s+ t) f (u)u]dx− (4s+2t−3)λ

2

∫
R3
|u|2

∗
s dx.

Lemma 4.2. For any λ ∈ Λ fixed, cλ < m∞

λ
.

Proof. Let u∞

λ
be the minimizer of m∞

λ
. From Lemma 3.8, Lemma 4.1, and (V2), choosing θ

large enough, we conclude that for any λ ∈ Λ,

cλ ≤max
θ>0

Φλ (θ
s+tu∞

λ
(θx))< max

θ>0
Φ

∞

λ
(θ s+tu∞

λ
(θx)) = Φ

∞

λ
(u∞

λ
) = m∞

λ
.

This completes the proof. �

Lemma 4.3. Let {un} be a bounded (PS)cλ
sequence for the functional Φλ . Then there exist

sub-sequence of {un}, still denoted {un} and integer k ∈ N∪{0}, sequence {y j
n} ⊂ R3, w j ∈

Hs(R3) for 1≤ j ≤ k such that
(i) un ⇀ uλ with Φ

′
λ
(uλ ) = 0;

(ii) y j
n→+∞ and |yi

n− y j
n| →+∞ for i 6= j;

(iii) wi 6= 0 and (Φ∞

λ
)′(wi) = 0 for 1≤ i≤ k;

(iv) ‖un−uλ −∑
k
j=1 w j(·− yk

n)‖→ 0;
(v) Φλ (un)→Φλ (uλ )+∑

k
j=1 Φ∞

λ
(w j).

In addition, we agree that in the case k = 0 the above hold without w j and y j
n.

Proof. Since {un} ⊂ Hs(R3) is a bounded sequence satisfying

Φλ (un)→ cλ > 0, Φ
′
λ
(un)→ 0,

one sees that there exists uλ ∈ Hs(R3)\{0} satisfying
un ⇀ uλ in Hs(R3),

un→ uλ in Lr
loc(R

3) for r ∈ [1,2∗s ),
un→ uλ a.e. in R3.

Moreover, using standard arguments, one can prove that Φ′
λ
(uλ ) = 0, so Gλ (uλ ) = 0. One

deduces from (4.1), (V1), and (3.1) that
Φλ (uλ )

= Φλ (uλ )−
1

4s+2t−3
Gλ (uλ )

=
1

2(4s+2t−3)

∫
R3
[2sV (x)+(∇V (x),x)]u2

λ
dx

+
λ

2(4s+2t−3)

∫
R3
(Iµ ∗F(uλ ))[2(s+ t) f (uλ )uλ − (4s+2t +µ)F(uλ )]dx+

sλ

3

∫
R3
|uλ |2

∗
s dx

≥ 0.
(4.4)

Setting v1
n = un−uλ , we have v1

n ⇀ 0. We next show that one of the following conclusions of
v1

n is true:
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Case 1: v1
n→ 0 in Hs(R3), or

Case 2: there exists R0 > 0,δ > 0 and a sequence {y1
n} ∈ R3 such that

liminf
n→∞

∫
BR0(y

1
n)
|v1

n|2dx≥ δ > 0. (4.5)

Indeed, assume that Case 2 does not occur. Therefore, for any R > 0, we obtain that

lim
n→∞

sup
y∈R3

∫
BR(y1

n)
|v1

n|2dx = 0.

Thus, Lemma 2.3 implies that v1
n→ 0 in Lr(R3), r ∈ (2,2∗s ). It follows from (2.7) and (2.9) that

lim
n→+∞

∫
R3
(Iµ ∗F(v1

n))F(v1
n)dx = 0 (4.6)

and
lim

n→+∞

∫
R3

φ
t
v1

n
(v1

n)
2dx = 0 (4.7)

Moreover, we infer from (2.10), (2.11), and (4.4) that

lim
n→∞

Φλ (v
1
n) = lim

n→∞
Φλ (un)−Φλ (uλ )≤ cλ (4.8)

and
lim
n→∞

(Φλ )
′(v1

n) = lim
n→∞

(Φλ )
′(un)− (Φλ )

′(uλ ) = 0. (4.9)

It follows from (4.6), (4.7), and (4.9) that

0 = lim
n→∞
〈(Φλ )

′(v1
n),v

1
n〉= lim

n→∞

(∫
R3
|(−∆)

s
2 v1

n|2dx+
∫
R3

V (x)(v1
n)

2dx−λ

∫
R3
|v1

n|2
∗
s dx
)
.

Since {v1
n} is bounded in Hs(R3), then we may suppose that up to a sub-sequence, as n→ ∞,∫

R3
|(−∆)

s
2 v1

n|2dx+
∫
RN

V (x)(v1
n)

2dx→ l, λ

∫
R3
|v1

n|2
∗
s dx→ l (4.10)

for some l ≥ 0. If l > 0, in view of (2.1), we obtain that∫
R3
|(−∆)

s
2 v1

n|2dx+
∫
R3

V (x)(v1
n)

2dx≥
∫
R3
|(−∆)

s
2 v1

n|2dx≥ Ss‖v1
n‖2

L2∗s (R3)
.

This together with (4.10) gives that l ≥ S
3
2s
s λ
− 3−2s

2s for all λ ∈ Λ.
On the other hand, (4.8) implies that

cλ ≥ lim
n→∞

Φλ (v
1
n) = lim

n→∞

[
1
2

(∫
R3
|(−∆)

s
2 v1

n|2dx+
∫
R3

V (x)(v1
n)

2dx
)
− λ

2∗s

∫
R3
|v1

n|2
∗
s dx
]

≥ s
3

S
3
2s
s λ
− 3−2s

2s .

(4.11)
By using similar argument as in Lemma 3.11, Lemma 3.8, and Lemma 3.12, we show that

m∞

λ
<

s
3

S
3
2s
s λ
− 3−2s

2s .

Combining with (4.11) and Lemma 4.2, we obtain
s
3

S
3
2s
s λ
− 3−2s

2s ≤ cλ < m∞

λ
<

s
3

S
3
2s
s λ
− 3−2s

2s , for all λ ∈ Λ.
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which is a contradiction. Thus, l = 0. It follows from (4.10) that ‖vn‖ → 0, that is, un→ u in
Hs(R3) and Lemma 4.3 holds with k = 0 if Case 2 does not occur.

In the following, we assume that Case 2 is true, that is, (4.5) holds. Then, up to a sub-
sequence, we obtain

|y1
n| →+∞, v1

n(·+ y1
n)⇀ w1 6= 0, (Φ∞

λ
)′w1 = 0.

Indeed, let us consider ṽ1
n := v1

n(·+y1
n). Note that {v1

n} is bounded. Then together with (4.5), we
deduce that ṽ1

n ⇀ w1 6= 0. Therefore, it follows from v1
n ⇀ 0 in Hs(R3) that {y1

n} is unbounded,
up to a sub-sequence, |y1

n| → +∞. Now we prove (Φ∞

λ
)′(w1) = 0. It suffices to prove that

〈(Φ∞

λ
)′(ṽ1

n),ϕ〉 → 0 for any ϕ ∈ C ∞
0 (R3). According to (4.9), we obtain

|〈Φ
′
λ
(un),ϕ〉−〈Φ

′
λ
(uλ ),ϕ〉−〈Φ

′
λ
(v1

n),ϕ〉| ≤ on(1)‖ϕ‖,

which implies |〈Φ′
λ
(v1

n),ϕ〉|= on(1)‖ϕ‖. Note that

〈Φ
′
λ
(v1

n),ϕ(·− y1
n)〉

=
∫
R3

∫
R3

(v1
n(x)− v1

n(y))(ϕ(x− y1
n)−ϕ(y− y1

n))

|x− y|3+2s dxdy+
∫
R3

V (x)v1
n(x)ϕ(x− y1

n)dx

+
∫
R3

φ
t
v1

n
v1

n(x)ϕ(x− y1
n)dx

−λ

∫
R3
(Iµ ∗F(v1

n)) f (v1
n)ϕ(x− y1

n)dx−λ

∫
R3
|v1

n|2
∗
s−2v1

n(x)ϕ(x− y1
n)dx

=
∫
R3

∫
R3

(ṽ1
n(x)− ṽ1

n(y))(ϕ(x)−ϕ(y))
|x− y|3+2s dxdy+

∫
R3

V (x+ y1
n)ṽ1

n(x)ϕ(x)dx

+
∫
R3

φ
t
ṽ1

n
ṽ1

n(x)ϕ(x)dx−λ

∫
R3
(Iµ ∗F(ṽ1

n)) f (ṽ1
n)ϕ(x)dx−λ

∫
R3
|ṽ1

n|2
∗
s−2ṽ1

n(x)ϕ(x)dx

= on(1)‖ϕ‖.

(4.12)

Since |y1
n| →+∞ and ϕ ∈ C ∞

0 (R3), we have∫
R3
[V (x+ y1

n)−V∞]ṽ1
n(x)ϕ(x)dx→ 0. (4.13)

Combining (4.12) and (4.13), we deduce that for any ϕ ∈C ∞
0 (R3), 〈(Φ∞

λ
)′(ṽ1

n),ϕ〉→ 0. By (V2)

and un→ uλ in L2
loc(R

3), we can see∫
R3
(V (x)−V∞)(v1

n)
2dx→ 0. (4.14)

It follows immediately from (4.8) and (4.14) that

Φλ (v
1
n)→ cλ −Φλ (uλ ), Φλ (un)−Φλ (uλ )−Φ

∞

λ
(v1

n)→ 0. (4.15)
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Set v2
n(·) := v1

n(·)−w1(·−y1
n), then v2

n ⇀ 0 in Hs(R3). Noting that ṽ1
n ⇀ w1 6= 0, we obtain that∫

R3
V (x)|v2

n|2dx =
∫
R3

V (x)|v1
n|2dx+

∫
R3

V (x+ y1
n)|w1(x)|2dx

−2
∫
R3

V (x+ y1
n)v

1
n(x+ y1

n)w
1(x)dx

=
∫
R3

V (x)|un|2dx−
∫
R3

V (x)|uλ |2dx−
∫
R3

V∞|w1|2dx+on(1).

(4.16)

From the Brezis-Lieb Lemma, [2, Lemma 2.6] and [17, Lemma 2.9], we conclude that∥∥v2
n
∥∥2

D s,2(R3)
=
∥∥un−uλ −w1(·− y1

n)
∥∥2

D s,2(R3)
= ‖un−uλ‖2

D s,2(R3)−
∥∥w1(·− y1

n)
∥∥2

D s,2(R3)
+on(1)

= ‖un‖2
D s,2(R3)−‖uλ‖2

D s,2(R3)−‖w
1(·− y1

n)‖2
D s,2(R3)+on(1),

(4.17)∥∥v2
n
∥∥2∗s

L2∗s (R3)
=
∥∥un−uλ −w1(·− y1

n)
∥∥2∗s

L2∗s (R3)
= ‖un−uλ‖

2∗s
L2∗s (R3)

−‖w1(·− y1
n)‖

2∗s
L2∗s (R3)

+on(1)

= ‖un‖
2∗s
L2∗s (R3)

−‖uλ‖
2∗s
L2∗s (R3)

−‖w1‖2∗s
L2∗s (R3)

+on(1),
(4.18)∫

R3
φ

t
v2

n
(v2

n)
2dx =

∫
R3

φ
t
v1

n
(v1

n)
2dx−

∫
R3

φ
t
w1(x−y1

n)
(w1(x− y1

n))
2dx+on(1)

=
∫
R3

φ
t
un
(un)

2dx−
∫
R3

φ
t
uλ
(uλ )

2dx−
∫
R3

φ
t
w1(w1)2dx+on(1),

(4.19)

∫
R3

φ
t
v2

n
v2

nϕdx =
∫
R3

φ
t
v1

n
v1

nϕdx−
∫
R3

φ
t
w1(x−y1

n)
(w1(x− y1

n))ϕdx+on(1)

=
∫
R3

φ
t
un

unϕdx−
∫
R3

φ
t
uλ

uλ ϕdx−
∫
R3

φ
t
w1w1

ϕdx+on(1), ∀ϕ ∈ (Hs(R3))′,
(4.20)

∫
R3
(Iµ ∗F(v2

n))F(v2
n)dx

=
∫
R3
(Iµ ∗F(v1

n))F(v1
n)dx−

∫
R3
(Iµ ∗F(w1(x− y1

n))F(w1(x− y1
n))dx+on(1)

=
∫
R3
(Iµ ∗F(un))F(un)dx−

∫
R3
(Iµ ∗F(uλ ))F(uλ )dx−

∫
R3
(Iµ ∗F(w1))F(w1)dx+on(1),

(4.21)
and∫

R3
(Iµ ∗F(v2

n)) f (v2
n)ϕdx

=
∫
R3
(Iµ ∗F(v1

n)) f (v1
n)ϕdx−

∫
R3
(Iµ ∗F(w1(x− y1

n)) f (w1(x− y1
n))ϕdx+on(1)

=
∫
R3
(Iµ ∗F(un)) f (un)ϕdx−

∫
R3
(Iµ ∗F(uλ )) f (uλ )ϕdx−

∫
R3
(Iµ ∗F(w1)) f (w1)ϕdx+on(1).

(4.22)
By (4.16)-(4.22), we see that

Φλ (v2
n) = Φλ (un)−Φλ (uλ )−Φ∞

λ
(w1)+on(1),

Φ∞

λ
(v2

n) = Φλ (v1
n)−Φ∞

λ
(w1)+on(1)

〈Φ′
λ
(v2

n),ϕ〉= 〈Φ′λ (un),ϕ〉−〈Φ′λ (uλ ),ϕ〉−〈(Φ∞

λ
)′(w1),ϕ〉+on(1) = on(1).
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Therefore, together with (4.15), we obtain

Φλ (un) = Φλ (uλ )+Φ
∞

λ
(v1

n)+on(1) = Φλ (uλ )+Φ
∞

λ
(w1)+Φ

∞

λ
(v2

n)+on(1).

It follows from (4.4) and Lemma 4.2 that Φ∞

λ
(v2

n) = cλ −Φλ (uλ )−Φ∞

λ
(w1) ≤ cλ . Note that

one of Case 1 and Case 2 is true for v2
n. If Case 1 holds, then Lemma 4.3 holds with k = 1. If

Case 2 occurs, we repeat the above arguments. By iterating this process we have sequences of
{y j

n} ⊂ R3 such that |y j
n| →+∞, |y j

n− yi
n| →+∞ for i 6= j and v j

n = v j−1
n −w j−1(·− y j−1

n ) with
j ≥ 2 satisfying

v j
n ⇀ 0 in Hs(R3), (Φ∞

λ
)′(w j) = 0

and{
‖un‖2−‖uλ‖2−∑

k
j=1 ‖w j(·− y j

n)‖2 = ‖un−uλ −∑
k
j=1 w j(·− y j

n)‖+on(1),
Φλ (un)−Φλ (uλ )−∑

k−1
j=1 Φ∞

λ
(w j)−Φ∞

λ
(vk

n) = on(1).
(4.23)

In view of {un} is bounded in Hs(R3), (4.23) yields that the iteration stops at some k. That is,
vk+1

n → 0 in Hs(R3). From (4.23), it is easy to check that (iv) and (v) are true. The proof is
complete. �

Lemma 4.4. For almost every λ ∈ Λ, let {un} be a bounded (PS)cλ
sequence of Φλ . Then up

to a sub-sequence, {un} converges to a nontrivial uλ ∈ Hs(R3)\{0} such that

Φλ (uλ ) = cλ , (Φλ )
′(uλ ) = 0.

Proof. From Lemma 4.3, up to a sub-sequence, there exist uλ ∈ Hs(R3), nontrivial critical
points w j, j = 1, . . . ,k of Φ∞

λ
, k ∈ N∪{0} and {y j

n} ⊂ R3 with |y j
n| →+∞, 1≤ j ≤ k such that

Φ
′
λ
(uλ ) = 0, un ⇀ uλ , Φλ (un)→Φλ (uλ )+

k

∑
j=1

Φ
∞

λ
(wk).

Together with (4.4), we infer that, if k 6= 0,

cλ = lim
n→∞

Φλ (un) = Φλ (uλ )+
k

∑
j=1

Φ
∞

λ
(wk)≥ m∞

λ
,

which contradicts Lemma 4.2. Therefore, this lemma follows. �

Proof of Theorem 1.1. Taking a sequence {λn} ⊂ Λ satisfying λn→ 1, one sees from Lemma
4.1 that there exists a sequence of nontrivial critical points uλn (which we denote it in the fol-
lowing by {un}) for Φλn and Φλn(un) = cλn . Now, we prove that {un} is bounded. It follows
from (3.1) and µ > s+ t that for every τ ∈ R,

f (τ)τ−2F(τ)> f (τ)τ− 6+µ

2(s+ t)
F(τ)≥ 0.

Combining 〈Φ′
λn
(un),un〉= 0 and 3≤ 4s we infer that

cδ ≥ cλn = Φλn(un)−
1
4
〈Φ′

λn
(un),un〉

=
1
4
‖un‖2 +

λn

4

∫
R3
(Iµ ∗F(un))[ f (un)un−2F(un)]dx+

(
s
3
− 1

4

)
λn

∫
R3
|un|2

∗
s dx

≥ 1
4
‖un‖2,
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which implies that {un} is bounded in Hs(R3). Therefore by Lemma 1.1, we obtain that

lim
n→∞

Φ(un) = lim
n→∞

{
Φλn(un)+

λn−1
2

[∫
R3
(Iµ ∗F(un))F(un))dx+

2
2∗s

∫
R3
|un|2

∗
s dx
]}

= lim
n→∞

cλn = c1,

and

lim
n→∞
〈Φ′(un),ϕ〉

= lim
n→∞

{
〈Φ′

λn
(un),ϕ〉+(λn−1)

[∫
R3
(Iµ ∗F(un)) f (un)ϕdx+

∫
R3
|un|2

∗
s−2unϕdx

]}
= 0,

which implies that {un} is a bounded (PS)c1 sequence for Φ. Therefore, by Lemma 4.4, there
exists a nontrivial critical point u0 ∈ for Φ with Φ(u0) = c1.

At last, we prove the existence of a ground state solution to Eq. (1.1). Set

m = inf{Φ(u) : u 6= 0, Φ
′(u) = 0}.

It is easy to see that 0 ≤ m ≤ Φ(u0) = c1 < +∞. For any u satisfying Φ′(u) = 0, by standard
arguments, we see that ‖u‖ ≥ ρ for some ρ > 0. While, it follows from (V1), G(u) = 0 and
(3.1) that

Φ(u) = Φ(u)− 1
4s+2t−3

G(u)

=
1

2(4s+2t−3)

∫
R3
[2sV (x)+(∇V (x),x)]u2dx

+
1

2(4s+2t−3)

∫
R3
(Iµ ∗F(u))[2(s+ t) f (u)u− (4s+2t +µ)F(u)]dx+

s
3

∫
R3
|u|2

∗
s dx

which yields m≥ 0. If m= 0, then there exists a critical point sequence {un} of Φ with Φ(un)→
0, which implies

lim
n→∞
‖un‖

2∗s
L2∗s (R3)

= 0. (4.24)

Similar as (3.14), we infer that∫
R3
(Iµ ∗F(un) f (un)un ≤ ε‖un‖

2+ 2µ

3
L2(R3)

+Cε‖un‖2q
L2∗s (R3)

,

which implies that

lim
n→∞

∫
R3
(Iµ ∗F(un) f (un)un = 0,

as ε → 0. Combining with (4.24) and 〈Φ′(un),un〉 = 0, we obtain limn→∞ ‖un‖ = 0, which
contradicts ‖un‖≥ ρ . Therefore, 0 < m <+∞. Then let {un} be a sequence satisfying Φ′(un) =
0,Φ(un)→ m. Applying the same argument as above, we can obtain that {un} is bounded.
Similar to the proof of Lemma 4.4, we have that there exists u ∈ Hs(R3) such that Φ′(u) =
0, Φ(u) = m. �
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