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Abstract. In this paper, we study the Cauchy problem for a semilinear fractional order differential in-
clusion with a nonconvex-valued almost lower semicontinuous nonlinearity and a linear closed operator
generating a C0-semigroup in a separable Banach space. By using the theory of measure of noncompact-
ness and condensing operators, we study topological properties of the solution set of this problem. We
prove that the solution set of the Cauchy problem possesses the classical Kneser connectedness property.
Keywords. Almost lower semicontinuous multioperator; Cauchy problem; Condensing operator, Gerasimov-
Caputo fractional derivative, Measure of noncompactness; Semilinear differential inclusion.

1. INTRODUCTION

The theory of differential equations and inclusions of fractional order attracts the attention of
a large number of researchers due to its numerous applications in mathematical physics, biology,
economics, engineering, ecology, and other branches of natural sciences (see, e.g., [1, 2, 3, 4, 5]
and the references therein). Up to the present moment, various approaches to the solvability of
differential equations and inclusions of a fractional order q ∈ (0,1) have been developed. The
Cauchy type problems for differential equations of fractional order q∈ (0,1) were solved in [6]-
[11]. In [12, 13], the trajectories of differential inclusions of fractional order q ∈ (0,1) obeying
generalized boundary conditions expressed in the form of operator inclusions were studied.
In [14]-[18], the solvability of periodic boundary value problems for fractional differential in-
clusions was studied, and the corresponding results for antiperiodic problems were presented
in [19]-[22]. Approximation methods for fractional differential equations and inclusions were
described in [23]-[28].

In the present paper, we consider the Cauchy problem for a semilinear fractional differential
inclusion in a separable Banach space E of the following form:

CDq
0x(t) ∈ Ax(t)+F(t,x(t)), t ∈ [0,T ], (1.1)

x(0) = x0, (1.2)
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where CDq
0, 0 < q < 1, is the Gerasimov–Caputo fractional derivative, F : [0,T ]×E ( E is

an almost lower semicontinuous multivalued map with compact values, A : D(A) ⊂ E → E is
a closed linear (not necessarily bounded) operator in E, and x0 ∈ E. By using the theory of
measures of noncompactness and condensing operators, we study the topological properties of
the solution set of problem (1.1)-(1.2).

2. PRELIMINARIES

2.1. Fractional integral and derivative.

Definition 2.1. (See, e.g., [1, 2]). The fractional integral of order q ∈ (0,1) of a function
g ∈ L1([0,T ];E) is the function Iq

0 g of the following form

Iq
0 g(t) =

1
Γ(q)

∫ t

0
(t− s)q−1g(s)ds,

where Γ is Euler’s gamma-function

Γ(q) =
∫

∞

0
xq−1e−xdx.

Definition 2.2. The Gerasimov–Caputo fractional derivative of the order q ∈ (N− 1,N] of a
function g ∈CN([0,T ];E) is the function CDq

0g of the following form

CDq
0g(t) =

1
Γ(N−q)

∫ t

0
(t− s)N−q−1g(N)(s)ds.

2.2. Multivalued maps. Let us recall some concepts (see, for example, [29, 30]).
We denote by E is a Banach space and introduce the following notation:

• P(E ) = {A⊆ E : A 6=∅} is the collection of all non-empty subsets of E ;
• Pb(E ) = {A ∈ P(E ) : A is bounded} ;
• Pv(E ) = {A ∈ P(E ) : A is convex} ;
• C(E ) = {A ∈ P(E ) : A is closed} ;
• K(E ) = {A ∈ P(E ) : A is compact} ;
• Kv(E ) = {Pv(E )∩K(E )} is the collection of all convex and non-empty compact sub-

sets of E ;
• Cv(E ) = {Pv(E )∩C(E )} is the collection of all convex and non-empty closed subsets

of E .

Definition 2.3. [31] Let (A ,≥) be a partially ordered set. A function β : Pb(E )→A is called
the measure of noncompactness (MNC) in E if, for each set Ω ∈ Pb(E ), β (coΩ) = β (Ω),
where coΩ is the closure of the convex hull of Ω.

A measure of noncompactness β is called:

1) monotone if, for all Ω0,Ω1 ∈ Pb(E ), β (Ω0)≤ β (Ω1) for Ω0 ⊆Ω1;
2) nonsingular if, for all a ∈ E and each Ω ∈ Pb(E ), β ({a}∪Ω) = β (Ω).

If A is a cone in a Banach space, then the MNC β is called:

3) regular if β (Ω) = 0 is equivalent to the relative compactness of Ω ∈ Pb(E );
4) real if A is the set of all real numbers R with the natural ordering.
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The example of a real MNC obeying all above properties is the Hausdorff MNC χ(Ω):

χ(Ω) = inf{ε > 0, for which Ω has a finite ε-net in E }.
Notice that the Hausdorff MNC satisfies the semi-homogeneity condition, i.e., χ(λΩ)= |λ |χ(Ω),
for each λ ∈ R and each Ω ∈ Pb(E ). For a set M ⊂ E , define ‖M‖= supx∈M ‖x‖E .

Let X be a metric space and Y be a normed space.

Definition 2.4. A multivalued map (multimap) F : X → P(Y ) is said to be lower semicontinu-
ous (l.s.c.) at a point x ∈ X if, for each open set V ⊂ Y such that F (x)∩V 6= /0, there exists an
open neighborhood U(x) of the point x such that F (x′)∩V 6= /0 for all x′ ∈U(x).

A multimap is lower semicontinuous if it is lower semicontinuous at every point x ∈ X .

Definition 2.5. A multimap F : [0,T ]×X → K (Y ) is said to be almost lower semicontinuous
(a.l.s.c.) if there exists a sequence of disjoint compact sets In ⊆ [0,T ] such that

(i) meas([0,T ]\ I) = 0, where I = ∪nIn;
(ii) the restriction of F on each set Jn = In×Y is l.s.c.

Definition 2.6. A multivalued map F : X → P(Y ) is said to be upper semicontinuous (u.s.c.)
at a point x ∈ X if, for every open set V ⊂ Y such that F (x) ⊂ V, there exists a neighborhood
U(x) of x such that F (U(x))⊂V.

A multimap is upper semicontinuous if it is upper semicontinuous at every point x ∈ X .

Proposition 2.1. (see, e.g., [30, Theorem 1.2.37]) Let F : X → P(Y ) be a u.s.c. multimap.
If A ⊂ X is a connected set and F(x) is connected for every x ∈ A, then the image F(A) is a
connected subset of Y.

Definition 2.7. A multimap F : X→ P(Y ) is called closed if its graph GF = {(x,y) : x∈ X ,y∈
F (x)} is a closed subset of X×Y.

Definition 2.8. A continuous map f : X ⊆ E → E is called condensing with respect to a MNC β

(or β–condensing) if, for each bounded set Ω⊆ X which is not relatively compact, β ( f (Ω)) 6≥
β (Ω).

2.3. Measurable multifunctions. Let E be a separable Banach space. Recall some notions
(see, e.g., [29, 30]).

Definition 2.9. Let p≥ 1. A multifunction G : [0,T ]→ K(E) is called:
• Lp–integrable if G admits an Lp–Bochner integrable selection, i.e., there exists a func-

tion g ∈ Lp ([0,T ];E) such that g(t) ∈ G(t) for a.e. t ∈ [0,T ];
• Lp–integrably bounded if there exists a function ξ ∈ Lp([0,T ]) such that ‖G(t)‖ ≤ ξ (t)

for a.e. t ∈ [0,T ].

The set of all Lp–integrable selections of a multifunction G : [0,T ]→K(E) is denoted by S p
G .

A multifunction G : [0,T ]→K(E) is called measurable if, for every open subset V ⊂E, G−1(V )
is Lebesgue measurable. Every multimap F : [0,T ]×E → K (E) generates a correspondence
assigning to every function q : [0,T ]→ E. The multifunction Φ : [0,T ]→ P(E) is defined by
the formula Φ(t) = F (t,q(t)). If, for every measurable function q, Φ is measurable, then F is
said to be superpositionally measurable.
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Lemma 2.1. (see [29, Proposition 1.3.1], and [30, Theorem 1.5.19]) If a multimap F : [0,T ]×
E→ P(E) is a.l.s.c., then it is superpositionally measurable.

Lemma 2.2. (see [29, Theorem 4.2.1]) Let a sequence of functions {ξn} ⊂ L1([0,T ];E) be
L1–integrably bounded and χ({ξn}(t)) ≤ α(t) a.e. t ∈ [0,T ], for all n = 1,2, ..., where α ∈
L1
+([0,T ]). Then, for each δ > 0, there exist a compact set Kδ ⊂ E, a set mδ ⊂ [0,T ] of a

Lebesgue measure mδ < δ , and a set of functions Gδ ⊂ L1([0,T ];E) with values in Kδ such
that, for each n≥ 1, there exists a function bn ∈ Gδ for which

‖ξn(t)−bn(t)‖E ≤ 2α(t)+δ , t ∈ [0,T ]\mδ .

Moreover, {bn} may be chosen so that bn ≡ 0 on mδ , and this sequence is weakly compact.

In the sequel, we need the following important property on the χ-estimation of the integral
of a multifunction.

Lemma 2.3. (see [29, Theorem 4.2.3 ]) Let E be a separable Banach space, and let G : [0,T ]→
K(E) be an integrable, integrably bounded multifunction such that χ(G(t)) ≤ v(t) for a.e. t ∈
[0,T ], where χ is the Hausdorff MNC in E and v(·) ∈ L1

+(0,T ). Then

χ

(∫ t

0
G(s)ds

)
≤
∫ t

0
v(s)ds.

Definition 2.10. A sequence of functions {ξn}⊂Lp([0,T ];E), p≥ 1, is called Lp–semicompact
if it is Lp–integrably bounded and the set {ξn(t)} is relatively compact in E for a.e. t ∈ [0,T ].

3. AUXILIARY RESULTS

Consider Cauchy problem (1.1) - (1.2) in a separable Banach space E.
We assume that the multimap F : [0,T ]×E→ K(E) obeys the following conditions:

(F1) F : [0,T ]×E→ K(E) is a.l.s.c.;
(F2) for each r > 0, there exists a function ωr ∈ L∞([0,T ]) such that, for each x ∈ E, ‖x‖ ≤ r,

‖F(t,x)‖ ≤ ωr(t) for a.e. t ∈ [0,T ];
(F3) there exists a function µ ∈ L∞([0,T ]) such that, for each nonempty bounded set Q⊂ E,

χ(F(t,Q))≤ µ(t)χ(Q) for a.e. t ∈ [0,T ], where χ is the Hausdorff MNC inE.

(A) A : D(A)⊂ E → E is an infinitesimal generator of a bounded C0–semigroup {U(t)}t≥0
of linear operators in E. Denote M = sup{‖U(t)‖ ; t ∈ [0;T ]} .

For x ∈C([0,τ];E),0 < τ ≤ T, consider the multifunction

ΦF : [0,τ]→ K(E), ΦF(t) = F(t,x(t)).

From conditions (F1)−(F2) and Lemma 2.1, it follows that ΦF is measurable and Lp–integrable
for p ≥ 1. Then, the superposition multimap P∞

F : C([0,τ];E)( L∞([0,τ];E) defined as fol-
lows form P∞

F (x) = S ∞
ΦF

is well-defined.

Definition 3.1. A mild solution to Cauchy problem (1.1) - (1.2) on an interval [0,τ], τ ∈ (0,T ]
is a function x ∈C([0,τ];E) such that

x(t) = G (t)x0 +
∫ t

0
(t− s)q−1T (t− s)φ(s)ds, t ∈ [0,τ],
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where φ ∈P∞
F (x) and

G (t) =
∫

∞

0
ξq(θ)U(tq

θ)dθ , T (t) = q
∫

∞

0
θξq(θ)U(tq

θ)dθ ,

ξq(θ) =
1
q

θ
−1− 1

q Ψq(θ
−1/q),

and

Ψq(θ) =
1
π

∞

∑
n=1

(−1)n−1
θ
−qn−1 Γ(nq+1)

n!
sin(nπq),θ ∈ R+.

Remark 3.1. (See, e.g., [11]) ξq (θ)≥ 0,
∫

∞

0 ξq (θ)dθ = 1, and
∫

∞

0 θξq (θ)dθ = 1
Γ(q+1) .

Lemma 3.1. (See [11, Lemma 3.4]) The operator functions G and T possess the following
properties:

1) for all t ∈ [0,T ], G (t) and T (t) are bounded linear operators. More precisely, for every
x ∈ E,

‖G (t)x‖E ≤M ‖x‖E ;

and

‖T (t)x‖E ≤
qM

Γ(1+q)
‖x‖E ; (3.1)

2) the operator functions G (·) and T (·) are strongly continuous, i.e., functions t ∈ [0,T ]→
G (t)x and t ∈ [0,T ]→T (t)x are continuous for all x ∈ E.

Consider the operator S : L∞([0,T ];E)→C([0,T ];E) defined as

S(φ)(t) =
∫ t

0
(t− s)q−1T (t− s)φ(s)ds.

Lemma 3.2. (see [25], Lemma 7) Let {ξn} be an L∞-semicompact sequence in L∞([0,τ];E).
Then {Sξn} is compact in C([0,τ];E).

Now, we consider the multioperator ϒF : C([0,τ];E)(C([0,τ];E), given as

ϒF = G (t)x0 +S◦P∞
F (x), t ∈ [0,τ].

In [32], the following existence theorems for problem (1.1) - (1.2) were proved.

Theorem 3.1. Under conditions (A), (F1)− (F3) ,there exists τ ∈ (0,T ] such that the set
ΣF

x0
[0,τ] of all mild solutions to Cauchy problem (1.1) - (1.2) on the interval [0,τ] is a non-

empty subset of the space C([0,τ];E).

Theorem 3.2. Under conditions (A), (F1), (F3), we suppose that condition (F2) has the
following form:

(F ′2) there exists α ∈ L∞
+([0,T ]) such that ‖F(t,x)‖E ≤ α(t)(1+‖x‖E) for a.e. t ∈ [0,T ].

If 2MT q

Γ(1+q)k < 1, where k = max{‖α‖∞,‖µ‖∞
} and functions α and µ are from conditions (F ′2)

and (F3), respectively, then problem (1.1) - (1.2) has a mild solution.
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4. MAIN RESULTS

Consider the question on the topological structure of the solutions set of problem (1.1) - (1.2).
We prove that this set possesses the classical Kneser connectedness property.

Suppose that the linear part of inclusion (1.1) satisfies condition (A), and the multivalued
nonlinearity F obeys condition (F1). Moreover, assume for F the following slightly more strict
conditions of boundedness and χ-regularity:
(F2L) there exists a constant K > 0 such that ‖F(t,x)‖E ≤ K(1+‖x‖E) for a.e. t ∈ [0,T ];
(F3L) there exists a function µ ∈ L∞([0,T ]) such that, for each bounded set Q⊂ E,

lim
τ→+0

χ(F(Jt,τ ×Q))≤ µ(t)χ(Q), for a.e. t ∈ [0,T ],

where χ is the Hausdorff MNC in E and Jt,τ = [t− τ, t + τ]∩ [0,T ].
Consider a multivalued map F̃ : [0,T ]×E→K(E), which is defined by F̃(t,x)=∩ε>0Fε(t,x),

where Fε(t,x) = co{F(s,y) : |s− t| < ε,‖y− x‖ < ε}. Let us show that F̃ satisfies the χ–
regularity condition:

χ(F̃(t,Q))≤ µ(t)χ(Q), (4.1)

for a.e. t ∈ [0,T ] and for each bounded set Q⊂ E.
In fact for any t ∈ [0,T ], for which estimation (F3L) holds, take arbitrary δ > 0 and choose

τ, 0 < τ < δ such that

χ(F(Jt,τ ×Wδ (Q)))≤ µ(t)χ(Wδ (Q))+δ ≤ µ(t)(χ(Q)+δ )+δ ,

where Wδ (Q) is a δ -neighbourhood of set Q.
Now

χ(F̃(t,Q))≤ χ(Fτ(t,Q))≤ χ(F(Jt,τ ×Wδ (Q)))≤ µ(t)(χ(Q)+δ )+δ .

Estimate (4.1) follows from the arbitrariness of δ .

Lemma 4.1. Under the conditions above, there exists a non-empty compact convex set X ⊂
C([0,T ];E) such that

x(0) = x0, for all x ∈ X ; (4.2)

G (t)x0 +
∫ t

0
(t− s)q−1T (t− s)coF̃(s,X(s))ds⊆ X(t) for all t ∈ [0,T ];

and
Σ

F
x0
⊂ X . (4.3)

Proof. Assume without loss of generality that F̃ satisfies the following condition of global in-
tegral boundedness:
(F ′′2) ∥∥F̃(t,x)

∥∥
E ≤ γ(t) for a.e. t ∈ [0,T ], x ∈ E

for a given function γ(·) ∈ L∞
+([0,T ]).

Notice that in this case a solution x to problem (1.1) - (1.2) satisfies the estimate ‖x‖C([0,T ];E) ≤
N, where

N = M
(
‖x0‖E +

‖γ‖
∞

T q

Γ(q+1)

)
.
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Construct a decreasing sequence of closed and convex sets {Xn}∞
n=1 ⊂ C([0,T ];E) by the

following inductive process. Set

X0 =
{

x ∈C([0,T ];E) : x(0) = x0,‖x‖C([0,T ];E) ≤ N
}
. (4.4)

Further, let Xn = Y n,n≥ 1, where

Y n =

{
y ∈C([0,T ];E) : y(t) = G (t)x0 +

∫ t

0
(t− s)q−1T (t− s) f (s)ds, f ∈P∞

co F̃(·,Xn−1(·))

}
.

Notice that Xn,n ≥ 1 are non-empty sets since ΣF
x0
[0,T ] ⊂ Xn for every n ≥ 0. In C([0,T ];E),

one introduces the following MNC:

ψ(Ω) = sup
t∈[0,T ]

e−ϑ t
χ(Ω(t)),

where the constant ϑ > 0 is chosen in the following way. Take an arbitrary, but fixed constant
d > 0 satisfying the inequality

M ‖µ‖
∞

Γ(q+1)
·dq <

1
4

and then take ϑ so large that
M ‖µ‖

∞

Γ(q+1)
· 1

ϑd1−q <
1
4
.

Notice that the MNC ψ is monotone and non-singular. From condition (F3), we have, for
0≤ s≤ t ≤ T ,

χ
(
T (t− s)coF

(
s,Xn−1 (s)

))
≤ ‖T (t− s)‖χ

(
coF

(
s,Xn−1 (s)

))
≤ qM

Γ(q+1)
χ
(
F
(
s,Xn−1 (s)

))
≤ qM

Γ(q+1)
µ(s)χ

(
Xn−1 (s)

)
≤ qM

Γ(q+1)
µ(s)ψ

(
Xn−1) · eϑs.

From (3.1) and (F ′′2), it follows that, for each t ∈ [0,T ], the multifunction

s(T (t− s)coF
(
s,Xn−1 (s)

)
, s ∈ [0, t],

is integrable and a.e. bounded, so we find from Lemma 2.3 that, for an arbitrary t ∈ [0,T ],

e−ϑ t
χ
(
Xn−1 (t)

)
= e−ϑ t

χ

(
G (t)x0 +

∫ t

0
(t− s)q−1T (t− s)coF

(
s,Xn−1 (s)

)
ds
)

= e−ϑ t
χ

(∫ t

0
(t− s)q−1T (t− s)coF

(
s,Xn−1 (s)

)
ds
)

≤ e−ϑ t qM ‖µ‖
∞

Γ(q+1)

∫ t

0
(t− s)q−1eϑs

ψ
(
Xn−1)ds.
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Now, for the case that t ≤ d, the last expression may be estimated as

qM ‖µ‖
∞

Γ(q+1)
ψ
(
Xn−1)∫ t

0
(t− s)q−1e−ϑ(t−s)ds≤ qM ‖µ‖

∞

Γ(q+1)
ψ
(
Xn−1) tq

q

≤ M ‖µ‖
∞

Γ(q+1)
·dq ·ψ

(
Xn−1) .

In case that t > d, we estimate the same expression as

qM ‖µ‖
∞

Γ(q+1)
ψ
(
Xn−1)(∫ t−d

0
(t− s)q−1eϑsds+

∫ t

t−d
(t− s)q−1eϑsds

)
≤ qM ‖µ‖

∞

Γ(q+1)
ψ
(
Xn−1)(e−ϑ t 1

d1−q
eϑ(t−d)−1

ϑ
+

dq

q

)

≤ qM ‖µ‖
∞

Γ(q+1)
ψ
(
Xn−1)( 1

ϑd1−q +
dq

q

)
.

Therefore, in both cases, we obtain the estimate ψ (Y n) ≤ 1
2ψ
(
Xn−1) , from which it follows

that ψ (Xn) ≤ 1
2ψ
(
Xn−1) . This implies ψ (Xn)→ 0 as n→ ∞. Consider the set X̃ = ∩n≥1Xn.

From the monotonicity of the MNC ψ , it follows that ψ(X̃) = 0 and hence χ(X̃(t)) = 0 for all
t ∈ [0,T ]. Moreover, inequality (4.1) implies

χ

(
F̃
(

t, X̃ (t)
))

= 0 for each t ∈ [0,T ]

and, by applying (F ′′2), we see that every sequence { fn} ⊂P∞

co F̃(·,X̃(·)) is semicompact in

L∞([0,T ];E).
Now, we define the set X ⊆ X̃ as

X =

{
y ∈C([0,T ];E) : y(t) = G (t)x0 +

∫ t

0
(t− s)q−1T (t− s) f (s)ds, f ∈P∞

co F̃(·,X̃(·))

}
.

Applying Lemma 3.2, we obtain that X is a compact set and hence it is a desirable one. To
verify (4.3), it is sufficient to remember that by construction

F(t,x)⊆ F̃(t,x) for all t ∈ [0,T ]×E. (4.5)

�

Consider now a compact set D ⊂ [0,T ]×E by D = {(s,y) : s ∈ [0,T ],y = x(s),x ∈ X}. Let
r > 0 be the radius of the ball X0, defined by (4.4). For (t,x)∈D,ε > 0 and W >σ =MK(1+r),
consider the set

V (t,x,ε) = {(s,y) ∈ D : t ≤ s < t + ε,‖y− x‖ ≤ W (s− t)q

Γ(1+q)
}.

We need the following assertions (see [33, 34]).

Lemma 4.2. The family of sets {V (t,x,ε) : (t,x)∈D,ε > 0} form a basis of closed-open niegh-
borhoods for a topology T+ on D, stronger than the usual metric topology.

Lemma 4.3. The multifunction F : D→ K(E) admits an almost T+–continuous selection γ :
D→ E in the sense that γ is T+–continuous on every set Dn = Jn∩D.
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Now, for (t,x) ∈ Dn, set

Gn(t,x) = ∩ε>0Gε
n(t,x) = ∩ε>0co{γ(s,y) : (s,y) ∈ D j, |s− t|< ε,‖y− x‖< ε},

and, for (t,x) ∈ D, define

G(t,x) =
{

Gn(t,x), (t,x) ∈ Dn
{γ(t,x)}, (t,x) /∈ ∩n Dn

From the construction, it clearly follows that

γ(t,x) ∈ G(t,x) (4.6)

and G(t,x) ⊆ F̃(t,x) for all (t,x) ∈ D. From condition (F3L) and the compactness of sets Dn,
it follows that, for every sequence εk → +0, the corresponding sequence χ(Fεk

n (t,x)) tends to
zero and hence every G(t,x) is a nonempty compact convex set.

The following assertion holds (see, e.g., [29, Lemma 5.5.6]).

Lemma 4.4. The multimap G is u.s.c. on ∪n Dn.

Conider now the following problem on the compact set D
CDq

0x(t) ∈ Ax(t)+G(t,x(t)), (t,x) ∈ D, (4.7)

x(0) = x0, (4.8)

It is clear that the multimap G saisfies the following conditions
(G1) for each x ∈ E, the multifunction G : [0,T ]→ K(E) admits a strongly continious selec-

tion;
(G2) for a.e. t ∈ [0,T ], the multimap G : E→ K(E) is u.s.c.;
(G3) ‖G(t,x)‖E ≤ γ(t) for a.e. t ∈ [0,T ], x ∈ E and a given γ(·) ∈ L∞

+([0,T ]);
(G4) there exists a function µ ∈ L∞([0,T ]) such that, for every bounded subset Q ⊂ E,

χ(G(t,Q)) ≤ µ(t)χ(Q), for a.e. t ∈ [0,T ], where χ denote the Hausdorff MNC in
E.

Since G is also obviously integrably bounded, the integral multioperator ϒG is defined and
u.s.c. on X . Choose an arbitrary function x ∈ X . From the construction of X , it is easy to see
that, for each η > 0, the function x can be uniformly η-aproximated by the function

x̃(t) = G (t)x0 +
∫ t

0
(t− s)q−1T (t− s)ϑ(s)ds,

where ϑ(·) ∈ L∞([0,T ];E) and ‖ϑ(t)‖ ≤ K(1+ r) for a.e. t ∈ [0,T ].

Lemma 4.5. The function x satisfies the following condition:

{(s,y) ∈ D : t ≤ s < t + ε;y ∈ B (s−t)q(W−σ)
Γ(1+q)

(x(s))} ⊂V (t,x(t),ε).

In other words, for points s, close enough to t, V (t,x(t),ε) is a metric neighborhood of
(s,x(s)) (in the relative topology of the space D).

Proof. Let (s,y) ∈ D and y ∈ B (s−t)q(W−σ)
Γ(1+q)

(x(s)). Then

‖y− x(t)‖ ≤ ‖y− x̃(t)‖+‖x̃(t)− x(t)‖ ≤ (s− t)q(W −σ)

Γ(1+q)
+2η .
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Since η is arbitrary, it follows that

‖y− x(t)‖ ≤ (s− t)q(W −σ)

Γ(1+q)
.

This completes the proof. �

Consider now an arbitrary function z ∈ ϒG(x) with the form

z(t) = G (t)x0 +
∫ t

0
(t− s)q−1T (t− s)g(s)ds,

were g ∈PG(x).

Lemma 4.6. The following equality holds: g(t) = γ(t,x(t)) for a.e. t ∈ [0, t].

Proof. For each index value n, consider the set I∗n ⊆ In consisting of all t ∈ In with the properties
that:

(i) g(t) ∈ Gn(t,x(t)),
(ii) there exists a sequence {tk ⊂ In} strictly decreasing to t such that g(tk) ∈Gn(t,x(tk)) for

all k and g(tk)→ g(t).
It is known (see [34, Lemma 2.3]) that meas(In\I∗n ) = 0. Following [33], we prove that g(t) =
γ(t,x(t)) for all t ∈ I∗n . Using a contradiction argument, let us suppose that there exists a point
t ∈ I∗n and ε > 0 such that

‖g(t)− γ(t,x(t))‖= ε. (4.9)

Since γ is T∗–continuos on Dn, one sees that there exist δ > 0 such that

‖γ(s,y)− γ(t,x(t))‖< ε

2
for all (s,y)∈V (t,x(t),δ ), s∈ In. Now let {tk ⊂ In} be a sequence with the properties described
in (ii). Choose k0 such that, for k ≥ k0, 0 < tk− t < δ and

‖g(tk)−g(t)‖< ε

2
. (4.10)

From Lemma 4.5, we know that V (t,x(t),δ ) is a neighborhood of (tk,x(tk)) in the usual rela-
tive metric topology of D for all k ≥ k0. So, let the ω–neighborhood Wω of (tk,x(tk)) in D be
contained in V (t,x(t),δ ). Then, for k ≥ k0,

g(tk) ∈ Gn(tk,x(tk))⊆ co{γ(s,y) : (s,y) ∈Wω ,s ∈ In}

and
⊂ co{γ(s,y) : (s,y) ∈V (t,x(t),δ ),s ∈ In} ⊂ B ε

2
(γ(t,x(t))),

i.e.,

‖γ(t,x(t))−g(tk)‖<
ε

2
. (4.11)

It is clear that (4.10) and (4.11) give the contradiction to (4.9) that proves the lemma. �

From the above lemma, it follows that the integral multioperator ϒG is single-valued on X .
Moreover, since it has the form

ϒG = G (t)x0 +
∫ t

0
(t− s)q−1T (t− s)γ(s,x(s))ds,
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it is a continuous selection of the integral multioperator ϒF . Consequently, ϒG transforms the
set X into itself since ϒF has the same property (see (4.2) and (4.5)). Moreover, every mild
solution of problem (4.7) - (4.8) is a mild solution to (1.1) - (1.2).

Now we pass from problem (4.7) - (4.8) to the Cachy problem for a differential inclusion
whose the right-hand side nonlinearity is defined on the whole [0,T ]×E.

To this aim, we consider a metric projection P : [0,T ]×E→ Kv(E) by

P(t,x) = {y ∈ X(t),‖x− y‖= dist(x,X(t))}

and the multimap G̃ : [0,T ]×E → Kv(E) defined by G̃(t,x) = coG(t,P(t,x)). Following the
lines of [29, Lemma 5.5.9 ], we have the following statement.

Lemma 4.7. The multimap G̃ satisfies the following conditions:
(i) the multifunction G̃(·,x) : [0,T ]→Kv(E) admits a measurable selection for every x∈E;
(ii) the multimap G̃(t, ·) : E→ Kv(E) is u.s.c. for a.e. t ∈ [0,T ];
(iii) there exists a constant R > 0 such that ‖G̃(t,x)‖6 R for a.e t ∈ [0,T ] and x ∈ E;
(iv) the multimap G̃(t, ·) : E→ Kv(E) is compact for a.e t ∈ [0,T ].

We can consider now the Cauchy problem on [0,T ]×E :

CDq
0x(t) ∈ Ax(t)+ G̃(t,x(t)), t ∈ [0,T ], (4.12)

x(0) = x0. (4.13)

From Lemma 4.7 and corresponding existence result ([7, Theorem 3]), we conclude that the set
ΣG̃

x0
of all mild solutions to (4.12) - (4.13) is a nonempty and compact subset of C([0,d];E).

Moreover, from the result on the topological structure of the solution set (see [25, Theorem 3]),
it follows that the set ΣG̃

x0
is connected.

Now, we can prove that the solution sets of problem (4.7) - (4.8) and (4.12) - (4.13) coincide.

Lemma 4.8. ΣG̃
x0
= ΣG

x0
.

Proof. In fact, let x ∈ ΣG̃
x0
. Then

x(t) ∈ G (t)x0 +
∫ t

0
(t− s)q−1T (t− s)G̃(s,x(s))ds

= G (t)x0 +
∫ t

0
(t− s)q−1T (t− s)coG(s,P(s,x(s)))ds

⊆ G (t)x0 +
∫ t

0
(t− s)q−1T (t− s)coG(s,X(s))ds⊂ X(t).

Hence P(t,x(t)) = {x(t)}, so we have

x(t) = G (t)x0 +
∫ t

0
(t− s)q−1T (t− s) f (s)ds,

where f ∈SG̃(·,x(·)) = SG(·,x(·)). Thus x ∈ ΣG
x0
. The inclusion ΣG

x0
⊆ ΣG̃

x0
follows easily from the

observation that ΣG
x0
⊂ X . �

Problem (4.12) - (4.13) with u.s.c. nonlinear part is said to be associated with achy problem
(1.1) - (1.2).
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Theorem 4.1. Under conditions (A), (F1), (F2L), (F3L), the set ΣF
x0

of all mild solutions to
problem (1.1) - (1.2) is connected. In particular, each set P(t) = {x(t) : x ∈ ΣF

x0
, t ∈ [0,T ]} is

also connected.

Proof. In fact, let x1,x2 ∈ ΣF
x0

be mild solutions. They have the form

xi(t) = G (t)x0 +
∫ t

0
(t− s)q−1T (t− s)φ i(s)ds,

where φ i ∈PF(xi), i = 1,2. Consider the multimaps F i(t,x)⊂ F(t,x), i = 1,2 defined by

F i(t,x) =
{
{φ i(t)}, x ∈ xi(t),
F(t,x), x /∈ xi(t).

Since each function φ i is measurable, one sees that there exists a sequence of disjoint compact
sets {Ik}, Ik ⊂ [0,T ] such that meas([0,T ] \ ∪kIk) = 0 and the restriction of φ i on each Ik is
continuous. Hence, each multimap F i, i = 1,2 is a.l.s.c. and satisfies properties (F2L), (F3L).
In accordance to Lemma 4.1, we construct a nonempty compact convex subset X ⊂C([0,T ];E)
containing mild solutions x1,x2 and invariant with respect to the action of ϒF . Consequently,
ϒF i, i = 1,2. For each of semilinear inclusions with nonlinearities F1,F2, let us pass to the
associated differential inclusions with u.s.c. nonlinear parts G̃i, i = 1,2. From construction
(remind (4.6)), it follows that

φ
i(t) = F i(t,xi(t)) = γ

i(t,xi(t)) ∈ G̃i(t,xi(t))

for a.e. t ∈ [0,T ] and i = 1,2. Hence, each of xi is the solution to the associated problem with
G̃i, i = 1,2.

Consider now the parametrized family of semilinear differential inclusions
CDq

0x(t) ∈ Ax(t)+ G̃λ (t,x(t)), t ∈ [0,T ],λ ∈ [0,1] (4.14)

x(0) = x0, (4.15)

where the one-parameter family G̃λ is defined as

G̃λ (t,x) =


G̃1(t,x), t ∈ [0,λT ];
co(G̃1(t,x)∪ G̃2(t,x)), t = λT ;
G̃2(t,x), t ∈ [λT,T ].

From [7, Theorem 3] and [25, Theorem 3], it follows that, for every λ ∈ [0,1], Σ
G̃λ
x0 of mild

solutions to (4.14) - (4.15) is a nonempty, compact, and connected subset of C([0,T ];E). It is
easy to see that Σ

G̃λ
x0 ⊂ ΣF

x0
for all λ ∈ [0,1].

Moreover, family (4.14) - (4.15) satisfies conditions of the theorem on continuous depen-
dence of the solutions set on a parameter (see [7, Theorem 4]), so the multimap λ ( Σ

G̃λ
x0 for all

λ ∈ [0,1], is u.s.c. and the set ∪λ∈[0,1]Σ
G̃λ
x0 is connected (Proposition 2.1). It remains to observe

only that x1 ∈ Σ
G̃1
x0 and x2 ∈ Σ

G̃2
x0 . �
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