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POROSITY OF THE FREE BOUNDARY IN A MINIMUM PROBLEM
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Abstract. Given a bounded domain Ω⊂ RN(N ≥ 2), a positive constant λ , and functions q, h ∈ L∞(Ω),
we study geometric properties of non-negative minimizers of the minimum problem

J (u) =
∫

Ω

(
A(|∇u|)+qF

(
u+
)
+hu+λ χ{u>0}

)
dx→min

over certain class K in the framework of Orlicz-Sobolev spaces, where u+ denotes the positive part of u,
χ{·} is the standard characteristic function, and the functions A and F satisfy the structural conditions of
Lieberman-Tolksdorf’s type. In particular, F is allowed to grow with a subcritical exponent. By using the
technique of blow-up and the Harnack’s inequality, we firstly prove the non-degeneracy of non-negative
minimizers near the free boundary Γ+ := ∂{u > 0}∩Ω, and then we show that the free boundary Γ+ is
locally porous. Furthermore, we also prove that {u > 0} has a uniformly positive density.
Keywords. Density; Free boundary problem; Minimum problem; Orlicz space; Porosity.

1. INTRODUCTION

Let Ω be an open bounded domain in RN(N ≥ 2), q and h be functions that belong to L∞(Ω),
and λ be a positive constant. Given functions a, F ∈C1([0,+∞); [0,+∞)) that satisfy a(0) =
F(0) = 0 and the structural conditions of Lieberman-Tolksdorf’s type (see [1, 2]), i.e.,

0 < δ0 ≤
ta′(t)
a(t)

≤ δ1, ∀t > 0 (1.1)

and

0 <1+θ0 ≤
tF ′(t)
F(t)

≤ 1+θ1, ∀t > 0 (1.2)

with some constants δ0,δ1,θ0, and θ1 satisfying

1+δ0 < N and 1+θ0 ≤ 1+θ1 <
N(1+δ0)

N− (1+δ0)
,

we consider the following minimum problem

J (u) =
∫

Ω

(
A(|∇u|)+qF

(
u+
)
+hu+λ χ{u>0}

)
dx→min (1.3)
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over the set
K =

{
u ∈W 1,A(Ω); u−ϕ ∈W 1,A

0 (Ω), u≥ 0 a.e. in Ω

}
,

where A(t) :=
∫ t

0 a(s)ds, ϕ is a non-negative function satisfying ϕ ∈W 1,A(Ω)∩ L∞(Ω), and
W 1,A(Ω) and W 1,A

0 (Ω) denote the Orlicz-Sobolev spaces corresponding to the function A (see
Section 2 for definitions). Note that ϕ ∈K . Thus K 6= /0.

We observe that there is a wide range of functions a (or F) satisfying condition (1.1) (or
(1.2)). A typical example of a corresponds to the p-Laplace case, namely,

a(t) = pt p−1, ∀p ∈ (1,+∞). (1.4)

Other examples of a include

a(t) = (1+ t) ln(1+ t)− t,

for which (1.1) holds true with δ0 = 1 and δ1 = 2; and the case of a containing a variable
exponent:

a(t) =

{
c1t p−1, 0≤ t < t0,

c2tg(t)−1, t ≥ t0,

where t0 > 1, c1 > 0, c2 > 0, p > 1, and g ∈C1[t0,+∞) satisfying
c3 ≤ g′(t)t ln t +g(t)−1≤ c4, ∀t ≥ t0
p = g′(t0)t0 ln t0 +g(t0)

c1 = c2tg(t0)−p
0

with constants c3 and c4 satisfying c4 ≥ c3 > 0. Note that t(c3tg(t)−1)′

c3tg(t)−1 = tg′(t) ln t +g(t)−1. By
direct computations, one may verify that such a satisfies (1.1) with δ0 = min{p−1,c3} and
δ1 = max{p−1,c4}; see [3] for more examples of a or F .

For a governed by (1.4) and F(t) = tγ with γ > 0, minimum problem (1.3) is reduced to be
the p-Laplace problem:

J(u) =
∫

Ω

(
|∇u|p +q

(
u+
)γ

+hu+λ χ{u>0}

)
dx→min, (1.5)

which is often used to model the dynamics in the fields of, e.g., chemistry, physics, and aerody-
namics. For example,

(i) the minimum problem (1.5) with λ = 0, q 6= 0, and γ = 1 refers to the obstacle problem,
describing the problems of equilibrium of elastic membranes, fluid filtration in porous
media, and control of temperature; see, e.g., [4];

(ii) the minimum problem (1.5) with λ = 0, q 6= 0, and general γ ∈ (0, p) is known as the
chemical reaction problem, which can be used to model the density of certain chemical
specie in reaction with a porous catalyst pellet; see, e.g., [5];

(iii) the minimum problem (1.5) with λ 6= 0 and q≡ 0 relates to the jets and cavities problem,
which can be applied to the combustion theory [6] and the problems of dams [7] and
heat flow [8], etc.

In the past few decades, great efforts have been devoted to investigating the existence and
regularities of minimizers in Sobolev spaces or Orlicz-Sobolev spaces [9, 10, 11, 12, 13, 14,
15, 16, 17], as well as the geometric properties of the free boundary [18, 19, 20, 21, 22, 23, 24,
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25, 26, 27, 28, 29], among which the latter brings more difficulties due to the fact that specific
estimates of minimizers are needed, such as optimal growth and non-degeneracy of minimizers
near the free boundary.

Regarding the minimum problem of the type of (1.5) with λ = 0, q 6= 0, and γ = 1, lo-
cal porosity of the free boundary was obtained in [22] for p ∈ (1,+∞); and finite (N − 1)-
dimensional Hausdorff measure of the free boundary was studied in [18, 19] for p = 2, [23]
for p ∈ (2,+∞), and [30] for p ∈ (1,2), respectively. In a general case of problem (1.5), the
minimum problem (1.3) with F (u+) = u+ and λ = 0 was considered in [31] and [32] under the
framework of Orlicz-Sobolev spaces, and local porosity and finite (N− 1)-dimensional Haus-
dorff measure of the free boundary were established, respectively. All the afore-mentioned
problems were studied in the case of h≡ 0.

As for the minimum problem of the type of (1.5) with λ = 0, q 6= 0, and γ ∈ (0,1), finite
(N−1)-dimensional Hausdorff measure of the free boundary was obtained in [27] and [28] for
p = 2 and h ≡ 0, while geometric properties of the free boundary for the general p ∈ (1,+∞)
and γ ∈ (0, p) is less studied. It is worth mentioning that C1,α regularity of minimizers in the
two-phase case and h 6≡ 0 was proved in [14], and [17, 29], under the framework of Sobolev
spaces, and Sobolev-Orlicz spaces, respectively.

Concerning the minimum problem of the type of (1.5) with λ > 0, q ≡ 0, and h ≡ 0, it was
shown in [11] and [33] that, in dimension 2, the free boundary is analytic when p = 2 and
p ∈ (2− ε0,+∞) with an absolute constant ε0, respectively. In the general case of N ≥ 2 and
p ∈ (1,+∞), the authors of [20] overcame the non-uniform elliptic conditions and obtained
the Lipschitz continuity and non-degeneracy of minimizers, which implied uniform density of
positive sets and finite (N−1)-dimensional Hausdorff measure of the free boundary. It should
be mentioned that the authors of [25] considered the problem containing (1.5) with p ∈ [2,N),
q 6≡ 0, and γ ∈ [1, p), and established the uniform density of positive sets and finite (N− 1)-
dimensional Hausdorff measure of the free boundary. In the setting of Orlicz-Sobolev spaces,
for the minimum problem having a form like (1.3) with λ > 0, q≡ 0, and h≡ 0, the authors of
[26] obtained several results on the regularity of minimizers and the free boundary, including
Lipschitz continuity and non-degeneracy of minimizers, uniform density of positive sets, and
finite (N− 1)-dimensional Hausdorff measure of the free boundary, etc., while the authors of
[34] proved that the free boundary is a real analytic hyperplane when N ∈ (2,n0) with n0 ∈ [5,7].

Although there has been a considerable effort devoted to the study of geometric properties
of the free boundary, to the best of our knowledge, few results were reported on the porosity
of the free boundary for minimum problem (1.3), which has a more general form and allows γ

in (1.5) to be a subcritical exponent. It is worth mentioning that the study of porosity of sets
appears naturally in some problems in real analysis, especially in the differentiation theory; see
[35] for comprehensive surveys. As stated in [35], the notion of porosity of a set E ⊂ RN at a
point x ∈ RN concerns the size of “hole” in the set E near to x. In particular, for a porous set E,
it is not only nowhere dense but is “small” due to the fact that “holes” near to each point x ∈ E
are “big” in a certain sense.

In this paper, we aim at studying the porosity of the free boundary for the minimum problem
(1.3) with λ > 0 and a subcritical exponent in Orlicz-Sobolev spaces. More specifically, by
virtue of the results of existence and regularity of minimizers obtained in [17], we firstly estab-
lish non-degeneracy of minimizers near the free boundary by using the technique of blow-up
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and the Harnack’s inequality. Then, we prove local porosity of the free boundary by means
of optimal growth and non-degeneracy of minimizers. In addition, based on the porosity of the
free boundary, we also show that the positive set is uniformly dense. It is worth noting that the a
priori estimates obtained in [17] provide the foundation for us to apply the Harnack’s inequality
to our problem with subcritical exponents.

In the rest of the paper, we introduce first some notations. In Section 2, we introduce basic
concepts of Orlicz-Sobolev spaces and some technical lemmas needed in the proofs of the main
results. In Section 3, we establish the non-degeneracy of minimizers near the free boundary. In
Section 4, we state and prove the main results obtained in this paper, namely, local porosity of
the free boundary and uniform density of the positive set.

Notation. Denote by Br(x) a ball in Ω with centre x ∈ Ω and radius r > 0. If not explicitly
stated otherwise, denote balls in Ω by Br and BR with the same centre, and radius r and R,
respectively.

For a minimizer u of the functional J (u), let {u > 0} := {x ∈Ω; u(x)> 0}, and Γ+ :=
(∂ {x ∈Ω; u(x)> 0})∩Ω, which is the so-called free boundary.

For a measurable set E ⊂ RN , L N(E) denotes the N-dimensional Lebesgue measure of E.

2. PRELIMINARIES

2.1. Properties of a and F . Since a is strictly increasing in [0,+∞), the inverse of a exists. In
the sequel, we denote the inverse of a by a−1. Furthermore, define Ã(t) :=

∫ t
0 a−1(s)ds for any

t ∈ [0,+∞).
The following lemma presents basic properties of a and F .

Lemma 2.1 ([17, 26]). The functions A, F, and a−1 satisfy the following properties:

(i) min
{

s
1

δ0 ,s
1

δ1

}
a−1(t)≤ a−1(st)≤max

{
s

1
δ0 ,s

1
δ1

}
a−1(t), ∀s, t ≥ 0;

(ii) min
{

s1+δ0,s1+δ1

}
A(t)

1+δ1
≤ A(st)≤max

{
s1+δ0 ,s1+δ1

}
(1+δ1)A(t), ∀s, t ≥ 0;

(iii) min
{

s1+θ0,s1+θ1
}

F(t)≤ F(st)≤max
{

s1+θ0,s1+θ1
}

F(t), ∀s, t ≥ 0.

2.2. The Orlicz-Sobolev spaces W 1,A(Ω) and W 1,A
0 (Ω). Recall that the functional

‖u‖LA(Ω) := inf
{

k > 0;
∫

Ω

A
(
|u(x)|

k

)
dx≤ 1

}
is a norm on the Orlicz space LA(Ω), which is the linear hull of the Orlicz class KA(Ω), that is,
the smallest vector space containing KA(Ω) defined by

KA(Ω) :=
{

u is measurable;
∫

Ω

A(|u(x)|)dx < ∞

}
.

The Orlicz-Sobolev space W 1,A(Ω) is defined by

W 1,A(Ω) :=
{

u ∈ LA(Ω); ∇u exists in the weak sense and |∇u| ∈ LA(Ω)
}

endowed with the norm

‖u‖W 1,A(Ω) := ‖u‖LA(Ω)+‖∇u‖LA(Ω).
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Note that LA(Ω) and W 1,A(Ω) are reflexive Banach spaces; see [26]. As in the case of ordinary
Sobolev spaces, W 1,A

0 (Ω) is taken to be the closure of C∞
0 (Ω) in W 1,A(Ω).

The following imbedding theorem is used in this paper.

Lemma 2.2 ([26]). LA(Ω) ↪→ L1+δ0(Ω) continuously.

The following lemma presents a property of solutions to the A-harmonic equation.

Lemma 2.3 ([36]). Let u ∈W 1,A (BR). Suppose that v is a bounded weak solution of

div
a(|∇v|)
|∇v|

∇v = 0 in BR, v−u ∈W 1,A
0 (BR).

Then, for any κ ∈ (0,N), there exists a positive constant C depending only on κ,N,δ0,δ1, and
‖v‖L∞(BR) such that∫

BR

A(|∇u−∇v|)dx≤C

(∫
BR

(A(|∇u|)−A(|∇v|))dx+R
κ

2

(∫
BR

(A(|∇u|)−A(|∇v|))dx
) 1

2
)
.

The following lemma is concerned with the Harnack’s inequality for the A-Laplace equation.

Lemma 2.4 (Harnack’s inequality, [1]). Let ĥ ∈ L∞(BR). Suppose that v ∈W 1,A(BR) with 0 ≤
v≤M is a weak solution to

div
a(|∇v|)
|∇v|

∇v = ĥ in BR.

Then, there exists a positive constant C depending only on N, δ0, δ1, M, and R− r such that

sup
Br

v≤C
(

inf
Br

v+a−1 (‖ĥ‖L∞(BR)R
)

R
)
, ∀r ∈ (0,R).

2.3. Properties of minimizers of J (u). First, we state a result on the existence of a minimizer
for the functional J (u).

Lemma 2.5 ([17]). The functional J (u) admits at least one minimizer u ∈K . Moreover, u is
a weak solution to the equation

div
a(|∇u|)
|∇u|

∇u = q f (u)+h in {u > 0},

where the function f is the derivative of F, i.e., f (t) = F ′(t) for all t ≥ 0.

The following lemma states that the minimizers of J (u) are uniformly bounded in L∞(Ω)∩
W 1,A(Ω).

Lemma 2.6 ([17]). Let u be a minimizer of J (u) over the set K . Then, u ∈ L∞(Ω). Further-
more, there exists a positive constant C0 depending only on N, θ0, θ1, δ0, δ1, λ , A(1), Ã(1),
‖h‖L∞(Ω), ‖q‖L∞(Ω), ‖ϕ‖L∞(Ω), ‖ϕ‖W 1,A(Ω), and the diameter of Ω such that

‖u‖L∞(Ω)+‖u‖W 1,A(Ω) ≤C0

holds true for all minimizers u ∈K .

The next lemma provides the local Log-Lipschitz regularity of minimizers of J (u), which
will be used in the proof of main results.
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Lemma 2.7 ([17]). Let u be a minimizer of J (u) over the set K . Then, u is locally Log-
Lipschitz continuous. More precisely, for any Ω′ bΩ, there exists a positive constant C depend-
ing only on N, θ0, θ1, δ0, δ1, λ , F(1), A(1), Ã(1), ‖h‖L∞(Ω), ‖q‖L∞(Ω), ‖ϕ‖L∞(Ω), ‖ϕ‖W 1,A(Ω),
Ω′, and the diameter of Ω such that

|u(x)−u(y)| ≤C|x− y|| log |x− y||, ∀x,y ∈Ω
′.

Therefore, u ∈C0,τ
loc (Ω) for any τ ∈ (0,1).

The following result indicates that the minimizers of J (u) can not grow too fast near the
free boundary.

Lemma 2.8 ([17]). Let u be a minimizer of J (u) over the set K . Let x0 ∈ ∂{u > 0} and
Br0(x0) b Ω with some r0 > 0. Then, there exists a positive constant C1 depending only on
r0, N, θ0, θ1, δ0, δ1, λ , F(1), A(1), Ã(1), ‖h‖L∞(Ω), ‖q‖L∞(Ω),‖ϕ‖L∞(Ω), ‖ϕ‖W 1,A(Ω), and the
diameter of Ω such that |u(x)| ≤C1|x− x0| holds true for all x ∈ Br(x0) and for all r ∈ (0,r0).

3. NON-DEGENERACY OF MINIMIZERS OF J (u)

As mentioned in the introduction, to obtain the geometric properties of the free boundary, it is
necessary to first establish optimal growth and non-degeneracy of minimizers in the minimum
problem. Since the optimal growth has been guaranteed by Lemma 2.8, we shall prove the
non-degeneracy of minimizers of the functional J (u) near the free boundary Γ+.

Proposition 3.1. Let u be a minimizer of J (u) over the set K . There exists a positive constant
c depending only on N, θ0, θ1, δ0, δ1, λ , F(1), A(1), Ã(1), ‖h‖L∞(Ω), ‖q‖L∞(Ω), ‖ϕ‖L∞(Ω),
‖ϕ‖W 1,A(Ω), and the diameter of Ω such that, for any x0 ∈ {u > 0}∩Ω′ with arbitrary Ω′ bΩ,
it holds that

u(x0)≥ cdist
(
x0,Γ

+
)
. (3.1)

Proof. Given x0 ∈ {u > 0}∩Ω′ with Ω′ b Ω, it suffices to show that (3.1) holds true for x0 ∈
{u > 0}∩Ω′ satisfying 0 < dist(x0,Γ

+)�Θ with a certain positive constant Θ depending only
on N, θ0, θ1, δ0, δ1, λ , F(1), A(1), Ã(1), ‖h‖L∞(Ω), ‖q‖L∞(Ω), ‖ϕ‖L∞(Ω), ‖ϕ‖W 1,A(Ω), and the
diameter of Ω. Let d := dist(x0,Γ

+) and

v(x) :=
1
d

u(x0 +dx).

It is clear that v is a minimizer to the following functional

J(ξ ) :=
∫

B1(0)

(
A(|∇ξ |)+q(x0 +dx)F(dξ

+)+dh(x0 +dx)ξ +λ χ{ξ>0}
)

dx.

Moreover, v satisfies the following equation

div
a(|∇v|)
|∇v|

∇v = dq(x0 +dx) f (dv(x))+dh(x0 +dx) in{v > 0}∩B1(0).

The thesis of Proposition 3.1 is equivalent to proving that v(0) is bounded away from zero.
Without loss of generality, we assume that d < 1. Since F ∈C1([0,+∞); [0,+∞)) and ‖u‖L∞(Ω)<
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C0 (see Lemma 2.6), then f (·) is bounded over [0,C0]. Then, applying Lemma 2.4 and Lemma 2.1(i),
we arrive at

sup
B2/3(0)

v(x)≤C2

(
inf

B2/3(0)
v(x)+a−1 (‖dq(x0 +dx) f (dv)+dh(x0 +dx)‖L∞(B1(0))

))

≤C2

(
inf

B2/3(0)
v(x)+a−1 (d‖q‖L∞(Ω)‖ f (u)‖L∞(Ω)+d‖h‖L∞(Ω)

))

≤C2

(
inf

B2/3(0)
v(x)+a−1 (dM1‖q‖L∞(Ω)+d‖h‖L∞(Ω)

))

≤C2

(
v(0)+d

1
δ1 a−1 (M1‖q‖L∞(Ω)+‖h‖L∞(Ω)

))
≤C2

(
v(0)+d

1
δ1 a−1(M2)

)
, (3.2)

where M2 := M1‖q‖L∞(Ω)+ ‖h‖L∞(Ω), M1 := max
s∈[0,C0]

f (s), and C2 depends only on N, θ0, θ1,

δ0, δ1, λ , F(1), A(1), Ã(1), ‖h‖L∞(Ω), ‖q‖L∞(Ω), ‖ϕ‖L∞(Ω), ‖ϕ‖W 1,A(Ω), and the diameter of Ω.
Let ψ be a non-negative, smooth, and radially symmetric cut-off function satisfying ψ ≡ 0 in
B1/5(0) and ψ ≡ 1 in B1(0)\B2/5(0). Define the test function Ψ over B1(0) by

Ψ(x) := min
{

v, C2

(
v(0)+d

1
δ1 a−1(M2)

)
ψ(x)

}
, ∀x ∈ B1(0).

We observe that Ψ ∈W 1,A(B1(0)) and Ψ ≡ v in B2/3(0) \B2/5(0). By the definition of Ψ(x),
we have

B1/5(0)⊂Π :=
{

y ∈ B2/5(0); C2

(
v(0)+d

1
δ1 a−1(M2)

)
ψ(y)< v(y)

}
⊂ B2/5(0).

By the minimality of v, we obtain

∫
Π

(
A(|∇v|)+q(x0 +dx)F(dv)+dh(x0 +dx)v+λ χ{v>0}

)
dx

≤
∫

Π

(
A(|∇Ψ|)+q(x0 +dx)F(dΨ)+dh(x0 +dx)Ψ+λ χ{Ψ>0}

)
dx.

Then, we obtain∫
Π

(
λ
(
1−χ{Ψ>0}

)
+q(x0 +dx)(F(dv)−F(dΨ))+dh(x0 +dx)(v−Ψ)

)
dx

≤
∫

Π

(A(|∇Ψ|)−A(|∇v|))dx. (3.3)
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Note that A is a non-negative function. By Lemma 2.1(ii), we estimate the right-hand side of
(3.3) as below:

∫
Π

(A(|∇Ψ|)−A(|∇v|))dx

≤
∫

Π

A(|∇Ψ|)dx

=
∫

Π

A
(

C2

(
v(0)+d

1
δ1 a−1(M2)

)
|∇ψ(x)|

)
dx

≤C3 max

{(
v(0)+d

1
δ1 a−1(M2)

)1+δ0

,

(
v(0)+d

1
δ1 a−1(M2)

)1+δ1
}∫

Π

A
(
‖∇ψ||L∞(B2/5(0))

)
dx

:=C4 max

{(
v(0)+d

1
δ1 a−1(M2)

)1+δ0

,

(
v(0)+d

1
δ1 a−1(M2)

)1+δ1
}
, (3.4)

where C3 depends only on C2, δ0, and δ1. The left-hand side of (3.3) becomes

∫
Π

λ
(
1−χ{Ψ>0}

)
dx =

∫
Π

λ χ{Ψ=0}dx≥ λ |B1/5(0)|. (3.5)

By (3.2) and the definition of Π, we have

∫
Π

dh(x0 +dx)(v−Ψ)dx≤2
∫

Π

d‖h‖L∞(Ω)|v|dx

≤C2

(
v(0)+d

1
δ1 a−1(M2)

)∫
B2/5(0)

2d‖h‖L∞(Ω)dx

:=C5d
(

v(0)+d
1

δ1 a−1(M2)

)
. (3.6)

Similarly, by the definition of F , Lemma 2.1(iii) and (3.2), we obtain

∫
Π

q(x0 +dx)(F(dv)−F(dΨ))dx

≤2
∫

Π

|q(x0 +dx) |F(dv)dx

≤2
∫

Π

‖q‖L∞(Ω)F(dv)dx

≤C6 max
{
(dv)1+θ0 ,(dv)1+θ1

}∫
Π

F(1)dx

≤C7 max

{(
d
(

v(0)+d
1

δ1 a−1(M2)

))1+θ0

,

(
d
(

v(0)+d
1

δ1 a−1(M2)

))1+θ1
}
, (3.7)
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where C6 depends only on ‖q‖L∞(Ω), and C7 depends only on C6, C2, N, θ0, θ1, and F(1). Thus,
based on (3.4), (3.5), (3.6), and (3.7), we derive

λ |B1/5(0)| ≤C5d
(

v(0)+d
1

δ1 a−1(M2)

)
+C4 max

{(
v(0)+d

1
δ1 a−1(M2)

)1+δ0

,

(
v(0)+d

1
δ1 a−1(M2)

)1+δ1
}

+C7 max

{(
d
(

v(0)+d
1

δ1 a−1(M2)

))1+θ0

,

(
d
(

v(0)+d
1

δ1 a−1(M2)

))1+θ1
}
.

Now choosing sufficiently small Θ, which implies that d is sufficiently small, we conclude that
v(0)≥ c > 0, where c is a positive constant depending only on N,θ0, θ1, δ0, δ1, λ , F(1), A(1),
Ã(1), ‖h‖L∞(Ω), ‖q‖L∞(Ω), ‖ϕ‖L∞(Ω), ‖ϕ‖W 1,A(Ω), and the diameter of Ω. �

By virtue of Proposition 3.1, we prove the following non-degeneracy of minimizers near the
free boundary.

Proposition 3.2. Let u be a minimizer of J (u) over the set K . There exists a positive constant
C depending only on N, θ0, θ1, δ0, δ1, λ , F(1), A(1), Ã(1), ‖h‖L∞(Ω), ‖q‖L∞(Ω), ‖ϕ‖L∞(Ω),
‖ϕ‖W 1,A(Ω), and the diameter of Ω, such that, for any x0 ∈ ∂ {u > 0}∩Ω′ with Ω′ bΩ, it holds
that

sup
Br(x0)

u≥Cr, ∀r ∈
(
0,dist(∂Ω

′,∂Ω)
)
.

Proof. By continuity, it suffices to show u is non-degenerate in the set Ω′+ := {u > 0}∩Ω′.
We initially prove that there exists a constant ω0 > 0 depending only on N, θ0, θ1, δ0, δ1, λ ,
F(1), A(1), Ã(1), ‖h‖L∞(Ω), ‖q‖L∞(Ω), ‖ϕ‖L∞(Ω), ‖ϕ‖W 1,A(Ω), and the diameter of Ω such that,
for x ∈Ω′+,

sup
Bd(x)(x0)

u≥ (1+ω0)u(x0),

where d(x) := dist(x,Γ+). We prove by contradiction. Suppose that such ω0 does not exist.
Then there exist sequences of ω j = o(1) and x j ∈Ω′+ such that

sup
Bd j (x j)

u≤ (1+ω j)u(x j),

where d j := dist(x j,Γ
+) = o(1). Let ρ̃ j(z) := u(x j+d jz)

d j
. It is clear that 0 ≤ ρ̃ j(z) ≤

(1+ω j)u(x j)
d j

in B1(0). Define Φ j(z) := (1+ω j)u(x j)
d j

− ρ̃ j(z) in B1(0). Then 0≤Φ j(z)≤
(1+ω j)u(x j)

d j
in B1(0).
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Note that Φ j(z) satisfies

|divz
a
(
|∇Φ j(z)|

)
|∇Φ j(z)|

∇Φ j(z)|=|divz
a(|∇ρ̃ j(z)|)
|∇ρ̃ j(z)|

∇ρ̃ j(z)|

=|divy
a(|∇u(y)|)
|∇u(y)|

∇u(y)|d j

=|q
(
x j +d jz

)
f (u)+h

(
x j +d jz

)
|d j

:=ĥd j.

By Lemma 2.4, for any r1 < 1, we arrive at

0≤ sup
Br1(0)

Φ j(z)

≤C8

(
inf

Br1(0)
Φ j(z)+a−1 (d j‖ĥ‖L∞(B1(0))

))
≤C8

(
Φ j(0)+a−1 (d j

(
M1‖q‖L∞(Ω)+‖h‖L∞(Ω)

)))
≤C8

(
Φ j(0)+d

1
δ1
j a−1 (M1‖q‖L∞(Ω)+‖h‖L∞(Ω)

))
,

which is equivalent to

0≤ sup
Br1(0)

(
(1+ω j)u(x j)

d j
− ρ̃ j(z)

)
≤C8

((
(1+ω j)u(x j)

d j
− ρ̃ j(0)

)
+d

1
δ1
j a−1 (M1‖q‖L∞(Ω)+‖h‖L∞(Ω)

))
, (3.8)

where C8 depends only on N, θ0, θ1, δ0, δ1, λ , F(1), A(1), Ã(1), ‖h‖L∞(Ω), ‖q‖L∞(Ω), ‖ϕ‖L∞(Ω),

‖ϕ‖W 1,A(Ω), and the diameter of Ω. Define ρ j(z) := d j
u(x j)

ρ̃ j(z) in B1(0). By (3.8) and observing
ρ j(0) = 1, we have

0≤
((

1+ω j
)
−ρ j(z)

)
≤C8

(
1+ω j−ρ j(0)+d

1
δ1
j a−1 (M1‖q‖L∞(Ω)+‖h‖L∞(Ω)

) d j

u(x j)

)
≤C8

(
ω j +

1
c

d
1

δ1
j a−1 (M1‖q‖L∞(Ω)+‖h‖L∞(Ω)

))
, (3.9)

where in the last inequality we used Proposition 3.1. For any z1 and z2 ∈ Br1(0), by (3.9), it
holds that

|ρ j(z1)−ρ j(z2)| ≤|(1+ω j)−ρ j(z1)|+ |(1+ω j)−ρ j(z2)|

≤2C8

(
ω j +

1
c

d
1

δ1
j a−1 (M1‖q‖L∞(Ω)+‖h‖L∞(Ω)

))
→ 0 as j→ ∞.

Therefore, ρ j is equi-continuous in Br1(0). Then, we deduce by (3.9) that ρ j(z)→ ρ(z) ≡
1 in Br1(0), and the arbitrariness of r1 implies that ρ(z) ≡ 1 in B1(0). In order to obtain a
contradiction, let y j ∈ Γ+ be such that d j = |x j − y j|. Up to subsequence, there would hold
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ρ j

(
y j−x j

d j

)
= 0, which is a contradiction for j� 1. At last, we derive the non-degeneracy of

minimizers by using an argument of the Caffarelli’s polygonal curve. We construct a polygonal
curve along which u grows linearly. Starting from x0 = x, we find a sequence of points {xi}i≥0
satisfying

(i) u(xi)≥ (1+ω0)
iu(x0),

(ii) |xi− xi−1| ≤ dist(xi−1,Γ
+),

(iii) u(xi)−u(xi−1)≥ ci|xi− xi−1|, in particular, u(xi)−u(x0)≥ c|xi− x0|,
where ci and c depend only on N, θ0, θ1, δ0, δ1, λ , F(1), A(1), Ã(1), ‖h‖L∞(Ω), ‖q‖L∞(Ω),
‖ϕ‖L∞(Ω), ‖ϕ‖W 1,A(Ω), and the diameter of Ω. Since u(xi)→ ∞ as i→ ∞, the above process
must be finite, that is, there exists a last point xi0 in Br(x0). For such a last point, there is a
positive constant c′ such that |xi0− x0| ≥ c′r. Finally, we have

sup
Br(x0)

u≥ u(xi0)≥ u(x0)+ c|xi0− x0| ≥ cc′r :=Cr.

�

4. MAIN RESULTS

In this section, by virtue of the optimal growth and non-degeneracy of minimizers (see
Lemma 2.8 and Proposition 3.2, respectively), we show that the free boundary is locally porous.
Furthermore, we show that the positive set has a uniform density.

We firstly state the concept of porosity.

Definition 4.1. A set E is said to be porous with porosity constant σ ∈ (0,1) if there exists a
constant r2 > 0 such that

∀x ∈ E, ∀r ∈ (0,r2)⇒∃y ∈ RN s.t. Bσr(y)⊂ Br(x)\E.

It is well known that the Hausdorff dimension of a porous set does not exceed N −CσN ,
where C =C(N)> 0 is a constant that depends only on N. Thus, the N-dimensional Lebesgue
measure of the porous set is zero; see, e.g., [22, 37].

The following theorem is the first main result obtained in this paper.

Theorem 4.1. Let u be a minimizer of J (u) over the set K . Then, for every compact set
K ⊂Ω, the intersection K∩∂{u > 0} is porous with porosity constant σ depending only on N,
θ0, θ1, δ0, δ1, λ , F(1), A(1), Ã(1), ‖h‖L∞(Ω), ‖q‖L∞(Ω), ‖ϕ‖L∞(Ω), ‖ϕ‖W 1,A(Ω), and the diameter
of Ω.

Proof. The proof can be proceeded in the same way as in [22]. For convenience of readers, we
provide the details.

Without loss of generality, we assume that the compact K is the closed unit ball B1(0), and
that B2(0)⊂Ω. Assume that r0 = 1 in Lemma 2.8. For any x ∈ B1(0)∩{u > 0}, we define

dx := dist
(

x,B1(0)\Ω
+
)
.

Let z ∈ B1(0)∩∂{u > 0}. For any r ∈
(
0, 1

3

)
, by the non-degeneracy of minimizers, there exist

a positive constant C determined by Proposition 3.2 and a point Y ∈ Br(z)∩Ω+, such that

u(Y )≥Cr. (4.1)
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For such Y , we take zY ∈ B1(0)∩∂{u> 0}with |Y−zY |= dY . Note that dY ≤ r. By Lemma 2.8,
we have

u(x)≤C1|x− zY |, ∀x ∈ Br(zY ). (4.2)

We infer from (4.1) and (4.2) that

Cr ≤ u(Y )≤C1dY .

Let σ := C
C1

. Then σr ≤ dY and σ ≤ 1. Therefore, Bσr(Y )∩Br(z)⊂ {u > 0}. Let y0 be on the
line with z and Y as endpoints and satisfy |y0−Y |= σr

2 . We claim that

Bσr/2(y0)⊂ Bσr(Y )∩Br(z)⊂ Br(z)\ (∂{u > 0})⊂ Br(z)\
(

B1(0)∩∂{u > 0}
)
.

This shows that B1(0)∩ ∂{u > 0} is porous with the porosity constant σ

2 . Indeed, on the one
hand, for every y ∈ Bσr/2(y0), it follows that

|y−Y | ≤ |y− y0|+ |y0−Y |< σr
2

+
σr
2

= σr.

On the other hand, it holds that

|y− z| ≤ |y− y0|+ |y0− z|= |y− y0|+(|z−Y |− |y0−Y |)< σr
2

+
(

r− σr
2

)
= r.

�

Now we state the second main result obtained in this paper.

Theorem 4.2. Let x0 ∈ ∂{u > 0}∩Ω′ with Ω′ bΩ. Then, for any 0 < r� 1 , it holds that

c≤ L N (Br(x0)∩{u > 0})
L N (Br(x0))

≤ 1− c, (4.3)

where c∈ (0,1) is a constant depending only on N, θ0, θ1, δ0, δ1, λ , F(1), A(1), Ã(1), ‖h‖L∞(Ω),
‖q‖L∞(Ω), ‖ϕ‖L∞(Ω), ‖ϕ‖W 1,A(Ω), and the diameter of Ω.

Proof. In view of the local porosity of the free boundary, there are a positive constant σ and a
ball Bσr with radius σr such that

L N (Br(x0)∩{u > 0})
L N(Br(x0))

≥ L N (Bσr)

L N (Br(x0))
= σ

N ,

which implies the first inequality presented in (4.3).
In order to prove the second inequality presented in (4.3), we argue by contradiction. Assume

that there exists a sequence of r j with r j→ 0 as j→ ∞ such that

L N (Br j(x0)∩{u = 0}
)
= o

(
rN

j
)
.

Define

v j(z) :=
u(x0 + r jz)

r j
, ∀z ∈ B1(0).

It follows that
L N (B1(0)∩{v j = 0}

)
= o(1).
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In view of the optimal growth of u (Lemma 2.8), we observe that v j is uniformly bounded with
respect to j. Moreover, v j is a minimizer of the following functional

J j(ξ ) :=
∫

B1(0)

(
A(|∇ξ |)+q

(
x0 + r jx

)
F
(
r jξ

+
)
+ r jh

(
x0 + r jx

)
ξ +λ χ{ξ>0}

)
dx.

Let w j ∈W 1,A(B1(0)) be the solution to the equation

div
a(|∇w j|)
|∇w j|

∇w j = 0 in B1(0), w j = v j on ∂B1(0).

Note that w j is uniformly bounded due to the fact that v j is uniformly bounded. In addition,
by comparison principle (see [26, Lemma 2.8]) and regularity of w j (see [1, Thereom 1.7]), we
have w j ≥ 0 in B1(0). By the minimality of v j, we obtain∫

B1(0)

(
A
(
|∇v j|

)
−A

(
|∇w j|

))
dx

≤
∫

B1(0)
λ

(
χ{w j>0}−χ{v j>0}

)
dx+

∫
B1(0)

q
(
x0 + r jx

)(
F
(
r jw j

)
−F

(
r jv j

))
dx

+
∫

B1(0)
r jh
(
x0 + r jx

)
(w j− v j)dx

=
∫

B1(0)∩{v j>0}
λ

(
χ{w j>0}−χ{v j>0}

)
dx+

∫
B1(0)∩{v j=0}

λ

(
χ{w j>0}−χ{v j>0}

)
dx

+
∫

B1(0)
q
(
x0 + r jx

)(
F
(
r jw j

)
−F

(
r jv j

))
dx+

∫
B1(0)

r jh
(
x0 + r jx

)
(w j− v j)dx

≤λL N (B1(0)∩{v j = 0}
)
+
∫

B1(0)
‖q‖L∞(Ω)

(
F(r jw j)+F(r jv j)

)
dx

+
∫

B1(0)
r j‖h‖L∞(Ω)(w j + v j)dx

≤o(1)+ r1+θ0
j

∫
B1(0)

‖q‖L∞(Ω)

(
F
(
‖w j‖L∞(B1(0))

)
+F

(
‖v j‖L∞(B1(0))

))
dx

+ r j

∫
B1(0)

‖h‖L∞(Ω)

(
‖w j‖L∞(B1(0))+‖v j‖L∞(B1(0))

)
dx

≤o(1)+ r1+θ0
j

∫
B1(0)

2‖q‖L∞(Ω)F
(
‖v j‖L∞(B1(0))

)
dx+ r j

∫
B1(0)

2‖h‖L∞(Ω)‖v j‖L∞(B1(0))dx.

Then, we deduce that ∫
B1(0)

(
A
(
|∇v j|

)
−A

(
|∇w j|

))
dx→ 0 as j→ ∞,

which along with Lemma 2.3 implies that∫
B1(0)

A
(
|∇v j−∇w j|

)
dx→ 0 as j→ ∞.

Note that µ j := v j−w j ∈W 1,A
0 (B1(0)). By Lemma 2.2, we have µ j = v j−w j ∈W 1,1+δ0

0 (B1(0)).
Hence µ j → 0 in W 1,1+δ0

0 (B1(0)). For any ball B with centre 0 and satisfying B b B1(0), we
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infer from Lemma 2.7 and [1, Thereom 1.7] that

‖v j‖Cα (B) ≤C′ and ‖w j‖C1,α (B) ≤C′′,

where C′ is a positive constant determined by C of Lemma 2.7, and C′′ is a positive constant
depending only on α,N,δ0,δ1,A(1), and ‖v j‖L∞(B1(0)). Note that v j is uniformly bounded with
respect to j. Thus, the constant C′′ is independent of j. Therefore, there exist subsequences,
denoted also by v j and w j, and functions v0 ∈C(B′) and w0 ∈C1(B′) for any ball B′ b B with
centre 0 such that

v j→ v0 uniformly in B,

w j→ w0 uniformly in B′,

∇w j→ ∇w0 uniformly in B′,

∇v j ⇀ ∇v0 in L1+δ0(B1(0)),

µ j = v j−w j→ 0 uniformly in B′.

Thus, v0 = w0 in B′. By the Harnack’s inequality, we have sup
Bs(0)

w j ≤ C inf
Bs(0)

w j for any pos-

itive constant s satisfying Bs(0) b B′ b B1(0), where C is a positive constant determined by
Lemma 2.4. Passing to the limit, we have supBs(0) v0 ≤C infBs(0) v0. Since v0(0) = 0, we have
v0 ≡ 0 in Bs(0).

On the other hand, by the non-degeneracy property (Proposition 3.2), for sufficiently small s,
it holds that supBs(0) v j ≥Cs > 0 with a positive constant C, and hence supBs(0) v0 ≥Cs > 0. We
obtain a contradiction.

�
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