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Abstract. This paper presents a piecewise convexification method with a box classification strategy to
approximate the entire globally optimal solution set of non-convex optimization problems with box con-
straints. First, the box classification strategy is proposed based on the convexity of the objective function
on the sub-boxes, which helps to reduce the number of box divisions and improve the computational
efficiency. At the same time, we construct the piecewise convexification problem of the original non-
convex optimization problem by applying the α-based Branch-and-Bound (αBB) method, and we define
the (approximate) solution set of the piecewise convexification problem based on the result of classifying
the sub-boxes. Then, it is deduced that the globally optimal solution set can be approximated by the (ap-
proximate) solution set of the piecewise convexification problem. Finally, a piecewise convexification
algorithm is proposed that includes a new subset selection technique for division and two new termina-
tion tests. The results of our experiments demonstrate the effectiveness and general superiority of our
approach over the competition.

Keywords. α-based Branch-and-Bound; Global optimization; Non-convex programming; Optimal so-
lution set; Piecewise convexification.

1. INTRODUCTION

Non-convex optimization problems arise frequently in machine learning, such as the image
recovery problem [1, 2] and the robust support vector regression problem [3, 4]. Meanwhile, one
is generally only interested in globally (approximate) optimal solutions in applications, so how
to effectively solve non-convex optimization problems has received much attention. Up to now,
most global approximation algorithms have been developed such as convex relaxation-based
method; see [5, 6, 7, 8, 9, 10, 11]. In particular, the αBB method, which is one of the global
optimization methods and is based on the idea of the convex relaxation, plays a substantial role
in the design of efficient and computationally tractable numerical algorithms for non-convex
optimization problems; see, e.g., [12, 13, 14, 15]. It is worth remarking that these algorithms
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generally aim at finding a single globally optimal solution, but most application problems may
exist with many or even an infinite number of globally optimal solutions; see, e.g., [16, 17]. To
the best of our knowledge, research on global algorithms to determine the set of globally optimal
solutions is not abundant. In [18], Eichfelder et al. generalized the classical αBB method to
find the globally optimal solution set with predefined quality for a non-convex optimization
problem. However, as they pointed out, some additional variables and the additional while loop
were required.

Motivated by [18], we develop a piecewise convexification method with a box classifica-
tion strategy to approximate the entire globally optimal solution set of non-convex optimization
problems. In order to reduce the number of box divisions and improve the computational ef-
ficiency, we first classify the sub-boxes by the convexity of the objective function on them
and further partition only on some sub-boxes in the subsequent division. The αBB method
is applied to some sub-boxes to construct a piecewise convexification problem of the original
non-convex optimization problem. Then, we construct the (approximate) solution sets of the
piecewise convexification problem using the results of the box classification, and we show that
these constructed sets approximate the globally optimal solution set with a predefined quality.
Finally, a new piecewise convexification algorithm is proposed that includes a new sub-box
selection rule for partitioning and two new termination rules. Furthermore, several instances
verify that these rules are conducive to improving the effectiveness of the algorithm.

This paper is organized as follows. Section 2 summarizes some basic definitions of the op-
timization problem. It also introduces the αBB method and the box division. In Section 3,
incorporating the αBB method and the box division criterion, we first propose a piecewise con-
vexification method for the non-convex optimization problem, and then analyze the solution set
of this piecewise convexification optimization problem. More importantly, some relationships
between the (approximate) optimal solution set of the convexification problem and the original
optimization problem are also stated in detail. A new algorithm that generates the subset of
approximate global solutions is presented in Section 4. Finally, some numerical experiments
are reported and discussed in Section 5, the last section.

2. PRELIMINARIES

Let I denote the set of all real nonempty closed boxes and In denote the set of all n-dimensional

boxes. For a given box X ∈ In, we set X = [a,b] :=
n
∏
i=1

[ai,bi], where a = (a1, · · · ,an) and

b = (b1, · · · ,bn). Thus, x ∈ X denotes xi ∈ [ai,bi] for each i ∈ {1, · · · ,n}.
In this paper, we consider the following non-convex optimization problem (NCOP):

(NCOP) min
x∈X

f (x),

where X = [a,b] is a box and f : Rn → R is a non-convex twice continuously differentiable
function. We start with an overview of the (approximate) optimal solution of (NCOP).

Definition 2.1. ([18]) Let X ⊆ Rn be a nonempty set, x̃ ∈ X , and f : X → R.
(a) If f (x̃)≤ f (y) for any y ∈ X , then x̃ is an optimal solution to f w.r.t. X . Therefore, the

optimal solution set is denoted by Xop := {x ∈ X : f (x)≤ f (y), ∀y ∈ X}.
(b) For any given ε > 0, if f (x̃)≤ f (y)+ ε for any y ∈ X , then x̃ is a ε-minimal point of f

w.r.t. X , and Xε
op := {x ∈ X : f (x)≤ f (y)+ ε,∀y ∈ X} is the ε-optimal solution set.
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Before proceeding, we briefly describe the αBB method and the box division, as they play
an important role in the devise of the piecewise convexification method.

2.1. The αBB method. The αBB method is a global optimization method that constructs a
convex relaxation estimator of a non-convex objective function f w.r.t. X ; see, e.g., [18, 19, 20,
21]. More precisely, let f : X → R be a real-valued twice continuously differentiable function
and X be a box, i.e., X = [a,b] ∈ In. A convex lower relaxation function Fα

X : X → R of f by
the idea of the αBB method was defined in [20] as follows:

Fα
X (x) = f (x)+

n

∑
i=1

αi(ai− xi)(bi− xi),

where parameter α := (α1, · · · ,αn) guarantees the convexity of Fα
X on X .

There are several methods for estimating the value of α; see, e.g., [20, 22, 23]. In this article,
we directly adopt the following method from [20] to roughly compute the value of αi for each
i ∈ {1, · · · ,n}, as defined by

αi := max
{

0,−1
2

(
min
x∈X

∇
2 f (x)ii−∑(X , i,d)

)}
(2.1)

where d := b−a ∈ Rn, Hessian matrix ∇2 f (x) =
(

∇2 f (x)i j

)
, and

∑(X , i,d) := ∑
i6= j

max
{∣∣∣∣min

x∈X
∇

2 f (x)i j

∣∣∣∣ , ∣∣∣∣max
x∈X

∇
2 f (x)i j

∣∣∣∣} d j

di
. (2.2)

A lower bound of the minimum eigenvalue of ∇2 f (x) w.r.t. X was given in [20], i.e.,

λ
X
min ≥min

i

(
min
x∈X

∇
2 f (x)ii−∑(X , i,e)

)
,

where e = (1, · · · ,1) ∈ Rn. Obviously, if the lower bound

λ̃X := min
i

(
min
x∈X

∇
2 f (x)ii−∑(X , i,e)

)
≥ 0, (2.3)

then f is obviously convex on X , not vice versa. It is clear that λ̃X2 ≤ λ̃X1 with X1 ⊆ X2.
Moreover, in [22], the maximum separation distance between f and Fα

X over X is

D(X) = max
x∈X
‖ f (x)−Fα

X (x)‖=
n

∑
i=1

αi

(bi−ai

2

)2
, (2.4)

which shows that D(X) is determined by the interval [a,b] and α .

2.2. The box division. As shown in equation (2.4), a smaller box helps to generate a tighter
underestimation of the original function. Thus, we divide the whole box into some sub-boxes
to well approximate the original function.

Let µn be the Lebesgue measure on Rn. If the box set Yt := {Y 1,Y 2, · · · ,Y Mt} satisfies

X =
Mt⋃

kt=1

Y kt and µ
n(Y kt ∩Y jt ) = 0 ∀kt , jt ∈ {1, · · · ,Mt},
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then Yt is a subdivision of X . The sub-box Y kt abbreviates as Y kt = [akt ,bkt ] =
n
∏
i=1

[akt
i ,b

kt
i ]. It is

worth noting that the subdivisionYt+1 of X w.r.t t+1 is based onYt , i.e., selecting one or more
sub-boxes from Yt to divide. In the following, we introduce the box division way; see [18].

The division way: For a given box Y kt = [akt ,bkt ] ∈Yt , the branching index l is defined by

l := min{ j ∈ {1, · · · ,n} : j ∈ argmax
j∈{1,··· ,n}

(bkt
j −akt

j )},

and then Y kt splits into two subsets Y kt ,1 and Y kt ,2 based on direction l by

Y kt ,1 :=
n

∏
i=1,i6=l

[akt
i ,b

kt
i ]×

[
akt

l ,
akt

l +bkt
l

2

]
and Y kt ,2 :=

n

∏
i=1,i6=l

[akt
i ,b

kt
i ]×

[
akt

l +bkt
l

2
,bkt

l

]
.

Clearly, Y kt = Y kt ,1 ∪Y kt ,2 and Y kt ,1,Y kt ,2 ∈ Yt+1. For simplicity, we define the splitting
operator Sp(Y kt ) := {Y kt ,1,Y kt ,2} and the length of the subdivision Yt of X by

|T (Yt)| := max
kt∈{1,··· ,Mt}

{
‖akt −bkt‖2

2

}
= max

kt∈{1,··· ,Mt}

{
n

∑
i=1

(bkt
i −akt

i )
2

}
.

Remark 2.1. Let x∗ ∈ Xop. For any given subdivision Yt of X , there exists Y kt ∈Yt such that
x∗ ∈ Y kt and x∗ is an optimal solution to f w.r.t. Y kt .

3. PIECEWISE CONVEXIFICATION METHOD FOR (NCOP)

In this section, we first introduce the piecewise convexification problem for the non-convex
optimization problem (PC-NCOP). The solution sets of the piecewise convexification optimiza-
tion problem are constructed and discussed in detail. Finally, we analyze some relationships
between the solution sets of the piecewise convexification optimization problem and the (ap-
proximate) globally optimal solution set of the original non-convex optimization problem.

3.1. Piecewise convexification problem. In order to approximate the globally optimal solu-
tion set of a non-convex optimization problem, we use the box division technique to divide X
into several sub-boxes and use the αBB method to relax this problem on each sub-box of X
instead of on X itself. Thus it is referred to as the piecewise convexification method. In the
following, we discuss this method in detail.

Let Yt := {Y 1,Y 2, · · · ,Y Mt} be a subdivision of X . Then we consider the same convex relax-
ation subproblem on Y kt = [akt ,bkt ] ∈Yt as [20], i.e.,

min
x∈Y kt

Fαkt
kt

(x) := f (x)+
n

∑
i=1

α
kt
i (akt

i − xi)(b
kt
i − xi), (3.1)

where αkt := (αkt
1 , · · · ,αkt

n ). If λ̃Y kt ≥ 0 estimated by (2.3), then α
kt
i = 0. Otherwise, α

kt
i is

computed by (2.1) for any i∈ {1, · · · ,n}. Similarly, λ̃Y kt ≥ 0 implies that Fαkt
kt

is a convex lower

bound estimation function of f (x) on Y kt and Fαkt
kt

(x) = f (x) for any x ∈ Y kt .
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Let Xkt
ap and Xkt ,ε

ap denote the optimal solution set and the ε-solution set of (3.1), respectively,

Xkt
ap := {x ∈ Y kt : Fαkt

kt
(x)≤ Fαkt

kt
(y) for any y ∈ Y kt},

Xkt ,ε
ap := {x ∈ Y kt : Fαkt

kt
(x)≤ Fαkt

kt
(y)+ ε for any y ∈ Y kt}, (3.2)

where ε > 0. Obviously, Xkt
ap and Xkt ,ε

ap are not empty sets.

As mentioned above, for any kt ∈ {1, · · · ,Mt} and Y kt ∈Yt , Fαkt
kt

is a convex relaxation sub-
problem of (NCOP) w.r.t. Y kt . Then, we use all convex sub-problems to constitute the piecewise
convexification optimization problem of (NCOP) with respect to X .

3.2. The solution set of the piecewise convexification problem. In this subsection, we con-
struct the solution set of the piecewise convexification problem w.r.t. X for the subdivision Yt .
The construction of this solution set is crucial because it relates to the approximation of the
globally optimal solution set and directly affects the performance of the algorithm.

Let Mt be the index set of all sub-boxes of the subdivision Yt and X =
⋃

kt∈Mt
Y kt . As we all

know, if f is convex on a current box, then it is also convex on any subset of that box. Thus,
in this paper, we will check whether f is already convex on the current box before dividing it.
Obviously, we can first define two auxiliary indicator sets to classify those sub-sets based on
the convexity of f on its corresponding box, i.e,

M1(t) :=
{

kt ∈Mt : λ̃Y kt ≥ 0
}

and M2(t) :=
{

kt ∈Mt : λ̃Y kt < 0
}
,

where λ̃Y kt is defined by (2.3). Clearly, Mt = M1(t)∪M2(t) and f is convex on the subset Y kt

for any kt ∈M1(t). However, for any kt ∈M2(t) one cannot claim that f must be non-convex
on Y kt , because we only obtain λ̃Y kt < 0 and not λY kt

min < 0. That is, the convexity of f on Y kt is
uncertain for any kt ∈M2(t). Thus, we need to be more concerned about the indices in M2(t)
rather than in M1(t) for any t. Then a box division criterion is proposed.

Box division criterion: No division is applied to the box if f is convex on it, and the box on
which f is non-convex is selected for subdivision.

Some notations that help us to clearly define the solution set of the piecewise convexification
problem, corresponding to the above index sets, are presented.

XC
ap(t) :=

⋃
kt∈M1(t)

Xkt
ap and XUC

ap (t) :=
⋃

kt∈M2(t)

Xkt
ap, (3.3)

where Xkt
ap is an optimal solution set of the convex relaxation optimization problem (3.1).

Finally, using these auxiliary sets above, we in this paper, directly define the set of the piece-
wise convexification problem Xap(t) of the following form

Xap(t) =
{

x ∈ XC∪UC
ap (t) : f (x)≤ f (y) for any y ∈ XC∪UC

ap (t)
}

(3.4)

where XC∪UC
ap (t) := XC

ap(t)∪XUC
ap (t).

Remark 3.1. When f is convex on X , it is easy to check that Xap(t) = Xop for any t, i.e., this
definition can be reduced to the classical way of defining a solution set. This shows that this
definition of solution set of the piecewise convexification optimization problem is reasonable.
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In what follows, we analyze the solution set Xap(t + 1) we defined from the perspective of
the division process, which helps us to better understand the advantages of this definition. As
mentioned above, no subdivision is applied to this box on which f is convex, that is, from the
subdivision Yt to Yt+1, we only divide the boxes whose indicators belong to M2(t), instead
of dividing all the boxes corresponding to Mt . Then, this division process yields to two new
auxiliary index sets based on M2(t), as defined by

Mt+1,C
t :=

{
jt : λ̃Y jt ≥ 0 where Y jt ∈ Sp(Y kt ) and kt ∈M2(t)

}
, (3.5)

Mt+1,UC
t :=

{
jt : λ̃Y jt < 0 where Y jt ∈ Sp(Y kt ) and kt ∈M2(t)

}
, (3.6)

which indicate that we classify the new sub-boxes, that is, we put the index of the new box that
makes f convex in Mt+1,C

t , otherwise, put it in Mt+1,UC
t . Obviously, these definitions imply that

M1(t +1) = M1(t)∪Mt+1,C
t and M2(t +1) = Mt+1,UC

t . (3.7)

The union of solution sets around (3.5) and (3.6) are similarly represented by

XnewC
ap (t, t +1) :=

⋃
kt∈Mt+1,C

t

Xkt
ap and XnewUC

ap (t, t +1) :=
⋃

kt∈Mt+1,UC
t

Xkt
ap.

Combining this with (3.7), one can conduct that

XC
ap(t +1) = XC

ap(t)∪XnewC
ap (t, t +1) and XUC

ap (t +1) = XnewUC
ap (t, t +1).

Therefore, Xap(t +1) can be equivalently expressed in the following form:

Xap(t +1) :=
{

x ∈ Xap(t, t +1) : f (x)≤ f (y) for any y ∈ Xap(t, t +1)
}
,

where Xap(t, t +1) := XC
ap(t)∪XnewC

ap (t, t +1)∪XnewUC
ap (t, t +1).

This equivalent form demonstrates the rationality and advantage of this way of defining
Xap(t +1). These are summarized in the following remark.

Remark 3.2. (i) There is a significant relationship between Xap(t) and Xap(t +1) since Xap(t +
1) uses the information XC

ap(t) from the subdivision Yt . In fact, the subdivision Yt+1 is always
based on the result of the subdivision Yt , and it follows that this relation is reasonable.

(ii) From the subdivision Yt to Yt+1, we do not consider the boxes that make f convex in
the subdivision Yt . Moreover, we use XC

ap(t) directly from the result of the subdivision t to
construct Xap(t + 1), instead of solving these sub-problems repeatedly. These techniques can
reduce the number of sub-problems to solve in the piecewise convexification method.

Next, we discuss the relationship between Xap(t) and Xop when f has the piecewise convex
property on X , i.e., f is non-convex on X and f is convex on each sub-box of X for some
subdivision Yt0 .

Theorem 3.1. If there exists a subdivision Yt0 of X such that M2(t0) = /0, then Xop = Xap(t0).

Proof. Obviously, M2(t0) = /0 implies that XUC
ap (t0) = /0, Mt0 = M1(t0), and

Xap(t0) = {x ∈ XC
ap(t0) : f (x)≤ f (y) for any y ∈ XC

ap(t0)}. (3.8)

Since Yt0 is a subdivision of X , then X =
⋃

kt∈Mt0
Y kt . In what follows, we prove that Xap(t0) =

Xop, that is, Xop ⊆ Xap(t0) and Xap(t0) ⊆ Xop. If Xop * Xap(t0), then there exists x̂ ∈ Xop such
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that x̂ /∈ Xap(t0). Based on the definition of Xap(t0), shown in (3.8), it is easy to verify that
x̂ /∈ Xop. Therefore, we conduct that Xop ⊆ Xap(t0).

Next, we assume that Xap(t0) * Xop, i.e., there exists x̂ ∈ Xap(t0) with x̂ /∈ Xop. Thus, one
can find ŷ ∈ X satisfying f (ŷ) < f (x̂). Since Yt0 is a subdivision, then let ŷ ∈ Y jk0 , where
kt0 ∈ Mt0 = M1(t0). Due to X

kt0
ap 6= /0, there must exist ẑ such that ẑ ∈ X

kt0
ap . It follows that

f (ẑ)≤ f (ŷ), which yields f (ẑ)< f (x̂) with ẑ ∈ X
kt0
ap ⊆ XC

ap(t0). This seems to contradict the fact
that x̂ ∈ Xap(t0). Thus Xap(t0)⊆ Xop.

Obviously, from the above analysis, one can conclude that Xap(t0) = Xop. �

This theorem demonstrates that the proposed piecewise convexification method can explore
all globally optimal solutions of the non-convex problem with the piecewise convex properties.

3.3. Approximate the globally optimal solution set. In this subsection, we show that Xap(t)
is a lower bound set of Xε

op, and a new approximate solution set of the piecewise convexification
optimization problem is presented to obtain the upper bound set of Xε

op.

Theorem 3.2. For any ε > 0, there exist t ∈ N and the subdivision Yt of X such that

Xap(t)⊆ Xε
op,

where the subdivision Yt satisfies max
kt∈M2(t)

n
∑

i=1
α

kt
i

(
akt

i −bkt
i

2

)2
≤ ε

Proof. From the Lemma 5 in [18], there exists the subdivision Yt such that |T (Yt)| → 0 as
t→ ∞. Since αi is a finite value for any i, then there exist t0 and a subdivision Yt0 such that

max
kt0∈M2(t0)

n

∑
i=1

α
kt0
i

(a
kt0
i −b

kt0
i

2

)2
≤ ε. (3.9)

Next, we just need to prove that Xap(t0) ⊆ Xε
op. Suppose that Xap(t0) * Xε

op, that is, there
exists x̂ ∈ Xap(t0) such that x̂ /∈ Xε

op. Obviously, x̂ ∈ XC∪NC
ap (t0) and then one can find ŷ ∈ X

satisfying

f (ŷ)+ ε < f (x̂). (3.10)

Let ŷ belong to the sub-box Y kt0 of X , i.e., ŷ ∈ Y kt0 ∈Yt0 where kt0 ∈M1(t0)∪M2(t0).

If ŷ ∈ X
kt0
ap ⊆ Y kt0 , then, according to (3.10) and X

kt0
ap ⊆ XC∪NC

ap (t0), it contradicts x̂ ∈ Xap(t0).

Thus ŷ ∈ Y kt0\Xkt0
ap . Then, there exists ẑ ∈ X

kt0
ap satisfying Fα

kt0
kt0

(ẑ) < Fα
kt0

kt0
(ŷ), where kt0 ∈Mt0 .

Note that Mt0 := M1(t0)∪M2(t0). Obviously, if kt0 ∈ M1(t0), i.e., f is convex on Y kt0 , then

f (ẑ)< f (ŷ) and f (ẑ)< f (ŷ)+ε < f (x̂) from (3.10). This is contrary to x̂∈Xap(t0) by ẑ∈X
kt0
ap ⊂

XC
ap(t0). However, if kt0 ∈M2(t0), then ŷ /∈ X

kt0
ap implies that there exists ẑ∈ X

kt0
ap ⊂ XUC

ap (t0) such

that Fα
kt0

kt0
(ẑ)< Fα

kt0
kt0

(ŷ). On account of (3.10), one can obtain Fα
kt0

kt0
(ẑ)< f (x̂)− ε , that is,

f (ẑ)+
n

∑
i=1

α
kt0
i (a

kt0
i − ẑi)(b

kt0
i − ẑi)< f (x̂)− ε,

which implies that f (ẑ) < f (x̂) by (3.9). This contradicts x̂ ∈ Xap(t0) by ẑ ∈ X
kt0
ap ⊂ XUC

ap (t0).

Consequently, we infer that ŷ /∈ Y kt0\Xkt0
ap .
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In summary, the above analysis violates the assumption ŷ ∈Y kt0 . Therefore, this theorem has
now been proven. �

The above theorems demonstrate that the solution set of the piecewise convexification op-
timization problem is a lower bound set of Xε

op. To construct the upper bound set of Xε
op, the

approximate solution set of the piecewise convexification optimization problem is introduced
as

Xε
ap(t) :=

{
x ∈ XC∪UC,ε

ap (t) : f (x)≤ f (y)+ ε for any y ∈ XC∪UC,ε
ap (t)

}
,

where Xkt ,ε
ap is defined by (3.2), XC∪UC,ε

ap (t) := XC,ε
ap (t)∪XUC,ε

ap (t), and

XC,ε
ap (t) :=

⋃
kt∈M1(t)

Xkt ,ε
ap , XUC,ε

ap (t) :=
⋃

kt∈M2(t)

Xkt ,2ε
ap .

In what follows, we prove that a new set Xε
ap(t) is an upper bound set of Xε

op.

Theorem 3.3. For any ε > 0, there exist t ∈ N and the subdivision Yt of X such that

Xε
op ⊆ Xε

ap(t),

where the subdivision Yt satisfies max
kt∈M2(t)

n
∑

i=1
α

kt
i

(
bkt

i −akt
i

2

)2
≤ ε ,

Proof. Similarly, there exist t0 and a subdivision Yt0 of X such that (3.9) holds. It remains to
show that Xε

op ⊆ Xε
ap(t0). Assume that Xε

op * Xε
ap(t0) for some t0. Then one can find x̂ ∈ Xε

op and
x̂ /∈ Xε

ap(t0).
Now, we can distinguish two cases for x̂ /∈ Xε

ap(t0) from the definition of Xε
ap(t0), and the

first of which is x̂ ∈ XC∪UC,ε
ap (t0). It implies that there exists ŷ ∈ XC∪UC,ε

ap (t0) ⊆ X satisfying
f (ŷ)+ ε < f (x̂). This contradicts the fact that x̂ ∈ Xε

op, that is, the first case is not true.
The second case is x̂ /∈ XC∪UC,ε

ap (t0). For this subdivision Yt0 , without loss of generality, let

x̂ ∈Y kt0 for some kt0 ∈Mt0 = M1(t0)∪M2(t0). If kt0 ∈M1(t0), then X
kt0 ,ε
ap ⊆ XC,ε

ap (t0). Moreover,

x̂ /∈XC∪UC,ε
ap (t0) indicates that x̂ /∈X

kt0 ,ε
ap . Then, there exists ŷ∈Y kt0 with Fα

kt0
kt0

(ŷ)+ε <Fα
kt0

kt0
(x̂).

Obviously, Fα
kt0

kt0
(x) = f (x) for any x ∈ Y kt0 as kt0 ∈M1(t0). Then it conducts that

f (ŷ)+ ε = Fα
kt0

kt0
(ŷ)+ ε < Fα

kt0
kt0

(x̂) = f (x̂),

which contradicts x̂ ∈ Xε
op. This yields to kt0 /∈ M1(t0), that is, kt0 ∈ M2(t0). This indicates

that X
kt0 ,2ε

ap ⊆ XUC,ε
ap (t0) and x̂ /∈ X

kt0 ,2ε

ap by x̂ /∈ XC∪UC,ε
ap (t0). Thus there exists ŷ ∈ Y kt such

that Fα
kt0

kt0
(ŷ)+2ε < Fα

kt0
kt0

(x̂), which implies from (3.9) that f (ŷ)+ ε < f (x̂). This contradicts
x̂ ∈ Xε

op, which means that kt0 ∈M2(t0) is also false. Thus, the second case would not hold.
Consequently, the above assumption is not true, that is, Xε

op ⊆ Xε
ap(t0) holds. �

Remark 3.3. Combining Theorems 3.2 and 3.3, the lower and upper bound sets of the set
Xap(t) are obtained by constructing solution sets of the piecewise convexification optimization
problem when the subdivision, that is,

Xap(t)⊆ Xε
op ⊆ Xε

ap(t),∀ε > 0,
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where the subdivision Yt satisfies max
kt∈M2(t)

n
∑

i=1
α

kt
i

(
akt

i −bkt
i

2

)2
≤ ε . However, Eichfelder, Gerlach,

and Sumi only obtained a lower bound set of Xap(t) in [18].

4. A PIECEWISE CONVEXIFICATION ALGORITHM

In this section, the piecewise convexification algorithm for the non-convex optimization prob-
lem is devised. Furthermore, the theoretical property of this algorithm is obtained. It is neces-
sary to introduce some notations in Table 1 that are used in the algorithm.

TABLE 1. Notations in algorithm

Abbreviation Denotation

X̂ The sub-box of X
µ̂ The function values of F α̂

X̂
on X̂

X X̂
ap The optimal solution set of F α̂

X̂
on X̂

vglob The smallest objective function value found for all current sub-boxes

w(X̂ , α̂) The modified width of X̂ and w(X̂ , α̂) :=
n
∑

i=1
α̂i

(
âi−b̂i

2

)2

λ̃X̂ A lower bound of λmin(X̂) computed by (2.3)

Next, we present the piecewise convexification algorithm with a new box selection rule, a box
discard and two new termination strategies, which is used to obtain a subset of the approximate
globally optimal solution set, as shown in Algorithm 1.

Remark 4.1. The algorithm is explained in more detail below.
(1) It terminates after a finite number of iterations because there exists the subdivision Yt

of X such that max
(X̃ ,x̃,µ̃,α̃)∈LUC

w(X̃ , α̃)≤ ε .

(2) At the end of the algorithm, the union of sub-boxes
⋃

(X̂ ,x̂,µ̂,α̂)∈M1

X̂ is constructed a sub-

division of X , where M1 = M∪LUC.
(3) The same box discarding technique in [18], i.e., µ̂ > vglob, is applied in our algorithm.

Thus, it also holds that X̂ ∩Xop = /0.
(4) Noticeable point is that there is only one termination condition in [18], i.e., L = /0.

However, our algorithm contains two termination conditions, that is,

max
(X̃ ,x̃,µ̃,α̃)∈LUC

w(X̃ , α̃)≤ ε or LUC = /0.

Clearly, if LUC = /0, then max
(X̃ ,x̃,µ̃,α̃)∈LUC

w(X̃ , α̃) = 0, and not vice versa, i.e., LUC 6= /0

may be hold when max
(X̃ ,x̃,µ̃,α̃)∈LUC

w(X̃ , α̃) ≤ ε . The following numerical experiments, in

Section 5, will show that, for some complex problems, these two termination condi-
tions are more conducive to speeding up the algorithm than having only one termination
condition in [18].

(5) Another noticeable point is that, in Algorithm 1, we set a new selection rule of sub-box
for the division, that is, the box with the maximum modified width in LUC is selected to
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Algorithm 1 The Piecewise Convexification Algorithm for (NCOP) (PCA–αBB).

Require: X0 = [a,b] ∈ In, f ∈ C2(Rn,R),ε > 0;
Ensure: Xnew

ap ;
1: Compute an α0 of f on X0 according to (2.1)-(2.2);

2: Set X∗ := X0, x∗ := a+b
2 , µ∗ :=−∞, α∗ := α0, xact := x∗, vglob = vact =+∞,

LUC := {(X∗,x∗,µ∗,α∗)}, MC = MD = /0 and k := 0.

3: while LUC 6= /0 and max
(X̃ ,x̃,µ̃,α̃)∈LUC

w(X̃ , α̃)> ε do

4: k := k+1.

5: Define (X∗,x∗,µ∗,α∗) at the first element of LUC with max
(X̃ ,x̃,µ̃,α̃)∈LUC

w(X̃ , α̃).

6: Delete (X∗,x∗,µ∗,α∗) from LUC.

7: for all X̂ ∈ Sp(X∗) do

8: Compute λ̃X̂ by (2.3) and α̂ by (2.1), respectively.

9: Compute x̂ ∈ argmin
x∈X̂

F α̂

X̂
(x). Let µ̂ = min

x∈X̂
F α̂

X̂
(x).

10: if µ̂ ≤ vglob then

11: if λ̃X̂ ≥ 0 then

12: Add (X̂ , x̂, µ̂, α̂) as the last element to MC and add x̂ to X X̂
ap.

13: else
14: Add (X̂ , x̂, µ̂, α̂) as the last element to LUC and add x̂ to X X̂

ap.

15: end if
16: if f (x̂)≤ vact then
17: Set xact = x̂,vact = f (xact),vglob = min{vact ,vglob}
18: Delete (X ,x,µ,α) ∈ LUC with µ > vglob from LUC, and

19: add (X ,x,µ,α) ∈ LUC with µ > vglob to MD.

20: end if
21: else
22: Add (X̂ , x̂, µ̂, α̂) as the last element to MD.

23: end if
24: end for
25: end while
26: M :=

⋃
{X̃ : (X̃ , x̃, µ̃, α̃) ∈ LUC}∪MC.

27: Xnew
ap :=

{
x ∈

⋃
X̂∈M

X X̂
ap : f (x)≤ f (y), ∀ y ∈

⋃
X̂∈M

X X̂
ap

}
.

divide into two sub-boxes as shown in line 5. This selection approach is different from
the one proposed in [18].

(6) More importantly, Algorithm 1 requires only one while loop and no additional param-
eters, in contrast to the modified αBB method [18] with two while loops and some
additional parameters. parameters.

The following theorem shows the theoretical result of this algorithm.

Theorem 4.1. At the end of Algorithm 1, the set Xnew
ap output of Algorithm 1 is constructed a

subset of the approximate global optimal solution set Xε
op.
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Proof. The proof process is similar to Theorem 3.2 and is omitted here. �

5. NUMERICAL EXPERIMENTS

In this section, we show the results of computational experiments, focusing on the compar-
isons between PCA–αBB, i.e., Algorithm 1, and M-αBB(the mod α loc

i,d=u−lBB, [18]). All com-
putations were performed on a computer with Iter(R)Core(TM)i5-8250U CPU and 8 Gbytes
RAM. The code for two algorithms was written in Python 3.

As stated in [18], the authors used INTLAB ToolBox to automatically compute the elements
∇2 f (X)i j. However, due to the software copyright, we cannot directly use INTLAB ToolBox,
so we solve the optimization problem min

x∈X̃
∇2 f (X̃)i j, to estimate α

kt
i on each sub-box, and we

rewrite the code of the modified αBB method in [18], without INTLAB.
For the sake of brevity, we list in Table 2 some of the notations used to record the nu-

merical results. Note that if f lag = 1, then this algorithm satisfies LUC = /0. Otherwise,

TABLE 2. Notations in numerical experiments

Abbreviation Denotation
iter Number of iterations required
t Required CPU time in seconds
Nε Number of ε-optimal solutions of the algorithm, let ε = 10−3

f lag The algorithm termination condition indicator, f lag = 1 or 0
- The algorithm does not record a certain value

max
(X̃ ,x̃,µ̃,α̃)∈LUC

w(X̃ , α̃)≤ ε when f lag = 0. The f lag is introduced to mark the termination con-

dition of the algorithm and to illustrate the validity of two termination conditions in Algorithm
1. In addition, we replace µ̄ ≤ vglob in line 11 by µ̄ ≤ vglob +10−6 for all instances.

First, we demonstrate the performance of two approaches on eight test instances listed in
Table 3, which includes the objective functions f , the feasible sets X0, the number of globally
optimal solutions |argmin

x∈X
f (x)|, and the globally optimal values min

x∈X
f (x). Most of the test

instances in Table 3 have multiple optimal solutions and all examples are two-dimensional.
Numerical results of these two algorithms are presented in Table 4. It is easy to see that for

all the test examples, the iter and t values of PCA-αBB are significantly smaller than those
of M-αBB

[18]
. As for the |Nε | values, there is only a slight difference for Branin, i.e., two

algorithms can find only two globally optimal solutions, not three. These results demonstrate
that PCA-αBB can find almost all optimal solutions of the original non-convex problem and
performs better than M-αBB

[18]
. In addition, for Branin, Himmelblau and Shubert the termi-

nation condition of PCA-αBB is the same, that is, max
(X̃ ,x̃,µ̃,α̃)∈LUC

w(X̃ , α̃) ≤ ε . The termination

condition of PCA-αBB for other remaining instances is LUC = /0.
The partitioning results of X are clearly shown in Fig.1, where the first and third columns

show the results obtained by PCA-αBB, while the second and fourth columns show the results
of M-αBB

[18]
. The red star indicates the ε-optimal solutions. Obviously, Fig.1 indicates that

the way of selecting the boxes to divide can effectively reduce the number of iterations. In fact,
M-αBB

[18]
has numerous subdivisions of the box near the optimal solution, while our algorithm

has only a few subdivisions. The partial graph intuitively reflects this claim, see Fig.2.
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TABLE 3. Test instances with finite number of optimal solutions

f : R2→ R with f (x) X |argmin
x∈X

f (x)| min
x∈X

f (x)

Rastrigin[18]
20+ x2

1 + x2
2−10(cos(2πx1)+ cos(2πx2))

[(
−5.12
−5.12

)
,

(
5.12
5.12

)]
1 0

6-Hump[24]
(4−2.1x2

1 +
1
3 x4

1)x
2
1 + x1x2− (4−4x2

2)x
2
2

[(
−1.9
−1.1

)
,

(
1.9
1.1

)]
2 ≈−1.031629

Branin[24]
(x2− 5.1

4π2 x2
1 +

5
π

x1−6)2 +10(1− 1
8π
)cos(x1)+10

[(
−5
0

)
,

(
10
15

)]
3 ≈ 0.397886

Himmelblau[24]
(x2

1 + x2−11)2 +(x1 + x2
2−7)2

[(
−6
−6

)
,

(
6
6

)]
4 0

Rastrigin mod[24]
20+ x2

1 + x2
2 +10(cos(2πx1)+ cos(2πx2))

[(
−5.12
−5.12

)
,

(
5.12
5.12

)]
4 ≈ 0.497480

Shubert[24] 5
∑

i=1
[icos((i+1)x1 +1)]

5
∑
j=1

[ j cos(( j+1)x2 + j)]
[(
−10
−10

)
,

(
10
10

)]
18 ≈−186.730909

Deb 1 [24] − 1
2 (sin6(5πx1)+ sin6(5πx2))

[(
0
0

)
,

(
1
1

)]
25 −1

Vincent[24] − 1
2 (sin(10ln(x1))+ sin(10ln(x2)))

[(
0.25
0.25

)
,

(
10
10

)]
36 −1

TABLE 4. Numerical results for test instances in Table 3.

Problem
PCA-αBB M-αBB[18]

iter t Nε f lag iter t Nε f lag
Rastrigin 104 1.045 1 1 551 30.959 1 1
6-Hump 47 0.402 2 1 49 0.418 1 1
Branin 52 0.576 2 0 67 0.726 2 1
Himmelblau 43 0.558 4 0 382 4.345 4 1
Rastrigin mod 571 6.734 4 1 859 11.046 4 1
Shubert 3091 56.073 18 0 5056 136.460 18 1
Deb 1 391 5.390 25 1 863 17.009 25 1
Vincent 1169 10.820 36 1 11705 166.680 36 1

In what follows, we consider four numerical tests with an infinite number of globally optimal
solutions listed in [18], as defined by Table 5. Furthermore, the numerical results of the instance
tests in Table 5 are shown in Table 6. The iter and t values of PCA-αBB are significantly better
than those of M-αBB

[18]
. Except for Test03, the number of solutions of PCA-αBB is also higher

than that of M-αBB
[18]

. In addition, for PCA-αBB the termination condition

max
(X̂ ,x̂,µ̂,α̂)∈LUC

w(X̂ , α̂)≤ ε

is satisfied for these test problems as f lag = 0. In other words, this termination condition is
meaningful in PCA-αBB and could be helpful to reduce the number of iterations. Moreover, the
results of the interval partiting and solutions in set Xnew

ap for PCA-αBB are shown in Fig.3. This
figure shows that the distribution of these optimal solutions obtained from the PCA-αBB can be
used to describe the distribution of the optimal solutions of the original problem. Meanwhile,
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(a) Rastrigin (b) Rastrigin
[18]

(c) 6-Hump (d) 6-Hump
[18]

(e) Brain (f) Brain
[18]

(g) Himmelblau (h) Himmelblau
[18]

(i) Rastrigin mod (j) Rastrigin mod
[18]

(k) Shubert (l) Shubert
[18]

(m) Deb 1 (n) Deb 1
[18]

(o) Vincent (p) Vincent
[18]

FIGURE 1. Box division results of test instances in Table 3

TABLE 5. Test instances with an infinite number of optimal solutions

f : R2→ R X argmin
x∈X

f (x)

Test01
(

x2
1

42 +
x2

2
22 −1

)2
[(
−5
−5

)
,

(
5
5

)] {(
x1
x2

)∣∣∣ x2
1

42 +
x2

2
22 = 1

}
Test02 1

10 (x1(1− x2)+ x2(1− x1))
2
[(
−5
−5

)
,

(
5
5

)] {(
x1
x2

)∣∣∣x1 ∈ [−5,5]\{ 1
2},x2 =− x1

1−2x1

}
Test03 sin2( 5

4 x1 + x2−3)
[(

0
−2

)
,

(
4
3

)] {(
x1
x2

)∣∣∣ 5
4 x1 + x2 = 3+a,a ∈ {0,±π}

}⋂
X

Test04 (x1 + sin2(x1))cos2(x2)

[(
0
−2

)
,

(
4
3

)] {(
0
x2

)∣∣∣x2 ∈ [−2,3]
}⋃{(x1

x2

)∣∣∣x1 ∈ [0,4],x2 ∈ {±π

2 }
}
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(a) Rastrigin mod (PCA-αBB) (b) Rastrigin mod (M-αBB)

(c) Deb 1 (PCA-αBB) (d) Deb 1(M-αBB)

FIGURE 2. Subdivisions on sub-box for PCA-αBB (Algorithm 1)

TABLE 6. Numerical results for test instance in Table 5.

Problems
PCA-αBB M-αBB

[18]

iter t Nε f lag iter t Nε f lag
Test01 559 6.717 592 0 1355 18.4102 588 1
Test02 672 6.891 649 0 1156 17.511 433 1
Test03 1189 11.511 1237 0 3019 52.353 1336 1
Test04 2343 31.722 3226 0 4863 121.239 2123 1

Fig. 4 shows the partition of two algorithms on the sub-box. Obviously, compared to PCA-
αBB, M-αBB

[18]
has many redundant partitions close to the effective solution. Note that M-

αBB
[18]

obtained numerous locally optimal solutions for Test04, see Fig.4 (h).
Finally, in order to verify the efficiency of the proposed algorithm for the high-dimensional

instances, Table 7 shows a high-dimensional test problem, which is selected from [18].
Table 8 shows the results of applying the PCA-αBB and M-αBB

[18]
to TestDimd . From

Table 8, the experimental results demonstrate that both the proposed algorithm and M-αBB
[18]

lead to the same values of Nε . However, compared with PCA-αBB, M-αBB
[18]

requires more
iter value and t value, and the advantage of PCA-αBB is more prominent as the dimension
increases. For these high-dimensional problems, f lag = 0 indicates that the stopping condition
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(a) Test01 (b) Test02

(c) Test03 (d) Test04

FIGURE 3. The box division and solutions in set Xnew
ap for Algorithm 1 and Test01-04

(a) Test01 (b) Test02 (c) Test03 (d) Test04

(e) Test01(M-αBB) (f) Test02(M-αBB) (g) Test03(M-αBB) (h) Test04(M-αBB)

FIGURE 4. Subdivision on subbox for two algorithms.
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TABLE 7. Test instances with high dimensional

f : Rd → R X argmin
x∈X

f (x)

TestDimd
[18]

(d ∈ N)
d
∑

i=1
(cos(2πxi))

2

− 1
4
· · ·
− 1

4

 ,

 1
4
· · ·
1
4

 {
x ∈ Rd

∣∣∣xi ∈ {− 1
4 ,

1
4}, i ∈ {1, · · · ,d}

}

max
(X̂ ,x̂,µ̂,α̂)∈LUC

w(X̂ , α̂) ≤ ε is satisfied and LUC 6= /0 holds. These help to reduce the number of

iterations and the CPU time.

TABLE 8. Numerical results for test instance in Table 7.

TestDimd
PCA-αBB M-αBB

[18]

iter t Nε f lag iter t Nε f lag
d = 2 11 0.061 2 0 51 0.416 2 1
d = 3 47 0.491 4 0 255 4.502 4 1
d = 4 175 2.915 16 0 655 12.994 16 1
d = 5 607 17.107 32 0 2076 84.313 32 1
d = 6 2047 78.059 64 0 17919 267.484 64 1
d = 7 6783 420.671 128 0 28353 1223.365 128 1
d = 8 22272 1103.478 256 0 89871 5391.845 256 1
d = 9 72704 4940.783 512 0 282072 32916.650 512 1

From the above numerical experiments, for these instances with infinite number of optimal
solutions or with high dimension, the termination condition max

(X̂ ,x̂,µ̂,α̂)∈LUC

w(X̂ , α̂) ≤ ε is easier

to satisfy than LUC = /0. This means that two termination conditions in the proposed algorithm
can be used to reduce the number of iterations of the algorithm, thereby improving the efficiency
of the algorithm. At the same time, this box classification strategy is beneficial to reduce the
number of box divisions.

6. CONCLUSIONS

A piecewise convexification method based on the αBB method with box classification strat-
egy was studied for non-convex single-objective optimization problems. The box classification
strategy was proposed according to the convexity of the objective function on the sub-boxes
when dividing the boxes, which helps to reduce the number of box divisions and improve the
computational efficiency. We applied the αBB method to construct the piecewise convexifica-
tion problem, and used the solution set of the piecewise convexification problem to approximate
the globally optimal solution set from two different directions, which is obviously different
from [18]. Furthermore, based on the theoretical results, a piecewise convexification algorithm
with two termination conditions was proposed, and numerical experiments demonstated that
this algorithm can obtain a large number of globally optimal solutions more faster than another
algorithm in [18].



A MODIFICATION PIECEWISE CONVEXIFICATION METHOD 141

Acknowledgments
This research was supported by the Major Program of the National Natural Science Founda-
tion of China (No. 11991020 and No. 11991024), the NSFC-RGC (Hong Kong) Joint Re-
search Program (No. 12261160365), the National Natural Science Foundation of China (No.
11971084, and No. 12171060), the Team Project of Innovation Leading Talent in Chongqing
(No. CQYC20210309536), the Natural Science Foundation of Chongqing (No. ncamc2022-
msxm01), the Postdoctoral Science Foundation of Chongqing (No. CSTB2023NSCQ-BHX0017),
the Science and Technology Research Program of Chongqing Education Commission of China
(No. KJQN202300552), and the Foundation of Chongqing Normal University (No. 22XLB005
and No. 22XLB006)

REFERENCES

[1] L. Pan, X. Chen, Group sparse optimization for images recovery using capped folded concave functions,
SIAM J. Imaging Sci. 14 (2021), 1-25.

[2] X. Li, Z. Zhu, A.M.C. So, R. Vidal, Nonconvex robust low-rank mtrix recovery, SIAM J. Optim. 30 (2020),
660-686.

[3] P. Zhong, Training robust support vector regression with smooth non-convex loss function, Optim. Methods
Softw. 27 (2012), 1039-1058.

[4] S. Manisha, G. Debdas, K.K. Shukla, P. Witold, Robust twin support vector regression based on rescaled
Hinge loss, Pattern Recog. 105 (2020), 107395.

[5] M. Locatelli, F. Schoen, Global optimization: Historical notes and recent developments, Euro. J. Comput.
Optim. 9 (2021), 100012.

[6] A. Marmin, M. Castella, J.C. Pesquet, How to globally solve non-convex optimization problems involving an
approximate l0 penalization, In: IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5601-5605, IEEE, 2019.

[7] S. Qu, H. Yin, K. Zhang, A global optimization algorithm using linear relaxation, Appl. Math. Comput. 178
(2006), 510-518.

[8] F. Schoen, L. Tigli, Efficient large scale global optimization through clustering-based population methods,
Comput. Oper. Res. 127 (2021), 105-165.

[9] Y. Xia, A survey of hidden convex optimization, J. Oper. Res. Soc. Chin. 8 (2020), 1-28.
[10] Y. Yang, M. Pesavento, S. Chatzinotas, B. Ottersten, Successive convex approximation algorithms for sparse

signal estimation with nonconvex regularizations, IEEE J. Sel. Topics Signal Process, 12 (2018), 1286-1302.
[11] M. Jiang, R. Shen, Z. Meng, C. Dang, Optimization conditions and decomposable algorithms for convertible

nonconvex optimization, J. Nonlinear Var. Anal. 7 (2023), 103-128.
[12] M. Hladı́k, An extension of the αBB-type underestimation to linear parametric Hessian matrices, J. Global.

Optim. 64 (2016), 217-231.
[13] N. Kazazakis, C.S. Adjiman, Arbitrarily tight αBB underestimators of general non-linear functions over

sub-optimal domains, J. Global. Optim. 71 (2018), 815-844.
[14] Y. Matanga, Y.X. Sun, Z.H.Wang, Hybrid PSO-αBB global optimisation for C2 box-constrained multimodal

NLPs, IEEE Access 10 (2021), 805-818.
[15] H. Milan, On the efficient gerschgorin inclusion usage in the global optimization αBB method, J. Global.

Optim. 61 (2014), 235-253.
[16] E. Algaba, V. Fragnelli, N. Llorca, J.Sánchez-Soriano, Horizontal cooperation in a multimodal public trans-

port system: The profit allocation problem, Eur. J. Oper. Res. 275 (2019), 659-665.
[17] C.H. Yoo, D.K. Lim, H.K. Jung, A novel multimodal optimization algorithm for the design of electromagnetic

machines, IEEE T. Magn. 52 (2016), 1-4.
[18] G. Eichfelder, T. Gerlach, S. Sumi, A modification of the αBB method for box-constrained optimization and

an application to inverse kinematics, Eur. J. Oper.Res. 4 (2016), 93-121.



142 Q. ZHU, L. TANG, X. YANG

[19] C.S. Adjiman, I.P. Androulakis, C.A. Floudas, A global optimization method, αBB, for general twice-
differentiable constrained NLPs-II. Implementation and computational results, Comput. Chem. Eng. 22
(1998), 1159-1179.

[20] C.S. Adjiman, S. Dallwig, C.A. Floudas, A. Neumaier, A global optimization method, αBB, for general
twice-differentiable constrained NLPs-I. Theoretical advances, Comput. Chem. Eng. 22 (1998), 1137-1158.

[21] I.P. Androulakis, C.D. Maranas, C.A. Floudas, αBB: A global optimization method for general constrained
nonconvex problems, J. Global. Optim. 7 (1995), 337-363.

[22] D. Nerantzis, C.S. Adjiman, Tighter αBB relaxations through a refinement scheme for the scaled gerschgorin
theorem, J. Global. Optim. 73 (2019), 467-483.

[23] A. Skjäl, T. Westerlund, New methods for calculating αBB-type underestimators, J. Global. Optim. 58
(2014), 411-427.

[24] M.G. Epitropakis, V.P. Plagianakos, M.N. Vrahatis, Finding multiple global optima exploiting differential
evolution’s niching capability, In: Proceedings of IEEE SDE, pp. 0-87, Paris, France, 2011.


	1. Introduction
	2. Preliminaries
	2.1. The BB method
	2.2. The box division

	3. Piecewise Convexification Method for (NCOP)
	3.1. Piecewise convexification problem
	3.2. The solution set of the piecewise convexification problem
	3.3. Approximate the globally optimal solution set

	4. A Piecewise Convexification Algorithm
	5. Numerical Experiments
	6. Conclusions
	References

