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Abstract. Outer approximation (OA) for solving convex mixed-integer nonlinear programming (MINLP)
problems is heavily dependent on the convexity of functions and a natural issue is to relax the convex-
ity assumption. This paper is devoted to OA for dealing with a pseudo-convex MINLP problem. By
solving a sequence of nonlinear subproblems, we use Lagrange multiplier rules via Clarke subdiffer-
entials of subproblems to introduce a parameter and then equivalently reformulate such MINLP as the
mixed-integer linear program (MILP) master problem. Then, an OA algorithm is constructed to find the
optimal solution to the MNILP by solving a sequence of MILP relaxations. The OA algorithm is proved
to terminate after a finite number of steps. Numerical examples are illustrated to test the constructed OA
algorithm.
Keywords. Clarke Subdifferential; Mixed-integer nonlinear programming; MILP master program; Outer
Approximation; Pseudo-convexity.

1. INTRODUCTION

Many practical optimization problems involving integer and continuous decision variables
are modelled as mixed-integer nonlinear programming problems (MINLPs) and solution algo-
rithms for solving these MINLPs have become an active research area over the past few decades;
see, e.g. [6, 16, 19, 20, 25, 30, 31] and the references therein. In general, such MINLP can be
expressed mathematically as follows:

(P)


min
x,y

f (x,y)

s.t. gi(x,y)≤ 0, i = 1, · · · ,m,
x ∈ X ,y ∈ Y integer,
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where f ,gi : Rn×Rp→R (i = 1, · · · ,m) are nonlinear functions, X ⊆Rn is a bounded, closed,
and convex set in Rn, and Y ⊆ Zp is a set of integers in. If objective and constraint functions
are convex, such problem is known as a convex MINLP; otherwise, it is a non-convex MINLP.

MINLP problems have been extensively used in many diverse and important applications,
such as portfolio optimization [21], block layout design in the manufacturing and service sectors
[5], network design with queuing delay constraints [4], integrated design and control of chemi-
cal process [15], drinking water distribution systems security [23], and minimizing the environ-
mental impact of utility plants [13]. Since MINLP has wide applications in practical problems,
the study on solution algorithms is an active research direction in optimization and mathemat-
ical programming. To the best of our knowledge, the solution algorithms mainly rely on the
branch-and-bound method, extended cutting plane, generalized Benders decomposition, outer
approximation (OA), and so on. We refer the reader to [3, 10, 12, 14, 17, 18, 22, 28, 33, 37, 38]
for details on these solution algorithms.

In this paper, we restrict our analysis to OA for MINLP problems. The OA method was
first introduced by Duran and Grossmann [10] to solve MINLP problems in which f and g
are affine in integer variables and convex in continuous variables. Subsequently, Fletcher and
Leyffer [12] extended this OA to convex MINLP problems, where f and g are continuously
differentiable. Drewes and Ulbrich [9] studied OA to deal with mixed-integer second order cone
programming prblems. Eronen et al. [11] and the authors [33] generalized OA to nonsmooth
convex MINLP problems in which f and g are convex but nonsmooth, and proposed outer
approximation algorithms to find the optimal solution by solving a sequence of relaxed MILP
problems. Recently, Delfino and de Oliveira [8] combined OA and bundle method algorithms
for dealing with nonsmooth convex MINLP problems.

It is known that solving convex MINLP by OA is strongly dependent on convexity of func-
tions since the convexity plays a key role in the fundamental insight behind the algorithm that
MINLP is equivalent to a MILP of finite size. However, it is frequently and generally that non-
convex MINLP problems appear in practical optimization problems, and from the theoretical
viewpoint and for applications, it is natural and interesting to study solution algorithms for the
general non-convex MINLP problems. Motivated by this observation, we consider a class of
non-convex MINLP problems with pseudo-convex functions and apply OA to deal with such
MINLP. The aim of this paper is to establish the OA algorithm for finding the optimal solution
of such MINLP and then extend OA to solve MINLP from the convex case to the non-convex
one.

The paper is organized as follows. Section 2 contains preliminaries and some results on
Clarke subdifferentials used in this paper. Section 3 is devoted to Lagrange multiplier rules
via Clarke subdifferentials for generalized optimization problems. In Section 4, we study a
pseudo-convex MINLP problem and its solution algorithm via the OA method. Using Lagrange
multiplier rules for optimization problems, we introduce a parameter to reformulate the pseudo-
convex MINLP problem as MILP master program and prove that the MILP master program
is equivalent to MINLP. Then we construct an outer approximation algorithm to find optimal
solutions of MINLP by solving (feasible/infeasible) subproblems and a sequence of relaxed
MILP problems. The termination of this algorithm after a finite number of steps is also proved
therein. Section 5 contains several numerical examples to test the constructed algorithm. The
conclusion of this paper is given in Section 6, the last section.
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2. PRELIMINARIES

In this section we briefly discuss some generalized differential constructions of our study and
review some results widely used in what follows; see [2, 7, 26, 27] for more details.

For any subset A of Rn, we denote by cl(A) and conv(A) the closure and convex hull of A,
respectively. We denote by dA(·) the distance function which is defined by

dA(x) := inf{‖x−u‖ : u ∈ A} ∀x ∈ Rn.

Let φ : Rn→R be a local Lipschitz function and x̄∈Rn. For any direction h∈Rn, we denote
by

φ
◦(x̄;h) := limsup

x→x̄, t↓0

φ(x+ th)−φ(x)
t

the Clarke directional derivative of φ at x̄ along direction h. We denote by

∂cφ(x̄) := {α ∈ Rn : 〈α,h〉 ≤ φ
◦(x̄;h) ∀h ∈ Rn}

the Clarke subdifferential of φ at x̄. It is known from [7] that

∂cφ(x̄) = conv
{

lim
k
Oφ(xk) : xk→ x̄ and xk 6∈Ωφ

}
,

where Ωφ is the set of zero measure in which φ is not Fréchet differentiable.
For the case that φ is convex, the Clarke subdifferential reduces to that in the sense of convex

analysis; that is

∂cφ(x̄) = ∂φ(x̄) = {α ∈ Rn : 〈α,x− x̄〉 ≤ φ(x)−φ(x̄) ∀x ∈ Rn}.

Let Ω be a closed subset of Rn and x̄ ∈ Ω. We denote by Tc(Ω, x̄) and T (Ω, x̄) the Clarke
tangent cone and the contingent (Bouligand) cone of A at x̄, respectively and they are defined
by

Tc(Ω, x̄) := Liminf
x Ω→x̄,t→0+

Ω− x
t

and T (Ω, x̄) := Limsup
t→0+

Ω− x̄
t

,

where x Ω→ x̄ means that x→ x̄ with x ∈Ω. Thus, v ∈ Tc(Ω, x̄) if and only if for any xk
Ω→ x̄ and

any tk → 0+, there exists vk → v such that xk + tkvk ∈ Ω for all k ∈ N, and v ∈ T (Ω, x̄) if and
only if there exist vk→ v and tk→ 0+ such that x̄+ tkvk ∈Ω for all k ∈ N.

We denote by Nc(Ω, x̄) the Clarke normal cone of Ω at x̄ which is defined as

Nc(Ω, x̄) :=
{

α ∈ Rn : 〈α,h〉 ≤ 0 ∀h ∈ Tc(Ω, x̄)
}

It is known from [7] that
Nc(Ω, x̄) = cl(R+∂cdΩ(x̄)).

For the case when Ω is convex, it is known that Clarke tangent cone coincides with contingent
cone; that is,

Tc(Ω, x̄) = T (Ω, x̄) = cl(R+(Ω− x))

and Clarke normal cone reduces to that in the sense of convex analysis; that is

Nc(Ω, x̄) = N(Ω, x̄) = {α ∈ Rn : 〈α,x− x̄〉 ≤ 0 ∀x ∈Ω}.

The following lemmas on the Clarke subdifferential are cited from [7, Theorem 2.9.8] and
[7, Proposition 2.3.12] which are useful in the analysis.
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Lemma 2.1. Let φ1,φ2 : Rn→ R be local Lipschitz functions and x̄ ∈ Rn. Then

∂c(φ1 +φ2)(x̄)⊆ ∂cφ1(x̄)+∂cφ2(x̄).

Lemma 2.2. Let φ : Rn→ R be a local Lipschitz function and x̄ ∈ Rn be such that φ(x̄) = 0.
Define φ+(x) := max{φ(x),0} for all x ∈ Rn. Then φ+ is local Lipschitz around x̄ and

∂cφ+(x̄) = [0,1]∂cφ(x̄)

where [0,1]∂cφ(x̄) := {tα : t ∈ [0,1] and α ∈ ∂cφ(x̄)}.

3. LAGRANGE MULTIPLIER RULES FOR OPTIMIZATION PROBLEMS

In this section, we discuss one optimization problem posed by the general mathematical
program and mainly focus on the familiar and useful mathematical technique, known as the
Lagrange multiplier rule. We begin with such optimization problem.

Suppose that ϕi : Rn→ R (i = 0,1, · · · ,m) are local Lipschitz (not convex necessarily) func-
tions and A is a bounded closed subset of Rn. We consider the following optimization problem:

min ϕ0(x)
s.t. ϕi(x)≤ 0, i = 1, · · · ,m,

x ∈ A,
(3.1)

The following proposition is the Lagrange multiplier rule for an optimal solution to (3.1).
This result follows from [7, Proposition 2.4.2 and Theorem 6.1.1].

Proposition 3.1. Suppose that x̄ is an optimal solution to (3.1). Then x̄ is feasible to (3.1) and
there exist nonnegative multipliers (λ0,λ1, · · · ,λm) ∈ Rm+1\{0} such that

0 ∈ λ0∂cϕ0(x̄)+
m

∑
i=1

λi∂cϕi(x̄)+Nc(A, x̄) and λiϕi(x̄) = 0, i = 1, · · · ,m. (3.2)

The necessary conditions in Proposition 3.1 are regarded as being degenerated for the case
when the multiplier corresponding to ϕ0 (which we have labelled λ0) vanishes, since then the
objective function ϕ0 being minimized is not involved. Various supplementary conditions have
been proposed to ensure the existence of the “normal” multiplier (i.e. with λ0 = 1). These
conditions are named as constraint qualifications.

For the convex optimization problem in (3.1) where each ϕi (i = 0,1, · · · ,m) is convex and
A = Rn, optimality condition (3.2) with normal multiplier λ0 = 1 is named as Karush-Kuhn-
Tucker (KKT) conditions and further KKT conditions are also sufficient to the optimal solution
in this case. To ensure KKT conditions, several type of constraint qualifications are well recog-
nized and studied. We refer the reader to [1, 24, 29, 32, 36] for more details on these constraint
qualifications.

When it comes to optimization problem (3.1), we discuss two types of constraint qualifica-
tions ensure the normal multiplier λ0 = 1 in (3.2) for an optimal solution to (3.1). The first type
is named as Mangasarian-Fromowitz constraint qualification (see (3.3) below) in the classic
case where each ϕi (i = 0,1, · · · ,m) is continuously differentiable and A = Rn.

Proposition 3.2. Suppose that each ϕi (i = 0,1, · · · ,m) is continuously differentiable and A =
Rn in (3.1). Suppose that x̄ is an optimal solution to (3.1) and there is a vector v ∈Rn such that

〈Oϕi(x̄),v〉< 0, ∀i ∈ I(x̄) (3.3)
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where I(x̄) := {i ∈ {1, · · · ,m} : ϕi(x̄) = 0} is the active index set. Then there exist nonnegative
multipliers (λ1, · · · ,λm) ∈ Rm\{0} such that

Oϕ0(x̄)+
m

∑
i=1

λiOϕi(x̄) = 0 and λiϕi(x̄) = 0, i = 1, · · · ,m.

For convenience to present the other type of constraint qualifications for (3.1), we consider a
parameterized family of optimization problems and the calm property of optimization problem
(3.1).

Let z = (z1, · · · ,zm) ∈ Rm be given. We define optimization problem (OP)z as follows:

(OP)z


min ϕ0(x)
s.t. ϕi(x)≤ zi, i = 1, · · · ,m,

x ∈ A,

and define v(z) as the optimal value of (OP)z; that is,

v(z) := inf
{

ϕ0(x) : ϕi(x)≤ zi, i = 1, · · · ,m and x ∈ A
}

(3.4)

for all z = (z1, · · · ,zm) ∈ Rm. It is known that (OP)z reduces to optimization problem (3.1) if
z = (0, · · · ,0) ∈ Rm.

Let x̄ be an optimal solution to (3.1). Recall from [7] that optimization problem (3.1) is said
to be calm at x̄ if there exist δ ,M > 0 such that ϕ0(x)−ϕ0(x̄)+M‖z‖ ≥ 0 holds for any z ∈ Rn

with ‖z‖< δ and any x ∈ B(x̄,δ ) feasible for (OP)z.
With the assumption of calm property for (3.1), the normal multiplier λ0 = 1 in (3.2) exists

if x̄ is an optimal solution to (3.1). This result follows from [7, Proposition 6.4.4 and Theorem
6.5.2].

Proposition 3.3. Suppose that x̄ is an optimal solution to (3.1) and optimization problem (3.1)
is calm at x̄. Then there exist nonnegative multipliers (λ1, · · · ,λm) ∈ Rm\{0} such that

0 ∈ ∂cϕ0(x̄)+
m

∑
i=1

λi∂cϕi(x̄)+Nc(A, x̄) and λiϕi(x̄) = 0, i = 1, · · · ,m.

The calm property of optimization problem (3.1) is necessary to the normal multiplier λ0 = 1
in (3.2). The following proposition, cited from [7, Proposition 6.4.2], provides a sufficient
condition for the calm property at any optimal solution to (3.1).

Proposition 3.4. Suppose that v(0) is finite and

liminf
z→0

v(z)− v(0)
‖z‖

>−∞. (3.5)

Then (3.1) is calm at any optimal solution to (3.1).

Proposition 3.5. Suppose that ϕi(i = 0,1, · · · ,m) are convex, A is convex, and optimization
problem (3.1) satisfies the Slater constraint qualification. Then (3.1) is calm at any optimal
solution to (3.1).

Proof. Based on Proposition 3.4, we next prove that (3.5) holds. By applying [35, Proposition
3.4], one can verify that v(·) in (3.4) is a lower semicontinuous convex function on Rm and the
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Slater constraint qualification guarantees that v(·) is continuous at 0 = (0, · · · ,0) ∈ Rm. Thus
we can take ξ ∈ ∂v(0) and then

liminf
z→0

v(z)− v(0)
‖z‖

≥ −‖ξ‖>−∞,

which implies that (3.5) holds. The proof is complete. �

The following proposition is immediate from Propositions 3.3 and 3.5. This result is a main
tool used in this paper.

Proposition 3.6. Suppose that v(0) is finite and (3.5) holds. Then, for any optimal solution x to
(3.1), there exist nonnegative multipliers (λ1, · · · ,λm) ∈ Rm\{0} such that

0 ∈ ∂cϕ0(x)+
m

∑
i=1

λi∂cϕi(x)+Nc(A,x) and λiϕi(x) = 0, i = 1, · · · ,m.

4. PSEUDO-CONVEX MINLP AND THE OUTER APPROXIMATION ALGORITHM

In this section, we study a pseudo-convex MINLP problem and its solution algorithm by outer
approximation(OA). Due to lack of convexity, it is necessary to make some modification to the
OA method when solving such pseudo-convex MINLP problem. The main work of this section
is to establish a modified OA algorithm for finding the optimal solution to the pseudo-convex
MINLP problem. This pseudo-convex MINLP problem is defined as follows:

(P)


min
x,y

f (x,y)

s.t. gi(x,y)≤ 0, i = 1, · · · ,m,

x ∈ X ,y ∈ Y integer,

(4.1)

where
(a) f : Rn×Rp→ R is continuously differentiable and convex;
(b) gi : Rn×Rp→ R(i = 1, · · · ,m) are differentiable pseudo-convex functions; that is, for

all z1 = (x1,y1),z2 = (x2,y2) ∈ Rn×Rp, one has{
gi(z2)> gi(z1), if Ogi(z1)

T (z2− z1)> 0,
gi(z2)≥ gi(z1), if Ogi(z1)

T (z2− z1) = 0;

(c) X ⊆ Rn is a bounded and closed convex set in and Y ⊆ Zp is a set of integers.
Note that the main idea of OA for solving convex MINLP problems is to reformulate the

MINLP as an equivalent MILP master program and construct an OA algorithm to solve a finite
sequence of relaxed MILP master problems so as to find the optimal solution. Along this idea,
we consider to reformulate the pseudo-convex MINLP problem in (4.1) as an equivalent MILP
master program.

For any y ∈ Y , we study the following the nonlinear subproblem P(y):

P(y)


min

x
f (x,y)

s.t. gi(x,y)≤ 0, i = 1, · · · ,m,
x ∈ X ,

We divide Y as two disjoint subsets:

T := {y ∈ Y : P(y) is feasible} and S := {y ∈ Y : P(y) is infeasible}.
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Throughout of this section, we suppose the following two assumptions to be hold:
A1 For any y j ∈ T , nonlinear subproblem P(y j) is calm at any optimal solution;
A2 For any yl ∈ S, there exists Il ⊆{1, · · · ,m} such that the following nonlinear subproblem

F(yl) is calm at any optimal solution:

F(yl)


min

x
∑

i∈Il

max{gi(x,yl),0}

s.t. gi(x,yl)≤ 0, i ∈ Jl := {1, · · · ,m}\Il,
x ∈ X .

(4.2)

4.1. Infeasible Nonlinear Subproblems. Let yl ∈ S. By the assumption A2, we consider the
nonlinear subproblem F(yl) as (4.2). Suppose that xl ∈ X is an optimal solution to F(yl) (the
existence of xl is due to that X is bounded and closed and all gi are continuous). Then by
assumption A2 and Proposition 3.6, there exist λl,i ≥ 0(∀i ∈ Jl) such that

0 ∈ ∂cϕ(xl)+ ∑
i∈Jl

λl,iOxgi(xl,yl)+N(X ,xl) and λl,igi(xl,yl) = 0, ∀i ∈ Jl (4.3)

where ϕ(x) := ∑i∈Il
max{gi(x,yl),0} for any x ∈ X . We denote

J1
l := {i ∈ Il : gi(xl,yl)> 0},

J2
l := {i ∈ Il : gi(xl,yl) = 0},

J3
l := {i ∈ Il : gi(xl,yl)< 0}.

It follows from (4.3) that there exist λl,i ∈ [0,1](∀i ∈ Il) such that
0 ∈ ∑

i∈Jl

λl,iOxgi(xl,yl)+ ∑
i∈Il

λl,iOxgi(xl,yl)+N(X ,xl),

λl,i = 1, i ∈ J1
l ,

λl,i = 0, i ∈ J3
l .

(4.4)

The following proposition shows that constraints can be added to exclude integers which
produce infeasible nonlinear subproblems.

Proposition 4.1. Let xl solve nonlinear subproblem F(yl). Then the following constraints gi(xl,yl)+Ogi(xl,yl)
T
(

x− xl
y− yl

)
≤ 0, i = 1, · · · ,m,

x ∈ X ,y ∈ Y,
(4.5)

could exclude the infeasible integer yl .

Proof. Note that P(yl) is infeasible and thus ϕ(xl)> 0. Suppose on the contrary that there exists
x̂ ∈ X such that (x̂,yl) is feasible to the constraints in (4.5). Then

gi(xl,yl)+Oxgi(xl,yl)
T (x̂− xl)≤ 0,

and consequently
m

∑
i=1

(λl,igi(xl,yl)+λl,iOxgi(xl,yl)
T (x̂− xl))≤ 0. (4.6)

Noting that x̂− xl ∈ T (X ,xl) by the convexity of X , it follows from (4.4) that
m

∑
i=1

λl,iOxgi(xl,yl)
T (x̂− xl)≥ 0.
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This and (4.6) imply that ∑
m
i=1 λl,igi(xl,yl)≤ 0. On the other hand, by (4.3) and (4.4), one has

m

∑
i=1

λl,igi(xl,yl) = ∑
i∈Il

λl,igi(xl,yl) = ϕ(xl)≤ 0,

which is a contradiction as ϕ(xl)> 0. The proof is complete. �

4.2. Feasible nonlinear subproblems. Let y j ∈ T . Then P(y j) is feasible and we suppose that
x j is an optimal solution to subproblem P(y j) (the existence of x j is due to the compactness of X
and the continuity of f ,gi). By assumption A1 and Proposition 3.6, there exist λ j,1, · · · ,λ j,m≥ 0
such that  0 ∈ Ox f (x j,y j)+

m
∑

i=1
λ j,iOxgi(x j,y j)+N(X ,x j),

λ j,igi(x j,y j) = 0, i = 1, · · · ,m.
(4.7)

The following proposition is useful in the reformulation of the pseudo-convex MINLP prob-
lem in (4.1).

Proposition 4.2. Let x j solve nonlinear subproblem P(y j). Then, for any r > 0,

Ox f (x j,y j)
T (x− x j)≥ 0 (4.8)

holds for all x ∈ X with gi(x j,y j)+ rOxgi(x j,y j)
T (x− x j)≤ 0, i = 1, · · · ,m.

Proof. Let r > 0 and x ∈ X be such that

gi(x j,y j)+ rOxgi(x j,y j)
T (x− x j)≤ 0, ∀i = 1, · · · ,m.

Then x− x j ∈ T (X ,x j) and it follows from (4.7) that(
Ox f (x j,y j)+

m

∑
i=1

λ j,iOxgi(x j,y j)
)T

(x− x j)≥ 0

and

r
m

∑
i=1

λ j,iOxgi(x j,y j)
T (x− x j)≤ 0.

Both inequalities imply that (4.8) holds as r > 0. The proof is complete. �

4.3. Reformulation of the pseudo-convex MINLP problem. Let y j ∈ T and suppose that
x j ∈ X solves the nonlinear subproblem P(y j). We denote by

I(x j) := {i : gi(x j,y j) = 0}
the active index set and let J(x j) := {1, · · · ,m}\I(x j).

If J(x j) 6= /0, we consider the following continuous subproblem:

sub-P(x j,y j)


min
x,y,θ

θ

s.t. Ogi(x j,y j)
T
(

x− x j
y− y j

)
≤ θ , i ∈ J(x j)

x ∈ X ,y ∈ conv(Y ).

We denote by β j the optimal value of sub-P(x j,y j). It is easy to verify that

β j = max
i∈J(x j)

max
(x,y)∈X×conv(Y )

{
Ogi(x j,y j)

T
(

x− x j
y− y j

)}
.
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We select a parameter α j > 0 as follows:

α j :=


− max

i∈J(x j)
gi(x j,y j)

β j
, if J(x j) 6= /0,β j > 0,

1, otherwise.

(4.9)

To equivalently reformulate the pseudo-convex MINLP in (4.1), we consider the following
mixed-integer linear program (MILP) problem:

min
x,y,θ

θ

s.t. f (x j,y j)+O f (x j,y j)
T
(

x− x j
y− y j

)
≤ θ ∀y j ∈ T,

gi(x j,y j)+α jOgi(x j,y j)
T
(

x− x j
y− y j

)
≤ 0, i = 1, · · · ,m, ∀y j ∈ T,

x ∈ X ,y ∈ T integer.

(4.10)

The following theorem demonstrates that it is feasible to reformulate the pseudo-convex
MINLP prolbem in (4.1) as an equivalent MILP problem.

Theorem 4.1. The pseudo-convex MINLP problem (P) in (4.1) is equivalent to the MILP prob-
lem in (4.10) in the sense that both problems have the same optimal value and that the optimal
solution (x̄, ȳ) to problem (P) corresponds to the optimal solution (x̄, ȳ, θ̄) to MILP problem of
(4.10) with θ̄ = f (x̄, ȳ).

Proof. Suppose that (x̄, ȳ, θ̄) is an optimal solution MILP problem of (4.9) and (x j0 ,y j0) solves
the pseudo-convex MINLP problem (P) in (4.1). We need to prove that θ̄ = f (x j0,y j0).

We assume that ȳ = y j1 for some y j1 ∈ T . Then

f (x j1,y j1)+(Ox f (x j1,y j1),Oy f (x j1,y j1))
T
(

x̄− x j1
0

)
≤ θ̄ (4.11)

and

gi(x j1,y j1)+α j(Oxgi(x j1,y j1),Oygi(x j1,y j1))
T
(

x̄− x j1
0

)
≤ 0, i = 1, · · · ,m.

This and Proposition 4.2 imply that Ox f (xT
j1(x̄− x j1)≥ 0. In view of (4.11), one has

θ̄ ≥ f (x j1,y j1)≥ f (x j0,y j0).

We next prove that θ̄ ≤ f (x j0 ,y j0). To this aim, it suffices to show that (x j0 ,y j0) satisfies
all constraints with respect to gi in (4.10). Granting this, it follows that ((x j0,y j0, f (x j0,y j0)) is
feasible to problem of (4.9) as f is convex and consequently θ̄ ≤ f (x j0,y j0).

Let y j ∈ T . We only need to consider the case β j > 0. We first claim that

gi(x j,y j)+α jOgi(x j,y j)
T
(

x j0− x j
y j0− y j

)
≤ 0, ∀i ∈ I(x j). (4.12)

(Otherwise there exists i ∈ I(x j) such that

gi(x j,y j)+α jOgi(x j,y j)
T
(

x j0− x j
y j0− y j

)
> 0
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and consequently

Ogi(x j,y j)
T
(

x j0− x j
y j0− y j

)
> 0.

Hence gi(x j0,y j0)> gi(x j,y j) = 0 since gi is pseudo-convex, which contradicts gi(x j0,y j0)≤ 0).
Let k ∈ J(x j). By the choice of α j in (4.9), one has

gk(x j,y j)+α jOgk(x j,y j)
T
(

x j0− x j
y j0− y j

)

= gk(x j,y j)+

− max
i∈J(x j)

gi(x j,y j)

β j
Ogk(x j,y j)

T
(

x j0− x j
y j0− y j

)
≤ gk(x j,y j)+

(
− max

i∈J(x j)
gi(x j,y j)

)
≤ 0.

This and (4.12) imply that (x j0,y j0) satisfies all constraints with respect to gi in (4.9). Hence
θ̄ = f (x j0,y j0). The proof is complete. �

Based on Theorem 4.1, we have the following theorem in which the OA method enables the
pseudo-convex MINLP problem to be reformulated as an equivalent MILP master program.

Theorem 4.2. For any y j ∈ T , let x j solve subproblem P(y j) and select a parameter α j as (4.9),
and for any yl ∈ S, let xl solve subproblem F(yl). Consider the following MILP master problem
(MP):

(MP)



min
x,y,θ

θ

s.t. f (x j,y j)+O f (x j,y j)
T
(

x− x j
y− y j

)
≤ θ ∀y j ∈ T,

gi(x j,y j)+α jOgi(x j,y j)
T
(

x− x j
y− y j

)
≤ 0, i = 1, · · · ,m, ∀y j ∈ T,

gi(xl,yl)+Ogi(x j,y j)
T
(

x− xl
y− yl

)
≤ 0, i = 1, · · · ,m, ∀yl ∈ S,

x ∈ X ,y ∈ Y integer.

(4.13)

Then master program (MP) is equivalent to the pseudo-convex MINLP problem (P) of (4.1) in
the sense that both problems have the same optimal value and that the optimal solution (x̄, ȳ) to
problem (P) corresponds to the optimal solution (x̄, ȳ, η̄) to (MP) with θ̄ = f (x̄, ȳ).

Remark 4.1. Theorem 4.2 is an extension of [3, Theorem 1] and [34, Theorem 3.5] in the sense
of reformulating MINLP as one equivalent MILP master problem from the convex case to the
non-convex one. Furthermore, this result demonstrates that any optimal solution to problem (P)
of (4.1) gives rise to an optimal solution to (MP) of (4.13). However, the converse of this may
not be valid necessarily even for the convex case as some optimal solution to the reformulated
MILP may be infeasible to the original MINLP (see [3, Example 1] and [33, Remark 3.1] for
more details).
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4.4. An outer approximation algorithm. In this subsection, a modified OA algorithm is de-
veloped to find the optimal solution of the pseudo-convex MINLP problem (P) of (4.1) by
solving a finite number of MILP relaxations of (MP) in (4.13).

Let y0,y1, · · · ,yk be given. At iteration k, we define

T k := T ∩{y0,y1, · · · ,yk} and Sk := S∩{y0,y1, · · · ,yk}.

Check the nonlinear subproblem P(yk) and exactly one of the following cases occurs:

(a) yk ∈ T k. Solve subproblem P(yk) to obtain the optimal solution xk and select the param-
eter αk > 0 as said in (4.9).

(b) yk ∈ Sk. Solve subproblem F(yk) as said in (4.2) to obtain the optimal solution xk.

Let UBDk := min{ f (x j,y j) : j ∈ T k}. We consider the following relaxed master program MPk:

MPk



min
x,y,θ

θ

s.b. θ <UBDk

f (x j,y j)+O f (x j,y j)
T
(

x− x j
y− y j

)
≤ θ ∀y j ∈ T k,

gi(x j,y j)+α jOgi(x j,y j)
T
(

x− x j
y− y j

)
≤ 0, i = 1, · · · ,m, ∀y j ∈ T k,

gi(xl,yl)+Ogi(xl,yl)
T
(

x− xl
y− yl

)
≤ 0, i = 1, · · · ,m, ∀yl ∈ Sk,

x ∈ X ,y ∈ Y integer.

(4.14)

Solve MPk to obtain a new integer assignment yk+1 and then the procedure is repeated iteratively
until the relaxed master program is infeasible.

Now, we are in a position to present the detail description of an OA algorithm for solving the
pseudo-convex MINLP problem (P) of (4.1) as follows.

Algorithm 1 (Outer Approximation Algorithm)

1: Initialization. Given an initial y0 ∈ Y , set T 0 = S0 := /0, UBD0 := ∞ and let k := 0
2: for k = 0,1,2, · · · , do
3: Check subproblem P(yk)
4: if P(yk) is feasible then
5: Solve P(yk) and obtain a solution xk

Select the parameter αk as (4.9)
Set T k := T k−1∪{yk}, Sk := Sk−1 and UBDk := min{UBDk−1, f (xk,yk)}

6: else
7: Solve subproblem F(yk) as (4.2) and obtain a solution xk

Set Sk := Sk−1∪{yk}, T k := T k−1 and UBDk :=UBDk−1

8: end if
9: Solve the relaxation MPk and obtain a new integer yk+1

Set k := k+1 and go back to line 3
10: end for
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Remark 4.2. The constraint θ <UBDk appearing in MPk of (4.14) can be used to exclude any
y j ( j ∈ Tk) from being the optimal solution to the relaxed master program MPk. In practice, this
constraint would be replaced by the constraint θ ≤UBDk− ε, where ε > 0 is selected as some
convergence tolerance parameter. This algorithm can only construct an ε-optimal solution to
MINLP problem (P).

Next, we pay main attention to the termination criterion of Algorithm 1. If some optimal
solution (x̂, ŷ) to MPk is repeatedly generated by the procedure, the constructed algorithm may
not terminate finitely even under the assumption that both constraint sets X and Y are with
finite elements. Fortunately, as shown by the following theorem, this case will not occur in the
procedure of Algorithm 1.

Theorem 4.3. Let Algorithm 1 be defined as above. Then any integer variable in Y will not be
generated twice by the Algorithm 1.

Proof. Let k ∈ N and (x̂, ŷ, θ̂) be an optimal solution to MPk of (4.14). By Proposition 4.1, one
can verify that ŷ 6∈ Sk. To complete the proof, it suffices to prove that ŷ 6∈ T k.

Suppose to the contrary that ŷ = y jk for some y jk ∈ T k. Then (x̂,y jk , θ̂) is feasible to the
relaxed master program MPk and

θ̂ <UBDk ≤ f (x jk ,y jk),

f (x jk ,y jk)+O f (x jk ,y jk)
T
(

x̂− x jk
0

)
≤ θ̂ ,

gi(x jk ,y jk)+α jkOgi(x jk ,y jk)
T
(

x̂− x jk
0

)
≤ 0, i = 1, · · · ,m.

(4.15)

Note that α jk > 0 and it follows from Proposition 4.2 that

Ox f (x jk ,y jk)
T (x̂− x jk)≥ 0.

Substituting this into (4.15), we can conclude f (x jk ,y jk)≤ θ̂ , which contradicts θ̂ < f (x jk ,y jk)

in (4.15). Hence ŷ 6∈ T k. The proof is complete. �

The following theorem on finite convergence of Algorithm 1 can be obtained from Theorem
4.3.

Theorem 4.4. Assume that the cardinality of Y is finite. Then or pseudo-convex MINLP problem
(P) is infeasible or Algorithm 1 terminates in a finite number of steps at an optimal solution to
problem (P) of (4.1).

Proof. We consider the case that MINLP problem (P) is feasible. It is not hard to verify that the
termination of Algorithm 1 after a finite number of steps follows from the finite cardinality of
Y and Theorem 4.3.

Suppose that Algorithm 1 terminate at k0-th step for some k0 ∈ N. Then the relaxed master
program MPk0 is infeasible. Let (x̄, ȳ) be an optimal solution to the pseudo-convex MINLP
problem (P) with the optimal value f (x̄, ȳ). If there exists some y j ∈ T k0−1 such that f (x j,y j) =

f (x̄, ȳ), then the conclusion holds. Next, we assume that f (x j,y j) > f (x̄, ȳ) for all y j ∈ T k0−1.
Then UBDk0−1 > f (x̄, ȳ). We claim that

k0 ∈ T k0 and f (xk0,yk0) = f (x̄, ȳ). (4.16)
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where xk0 is an optimal solution to P(yk0).
Indeed, if k0 ∈ Sk0 , then UBDk0 = UBDk0−1 by Algorithm 1. Noting that gi(x̄, ȳ) ≤ 0 and

f (x̄, ȳ) < UBDk0−1, by using the proof of Theorem 4.1, one can verify that (x̄, ȳ, f (x̄, ȳ)) is
feasible to MPk0 , which is a contradiction as MPk0 is infeasible. This implies that yk0 ∈ T k0 and
thus f (xk0,yk0) ≥ f (x̄, ȳ). We claim that f (xk0,yk0) = f (x̄, ȳ). Otherwise f (xk0,yk0) > f (x̄, ȳ).
If f (xk0,yk0)≤UBDk0−1, then f (x̄, ȳ)< f (xk0,yk0) =UBDk0 and consequently (x̄, ȳ, f (x̄, ȳ)) is
feasible for MPk0 , which contradicts that MPk0 is infeasible. If f (xk0 ,yk0) > UBDk0−1, then
f (x̄, ȳ) < UBDk0−1 = UBDk0. Thus (x̄, ȳ, f (x̄, ȳ)) is also feasible to MPk0 , a contradiction as
MPk0 is infeasible. This means f (xk0,yk0) = f (x̄, ȳ) and consequently (4.16) holds. The proof
is complete. �

Remark 4.3. (i) When restricted to the case of convex and smooth MINLPs, Algorithm 1 could
recapture the corresponding algorithms established in [3, 12, 33, 34]. Further, Algorithm 1 and
Theorem 4.4 extend theoretically the OA method in the sense of solving MINLP problems from
the convex case to the non-convex one.

(ii) For the convex MINLP, one can easily take parameters α j ≡ 1 in (MP) of (4.13) and
the convexity can guarantee that this (MP) is equivalent to the convex MINLP. Further, one
can still choose parameters α j as said in (4.9) to equivalently reformulate the convex MINLP.
Then a nature question arisen herein is to compare numerical performance of solving the convex
MINLP between two different methods by choices of parameters α j. This will be one part of
our work in future.

5. NUMERICAL EXAMPLES

In this section, we apply Algorithm 1 to pseudo-convex MINLP examples. These examples
are all solved by BARON version 16.10.6 (cf. [31]). The first example is given as follows.

Example 5.1. Consider the following pseudo-convex MINLP problem:
min
x,y

f (x,y) = x2−4y

s.t. g(x,y) = x3 + x−5y≤ 0,

x ∈ [−3,10],y ∈ [0,10]∩Z.
Choose the tolerance ε = 0.005, and let y1 = 4 be the initial point.
At the first iteration. Check subproblem P(y1) that is feasible. Solve subproblem P(y1) and

denote the optimal solution by x1 = 0. Solve subproblem sub-P(x1,y1) and obtain the optimal
value β1 = 20. Then select parameter α1 = 1 as (4.9). Solve the following relaxed MILP
problem:

MP1



min
x,y,θ

θ

s.t. θ ≤ f (x1,y1)− ε,

f (x1,y1)+O f (x1,y1)
T
(

x− x1
y− y1

)
≤ θ ,

g(x1,y1)+α1Og(x1,y1)
T
(

x− x1
y− y1

)
≤ 0,

x ∈ [−3,10],y ∈ [0,10]∩Z.
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Denote the optimal solution by (x̂, ŷ, θ̂) = (−0.1429,10,−48.1429).
In the second iteration, we set y2 = ŷ = 10 and check subproblem P(y2) by Algorithm 1;

P(y2) is feasible. Solve subproblem P(y2) and denote the optimal solution by x2 = 0. Solve
subproblem sub−P(x2,y2) and obtain the optimal value β2 = 50. Then select parameter α2 = 1
as (4.9). According to Algorithm 1, consider the following constraints:

θ ≤ f (x2,y2)− ε,

f (x2,y2)+O f (x2,y2))
T
(

x− x2
y− y2

)
≤ θ ,

g(x2,y2)+α2Og(x2,y2)
T
(

x− x2
y− y2

)
≤ 0.

Add these constraints into MP1 and obtain relaxed MILP problem MP2. As MP2 is infeasible,
the algorithm stops and an ε-optimal solution is obtained.

The following example is taken from [38].

Example 5.2. Consider the following pseudo-convex MINLP problem:

min
x,y

f (x,y) =
(x−3)2−10x

3x+ y+1

s.t. g1(x,y) = (x−7)3−5y≤ 0,

g2(x,y) = x−1.8y≤ 0,

x≥ 1,y ∈ [0,8]∩Z.
Choose the tolerance ε = 0.005, and let y1 = 4 be the initial point.
At the first iteration. Check subproblem P(y1) that is feasible. Solve subproblem P(y1) and

denote the optimal solution by x1 = 4.5337. Solve subproblem sub-P(x1,y1) and obtain the
optimal value β1 = 13.3276. Then select parameter α1 =

2.6663
13.3276 as (4.9). Solve the following

relaxed MILP problem:

MP1



min
x,y,θ

θ

s.t. θ ≤ f (x1,y1)− ε,

f (x1,y1)+O f (x1,y1)
T
(

x− x1
y− y1

)
≤ θ ,

gi(x1,y1)+α1Ogi(x1,y1)
T
(

x− x1
y− y1

)
≤ 0, i = 1,2,

x≥ 1,y ∈ [0,8]∩Z.

Denote the optimal solution by (x̂, ŷ, θ̂) = (1,0,−2.4610).
In the second iteration, we set y2 = ŷ = 0 and check subproblem P(y2) by Algorithm 1; P(y2)

is infeasible. Consider the following subproblem F(y2):

F(y2)


min

x
g2(x,y2)

s.t. g1(x,y2)≤ 0,

x≥ 1.
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Solve subproblem F(y2) and denote the optimal solution by x2 = 7. According to Algorithm 1,
consider the following constraints:

gi(x2,y2)+Ogi(x2,y2)
T
(

x− x2
y− y2

)
≤ 0, i = 1,2.

Add these two constraints into MP1 and obtain relaxed MILP problem MP2. Solve MP2 and
denote the optimal solution by (x̂, ŷ, θ̂) = (1,1,−2.4235). The second iteration is concluded.

In the third iteration, we set y3 = ŷ = 1 and check subproblem P(y3) by Algorithm 1; P(y3)
is infeasible. Consider the following subproblem F(y3):

F(y3)


min

x
g2(x,y3)

s.t. g1(x,y3)≤ 0,

x≥ 1.

Solve subproblem F(y3) and denote the optimal solution by x3 = 4.7639. According to Algo-
rithm 1, consider the following constraints:

gi(x3,y3)+Ogi(x3,y3)
T
(

x− x3
y− y3

)
≤ 0, i = 1,2.

Add these two constraints into MP2 and obtain relaxed MILP problem MP3. Solve MP3 and
denote the optimal solution by (x̂, ŷ, θ̂) = (2.5279,3,−2.3484). The third iteration is concluded.

In the fourth iteration, we set y4 = ŷ = 3 and check subproblem P(y4) that is feasible.
Solve subproblem P(y4) and denote the optimal solution by x1 = 4.3333. Solve subproblem
sub-P(x4,y4) and obtain the optimal value β4 = 7.5666. Then select parameter α4 =

1.0667
7.5666 as

(4.9). According to Algorithm 1, consider the following constraints:

θ ≤ f (x4,y4)− ε,

f (x4,y4)+O f (x4,y4))
T
(

x− x4
y− y4

)
≤ θ ,

gi(x4,y4)+α4Ogi(x4,y4)
T
(

x− x4
y− y4

)
≤ 0, i = 1,2.

Add these constraints into MP3 and obtain relaxed MILP problem MP4. As MP4 is infeasible,
the algorithm stops and an ε-optimal solution is obtained.

6. CONCLUSIONS

The main work of this paper is to solve a pseudo-convex MINLP problem by an outer approx-
imation algorithm. When to solve convex MINLP by the outer approximation, the convexity
was proved to play a key role in the reformulation of MINLP as an equivalent MILP as well as
the finite termination and convergence analysis. By contrast, our work is to weaken the con-
vexity assumption when to reformulate MINLP as an equivalent MILP master program. This
extends the outer approximation for solving MINLP from the convex case to the pseudo-convex
case. The next step of our future work would be to consider the outer approximation for dealing
with a broader class of non-convex MINLP problems.
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