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Abstract. This paper concerns the existence and multiplicity of positive solutions for the following
subelliptic singular system on Carnot group:

−∆Gu =
p1

p1 + p2
h(ξ )

ψα |u|p1−2u|v|p2

d(ξ )α
+λ f (ξ )

ψβ |u|q−2u
d(ξ )β

in Ω,

−∆Gv =
p2

p1 + p2
h(ξ )

ψα |u|p1 |v|p2−2v
d(ξ )α

+µg(ξ )
ψβ |v|q−2v

d(ξ )β
in Ω,

u = v = 0 on ∂Ω,

where −∆G is a sub-Laplacian on an arbitrary Carnot group G, 0 ∈ Ω, d is the ∆G-gauge, ψ = |∇Gd|,
Ω is a bounded domain in G with smooth boundary ∂Ω, λ , µ > 0, 1 < q < 2, 0 ≤ α < 2, 0 ≤ β < 2,
p1, p2 > 1 satisfying 2 < p1 + p2 ≤ 2∗(α) with 2∗(α) = 2(Q−α)

Q−2 as a critical Hardy-Sobolev exponent in
the Stratified Lie context. For suitable assumptions on weight functions f (ξ ), g(ξ ), and h(ξ ), by using
the variational methods and Nehari manifold, we prove that the subelliptic system admits at least two
positive solutions when parameters pair (λ ,µ) belongs to a certain subset of R2

+.
Keywords. Carnot groups; Critical Hardy-Sobolev exponent; Nehari manifold; Subelliptic system; Sin-
gular Hardy-type potentials.

1. INTRODUCTION

In this paper, we deal with the existence and multiplicity of positive solutions for a family
of semilinear subelliptic systems defined on bounded domains of Carnot groups. Differential
problems involving a sub-Laplacian operator on a bounded domain Ω of stratified groups have
been intensively studied in recent years by many authors; see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14] for more details and applications.
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We start focusing our attention on the sub-Laplacian system with Hardy-Sobolev potentials
of the form

−∆Gu =
p1

p1 + p2
h(ξ )

ψα |u|p1−2u|v|p2

d(ξ )α
+λ f (ξ )

ψβ |u|q−2u
d(ξ )β

in Ω,

−∆Gv =
p2

p1 + p2
h(ξ )

ψα |u|p1|v|p2−2v
d(ξ )α

+µg(ξ )
ψβ |v|q−2v

d(ξ )β
in Ω,

u = v = 0 on ∂Ω,

(1.1)

where ∆G is a sub-Laplacian operator on a Carnot group G, Ω is a bounded domain in G
with smooth boundary ∂Ω, 0 ∈ Ω, 1 < q < 2, λ , µ > 0, 0 ≤ α < 2, 0 ≤ β < 2, p1, p2 > 1
with 2 < p1 + p2 ≤ 2∗(α) and 2∗(α) = 2(Q−α)

Q−2 is the critical Hardy-Sobolev exponent in this
context, Q being the homogeneous dimension of the space G with Q > 3, d is the natural gauge
associated with the fundament solution of −∆G on G, and ψ is the weight function defined as
ψ(ξ ) = |∇Gd|. The weight functions f , g, and h : Ω→ R satisfy some additional conditions,
which will be given later.

When u = v, f = g in Ω, p1 = p2 = 2∗(α)
2 , and λ = µ , system (1.1) reduces to the scalar

sub-Laplacian equation with critical nonlinearities−∆Gu = λ f (ξ )
ψβ |u|q−2u

d(ξ )β
+h(ξ )

ψα |u|2∗(α)−2u
d(ξ )α

in Ω,

u = 0 on ∂Ω.

(1.2)

Observe that a great deal of interest has been paid in the literature to subelliptic equations
on Stratifed Lie groups; see, e.g. [4, 5, 15, 16, 17, 18] and the references therein. Recently,
numerous authors directed their attention to the study of semilinear sub-Laplacian problems
with critical nonlinearities and Hardy-type potentials arising in the context of stratified groups;
see, e.g., [9, 11, 19, 20, 21, 22] and the references therein. For example, the author in [20],
by finding the minimizer of the corresponding energy functional on positive Nehari and sign-
changing Nehari manifold, studied the existence and multiplicity of solutions of the following
nonhomogeneous subelliptic problem

−∆Gu = |u|2
∗−2u+ f (ξ ) in Ω, u = 0 on ∂Ω,

where Ω is a bounded domain of G with smooth boundary, 2∗ = 2Q
Q−2 is the critical Sobolev

exponent, and the inhomogeneous term f satisfies suitable summability assumptions. Mean-
while, Loiudice [8] studied the existence, nonexistence, and regularity of the problem (1.2)
when f (ξ ) = h(ξ ) = 1, β = 0, and q = 2. In [11], Zhang considered the following doubly
parameters problem involving the Hardy-type singularity and critical Hardy-Sobolev exponents

−∆Gu = λ
ψα |u|2∗(α)−2u

d(ξ )α
+β f (ξ )|u|p−2u in G. (1.3)

Applying the concentration compactness principle and the theory of genus, the author proved
that problem (1.3) admit infinitely many nontrivial solutions. On the other hand, Zhang [13]
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investigated the following multiple critical subelliptic problem
−∆Gu−µ

ψ2u
d(ξ )2 =

ψα |u|2∗(α)−2u
d(ξ )α

+
λη

η +θ

ψα |u|η−2u|v|θ

d(ξ )α
in G,

−∆Gv−µ
ψ2u

d(ξ )2 =
ψα |v|2∗(α)−2v

d(ξ )α
+

λθ

η +θ

ψα |u|η |v|θ−2v
d(ξ )α

in G.

(1.4)

Under the suitable assumptions on µ , α , λ , η ,and θ , the author adapted the mountain pass the-
orem and the refined version of the concentration-compactness principle to obtain a nontrivial
solution of (1.4).

Loiudice [9] considered the sub-Laplacian Brezis-Nirenberg problem with Hardy potential

−∆Gu−µ
ψ2

d(ξ )2 u = u2∗−1 +λu in Ω, u = 0 on ∂Ω, (1.5)

where Q ≥ 3, Ω ⊂ G is a smooth bounded domain and 0 ∈ Ω. The author proved that if 0 <
µ ≤ µG−1, then problem (1.5) has a positive solution for all λ ∈ (0,λ1). If µG−1 < µ < µG,
then there exists λ∗ ∈ (0,λ1) such that problem (1.5) admits at least one positive solution for
λ ∈ (λ∗,λ1). If λ ≤ 0 and Ω is δγ -starshaped about the origin, then (1.5) has the trivial solution.
Later, the author studied the following limit problem on G:

−∆Gu−µ
ψ2

d(ξ )2 u = |u|2
∗−2u in G. (1.6)

By means of regularity tools and Moser-type estimates on annuli, Loiudice showed that the
ground state solution u of (1.8) satisfies

u(ξ )∼ 1
d(ξ )

√
µG+

√
µG−µ

as d(ξ )→ ∞.

A question naturally arise—what effect does sign-changing weight functions and doubly pa-
rameters between Hardy-type singular term and convex-concave nonlinearities in form of (1.1)
on Stratifed Lie group. To our knowledge, it seems that there are few results in the literature on
this topic.

The variational formulation of (1.1) stands on the validity of the following sub-Laplacian
Hardy-Sobolev inequality, which holds in any Carnot group of homogeneous dimension Q≥ 3.
Assuming that 0≤ α < 2, one sees that there exists a positive constant C =C(α,Q) such that

C

(∫
G

ψ
α |u|2

∗(α)

d(ξ )α
dξ

) 2
2∗(α)

≤
∫
G
|∇Gu|2dξ , ∀u ∈C∞

0 (G), (1.7)

where 2∗(α) = 2(Q−α)
Q−2 and ψ = |∇Gd|. The main difficulty in (1.1) is the lack of compactness in

the related Hardy-Sobolev embedding, due to the invariance of the norms in (1.7) with respect
to the following noncompact group of rescalings

uγ(ξ ) = γ
Q−2

2 u(δγ(ξ )), ∀γ > 0, (1.8)

where δγ denotes the natural dilations of the group. Moreover, the function ψ appearing in the
left hand side of (1.7) is δγ -homogeneous of degree 0 and ψ is a smooth function out of the
origin, and then it is bounded on Ω.
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This paper aims to deal with coupled sub-Laplacian systems with critical Hardy-Sobolev
exponents and consider the combined effect of doubly parameters and convex-concave non-
linearities on the number of solutions. The main difficulty that one encounters when dealing
with the sub-Laplacian singular problem (1.1) is that the explicit form of the Hardy-Sobolev
extremals in the Carnot setting is not known, even for the Heisenberg group HN . This lack of
information seems to make the known techniques, namely the Brezis-Nirenberg methods not
directly applicable to problem (1.1). Nevertheless, as already recognized by the authors in [8],
this difficulty can be overcome since the real ingredient which is needed to perform asymptotic
expansions of Brezis-Nirenberg type is the knowledge of the asymptotic behavior of Hardy-
Sobolev minimizers at ∞. We explicitly remark that such extremals behave at ∞ exactly as the
fundamental solution of sub-Laplacian operator ∆G.

In this paper, we denote by S1
0(Ω) the Folland-Stein space defined as the completion of C∞

0 (Ω)
with respect to the norm

‖u‖S1
0(Ω) =

(∫
Ω

|∇Gu|2dz
) 1

2

.

By using the Nehari manifold and fibering map analysis, we establish the existence of at
least two positive solutions for a subelliptic system involving critical nonlinearities with sign-
changing weight functions with respect to the pair of parameters λ and µ belonging to a suitable
subset of R2

+. Since the embedding S1
0(Ω) ↪→ L2∗(α)(Ω, ψα

d(ξ )α dξ ) (α ∈ [0,2)) is not compact,
then the corresponding energy functional does not satisfy the Palais-Smale condition in general.
Therefore, it is difficult to obtain the critical points of energy functional by simple arguments,
which are based on the compactness of the Sobolev embedding. To overcome this difficulty,
we extract a Palais-Smale sequence in the Nehari manifold and show that the weak limit of this
sequence is the required solution of problem (1.1).

To state our main results, we introduce

Λ1 :=
((2−q)S(α,Q)

p1+p2
2

(p1 + p2−q)|h|∞

) 2
p1+p2−2

( p1 + p2−q
p1 + p2−2

)− 2
2−q

S(β ,Q)
q

2−q , (1.9)

where S(t,Q) (t = α, β ) is the best constant that will be introduced in next section. Moreover,
To construct our problem more precise, we give the following assumptions on the possibly
sign-changing weight functions f , g, and h:

( f g)1 f , g ∈ Lq∗(Ω, ψβ

d(ξ )β
dξ ), f± = max{± f ,0} 6≡ 0, and g± = max{±g,0} 6≡ 0 in Ω, where

q∗ := 2∗(β )
2∗(β )−q .

(h)1 h ∈ L∞(Ω) and h+ = max{h,0} 6≡ 0 in Ω.

Define the set

CΓ =

(λ ,µ) ∈ R2
+ :

0 <
(

λ | f |
Lq∗(Ω, ψβ

d(ξ )β
dξ )

) 2
2−q

+
(

µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

) 2
2−q

< Γ

 . (1.10)

In the case of subcritical or critical nonlinearity, we prove the following existence results.
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Theorem 1.1. Assume that ( f g)1, (h)1 hold. If 1≤ q < 2, 0≤ α < 2, 0≤ β < 2, 2 < p1+ p2 ≤
2∗(α), and λ , µ > 0 satisfy (λ ,µ) ∈ CΛ1 , then system (1.1) has at least one positive solution in
S1

0(Ω)×S1
0(Ω).

Theorem 1.2. Assume that ( f g)1, (h)1 hold. If 1≤ q < 2, 0≤ α < 2, 0≤ β < 2, 2 < p1+ p2 <

2∗(α), and λ , µ > 0 satisfy (λ ,µ) ∈ CΛ2 , where Λ2 = (q
2)

2
2−q Λ1, then system (1.1) has at least

two positive solutions in S1
0(Ω)×S1

0(Ω).

The critical case is more challenging and requires information about the asymptotic behavior
of solutions of the following limiting problem at infinity:

−∆Gu =
ψα |u|2∗(α)−2u

d(ξ )α
and u≥ 0 in G, (1.11)

where 0 < α < 2, 2∗(α) = 2(Q−α)
Q−2 . We get around the difficulty by working with certain as-

ymptotic estimates for solution to (1.11) recently obtained by Loiudice [8]; see Lemma 6.1. In
order to use the results of [8], we may assume h(ξ )≡ 1 and the following extra assumptions on
f and g:

( f g)2 There exist a0, b0 and r0 > 0 such that Bd(ξ0,2r0) ⊂ Ω and f (ξ ) ≥ a0, g(ξ ) ≥ b0 for
all ξ ∈ Bd(0,2r0), where Bd(ξ ,r) is the d-ball with center at ξ and radius r.

In this case, problem (1.1) can be written as follows:
−∆Gu =

p1

p1 + p2

ψα |u|p1−2u|v|p2

d(ξ )α
+λ f (ξ )

ψβ |u|q−2u
d(ξ )β

in Ω,

−∆Gv =
p2

p1 + p2

ψα |u|p1|v|p2−2v
d(ξ )α

+µg(ξ )
ψβ |v|q−2v

d(ξ )β
in Ω,

u = v = 0 on ∂Ω,

(1.12)

We then establish the following:

Theorem 1.3. Assume that ( f g)1, (h)1, and ( f g)2 hold. If 1 < q < 2, 0 ≤ α < 2, 0 ≤ β < 2,
p1+ p2 = 2∗(α), and λ , µ > 0 satisfy (λ ,µ)∈CΛ∗ , where Λ∗ is given in Section 6, then system
(1.12) has at least two positive solutions in S1

0(Ω)×S1
0(Ω).

The article is organized as follows. In Section 2, variational setting of problem (1.1) and
some preliminary results are introduced. In Section 3, we give some results about the Nehari
manifold and fibering map. In Section 4, we show that the Palais-Smale condition holds for
the energy functional associated with (1.1) at energy level in a suitable range related to the best
Sobolev constant. In Section 5, we prove the existence of Palais-Smale sequences and proof of
Theorems 1.1 and 1.2. We give the detail of proof of Theorem 1.3 in Section 6, the last section.

2. PRELIMINARIES

We briefly recall the relevant definitions and notations related the Carnot group functional
setting. For a complete treatment, we refer the reader to the monograph [10, 17] and papers
[5, 7, 14, 16].
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A finite dimensional Lie algebra g is said to be stratified of step k ∈N if there exists subspace
V1, · · · , Vk of g such that

g=V1⊕·· ·⊕Vk and [V1,Vi] =Vi+1, i = 1, · · ·k−1; [V1,Vk] = {0}.
A connected and simply connected Lie group G is a Carnot group if its Lie algebra g is

finite dimensional and stratified. In any Carnot group, the exponential mapping exp : g→ G
is an analytic diffeomorphism. We use it to define analytic maps ξi : G→ Vi(i = 1,2, · · · ,k),
through the equation g = expξ (g), where ξ (g) = ξ1(g)+ · · ·+ ξk(g). Let X = {X1, · · · ,Xm}
be a basis of V1, with m = dim(V1). The coordinates of ξ ’s projection in the basis X1, · · · ,Xm
are denoted by x1 = x1(g), · · · , xm = xm(g), that is, x j(g) = 〈ξ (g),X j〉, j = 1, · · · ,m. We set
x = x(g) = (x1, · · · ,xm) ∈ Rm.Later we will need to exploit the properties of the exponential
coordinates in the second layer of the stratification of g. We thus fix an orthonormal basis
Y1, · · · ,Yr of V2 and define the exponential coordinates in the second layer V2 of a point g ∈ G
by setting yi(g) = 〈ξ (g),Yi〉, i = 1, · · · ,r, and y = (y1, · · · ,yr) ∈ Rr.

Let N = ∑
k
i=1 dim(Vi) be the topological dimension of G, the decomposition RN =Rdim(V1)×

Rdim(V2)×·· ·×Rdim(Vk) is valid, and for every γ > 0, the dilation δγ : G→G given by

δγ(x) = δγ(x(1),x(2), · · · ,x(k)) = (γ1x(1), · · · ,γkx(k))

is an automorphism of the group G, where x(i) ∈ Rdim(Vi) for i = 1,2, · · · ,k. Here, by the
automorphisms {δγ}γ>0, the homogeneous dimension of G is given by Q = ∑

k
i=1 i ·dim(Vi).

Let X = {X1,X2, · · · ,Xm} be a basis of V1 with m = dim(V1). From the Proposition 1.2.29 of
[10], the left invariant vector field Xi (k = 1, · · · ,m) has an explicit form as following

Xi =
∂

∂x(1)i

+
k

∑
l=2

dim(Vl)

∑
r=1

a(l)i,r (x
(1), · · · ,x(l−1))

∂

∂x(l)r

,

where a(l)i,r is a homogeneous (with respect to δγ ) polynomial function of degree l− 1. Then,
once a basis X1,X2, · · · ,Xm of the horizontal layer is fixed, we define, for any function u :G→R
for which the partial derivatives X ju exist, the horizontal gradient of u, denoted by ∇Gu, as
the horizontal section ∇Gu := ∑

m
i=1(Xi u)Xi, whose coordinates are (X1u,X2u, · · · ,Xmu). More-

over, if φ = (φ1,φ2, · · · ,φm) is an horizontal section such that X jφ j ∈ L1
loc(G) for j = 1, · · · ,m,

we define divGφ as the real valued function divG(φ) := −∑
m
j=1 X∗j φ j = ∑

m
j=1 X jφ j. From the

above results, the second-order differential operator ∆G := ∑
m
j=1 X2

j is called the (canonical)
sub-Laplacian on G. The sub-Laplacian ∆G is a left invariant homogeneous hypoelliptic dif-
ferential operator, thanks to Hörmander’s theorem, and ∆Gu = divG (∇Gu). In addition, we
can check that ∇G and ∆G are left-translation invariant with respect to the group action τz
and δγ -homogeneous, respectively, of degree one and two, that is, ∇G(u ◦ τz) = ∇Gu ◦ τz,
∇G(u ◦ δγ) = γ∇Gu ◦ δγ , and ∆G(u ◦ τz) = ∆Gu ◦ τz, ∆G(u ◦ δγ) = γ2∆Gu ◦ δγ , where the left
translation τz : G→G is defined as x 7→ τzx := z◦ x, ∀x,z ∈G.

From [16], when Q≥ 3, Carnot groups possess the following property: there exists a suitable
homogeneous norm d on G such that

Γ(z) =
C

d(z)Q−2 , ∀z ∈G

is a fundamental solution of −∆G with pole at 0, for a suitable constant C > 0. By definition,
the homogeneous norm on G is a continuous function d : G→ [0,+∞), smooth away from the
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origin, such that d(δγ(z)) = γd(z) for every γ > 0 and z ∈ G, d(z−1) = d(z) and d(z) = 0 iff
z = 0. Moreover, if we define d(z1,z2) := d(z−1

2 ◦ z1), then d is a pseudo-distence on G. In
particular, d satisfies the pseudo-triangular inequality:

d(z1 , z2)≤ c(d(z1 , z3)+d(z3 , z2)), ∀z1,z2,z3 ∈G

for a suitable positive constant c. Throughout this paper, we shall almost exclusively work
with this homogeneous norm d, which is related to the fundamental solution of the sub-Laplace
operator −∆G, and then we can introduce the balls associated with such norm d, calling them
d-balls, defined as Bd(z,R) = {y ∈G : d(z,y)< R}.

In fact, the norm on G can be induced by the Euclidean distance | · | on g through the ex-
ponential mapping, which also induces the homogeneous pseudo-norm | · |g on g, namely, for
ξ ∈ g with ξ = ξ1 + · · ·+ξk, where ξi ∈Vi, define a pseudo-norm on g as follows

|ξ |g = |(ξ1, · · · ,ξk)|g := (
k

∑
i=1
|ξi|

2k!
i )

1
2k! .

The induced norm on G has the form |g|G = |exp−1
G (g)|g for all g ∈ G. The function | · |G is

usually known as the non-isotropic gauge. It defines a pseudo-distence on G given by

d(g,h) := |h−1 ◦g|G, ∀g, h ∈G.

Now, we define the function space corresponding to problem (1.1), posed in framework of
Sobolev space H := S1

0(Ω)×S1
0(Ω) with standard norm

‖(u,v)‖=
(∫

Ω

(|∇Gu|2 + |∇Gv|2)dξ

) 1
2
.

Then H is a Hilbert space. The energy functional Iλ ,µ : H →R associated to (1.1) is given by

Iλ ,µ(u,v) =
1
2
‖(u,v)‖2− 1

p1 + p2

∫
Ω

h(ξ )
ψα |u|p1|v|p2

d(ξ )α
dξ

− 1
q

∫
Ω

(
λ f (ξ )

ψβ |u|q

d(ξ )β
+µg(ξ )

ψβ |v|q

d(ξ )β

)
dξ .

Under ( f g)1 and (h)1, it is easy to see that Iλ ,µ is well defined and continuously differentiable
on H . Moreover, the critical points of the functional Iλ ,µ are the weak solutions to (1.1).

Definition 2.1. A function (u,v)∈H is called a weak solution to (1.1) if, for all (φ1,φ2)∈H ,∫
Ω

∇Gu∇Gφ1dξ +
∫

Ω

∇Gv∇Gφ2dξ =
p1

p1 + p2

∫
Ω

h(ξ )
ψα |u|p1−2u|v|p2φ1

d(ξ )α
dξ

+
p2

p1 + p2

∫
Ω

h(ξ )
ψα |u|p1|v|p2−2vφ2

d(ξ )α
dξ +λ

∫
Ω

f (ξ )
ψβ |u|q−2uφ1

d(ξ )β
dξ

+µ

∫
Ω

g(ξ )
ψβ |v|q−2vφ2

d(ξ )β
dξ .

Now we state the following inequality, which is used in the subsequent lemmas; see [18,
Theorem 1.2] or [2, Theorem 1.4].
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Lemma 2.1. Let p ∈ [2,2∗(α)] (α ∈ [0,2]). Then there exists a constant Cp > 0 such that

Cp

(∫
Ω

ψα |u|p

d(ξ )α
dξ

) 2
p

≤
∫

Ω

|∇Gu|2dξ , ∀u ∈ S1
0(Ω). (2.1)

Moreover, for p = 2∗(α), the best constant in (2.1) is denoted by S(α,Q), that is,

S(α,Q) = inf
u∈S1

0(Ω)\{0}

∫
Ω
|∇Gu|2dξ

(
∫

Ω

ψα |u|2∗(α)

d(ξ )α dξ )
2

2∗(α)

. (2.2)

From [8, 18], it is well known that S(α,Q) is achieved if and only if Ω =G, and the extremal
function u ∈ S1

0(G) for problem (2.2), up to a change of sign, is positive, and

u ∈ L
2∗
2 ,∞(G)∩L∞(G) and u(ξ )∼ 1

d(ξ )Q−2 as d(ξ )→ ∞.

Let u(ξ )> 0 be a fixed extremal function for problem (2.2) and consider, for ε > 0, the family
of rescaled functions Uε(ξ ) = ε−

Q−2
2 u(δ 1

ε

(ξ )). Then, the functions Uε(ξ ) are solutions, up to
multiplicative constants, of the following equation

−∆Gu =
ψα |u|2∗(α)−2u

d(ξ )α
in G,

and satisfies ∫
G
|∇GUε |2dξ =

∫
G

ψα |Uε |2
∗(α)

d(ξ )α
dξ = S(α,Q)

Q−α

2−α , ∀ε > 0.

For this, taking ρ > 0 small enough such that Bd(0,ρ) ⊂ Ω. Choose the cut-off function η ∈
C∞

0 (Bd(0,ρ)) such that 0≤ η ≤ 1 and η ≡ 1 in Bd(0,
ρ

2 ). Define the function

uε(ξ ) = η(ξ )Uε(ξ ). (2.3)

The following asymptotic expansions hold; see [8, Lemma 6.1].

Lemma 2.2. Let the homogeneous dimension Q≥ 4, 0≤ α < 2. Then the following estimates
hold when ε → 0: ∫

Ω

|∇Guε |2dξ = S(α,Q)
Q−α

2−α +O(εQ−2), (2.4)

and ∫
Ω

ψα |uε |2
∗(α)

d(ξ )α
dξ = S(α,Q)

Q−α

2−α +O(εQ−α). (2.5)

Taking into account the exact asymptotic behavior of Hardy-Sobolev extremals, we have the
following results.
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Lemma 2.3. Assume that 0≤ s < 2, Q≥ 4, and 1≤ q < 2∗(s). Then, as ε → 0, the following
estimates hold:

∫
Ω

ψs|uε |q

d(ξ )s dξ =



Cε
Q−s− q(Q−2)

2 , if q >
Q− s
Q−2

,

Cε
Q−s− q(Q−2)

2 | lnε|, if q =
Q− s
Q−2

,

Cε
q(Q−2)

2 , if q <
Q− s
Q−2

.

(2.6)

Proof. For all 1≤ q < 2∗(s), as ε → 0, it is easily seen that

∫
Ω

ψs|uε(ξ )|q

d(ξ )s dξ =
∫

Ω

ψs|η(ξ )ε−
Q−2

2 u(δ 1
ε

(ξ ))|q

d(ξ )s dξ

≥ ε
− q(Q−2)

2

∫
Bd(0,

ρ

2 )
ψ

s
|u(δ 1

ε

(ξ ))|q

d(ξ )s dξ

= ε
− q(Q−2)

2

∫
Bd(0,

ρ

2ε
)
ψ

s |u(δ1(ζ ))|q

εsd(ζ )s ε
Qdζ

≥Cε
− q(Q−2)

2 +Q−s
∫

Bd(0,
ρ

2ε
)\Bd(0,ρ0)

d(ζ )−(Q−2)q

d(ζ )s dζ

≥Cε
− q(Q−2)

2 +Q−s
∫ ρ

2ε

ρ0

1
r(Q−2)·q+s−Q+1

dr,

(2.7)

where ρ0 > 0 is large enough such that u(ξ )≥Cd(ξ )2−Q for d(ξ )≥ ρ0 and ε is small enough
so that ρ

2ε
> ρ0.

(i) If (Q−2)q+ s−Q = 0, straightforward computations yield∫ ρ

2ε

ρ0

1
r(Q−2)q+s−Q+1

dr =
∫ ρ

2ε

ρ0

1
r

dr =C| lnε|. (2.8)

So, (2.7) and (2.8) yield that∫
Ω

ψs|uε(ξ )|q

d(ξ )s dξ ≥Cε
Q−s− q(Q−2)

2 | lnε|. (2.9)

(ii) If (Q−2)q+ s−Q < 0, then it follows that (Q−2)q+ s−Q+1 < 1 and∫ ρ

2ε

ρ0

1
r(Q−2)q+s−Q+1

dr =
∫ ρ

2ε

ρ0

rQ−s−(Q−2)q−1dr =Cε
−(Q−s−(Q−2)q). (2.10)

Then, inserting (2.10) into (2.7), we obtain∫
Ω

ψs|uε(ξ )|q

d(ξ )s dξ ≥Cε
Q−s− q(Q−2)

2 −Q+s+(Q−2)q =Cε
q(Q−2)

2 . (2.11)

(iii) If (Q−2)q+ s−Q > 0, then (Q−2)q+ s−Q+1 > 1 and there exists C > 0 such that∣∣∣∫ ρ

2ε

ρ0

1
r(Q−2)q+s−Q+1

dr
∣∣∣≤C. (2.12)
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Therefore, by (2.7) and (2.12), one has∫
Ω

ψs|uε(ξ )|q

d(ξ )s dξ ≥Cε
Q−s− q(Q−2)

2 . (2.13)

Thus, (2.9), (2.11), and (2.13) imply that (2.6) holds. �

We conclude this section by introducing the following minimizing problem

Sα,p1,p2 = inf
(u,v)∈H \{(0,0)}

∫
Ω
(|∇Gu|2 + |∇Gv|2)dξ

(
∫

Ω

ψα |u|p1 |v|p2

d(ξ )α dξ )
2

2∗(α)

for all ε > 0, (2.14)

where p1+ p2 = 2∗(α). In light of Young’s inequality |u|p1|v|p2 ≤ p1
p1+p2

|u|p1+p2 + p2
p1+p2

|v|p1+p2

and Lemma 2.1, the best constant in (2.14) is well defined. Using the ideas from [23], we es-
tablish the following relationship between S(α,Q) and Sα,p1,p2 .

Lemma 2.4. For the constants S(α,Q) and Sα,p1,p2 given in (2.2) and (2.14), respectively, it
holds

Sα,p1,p2 =

[( p1

p2

) p2
p1+p2 +

( p2

p1

) p1
p1+p2

]
S(α,Q). (2.15)

In particular, Sα,p1,p2 is achieved for Ω =G.

Proof. Define a function θ :R+→R+ as θ(x)= x
2p2

p1+p2 +(1
x )

2p1
p1+p2 . Then, θ attains its minimum

at point x0 =
√

p2
p1

, and

min
x∈R+

θ(x) = θ(x0) =
( p1

p2

) p2
p1+p2 +

( p2

p1

) p1
p1+p2 .

Now, let {wn} ⊂ S1
0(Ω) be a minimizing sequence for S(α,Q), and let un = swn and vn = twn

for s, t > 0. By definition of Sα,p1,p2 , we have

Sα,p1,p2 ≤
‖(un,vn)‖2

(
∫

Ω

ψα |un|p1 |vn|p2

d(ξ )α dξ )
2

p1+p2

=
(s2 + t2)

s
2p1

p1+p2 t
2p2

p1+p2

‖wn‖2

(
∫

Ω

ψα |wn|2∗(α)

d(ξ )α dξ )
2

p1+p2

=
(s2 + t2)

s
2p1

p1+p2 t
2p2

p1+p2

S(α,Q) =

[(s
t

) 2p2
p1+p2 +

( t
s

) 2p1
p1+p2

]
S(α,Q).

Choosing s and t such that s
t =

√
p1
p2

and letting n→ ∞ yield

Sα,p1,p2 ≤

[(
p1

p2

) p2
p1+p2

+

(
p2

p1

) p1
p1+p2

]
S(α,Q). (2.16)

On the other hand, let {(un,vn)} be a minimizing sequence for Sα,p1,p2 . Define ωn = snvn for
some sn > 0 such that ∫

Ω

ψα |un|p1+p2

d(ξ )α
dξ =

∫
Ω

ψα |ωn|p1+p2

d(ξ )α
dx.
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Then Young’s inequality implies that∫
Ω

ψα |un|p1|ωn|p2

d(ξ )α
dξ ≤ p1

p1 + p2

∫
Ω

ψα |un|p1+p2

d(ξ )α
dξ +

p2

p1 + p2

∫
Ω

ψα |ωn|p1+p2

d(ξ )α
dξ

=
∫

Ω

ψα |ωn|p1+p2

d(ξ )α
dξ =

∫
Ω

ψα |un|p1+p2

d(ξ )α
dξ .

Using this, we obtain

‖(un,vn)‖2

(
∫

Ω

ψα |un|p1 |vn|p2

d(ξ )α dξ )
2

p1+p2

= s
2p2

p1+p2
n

 ‖un‖2

(
∫

Ω

ψα |un|p1 |ωn|p2

d(ξ )α dξ )
2

p1+p2

+
‖vn‖2

(
∫

Ω

ψα |un|p1 |ωn|p2

d(ξ )α dξ )
2

p1+p2


≥ s

2p2
p1+p2
n

‖un‖2

(
∫

Ω

ψα |un|p1+p2

d(ξ )α dξ )
2

p1+p2

+ s
2p2

p1+p2
−2

n
‖ωn‖2

(
∫

Ω

ψα |ωn|p1+p2

d(ξ )α dξ )
2

p1+p2

≥
(

s
2p2

p1+p2
n +(

1
sn
)

2p1
p1+p2

)
S(α,Q)

= θ(sn)S(α,Q)≥ θ(x0)S(α,Q).

On passing to the limit as n→ ∞, we obtain

Sα,p1,p2 ≥
[( p1

p2

) p2
p1+p2 +

( p2

p1

) p1
p1+p2

]
S(α,Q). (2.17)

Hence, from (2.16) and (2.17), we obtain the required result. �

3. NEHARI MANIFOLD FOR (1.1)

In this section, we study the nature of Nehari manifold associated with (1.1). In the case
p1 + p2 ≥ 2, the functional Iλ ,µ is not bounded below on H . We will show that it is bounded
on some suitable subset of H and on minimizing Iλ ,µ on these subsets, we obtain the nontrivial
solutions of (1.1). We define the Nehari set Nλ ,µ as

Nλ ,µ = {(u,v) ∈H \{(0,0)} : 〈I′
λ ,µ(u,v),(u,v)〉= 0}.

Thus, (u,v) ∈Nλ ,µ if and only if

〈I′
λ ,µ(u,v),(u,v)〉= ‖(u,v)‖

2−H(u,v)−Qλ ,µ(u,v) = 0, (3.1)

where

H(u,v) :=
∫

Ω

h(ξ )
ψα |u|p1|v|p2

d(ξ )α
dξ ,

and

Qλ ,µ(u,v) := λ

∫
Ω

f (ξ )
ψβ |u|q

d(ξ )β
dξ +µ

∫
Ω

g(ξ )
ψβ |v|q

d(ξ )β
dξ .

It is easy to see that Nλ ,µ contains every nonzero solution of (1.1). In fact, we show later that
local minimizers of Nλ ,µ are the critical points of Iλ ,µ .
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In order to study the properties of Nehari manifolds, we first give the following estimation
results. By Young’s inequality and Sobolev embedding theorem, we have

H(u,v)≤ |h|∞
( p1

p1 + p2

∫
Ω

ψα |u|p1+p2

d(ξ )α
dξ +

p2

p1 + p2

∫
Ω

ψα |v|p1+p2

d(ξ )α
dξ

)
≤ |h|∞S(α,Q)−

p1+p2
2 ‖(u,v)‖p1+p2. (3.2)

Similarly, by Hölder and Hardy-Sobolev inequalities, for all u ∈ S1
0(Ω), we have

∫
Ω

f (ξ )
ψβ |u|q

d(ξ )β
dξ ≤

∫
Ω

ψβ | f |
2∗(β )

2∗(β )−q

d(ξ )β
dξ


2∗(β )−q

2∗(β ) (∫
Ω

ψβ |u|2∗(β )

d(ξ )β
dξ

) q
2∗(β )

(3.3)

≤ | f |
Lq∗(Ω, ψβ

d(ξ )β
dξ )

S(β ,Q)−
q
2‖u‖q

S1
0(Ω)

,

where q∗ =
2∗(β )

2∗(β )−q . Then, for all (u,v) ∈H ,

Qλ ,µ(u,v)≤ S(β ,Q)−
q
2

[
(λ | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

] 2−q
2

‖(u,v)‖q. (3.4)

Further, by (3.3) and Young’s inequality, we have

Qλ ,µ ≤ S(β ,Q)−
q
2

(
λ | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )
‖u‖q

S1
0(Ω)

+µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )
‖v‖q

S1
0(Ω)

)
=
([2

q

(1
2
− 1

p1 + p2

)(1
q
− 1

p1 + p2

)−1] q
2‖u‖q

S1
0(Ω)

)
×
([2

q

(1
2
− 1

p1 + p2

)(1
q
− 1

p1 + p2

)−1]− q
2
S(β ,Q)−

q
2 λ | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
+
([2

q

(1
2
− 1

p1 + p2

)(1
q
− 1

p1 + p2

)−1] q
2‖v‖q

S1
0(Ω)

)
×
([2

q

(1
2
− 1

p1 + p2

)(1
q
− 1

p1 + p2

)−1]− q
2
S(β ,Q)−

q
2 µ|g|

Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
≤
(1

2
− 1

p1 + p2

)(1
q
− 1

p1 + p2

)−1
‖(u,v)‖2

+C∗
[(

λ | f |
Lq∗(Ω, ψβ

d(ξ )β
dξ )

) 2
2−q

+
(

µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

) 2
2−q
]
, (3.5)

where

C∗ =
2−q

2

(
p1 + p2−q
p1 + p2−2

) q
2−q

S(β ,Q)−
q

2−q > 0. (3.6)

Lemma 3.1. The functional Iλ ,µ is coercive and bounded below on Nλ ,µ .
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Proof. Let (u,v) ∈Nλ ,µ . From (3.4), we have

Iλ ,µ(u,v) =
p1 + p2−2
2(p1 + p2)

‖(u,v)‖2− p1 + p2−q
q(p1 + p2)

Qλ ,µ(u,v)

≥ p1 + p2−2
2(p1 + p2)

‖(u,v)‖2− p1 + p2−q
q(p1 + p2)

Cλ ,µ‖(u,v)‖q, (3.7)

where

Cλ ,µ =
[(

λ | f |
Lq∗(Ω, ψβ

d(ξ )β
dξ )

) 2
2−q

+
(

µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

) 2
2−q
] 2−q

2
S(β ,Q)−

q
2 > 0. (3.8)

As 1 < q < 2 < p1 + p2, one sees that Iλ ,µ is coercive on Nλ ,µ . Now, take a = p1+p2−2
2(p1+p2)

and

b = p1+p2−q
q(p1+p2)

C1, and consider the function ρ : R+ → R as ρ(t) = at2− btq, t > 0. Then, one

can easily see that ρ ′(t) = 0 if and only if t = (qb
2a)

1
2−q and ρ ′′((qb

2a)
1

2−q ) = 2a(2−q)> 0. So, ρ

attains its minimum at (qb
2a)

1
2−q and

ρ(t)≥ ρ((
qb
2a

)
1

2−q ) =−(2−q)
(b

2

) 2
2−q
(q

a

) q
2−q

. (3.9)

Hence, (3.7) and (3.9) imply that

Iλ ,µ(u,v)≥ ρ(‖(u,v)‖)≥ ρ((
qb
2a

)
1

2−q ) =−(2−q)
(b

2

) 2
2−q
(q

a

) q
2−q

,

which means that Iλ ,µ is bounded below on Nλ ,µ . �

Now, fixing (u,v)∈H , we define Ψ(u,v) : t 7→ Iλ ,µ(tu, tv)(t > 0), much known as fiber maps,
as

Ψ(u,v)(t) =
t2

2
‖(u,v)‖2− tq

q
Qλ ,µ(u,v)−

t p1+p2

p1 + p2
H(u,v).

Thus,

Ψ
′
(u,v)(t) = t‖(u,v)‖2− tq−1Qλ ,µ(u,v)− t p1+p2−1H(u,v) (3.10)

and

Ψ
′′
(u,v)(t) = ‖(u,v)‖

2− (q−1)tq−2Qλ ,µ(u,v)− (p1 + p2−1)t p1+p2−2H(u,v).

From (3.1) and (3.10), we know that the Nehari manifold Nλ ,µ is closely to the behavior of the
function Ψ(u,v), namely, (tu, tv)∈Nλ ,µ if and only if Ψ′(u,v)(t)= 0. Therefore it is natural to split
Nλ ,µ into three parts corresponding to local minima, local maxima, and points of inflection,
respectively. For this, we set

N −
λ ,µ : = {(u,v) ∈Nλ ,µ : Ψ

′′
(u,v)(1)< 0},

N +
λ ,µ : = {(u,v) ∈Nλ ,µ : Ψ

′′
(u,v)(1)> 0},

N 0
λ ,µ : = {(u,v) ∈Nλ ,µ : Ψ

′′
(u,v)(1) = 0}.
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Furthermore, for each (u,v) ∈Nλ ,µ , we have the following equalities

Ψ
′′
(u,v)(1) = 2‖(u,v)‖2−qQλ ,µ(u,v)− (p1 + p2)H(u,v)

= (2−q)‖(u,v)‖2− (p1 + p2−q)H(u,v) (3.11)

= (p1 + p2−q)Qλ ,µ(u,v)− (p1 + p2−2)‖(u,v)‖2. (3.12)

In what follow, we study some basic properties of N +
λ ,µ , N 0

λ ,µ , and N −
λ ,µ .

Lemma 3.2. If (u+0 ,v
+
0 ), and (u−0 ,v

−
0 ) are local minimizer for Iλ ,µ on N +

λ ,µ and N −
λ ,µ , respec-

tively, then (u+0 ,v
+
0 ), (u

−
0 ,v
−
0 ) are nontrivial solutions to (1.1).

Proof. Let (u+0 ,v
+
0 ) such that Iλ ,µ(u

+
0 ,v

+
0 ) = infN +

λ ,µ
Iλ ,µ , and define the set

V =
{
(u,v) ∈H : 〈Φ′

λ ,µ(u,v),(u,v)〉> 0
}
,

where Φλ ,µ(u,v) := 〈I′
λ ,µ(u,v),(u,v)〉. Note that, for any (u,v) ∈H satisfying Φλ ,µ(u,v) = 0,

〈Φ′
λ ,µ(u,v),(u,v)〉> 0 if and only if Ψ′′(u,v)(1)> 0. Then we have

N +
λ ,µ =

{
(u,v) ∈ V : Φλ ,µ(u,v) = 0

}
.

So, by the Lagrange multipliers, we have that there exists θ ∈ R such that I′
λ ,µ(u

+
0 ,v

+
0 ) =

θΦ′
λ ,µ(u

+
0 ,v

+
0 ). Since (u+0 ,v

+
0 )∈N +

λ ,µ , 〈I′
λ ,µ(u

+
0 ,v

+
0 ),(u

+
0 ,v

+
0 )〉= 0, and 〈Φ′

λ ,µ(u
+
0 ,v

+
0 ),(u

+
0 ,v

+
0 )〉

> 0, then θ = 0, i.e., (u+0 ,v
+
0 ) is a nontrivial weak solution to (1.1). Similarly, for (u−0 ,v

−
0 ) ∈

N −
λ ,µ such that Iλ ,µ(u

−
0 ,v
−
0 ) = infN −

λ ,µ
Iλ ,µ is a nontrivial weak solution to (1.1). This completes

the proof. �

Moreover, from the definitions of N −
λ ,µ , N +

λ ,µ , (3.11), and (3.12) respectively, we have the
following result.

Lemma 3.3. (i) For any (u,v) ∈N −
λ ,µ , H(u,v)> 0;

(ii) For any (u,v) ∈N +
λ ,µ , Qλ ,µ(u,v)> 0.

Lemma 3.4. If (λ ,µ) ∈ CΛ1 , then N 0
λ ,µ = /0, where set CΛ1 is defined in (1.10).

Proof. On contrary, assume that there exists (λ ,µ) ∈ R2
+ with

0 < (λ | f |
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q < Λ1,

such that N 0
λ ,µ 6= /0. Then, for (u,v) ∈N 0

λ ,µ ,

‖(u,v)‖2 =
p1 + p2−q

2−q
H(u,v), (3.13)

‖(u,v)‖2 =
p1 + p2−q
p1 + p2−2

Qλ ,µ(u,v). (3.14)

By (3.2) and (3.13), we obtain

‖(u,v)‖ ≥
( 2−q

p1 + p2−q
S(α,Q)

p1+p2
2

|h|∞

) 1
p1+p2−2

. (3.15)
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From (3.4) and (3.14), we have

‖(u,v)‖ ≤
( p1 + p2−q

p1 + p2−2

) 1
2−q

S(β ,Q)
− q

2(2−q)

×

[
(λ | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

] 1
2

. (3.16)

On combining (3.15) and (3.16), we have

(λ | f |
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

≥ Λ1 :=
((2−q)S(α,Q)

p1+p2
2

(p1 + p2−q)|h|∞

) 2
p1+p2−2

( p1 + p2−q
p1 + p2−2

)− 2
2−q

S(β ,Q)
q

2−q ,

which is a contradiction. The proof is completed. �

The above result shows that Nλ ,µ is a manifold for suitable choice of (λ ,µ). We now show
that N +

λ ,µ and N −
λ ,µ are nonempty. For this, we define some notations. For each (u,v) ∈

H \{(0,0)}, define m(u,v)(t) = t2−q‖(u,v)‖2− t p1+p2−qH(u,v) for all t > 0. Clearly, (tu, tv) ∈
Nλ ,µ if and only if m(u,v)(t) = Qλ ,µ(u,v). Since

m′(u,v)(t) = (2−q)t1−q‖(u,v)‖2− (p1 + p2−q)t p1+p2−q−1H(u,v),

for any (tu, tv) ∈Nλ ,µ , we obtain

tq−1m′(u,v)(t) = Ψ
′′
(u,v)(t) = t−2

Ψ
′′
(tu,tv)(1), (3.17)

which implies that (tu, tv) ∈ N +
λ ,µ (or N −

λ ,µ ) if and only if m′(u,v)(t) > 0 (or m′(u,v)(t) < 0).
Furthermore, if H(u,v) > 0, then m(u,v)(0) = 0, m(u,v)(t)→−∞ as t → ∞ and m(u,v) attains its
maximum at

tmax =

[
(2−q)‖(u,v)‖2

(p1 + p2−q)H(u,v)

] 1
p1+p2−2

> 0.

So, m(u,v) is strictly increasing in [0, tmax), strictly decreasing in (tmax,∞), and

m(u,v)(tmax) =

[
(2−q)‖(u,v)‖2

(p1 + p2−q)H(u,v)

] 2−q
p1+p2−2

‖(u,v)‖2

−
(

(2−q)‖(u,v)‖2

(p1 + p2−q)H(u,v)

) p1+p2−q
p1+p2−2

H(u,v)

= ‖(u,v)‖q
(

2−q
p1 + p2−q

) 2−q
p1+p2−2

(
p1 + p2−2
p1 + p2−q

)(
‖(u,v)‖p1+p2

H(u,v)

) 2−q
p1+p2−2

≥ ‖(u,v)‖q
(

2−q
p1 + p2−q

) 2−q
p1+p2−2

(
p1 + p2−2
p1 + p2−q

)(
S(α,Q)

p1+p2
2

|h|∞

) 2−q
p1+p2−2

.
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Using the same argument used above, if Qλ ,µ(u,v)> 0, we define

m(u,v)(t) = t2−(p1+p2)‖(u,v)‖2− tq−(p1+p2)Qλ ,µ(u,v), ∀t > 0.

Clearly, (tu, tv) ∈Nλ ,µ if and only if m(u,v)(t) = H(u,v). Since 1 < q < 2 < p1 + p2, one has
m(u,v)(t)→−∞ as t→ 0+, m(u,v)(t)→ 0 as t→∞, m attains its maximum at tmax, and m(u,v) is
strictly increasing in (0, tmax) and strictly decreasing in (tmax,∞), where

tmax =

[
(p1 + p2−q)Qλ ,µ(u,v)
(p1 + p2−2)‖(u,v)‖2

] 1
2−q

> 0.

Moreover, if (tu, tv) ∈Nλ ,µ , we have t p1+p2−1m′(u,v)(t) = Ψ′′(u,v)(t) = t−2Ψ′′(tu,tv)(1), which im-
plies that (tu, tv) ∈N +

λ ,µ (or N −
λ ,µ ) if and only if m′(u,v)(t)> 0 (or m′(u,v)(t)< 0).

Now, based on the results above, we prove the following lemma.

Lemma 3.5. Suppose that (λ ,µ)∈CΛ1 and (u,v)∈H \{(0,0)}. Then the following assertions
hold.

(i) If H(u,v)> 0 and Qλ ,µ(u,v)≤ 0, then there exists a unique t−> tmax such that (t−u, t−v)∈
N −

λ ,µ and Iλ ,µ(t−u, t−v) = supt≥tmax
Iλ ,µ(tu, tv).

(ii) If H(u,v)> 0 and Qλ ,µ(u,v)> 0, then there exists a unique 0< t+ < tmax < t− such that
(t+u, t+v)∈N +

λ ,µ , (t−u, t−v)∈N −
λ ,µ . Moreover, Iλ ,µ(t+u, t+v)= inf0≤t≤tmax Iλ ,µ(tu, tv)

and Iλ ,µ(t−u, t−v) = supt≥tmax
Iλ ,µ(tu, tv).

(iii) If Qλ ,µ(u,v) > 0 and H(u,v) ≤ 0, then there exists a unique 0 < t+ < tmax such that
(t+u, t+v) ∈N +

λ ,µ and Iλ ,µ(t+u, t+v) = inft≥0 Iλ ,µ(tu, tv).
(iv) If Qλ ,µ(u,v)< 0 and H(u,v)< 0, then there does not exist any critical point.

Proof. (i) Since H(u,v) > 0 and Qλ ,µ(u,v) ≤ 0, then there exists a unique t− > tmax > 0 such
that

m(u,v)(t
−) = Qλ ,µ(u,v)≤ 0, m′(u,v)(t

−)< 0. (3.18)

Then,

〈I′
λ ,µ(t

−u, t−v),(t−u, t−v)〉= (t−)2‖(u,v)‖2− (t−)qQλ ,µ(u,v)− (t−)p1+p2H(u,v)

= (t−)q[m(u,v)(t
−)−Qλ ,µ(u,v)] = 0

yields that (t−u, t−v) ∈Nλ ,µ , coupling with (3.17), and (t−u, t−v) ∈N −
λ ,µ . Moreover, from

(3.18) we have

d
dt

Iλ ,µ(tu, tv)
∣∣∣
t=t−

= (t−)q−1 [m(u,v)(t
−)−Qλ ,µ(u,v)

]
= 0,

and

d2

dt2 Iλ ,µ(tu, tv)
∣∣∣
t=t−

= (q−1)(t−)q−2[m(u,v)(t
−)−Qλ ,µ(u,v)]+(t−)q−1m′(u,v)(t

−)< 0.

Hence, we derive Iλ ,µ(t−u, t−v) = supt≥tmax
Iλ ,µ(tu, tv).
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(ii) If H(u,v)> 0 and Qλ ,µ(u,v)> 0, for all (λ ,µ) ∈ CΛ1 , we have by (3.4) that

m(u,v)(0) = 0 < Qλ ,µ(u,v)

≤ S(β ,Q)−
q
2

(
(λ | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

) 2−q
2

‖(u,v)‖q

< S(β ,Q)−
q
2‖(u,v)‖q

×
[((2−q)S(α,Q)

p1+p2
2

(p1 + p2−q)|h|∞

) 2
p1+p2−2

( p1 + p2−q
p1 + p2−2

)− 2
2−q

S(β ,Q)
q

2−q

] 2−q
2

=
((2−q)S(α,Q)

p1+p2
2

(p1 + p2−q)|h|∞

) 2−q
p1+p2−2

( p1 + p2−2
p1 + p2−q

)
‖(u,v)‖q

≤ m(u,v)(tmax).

Then, there are unique t+, t− such that 0 < t+ < tmax < t− and

Φ(u,v)(t
+) = Qλ ,µ(u,v) = Φ(u,v)(t

−), Φ
′
(u,v)(t

+)> 0 > Φ
′
(u,v)(t

−),

which implies (t+u, t+v) ∈ N +
λ ,µ , (t−u, t−v) ∈ N −

λ ,µ and d
dt Iλ ,µ(tu, tv) = 0 for t ∈ {t+, t−},

d2

dt2 Iλ ,µ(tu, tv) > 0 for all t ∈ (0, tmax), and d2

dt2 Iλ ,µ(tu, tv) < 0 for all t ∈ (tmax,∞). This yields
that Iλ ,µ(t+u, t+v) = inf0≤t≤tmax Iλ ,µ(tu, tv) and Iλ ,µ(t−u, t−v) = supt≥tmax

Iλ ,µ(tu, tv).
(iii) If Qλ ,µ(u,v)> 0 and H(u,v)≤ 0, based on the same argument used in parts (i), we have

that there exists a unique 0 < t+ < tmax such that

m(u,v)(t
+) = H(u,v)≤ 0, m′(u,v)(t

+)> 0.

Further, from 〈I′
λ ,µ(t

+u, t+v),(t+u, t+v)〉 = 0 and Ψ′′(u,v)(t
+) > 0, we have (t+u, t+v) ∈Nλ ,µ

and (t+u, t+v) ∈N +
λ ,µ . Moreover, d2

dt2 Iλ ,µ(t+u, t+v)> 0 and d
dt Iλ ,µ(t+u, t+v) = 0 imply that

Iλ ,µ(t
+u, t+v) = inf

t≥0
Iλ ,µ(tu, tv).

(iv) If Qλ ,µ(u,v) < 0 and H(u,v) < 0, then Ψ(u,v)(0) = 0, Ψ′(u,v)(t) > 0 for all t > 0. This
implies Ψ(u,v) is strictly increasing function and does not have critical point. This completes the
proof. �

From Lemma 3.4, if (λ ,µ) ∈ CΛ1 , then Nλ ,µ = N +
λ ,µ ∪N −

λ ,µ and N +
λ ,µ ∩N −

λ ,µ = /0. Now
we define

cλ ,µ = inf
(u,v)∈Nλ ,µ

Iλ ,µ(u,v),

c+
λ ,µ = inf

(u,v)∈N +
λ ,µ

Iλ ,µ(u,v),

and
c−

λ ,µ = inf
(u,v)∈N −

λ ,µ

Iλ ,µ(u,v).

Theorem 3.1. The following facts hold:
(i) If (λ ,µ) ∈ CΛ1 , then cλ ,µ ≤ c+

λ ,µ < 0.
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(ii) Let Λ2 := (q
2)

2
2−q Λ1. Then, for any (λ ,µ) ∈ CΛ2 , c−

λ ,µ > c0 > 0, where c0 is a constant
depending on λ , µ , β , q, Q, S(α,Q), S(β ,Q), | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )

, |g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

, and

|h|∞.

Proof. (i) Let (u,v) ∈N +
λ ,µ . By (3.11), we have

H(u,v)<
2−q

p1 + p2−q
‖(u,v)‖2. (3.19)

Using (3.1) and (3.19), one has

Iλ ,µ(u,v) =
(1

2
− 1

q

)
‖(u,v)‖2 +

(1
q
− 1

p1 + p2

)
H(u,v)

<
[(1

2
− 1

q

)
+
(1

q
− 1

p1 + p2

) 2−q
p1 + p2−q

]
‖(u,v)‖2

=−(2−q)(p1 + p2−2)
2q(p1 + p2)

‖(u,v)‖2 < 0.

So, from the definitions of cλ ,µ and c+
λ ,µ , we can deduce that cλ ,µ ≤ c+

λ ,µ < 0.
(ii) Let (u,v) ∈N −

λ ,µ . From (3.11), we have

2−q
p1 + p2−q

‖(u,v)‖2 < H(u,v), (3.20)

which together with Hölder’s inequality and Sobolev embedding theorem implies that

‖(u,v)‖>
((2−q)S(α,Q)

p1+p2
2

(p1 + p2−q)|h|∞

) 1
p1+p2−2

. (3.21)

Then, it follows from (3.7) and (3.21) that

Iλ ,µ(u,v)≥ ‖(u,v)‖q
[ p1 + p2−2

2(p1 + p2)
‖(u,v)‖2−q− p1 + p2−q

q(p1 + p2)
S(ν ,Q)−

q
2

×
(
(λ | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

) 2−q
2
]

>
((2−q)S(α,Q)

p1+p2
2

p1 + p2−q

) q
p1+p2−2

[ p1 + p2−2
2(p1 + p2)

((2−q)S(α,Q)
p1+p2

2

(p1 + p2−q)|h|∞

) 2−q
p1+p2−2

− p1 + p2−q
q(p1 + p2)

S(β ,Q)−
q
2

(
(λ | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

+(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

) 2−q
2
]
.

Thus, if

p1 + p2−2
2(p1 + p2)

((2−q)S(α,Q)
p1+p2

2

(p1 + p2−q)|h|∞

) 2−q
p1+p2−2 − p1 + p2−q

q(p1 + p2)
S(β ,Q)−

q
2

×
(
(λ | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

) 2−q
2

> 0,
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i.e.,

(λ | f |
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

<
[ q(p1 + p2)

p1 + p2−q
S(β ,Q)

q
2

p1 + p2−2
2(p1 + p2)

((2−q)S(α,Q)
p1+p2

2

(p1 + p2−q)|h|∞

) 2−q
p1+p2−2

] 2
2−q

=
(q(p1 + p2−2)

2(p1 + p2−q)

) 2
2−q

S(β ,Q)
q

2−q

((2−q)S(α,Q)
p1+p2

2

(p1 + p2−q)|h|∞

) 2
p1+p2−2

=
(q

2

) 2
2−q
((2−q)S(α,Q)

p1+p2
2

(p1 + p2−q)|h|∞

) 2
p1+p2−2

( p1 + p2−2
p1 + p2−q

) 2
2−q

S(β ,Q)
q

2−q

=
(q

2

) 2
2−q

Λ1 =: Λ2,

then Iλ ,µ(u,v)≥ c0 > 0 for all (u,v) ∈N −
λ ,µ . This completes the proof. �

In the end of this section, we state the following lemmas, which provide a local parametriza-
tion around any point of Nλ ,µ .

Lemma 3.6. Assume (λ ,µ) ∈ CΛ1 . Then, for every (u,v) ∈ Nλ ,µ , there exist δ > 0 and a
differentiable mapping ζ : Bd((0,0),δ ) ⊂H → R+ such that ζ (0,0) = 1, ζ (w1,w2)((u,v)−
(w1,w2)) ∈Nλ ,µ , and

〈ζ ′(0,0),(w1,w2)〉=
2B(u,v)(w1,w2)−qQ(u,v)(w1,w2)−2P(u,v)(w1,w2)

(2−q)‖(u,v)‖2− (p1 + p2−q)H(u,v)
,

where

B(u,v)(w1,w2) =
∫

Ω

(∇Gu∇Gw1 +∇Gv∇Gw2)dξ ,

Q(u,v)(w1,w2) = λ

∫
Ω

f (ξ )
ψβ |u|q−2uw1

d(ξ )β
dξ +µ

∫
Ω

g(ξ )
ψβ |v|q−2vw2

d(ξ )β
dξ ,

and

P(u,v)(w1,w2) = p1

∫
Ω

ψα |u|p1−2|v|p2uw1

d(ξ )α
dξ + p2

∫
Ω

ψα |u|p1|v|p2−2vw2

d(ξ )α
dξ .

Proof. For (u,v) ∈Nλ ,µ , define F(u,v) : R×H → R by

F(u,v)(ζ ,(w1,w2)) = 〈I′λ ,µ(ζ ((u,v)− (w1,w2))),ζ ((u,v)− (w1,w2))〉

= ζ
2‖(u−w1,v−w2)‖2

−ζ
q
∫

Ω

(
λ f (ξ )

ψβ |u−w1|q

d(ξ )β
+µg(ξ )

ψβ |v−w2|q

d(ξ )β

)
dξ

−ζ
p1+p2

∫
Ω

h(ξ )
ψα |u−w1|p1|v−w2|p2

d(ξ )α
dξ .
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So, F(u,v)(1,(0,0)) = 〈I′λ ,µ(u,v),(u,v)〉= 0 and

d
dζ

F(u,v)(1,(0,0)) = 2‖(u,v)‖2−qQ(u,v)− (p1 + p2)H(u,v)

= (2−q)‖(u,v)‖2− (p1 + p2−q)H(u,v)

= Ψ
′′
(u,v)(1) 6= 0,

where Ψ′′(u,v)(1) is given in (3.11). According to the implicit function theorem, there exist δ > 0
and a differentiable function ζ : Bd((0,0),ε)→ R+ such that ζ (0,0) = 1 and

〈ζ ′(0,0),(w1,w2)〉=
2B(u,v)(w1,w2)−qQ(u,v)(w1,w2)−2P(u,v)(w1,w2)

(2−q)‖(u,v)‖2− (p1 + p2−q)H(u,v)

for all (w1,w2) ∈H . Moreover, we have F(u,v)(ζ (w1,w2),(w1,w2)) = 0 for all (w1,w2) ∈
Bd((0,0),δ ), which implies that

〈I′
λ ,µ(ζ (w1,w2)((u,v)− (w1,w2))),ζ (w1,w2)((u,v)− (w1,w2))〉= 0,

that is, ζ (w1,w2)((u,v)− (w1,w2)) ∈Nλ ,µ . �

Lemma 3.7. Under the condition of Lemma 3.6, for every (u,v) ∈N −
λ ,µ , there exist δ > 0 and

a differentiable map ζ− : Bd((0,0),δ )⊂H →R+ such that ζ−(0,0) = 1, ζ−(w1,w2)((u,v)−
(w1,w2)) ∈N −

λ ,µ , and

〈(ζ−)′(0,0),(w1,w2)〉=
2B(u,v)(w1,w2)−qQ(u,v)(w1,w2)−2P(u,v)(w1,w2)

(2−q)‖(u,v)‖2− (p1 + p2−q)H(u,v)

for all (w1,w2) ∈H , where B(u,v), Q(u,v), and P(u,v) are defined as in Lemma 3.6.

Proof. Following the proof of Lemma 3.6, there exist δ > 0 and a differentiable function ζ− :
Bd((0,0),δ )⊂H → R+ such that ζ−(0,0) = 1 and ζ−(w1,w2)((u,v)− (w1,w2)) ∈N −

λ ,µ for
every (w1,w2) ∈ Bd((0,0),δ ). Since (u,v) ∈N −

λ ,µ , we have

Ψ
′′
(u,v)(1) = (2−q)‖(u,v)‖2− (p1 + p2−q)H(u,v)< 0.

It then follow from the continuity of Ψ′′(u,v) and ζ− that

lim
(w1,w2)→(0,0)

Ψ
′′
ζ−(w1,w2)((u,v)−(w1,w2))

(1) = Ψ
′′
(u,v)(1)< 0,

so ζ−(w1,w2)((u,v)− (w1,w2)) ∈N −
λ ,µ for δ small enough. �

4. COMPACTNESS OF THE PALAIS-SMALE SEQUENCES

In this section, we show that the functional Iλ ,µ satisfies the (PS)c-conditions.

Definition 4.1. Let c ∈ R, W be a Banach space, and let Iλ ,µ ∈ C1(W,R) be a C1 function.
Then {(un,vn)} ⊂W is a Palais-Smale sequence at level c ((PS)c-sequence) in W for Iλ ,µ if
Iλ ,µ(un,vn) = c+on(1) and I′

λ ,µ(un,vn) = on(1) strongly in W−1 as n→∞. Iλ ,µ is said to satisfy
the (PS)c-condition if, for any Palais-Smale sequence {(un,vn)} in W , Iλ ,µ has a convergent
subsequence.
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Lemma 4.1. Suppose that {(un,vn)} ⊂H is a (PS)c-sequence for Iλ ,µ such that (un,vn) ⇀
(u,v) weakly in H . Then I′

λ ,µ(u,v) = 0 and

Iλ ,µ(u,v)≥−C∗
(
(λ | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

)
,

where C∗ > 0 is given in (3.6).

Proof. Let {(un,vn)} be a (PS)c-sequence in H . By using the standard argument, one can
easily obtain I′

λ ,µ(u,v) = 0, i.e. 〈I′
λ ,µ(u,v),(u,v)〉= 0. Using this and (3.5), we obtain

Iλ ,µ(u,v) =
(1

2
− 1

p1 + p2

)
‖(u,v)‖2−

(1
q
− 1

p1 + p2

)
Qλ ,µ(u,v)

≥ p1 + p2−2
2(p1 + p2)

‖(u,v)‖2− (p1 + p2−q)
q(p1 + p2)

· p1 + p2−2
2(p1 + p2)

· q(p1 + p2)

p1 + p2−q
‖(u,v)‖2

−C∗
[
(λ | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

]
=−C∗

[
(λ | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

]
.

This completes the proof of Lemma 4.1. �

Lemma 4.2. Let {(un,vn)} ⊂H be a (PS)c-sequence for Iλ ,µ . Then {(un,vn)} is bounded in
H .

Proof. Let {(un,vn)} be a (PS)c-sequence for Iλ ,µ in H . Then we assume by contradiction that

‖(un,vn)‖ → ∞ as n→ ∞. Defining (ûn, v̂n) := (un,vn)
‖(un,vn)‖ , we have that {(ûn, v̂n)} is a bounded

sequence in H . So, up to a subsequence (ûn, v̂n) ⇀ (û, v̂) weakly in H and ûn→ û, v̂n→ v̂

strongly in Lq(Ω, ψβ

d(ξ )β
dξ ) for q ∈ [1,2∗(β )). This implies that

Qλ ,µ(ûn, v̂n) = Qλ ,µ(û, v̂)+on(1). (4.1)

Since {(un,vn)} is a (PS)c-sequence for Iλ ,µ and ‖(un,vn)‖→ ∞ as n→ ∞, we obtain

1
2
‖(ûn, v̂n)‖2− ‖(un,vn)‖q−2

q
Qλ ,µ(ûn, v̂n)−

‖(un,vn)‖p1+p2−2

p1 + p2
H(ûn, v̂n) = on(1), (4.2)

and

‖(ûn, v̂n)‖2−‖(un,vn)‖q−2Qλ ,µ(ûn, v̂n)−‖(un,vn)‖p1+p2−2H(ûn, v̂n) = on(1). (4.3)

From (4.1), (4.2), and (4.3), we deduce that

‖(ûn, v̂n)‖2 =
2(p1 + p2−q)
q(p1 + p2−2)

‖(un,vn)‖q−2Qλ ,µ(û, v̂)+on(1). (4.4)

For n large enough, we use ‖(un,vn)‖ → ∞ and (4.4) to obtain ‖(ûn, v̂n)‖2 → 0, which is a
contradiction to the fact that ‖(ûn, v̂n)‖= 1. �
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Lemma 4.3. Assume ( f g)1, (h)1 hold, then Iλ ,µ satisfies the (PS)c-condition for all c ∈ (0,c∞),
where

c∞ :=
2−α

2(Q−α)
(Sα,p1,p2)

Q−α

2−α |h|−
Q−2
2−α

∞

−C∗
(
(λ | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

)
and C∗ is given in (3.6).

Proof. Let {(un,vn)} ⊂H be a (PS)c-sequence for Iλ ,µ with 0 < c < c∞. By Lemma 4.2, one
has that {(un,vn)} is a bounded sequence in H . Hence, up to a subsequence, (un,vn)⇀ (u,v)
weakly in H , un ⇀ u and vn ⇀ v weakly in L2∗(α)(Ω, ψα

d(ξ )α dξ )), un→ u and vn→ v strongly

in Ls(Ω, ψβ

d(ξ )β
dξ )) for all s ∈ [1,2∗(β )), and un(ξ )→ u(ξ ) and vn(ξ )→ v(ξ ) a.e. in Ω. Thus

Qλ ,µ(un,vn) = Qλ ,µ(u,v)+on(1). (4.5)

Also, I′
λ ,µ(u,v) = 0 follows from Lemma 4.1. Set ũn = un− u, ṽn = vn− v. By Brézis-Lieb

Lemma [24] and Vitali theorem, we arrive at

‖(ũn, ṽn)‖2 = ‖(un,vn)‖2−‖(u,v)‖2 +on(1), (4.6)

and

H(ũn, ṽn) = H(un,vn)−H(u,v)+on(1). (4.7)

Using Iλ ,µ(un,vn) = c+on(1), I′
λ ,µ(un,vn) = on(1), (4.5), (4.6), and (4.7), we obtain

1
2
‖(ũn, ṽn)‖2− 1

p1 + p2
H(ũn, ṽn) = c− Iλ ,µ(u,v)+on(1), (4.8)

and ‖(ũn, ṽn)‖2−H(ũn, ṽn) = on(1). Therefore, we assume that

‖(ũn, ṽn)‖2→ l, H(ũn, ṽn)→ l as n→ ∞. (4.9)

If l = 0, then proof is complete. If l > 0, then, by definition of Sα,p1,p2 and (4.9), we obtain

Sα,p1,p2 · l
2

p1+p2 ≤ Sα,p1,p2 lim
n→∞

(
|h|∞

∫
Ω

ψα |un|p1|vn|p2

d(ξ )α
dξ

) 2
p1+p2

≤ |h|
2

p1+p2
∞ lim

n→∞
‖(ũn, ṽn)‖2 = |h|

2
p1+p2
∞ l.

As p1 + p2 = 2∗(α), we see that the above relation gives

l ≥ (Sα,p1,p2)
Q−α

2−α · |h|−
(Q−2)
2−α

∞ .

Hence, by (4.8), (4.9), and Lemma 4.1, we obtain

c =
(1

2
− 1

p1 + p2

)
l + Iλ ,µ(u,v)+on(1)

≥ 2−α

2(Q−α)
(Sα,p1,p2)

Q−α

2−α |h|−
Q−2
2−α

∞

−C∗
(
(λ | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

)
:= c∞,
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which is a contradiction to c < c∞. The proof is complete. �

5. PROOF OF THEOREMS 1.1 AND 1.2

In this section, we show the existence of Palais-Smale sequence in N +
λ ,µ , N −

λ ,µ and give the
proof of Theorems 1.1 and 1.2.

Lemma 5.1. Let 1 < q < 2, 0≤α < 2, 0≤ β < 2, and 2 < p1+ p2≤ 2∗(α). Then the following
results hold.

(i) If (λ ,µ) ∈ CΛ1 , then there exists a sequence {(un,vn)} ⊂Nλ ,µ such that

Iλ ,µ(un,vn) = cλ ,µ +on(1) and I′
λ ,µ(un,vn) = on(1) in H −1.

(ii) If (λ ,µ) ∈ CΛ2 , then there exists a sequence {(un,vn)} ⊂N −
λ ,µ such that

Iλ ,µ(un,vn) = c−
λ ,µ +on(1) and I′

λ ,µ(un,vn) = on(1) in H −1.

Proof. (i) It follows from Lemma 3.1 that Iλ ,µ is coercive and bounded below. Then the Ekeland
variational principle implies that there exists a minimizing sequence {(un,vn)}⊂Nλ ,µ such that

Iλ ,µ(un,vn)< inf
Nλ ,µ

Iλ ,µ(u,v)+
1
n
= cλ ,µ +

1
n
, (5.1)

and

Iλ ,µ(un,vn)< Iλ ,µ(u,v)+
1
n
‖(u,v)− (un,vn)‖, ∀(u,v) ∈Nλ ,µ . (5.2)

For n large enough, we use (5.1) and cλ ,µ < 0 to obtain Iλ ,µ(un,vn)< cλ ,µ +
1
n <

cλ ,µ

2 . Therefore,
for (un,vn) ∈Nλ ,µ , we have

Iλ ,µ(un,vn)≥−
( p1 + p2−q

q(p1 + p2)

)
Qλ ,µ(un,vn),

which together with Iλ ,µ(un,vn)<
cλ ,µ

2 implies that

Qλ ,µ(un,vn)>−
q(p1 + p2)cλ ,µ

2(p1 + p2−q)
> 0. (5.3)

Thus, (5.3) and (3.4) yield (un,vn) 6= (0,0). In order to finalize the proof, it is sufficient to show
that

I′
λ ,µ(un,vn)→ 0 in H −1 as n→ ∞. (5.4)

Indeed, it follows from Lemma 3.6 that there exists a differentiable function ζn : Bd((0,0),δn)→
R+, for some δn > 0, such that ζn(w1,w2)((un,vn)− (w1,w2)) ∈Nλ ,µ for all (w1,w2) ∈H ,
where Bd((0,0),δn) := {(u,v) ∈H : d((u,v),(0,0)) < δn}. For any (u,v) ∈H \{(0,0)}, de-
fine

(wη ,1,wη ,2) := η
(u,v)
‖(u,v)‖

, η ∈ (0,δn);

(ϖη ,1,ϖη ,2) := ζn(wη ,1,wη ,2)((un,vn)− (wη ,1,wη ,2)).
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Using the fact that (ϖη ,1,ϖη ,2) ∈Nλ ,µ , and (5.2), we obtain that

Iλ ,µ(ϖη ,1,ϖη ,2)− Iλ ,µ(un,vn)>−
1
n
‖(ϖη ,1,ϖη ,2)− (un,vn)‖.

Now, we apply the mean value theorem to the left hand side of the last inequality to deduce

Iλ ,µ(ϖη ,1,ϖη ,2)− Iλ ,µ(un,vn) = 〈I′λ ,µ(un,vn),(ϖη ,1,ϖη ,2)− (un,vn)〉
+on(‖(ϖη ,1,ϖη ,2)− (un,vn)‖).

Thus,

〈I′
λ ,µ(un,vn),(ϖη ,1,ϖη ,2)− (un,vn)〉+on(‖(ϖη ,1,ϖη ,2)− (un,vn)‖)

>−1
n
‖(ϖη ,1,ϖη ,2)− (un,vn)‖. (5.5)

Regarding the first term in (5.5), we have that

〈I′
λ ,µ(un,vn),(ϖη ,1,ϖη ,2)− (un,vn)〉

= 〈I′
λ ,µ(un,vn),ζn(wη ,1,wη ,2)((un,vn)− (wη ,1,wη ,2))− (un,vn)〉

= 〈I′
λ ,µ(un,vn),−(wη ,1,wη ,2)〉+ 〈I′λ ,µ(un,vn),(ζn(wη ,1,wη ,2)−1)((un,vn)− (wη ,1,wη ,2))〉.

(5.6)

Therefore,

〈I′
λ ,µ(un,vn),−(wη ,1,wη ,2)〉+ 〈I′λ ,µ(un,vn),(ζn(wη ,1,wη ,2)−1)((un,vn)− (wη ,1,wη ,2))〉

>−1
n
‖(ϖη ,1,ϖη ,2)− (un,vn)‖+on(‖(ϖη ,1,ϖη ,2)− (un,vn)‖).

By the definition of (wη ,1,wη ,2) and (ϖη ,1,ϖη ,2), we obtain

−η〈I′
λ ,µ(un,vn),

(u,v)
‖(u,v)‖

〉+(ζn(wη ,1,wη ,2)−1)

×〈I′
λ ,µ(un,vn)− I′

λ ,µ(ϖη ,1,ϖη ,2),(un,vn)− (wη ,1,wη ,2)〉

>−1
n
‖(ϖη ,1,ϖη ,2)− (un,vn)‖+on(‖(ϖη ,1,ϖη ,2)− (un,vn)‖).

The last inequality implies that

〈I′
λ ,µ(un,vn),

(u,v)
‖(u,v)‖

〉

≤
‖(ϖη ,1,ϖη ,2)− (un,vn)‖

nη
+

on(‖(ϖη ,1,ϖη ,2)− (un,vn)‖)
η

+
(ζn(wη ,1,wη ,2)−1)

η
〈I′

λ ,µ(un,vn)− I′
λ ,µ(ϖη ,1,ϖη ,2),(un,vn)− (wη ,1,wη ,2)〉. (5.7)

From Lemma 3.6, we see that

lim
η→0

|ζn(wη ,1,wη ,2)−1|
η

= lim
η→0

|ζn(wη ,1,wη ,2)−ζn(0,0)|
η

≤ ‖ζ ′n(0,0)‖.
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Simple calculations yield

‖(ϖη ,1,ϖη ,2)− (un,vn)‖ ≤ |ζn(wη ,1,wη ,2)| · ‖(wη ,1,wη ,2)‖+ |ζn(wη ,1,wη ,2)−1| · ‖(un,vn)‖
= η |ζn(wη ,1,wη ,2)|+ |ζn(wη ,1,wη ,2)−1| · ‖(un,vn)‖. (5.8)

Using the last two identities and (5.7), we conclude that

〈I′
λ ,µ(un,vn),

(u,v)
‖(u,v)‖

〉 ≤
|ζn(wη ,1,wη ,2)|

n
+

1
n
|ζn(wη ,1,wη ,2)−1|

η
‖(un,vn)‖

+
(ζn(wη ,1,wη ,2)−1)

η
〈I′

λ ,µ(un,vn)− I′
λ ,µ(ϖη ,1,ϖη ,2),(un,vn)− (wη ,1,wη ,2)〉. (5.9)

Taking η → 0 in (5.9) for a fixed n ∈ N, we can find a constant C > 0 (independent of η) such
that

〈I′
λ ,µ(un,vn),

(u,v)
‖(u,v)‖

〉 ≤ C
n
(1+‖ζ ′n(0,0)‖) as η → 0.

In order to complete the proof of (5.4), we only need to prove that ‖ζ ′n(0,0)‖ is uniformly
bounded in n. From Lemma 3.6, for (w1,w2) ∈H , one has

〈ζ ′n(0,0),(w1,w2)〉=
2B(u,v)(w1,w2)−qQ(u,v)(w1,w2)−2P(u,v)(w1,w2)

(2−q)‖(u,v)‖2− (p1 + p2−q)H(u,v)
.

By Hölder’s inequality, is it easy to see that, for some constant M1 > 0,

2B(u,v)(w1,w2)−qQ(u,v)(w1,w2)−2P(u,v)(w1,w2)≤M1‖(w1,w2)‖.
Then, we only need to prove that

|(2−q)‖(un,vn)‖2− (p1 + p2−q)H(un,vn)| ≥M2 > 0 (5.10)

as n large enough. On the contrary, suppose that there exists a subsequence {(un,vn)} such that

(2−q)‖(un,vn)‖2− (p1 + p2−q)H(un,vn) = on(1). (5.11)

From (5.11) and (un,vn) ∈Nλ ,µ , we have

‖(un,vn)‖2 =
p1 + p2−q

2−q
H(un,vn)+on(1)

and

‖(un,vn)‖2 =
p1 + p2−q
p1 + p2−2

Qλ ,µ(un,vn)+on(1).

Using the last two identities and (3.2) and (3.4), we then obtain that

‖(un,vn)‖ ≥

(
2−q

p1 + p2−q
S(α,Q)

p1+p2
2

|h|∞

) 1
p1+p2−2

+on(1),

and

‖(un,vn)‖ ≤
(

p1 + p2−q
p1 + p2−2

) 1
2−q

S(β ,Q)
− q

2(2−q)

×

(
(λ | f |

Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q

) 1
2

+on(1).
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This implies that

(λ | f |
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q +(µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

)
2

2−q ≥ Λ1,

which is a contradiction. Therefore, (5.10) holds. Hence, there exists a constant M > 0 such
that

〈I′
λ ,µ(un,vn),

(u,v)
‖(u,v)‖

〉 ≤ M
n
.

This implies (5.4), and completes the proof of (i).
(ii) The proof goes exactly as the first part by using Lemma 3.7. �

In the end of this section, we use results above to prove the existence of positive vector
soltuions on N +

λ ,µ , as well as on N −
λ ,µ . This couples with the fact that N +

λ ,µ ∩N −
λ ,µ = /0 yield

Theorem 1.2.

Theorem 5.1. Suppose that 1 < q < 2, 0 ≤ α,β < 2, p1, p2 > 1 with 2 < p1 + p2 ≤ 2∗(α).
If the parameters λ , µ satisfy (λ ,µ) ∈ CΛ1 , where Λ1 is given in (1.9), then system (1.1) has
at least one positive vector solution (u1

λ ,µ ,v
1
λ ,µ) ∈N +

λ ,µ such that Iλ ,µ(u1
λ ,µ ,v

1
λ ,µ) = c+

λ ,µ < 0,
u1

λ ,µ 6= 0, and v1
λ ,µ 6= 0.

Proof. By Lemma 5.1 (i), there exists a minimizing sequence {(un,vn)} ⊂Nλ ,µ for Iλ ,µ such
that

Iλ ,µ(un,vn) = cλ ,µ +on(1), I′
λ ,µ(un,vn) = on(1) in H −1. (5.12)

By coercivity of Iλ ,µ on Nλ ,µ , we obtain that {(un,vn)} is bounded in H . Then, passing to
a subsequence, still denoted by {(un,vn)}, there exists (u1

λ ,µ ,v
1
λ ,µ) ∈H such that un ⇀ u1

λ ,µ ,
vn ⇀ v1

λ ,µ weakly in S1
0(Ω), and

un→ u1
λ ,µ , vn→ v1

λ ,µ weakly in L2∗(α)(Ω,
ψα

d(ξ )α
dξ ),

un→ u1
λ ,µ , vn→ v1

λ ,µ strongly in Ls(Ω,
ψβ

d(ξ )β
dξ ), ∀s ∈ (1,2∗(β )), (5.13)

un(ξ )→ u1
λ ,µ(ξ ), vn(ξ )→ v1

λ ,µ(ξ ) a.e. Ω.

First, we claim that (u1
λ ,µ ,v

1
λ ,µ) is a nontrivial solution to (1.1). From (5.12) and (5.13), one

can easily verify that

Qλ ,µ(un,vn) = Qλ ,µ(u
1
λ ,µ ,v

1
λ ,µ)+on(1), (5.14)

and (u1
λ ,µ ,v

1
λ ,µ) is a weak solution to system (1.1). From (un,vn) ∈Nλ ,µ and the definition of

Iλ ,µ , we have

Qλ ,µ(un,vn) =
q(p1 + p2−2)
2(p1 + p2−q)

‖(un,vn)‖2− q(p1 + p2)

p1 + p2−q
Iλ ,µ(un,vn). (5.15)

Then, letting n→ ∞ in (5.15) and using (5.12) and (5.14) with cλ ,µ < 0, we obtain

Qλ ,µ(u
1
λ ,µ ,v

1
λ ,µ)≥−

q(p1 + p2)

(p1 + p2−q)
cλ ,µ > 0,
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which implies that (u1
λ ,µ ,v

1
λ ,µ) 6= (0,0). Therefore (u1

λ ,µ ,v
1
λ ,µ) is a nontrivial solution to (1.1)

for (λ ,µ) ∈ CΛ1 .
Now, we show that (un,vn)→ (u1

λ ,µ ,v
1
λ ,µ) strongly in H and Iλ ,µ(u1

λ ,µ ,v
1
λ ,µ) = cλ ,µ . If

(u,v) ∈Nλ ,µ , then

Iλ ,µ(u,v) =
p1 + p2−2
2(p1 + p2)

‖(u,v)‖2− p1 + p2−q
q(p1 + p2)

Qλ ,µ(u,v). (5.16)

To prove that Iλ ,µ(u1
λ ,µ ,v

1
λ ,µ)= cλ ,µ , in view of (u1

λ ,µ ,v
1
λ ,µ)∈Nλ ,µ , (5.16), and Fatou’s lemma,

we obtain

cλ ,µ ≤ Iλ ,µ(u
1
λ ,µ ,v

1
λ ,µ) =

p1 + p2−2
2(p1 + p2)

‖(u1
λ ,µ ,v

1
λ ,µ)‖

2− p1 + p2−q
q(p1 + p2)

Qλ ,µ(u
1
λ ,µ ,v

1
λ ,µ)

≤ liminf
n→∞

( p1 + p2−2
2(p1 + p2)

‖(un,vn)‖2− (p1 + p2−q)
q(p1 + p2)

Qλ ,µ(un,vn)
)

≤ liminf
n→∞

Iλ ,µ(un,vn) = cλ ,µ .

(5.17)
So, (5.17) and (5.13) imply that Iλ ,µ(u1

λ ,µ ,v
1
λ ,µ) = cλ ,µ and (un,vn)→ (u1

λ ,µ ,v
1
λ ,µ) strongly in

H .
The next step is to prove that (u1

λ ,µ ,v
1
λ ,µ) ∈N +

λ ,µ . On the contrary, if (u1
λ ,µ ,v

1
λ ,µ) ∈N −

λ ,µ , by
using (3.20) and (5.17), we have that H(u1

λ ,µ ,v
1
λ ,µ)> 0 and Qλ ,µ(u1

λ ,µ ,v
1
λ ,µ)> 0. It then follows

from Lemma 3.5 (ii) that there exist unique t+1 and t−1 > 0 such that (t+1 u1
λ ,µ , t

+
1 v1

λ ,µ) ∈N +
λ ,µ ,

(t−1 u1
λ ,µ , t

−
1 v1

λ ,µ) ∈N −
λ ,µ , and t+1 < t−1 = 1. Following the proof of Lemma 3.5, we have that

d
dt

Iλ ,µ(t
+
1 u1

λ ,µ , t
+
1 v1

λ ,µ) = 0,
d2

dt2 Iλ ,µ(t
+
1 u1

λ ,µ , t
+
1 v1

λ ,µ)> 0.

Thus, there exists a t̄ such that t+1 < t̄ < t−1 = 1 and Iλ ,µ(t
+
1 u1

λ ,µ , t
+
1 v1

λ ,µ) < Iλ ,µ(t̄u1
λ ,µ , t̄v

1
λ ,µ).

We again use Lemma 3.5 to obtain

c+
λ ,µ ≤ Iλ ,µ(t

+
1 u1

λ ,µ , t
+
1 v1

λ ,µ)< Iλ ,µ(t̄u
1
λ ,µ , t̄v

1
λ ,µ)

≤ Iλ ,µ(t
−
1 u1

λ ,µ , t
−
1 v1

λ ,µ) = Iλ ,µ(u
1
λ ,µ ,v

1
λ ,µ) = cλ ,µ ,

which is a contradiction, that is, (u1
λ ,µ ,v

1
λ ,µ) 6∈N −

λ ,µ . Since Iλ ,µ(u1
λ ,µ ,v

1
λ ,µ)= Iλ ,µ(|u1

λ ,µ |, |v
1
λ ,µ |),

and (|u1
λ ,µ |, |v

1
λ ,µ |)∈N +

λ ,µ is a solution to (1.1), we may assume, without loss of generality, that
(u1

λ ,µ ,v
1
λ ,µ) is a non-negative solution to (1.1), and Bony’s maximum principle [25] implies that

u1
λ ,µ(ξ )> 0 and v1

λ ,µ(ξ )> 0 in Ω.
To complete the proof of Theorem 5.1, we need to show that the solutions (u1

λ ,µ ,v
1
λ ,µ) is not

semi-trivial. Without loss of generality, we may assume that v1
λ ,µ ≡ 0. Then u1

λ ,µ is a non-trivial
solution of

−∆Gu = λ f (ξ )
ψβ |u|q−2u

d(ξ )β
in Ω and u = 0 on ∂Ω,

and satisfies

‖u1
λ ,µ‖

2
S1

0(Ω)
= λ

∫
Ω

f (ξ )
ψβ |u1

λ ,µ |
q

d(ξ )β
dξ > 0.
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Taking w ∈ S1
0(Ω)\{0} such that

‖w‖2
S1

0(Ω)
= µ

∫
Ω

g(ξ )
ψβ |w|q

d(ξ )β
dξ , (5.18)

we find from Lemma 3.5 that there exists a unique t1 ∈ (0, tmax(u1
λ ,µ ,w)) such that (t1u1

λ ,µ , t1w)∈
N +

λ ,µ and Iλ ,µ(t1u1
λ ,µ , t1w) = inf

0≤t≤tmax
Iλ ,µ(tu1

λ ,µ , tw), where

tmax(u1
λ ,µ ,w) =

(p1 + p2−q)(
∫

Ω
λ f (ξ )

ψβ |u1
λ ,µ |

q

d(ξ )β
dξ +

∫
Ω

µg(ξ )ψβ |w|q
d(ξ )β

dξ )

(p1 + p2−2)‖(u1
λ ,µ ,w)‖2


1

2−q

=

(
p1 + p2−q
p1 + p2−2

) 1
2−q

> 1.

On the other hand, by (5.18), we have

Iλ ,µ(u
1
λ ,µ ,0)− Iλ ,µ(u

1
λ ,µ ,w)

=−1
2
‖w‖2

S1
0(Ω)

+
µ

q

∫
Ω

g(ξ )
ψβ |w|q

d(ξ )β
dξ +

∫
Ω

h(ξ )
ψα |u1

λ ,µ |
p1 |w|p2

d(ξ )α
dξ

=
2−q

2q
‖w‖2

S1
0(Ω)

+
∫

Ω

h(ξ )
ψα |u1

λ ,µ |
p1 |w|p2

d(ξ )α
dξ > 0.

This and the fact that (u1
λ ,µ ,0) ∈N +

λ ,µ imply that

c+
λ ,µ ≤ Iλ ,µ(t1u1

λ ,µ , t1w)≤ Iλ ,µ(u
1
λ ,µ ,w)< Iλ ,µ(u

1
λ ,µ ,0) = c+

λ ,µ ,

which is a contradiction. Hence, (u1
λ ,µ ,v

1
λ ,µ) is not semi-trivial. This completes the proof. �

Remark 5.1. From the definition of Cλ ,µ (see (3.8)), we have Cλ ,µ → 0 as λ , µ → 0+. On the
other hand, using Theorem 3.1 (i) and (3.7), for (λ ,µ) ∈ CΛ1 , we have

0 > c+
λ ,µ ≥ cλ ,µ = Iλ ,µ(u

1
λ ,µ ,v

1
λ ,µ)>−

p1 + p2−q
q(p1 + p2)

Cλ ,µ‖(u,v)‖q→ 0.

This implies that Iλ ,µ(u1
λ ,µ ,v

1
λ ,µ)→ 0 as λ → 0+ and µ → 0+.

Theorem 5.2. Let 1 < q < 2, 0≤ α < 2, 0≤ β < 2, 2 < p1 + p2 < 2∗(α), and λ and µ satisfy

(λ ,µ) ∈ CΛ2 , where Λ2 = (q
2)

2
2−q Λ1. Then system (1.1) has at least one positive vector solution

(u2
λ ,µ ,v

2
λ ,µ) ∈N −

λ ,µ such that Iλ ,µ(u2
λ ,µ ,v

2
λ ,µ) = c−

λ ,µ > 0 and u2
λ ,µ 6= 0, v2

λ ,µ 6= 0.

Proof. Let {(un,vn)} be a minimizing sequence for Iλ ,µ on N −
λ ,µ such that Iλ ,µ(un,vn) = c−

λ ,µ +

on(1) and I′
λ ,µ(un,vn) = on(1) in H −1, given in the second part of Lemma 5.1. It then follows

from Lemma 3.1 and the compact imbedding theorem that there exist a subsequence {(un,vn)},
still denote by {(un,vn)}, and (u2

λ ,µ ,v
2
λ ,µ) ∈H such that un ⇀ u2

λ ,µ and vn ⇀ v2
λ ,µ weakly

in S1
0(Ω), un → u2

λ ,µ and vn → v2
λ ,µ strongly in Lq(Ω, ψβ

d(ξ )β
dξ ), and Lp1+p2(Ω, ψα

d(ξ )α dξ ) for
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p1 + p2 < 2∗(α). This implies

Qλ ,µ(un,vn) = Qλ ,µ(u
2
λ ,µ ,v

2
λ ,µ)+on(1),

and

H(un,vn) = H(u2
λ ,µ ,v

2
λ ,µ)+on(1).

Using (3.20) and (3.21), we find that there exists C3 > 0 such that H(un,vn)>C3 for (un,vn) ∈
N −

λ ,µ , so H(u2
λ ,µ ,v

2
λ ,µ)≥C3 > 0.

Now, we prove that (un,vn)→ (u2
λ ,µ ,v

2
λ ,µ) in H . Indeed, if not, then we have ‖(u2

λ ,µ ,v
2
λ ,µ)‖<

liminfn→∞ ‖(un,vn)‖. Then using Lemma 3.5, there exists a unique t−2 > 0 such that (t−2 u2
λ ,µ , t

−
2 v2

λ ,µ)

∈N −
λ ,µ . Since (un,vn) ∈N −

λ ,µ , Iλ ,µ(un,vn)≥ Iλ ,µ(tun, tvn) for all t ≥ 0, we have

c−
λ ,µ ≤ Iλ ,µ(t

−u2
λ ,µ , t

−v2
λ ,µ)< lim

n→∞
Iλ ,µ(t

−un, t−vn)

≤ lim
n→∞

Iλ ,µ(un,vn) = c−
λ ,µ .

Hence, (un,vn)→ (u2
λ ,µ ,v

2
λ ,µ) strongly in H . This implies

Iλ ,µ(u
2
λ ,µ ,v

2
λ ,µ) = lim

n→∞
Iλ ,µ(un,vn) = c−

λ ,µ .

By using the same arguments as in the proof of Theorem 5.1 for all (λ ,µ) ∈ CΛ2 , we have that
(u2

λ ,µ ,v
2
λ ,µ) is a positive solution to system (1.1).

Finally, we show that (u2
λ ,µ ,v

2
λ ,µ) is not semi-trivial. Using Theorem 3.1 (ii), we obtain

Iλ ,µ(u
2
λ ,µ ,v

2
λ ,µ) = c−

λ ,µ > 0. (5.19)

If (u2
λ ,µ ,v

2
λ ,µ) is a semi-trivial solution to (1.1), then (u2

λ ,µ ,0) (or (0,v2
λ ,µ)) is nontrivial solution

to the following equation

−∆Gu = λ f (ξ )
ψν |u|q−2u

d(ξ )ν
in Ω and u = 0 on ∂Ω.

Then

Iλ ,µ(u
2
λ ,µ ,0) =

1
2
‖u2

λ ,µ‖
2
S1

0(Ω)
− λ

q

∫
Ω

f (ξ )
ψν |u2

λ ,µ |
q

d(ξ )ν
dξ

=−2−q
2q
‖u2

λ ,µ‖
2
S1

0(Ω)
< 0. (5.20)

From (5.19) and (5.20), we obtain that (u2
λ ,µ ,v

2
λ ,µ) is not semi-trivial. This completes the proof

of Theorem 5.2. �

Proof of Theorems 1.1 and 1.2. Theorems 1.1 and 1.2 follow from Theorems 5.1 and 5.2, re-
spectively. Also from Theorem 5.1 and 5.2, we obtain that, for all 1 < q < 2, 0 ≤ α < 2,
0≤ β < 2, 2 < p1+ p2 < 2∗(α), and λ , µ > 0 with (λ ,µ)∈CΛ2 (where Λ2 < Λ1), system (1.1)
has two positive solutions (u1

λ ,µ ,v
1
λ ,µ)∈N +

λ ,µ and (u2
λ ,µ ,v

2
λ ,µ)∈N −

λ ,µ . Since N +
λ ,µ∩N −

λ ,µ = /0,
we can conclude that (u1

λ ,µ ,v
1
λ ,µ) and (u2

λ ,µ ,v
2
λ ,µ) are distinct. �
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6. PROOF OF THEOREM 1.3

In this section, we show the existence of a second weak solution in the critical case p1+ p2 =
2∗(α) as a limit of Palais-Smale sequence, which is obtained by minimizing sequence for Iλ ,µ

in N −
λ ,µ .

Lemma 6.1. Under the assumptions of Theorem 1.3, there exist a nonnegative function (uλ ,µ ,vλ ,µ)
∈H \{(0,0)} and Λ∗ > 0 such that

sup
t≥0

Iλ ,µ(tuλ ,µ , tvλ ,µ)< c∞ (6.1)

for all λ , µ > 0 with (λ ,µ) ∈ CΛ∗ , where c∞ is the constant given in Lemma 4.3. In particular,
c−

λ ,µ < c∞ for all (λ ,µ) ∈ CΛ∗ .

Proof. We first consider the functional J : H → R given by

J(u,v) =
1
2
‖(u,v)‖2− 1

2∗(α)

∫
Ω

ψα |u|p1|v|p2

d(ξ )α
dξ , ∀(u,v) ∈H .

Let uε be given in (2.3), and let (uε ,vε) = (
√

p1uε ,
√

p2uε). Then

J(tuε , tvε) =
2∗(α)

2
t2‖uε‖2

S1
0(Ω)
−

p
p1
2

1 p
p2
2

2
2∗(α)

t2∗(α)
∫

Ω

ψα |uε |2
∗(α)

d(ξ )α
dξ

=
2∗(α)

2

(
S(α,Q)

Q−α

2−α + ε
Q−2
)

t2 ≤Ct2,

where C > 0. So, there exist t0 ∈ (0,1) and Λ3 > 0 such that

sup
t∈[0,t0]

Iλ ,µ(tuε , tvε)< c∞ for all (λ ,µ) ∈ CΛ3. (6.2)

Next, we prove that supt∈[t0,∞] Iλ ,µ(tuε , tvε) < c∞. Let θ(t) = J(tuε , tvε). Then, θ(0) = 0,
θ(t)> 0 for t > 0 small, θ(t)< 0 for t > 0 large and θ attains its maximum at

t0 =
( ‖(uε ,vε)‖2∫

Ω

ψα |uε |p1 |vε |p2

d(ξ )α dξ

) 1
2∗(α)−2

.

Then, using (2.4), (2.5), and (2.15), we have

sup
t≥0

θ(t) = θ(t0) =
(

1
2
− 1

2∗(α)

)
‖(uε ,vε)‖

2·2∗(α)
2∗(α)−2(∫

Ω

ψα |uε |p1 |vε |p2

d(ξ )α dξ

) 2
2∗(α)−2

=
2−α

2(Q−α)

[( p1

p2

) p2
2∗(α)

+
( p2

p1

) p1
2∗(α)

] 2∗(α)
2∗(α)−2

 ‖uε‖2
S1

0(Ω)

(
∫

Ω

ψα |uε |2∗(α)

d(ξ )α dξ )
2

2∗(α)


2∗(α)

2∗(α)−2

=
2−α

2(Q−α)

[( p1

p2

) p2
2∗(α)

+
( p2

p1

) p1
2∗(α)

]Q−α

2−α

[
S(α,Q)

Q−α

2−α +O(εQ−2)

[S(α,Q)
Q−α

2−α +O(εQ−α)]
2

2∗(α)

]Q−α

2−α

≤ 2−α

2(Q−α)
· (Sα,p1,p2)

Q−α

2−α +O(εQ−2). (6.3)
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In addition, it follows from f (ξ )≥ a0, g(ξ )≥ b0 for all ξ ∈ Bd(0,2r0)⊂Ω and p1, p2 > 1 that

Qλ ,µ(uε ,vε) = λ p
q
2
1

∫
Ω

f (ξ )
ψβ |uε |q

d(ξ )β
dξ +µ p

q
2
2

∫
Ω

g(ξ )
ψβ |uε |q

d(ξ )β
dξ

≥ (a0λ p
q
2
1 +b0µ p

q
2
2 )
∫

Bd(0,2r0)

ψβ |uε |q

d(ξ )β
dξ

≥min{a0,b0}(λ +µ)
∫

Bd(0,2r0)

ψβ |uε |q

d(ξ )β
dξ . (6.4)

Combining (6.3) and (6.4), we have

sup
t≥t0

Iλ ,µ(tuε , tvε) = sup
t≥t0

(
θ(t)− 1

q
Qλ ,µ(tuε , tvε)

)
≤ 2−α

2(Q−α)
(h(0))−

Q−2
2−α (Sα,p1,p2)

Q−α

2−α +O(εQ−2)

− 1
q

tq
0 min{a0,b0}(λ +µ)

∫
Ω

ψβ |uε |q

d(ξ )β
dξ

≤ 2−α

2(Q−α)
(h(0))−

Q−2
2−α (Sα,p1,p2)

Q−α

2−α +O(εQ−2)

−
min{a0,b0}tq

0
q

(λ +µ)


CεQ−β− (Q−2)q

2 if q > Q−β

Q−2

CεQ−β− (Q−2)q
2 | lnε| if q = Q−β

Q−2

Cε
(Q−2)q

2 if q < Q−β

Q−2 ,

(6.5)

Now, we need to consider two cases:

Case (i) 1 ≤ q < Q−β

Q−2 . It follows from q < 2 that Q− 2 > q(Q−2)
2 . Then, choosing ε small

enough, we can deduce that there exists a Λ4 > 0 such that

O(εQ−2)−
min{a0,b0}tq

0
q

(λ +µ)ε
q(Q−2)

2

<−C∗
[(

λ | f |
Lq∗(Ω, ψβ

d(ξ )β
dξ )

) q
2−q

+
(

µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

) q
2−q
]

(6.6)

for all (λ ,µ) ∈ CΛ4 . Setting Λ5 = min{Λ3,Λ4}, we see that (6.2), (6.5), and (6.6) yield
that

sup
t≥0

Iλ ,µ(tu0, tv0)< c∞ for all (λ ,µ) ∈ CΛ5 .

Case (ii) Q−β

Q−2 ≤ q < 2. It follows from Q−β

Q−2 ≤ q that Q−2 > qQ−2
2 ≥Q−β − q(Q−2)

2 . Then, for
ε small enough, there exists a Λ6 > 0 such that

O(εQ−2)−
min{a0,b0}tq

0
q

(λ +µ)εQ−β−q Q−2
2

<−C∗
[(

λ | f |
Lq∗(Ω, ψβ

d(ξ )β
dξ )

) q
2−q

+
(

µ|g|
Lq∗(Ω, ψβ

d(ξ )β
dξ )

) q
2−q
]

(6.7)
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for all (λ ,µ) ∈ CΛ6 . Therefore, taking Λ7 = min{Λ3,Λ6} and following (6.2), (6.5),
and (6.7) one can show that supt≥0 Iλ ,µ(tu0, tv0)< c∞ for all (λ ,µ) ∈ CΛ7.

Set Λ∗ = min{Λ2,Λ5,Λ7}. From cases (i) and (ii), we see that (6.1) holds by taking (uε ,vε) =
(
√

p1 uε ,
√

p2 uε). Moreover, from Lemma 3.5, the definition of c−
λ ,µ and (6.1), for all (λ ,µ) ∈

DΛ∗ , we obtain that there exists t− > 0 such that (t−u0, t−v0) ∈N −
λ ,µ and

c−
λ ,µ ≤ Iλ ,µ(t

−uε , t−vε)≤ sup
t≥0

Iλ ,µ(tuε , tvε))< c∞.

The proof is thus complete. �

Theorem 6.1. Under the assumptions of Theorem 1.3, the functional Iλ ,µ satisfies the (PS)c−
λ ,µ

condition for all (λ ,µ) ∈ CΛ∗ . Moreover, system (1.12) has at least one positive vector solution
(u2

λ ,µ ,v
2
λ ,µ) in N −

λ ,µ such that Iλ ,µ(u2
λ ,µ ,v

2
λ ,µ) = c−

λ ,µ > 0 and u2
λ ,µ 6= 0, v2

λ ,µ 6= 0.

Proof. By Lemma 5.1 (ii), for (λ ,µ) ∈ CΛ∗ , there exists a (PS)c−
λ ,µ

-sequence {(un,vn)} ⊂N −
λ ,µ

for Iλ ,µ . From Lemma 4.2, we find that {(un,vn)} is bounded in H . Using Lemmas 6.1 and
4.3, we have that Iλ ,µ satisfies the (PS)c−

λ ,µ
-condition. Then, there exists (u2

λ ,µ ,v
2
λ ,µ) ∈H such

that, up to subsequence, (un,vn)→ (u2
λ ,µ ,v

2
λ ,µ) in H . Moreover, Iλ ,µ(u2

λ ,µ ,v
2
λ ,µ) = c−

λ ,µ > 0
and (u2

λ ,µ ,v
2
λ ,µ) ∈N −

λ ,µ , since N −
λ ,µ is a closed set. Using the argument as in Theorem 5.1,

one can easily obtain that (u2
λ ,µ ,v

2
λ ,µ) is a positive solution to system (1.12) for (λ ,µ) ∈ CΛ∗ .

Finally, by using the same arguments as in the proof of Theorem 5.2, for p1 + p2 = 2∗(α), we
have that (u2

λ ,µ ,v
2
λ ,µ) is not semi-trivial solution to system (1.12). The proof is completed. �

Proof of Theorem 1.3. It follows from Theorems 5.1 and 6.1 that there exist two positive vector
solution (u1

λ ,µ ,v
1
λ ,µ) and (u2

λ ,µ ,v
2
λ ,µ) such that (u1

λ ,µ ,v
1
λ ,µ) ∈N +

λ ,µ and (u2
λ ,µ ,v

2
λ ,µ) ∈N −

λ ,µ . In
addition, we have N +

λ ,µ ∩N −
λ ,µ = /0. Thus, (u1

λ ,µ ,v
1
λ ,µ) and (u2

λ ,µ ,v
2
λ ,µ) are two distinct positive

solutions to (1.12). �
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