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Abstract. We consider the following Kirchhoff problem

−
(

a+b
∫
R3
|∇u|2

)
∆u+(1+ εV (x))u = |u|p−2u,

where a,b > 0, and 2 < p < 6. Under suitable assumptions on V , by using the Lyapunov-Schmidt
reduction method, we obtain the existence of multi-bump solutions.
Keywords. Kirchhoff equation; Lyapunov-Schmidt reduction method; Multi-bump solutions.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we are concerned with the existence of multi-bump solutions for the following
nonlinear Kirchhoff equation:

−
(

a+b
∫
R3
|∇u|2

)
∆u+(1+ εV (x)u = |u|p−2u,x ∈ R3, (1.1)

where a,b > 0,2 < p < 6, and V (x) ∈C
(
R3,R+

)
. Eq. (1.1) is related to the stationary solu-

tions of equation, which was derived from the classical D’Alembert wave equation obtained by
Kirchhoff [14] in 1877 when considering the changes in the length of the string during vibra-
tions,

utt−
(

a+b
∫
RN
|∇u|2

)
∆u = f (x,u), (1.2)

where f (x,u) is a general nonlinearity, and u describes a process, which depends on the average
of itself. It is worth pointing out in [1] that Eq. (1.2) models several physical systems. For more
physical backgrounds, we refer the readers to [3] and the references therein.

Owing to the appearance of the terms
(∫
|∇u|2dx

)
∆u, problem (1.1) is nonlocal. Conse-

quently, (1.1) is no longer a pointwise identity. This leads to some mathematical difficulties
and makes studying such problems more interesting. After the pioneering work of [19], it
has received much attention. The existence and qualitative properties of solutions for (1.1)
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have been studied a lot; see [8, 10, 11, 24, 27] for the existence of ground state solutions and
[6, 7, 9, 21, 22, 25, 26, 28] for the existence of sign-changing solutions.

Now, the construction of specific forms of multi-bump solutions to Kirchhoff problem (1.1)
is under the spotlight. In contrast with the single Schrödinger problem, the Kirchhoff problem
contains the non-local term. Hence, we have to prove some new estimates. In 2020, Li et al.
[15] focused on the problem

−
(

a+b
∫
R3
|∇u|2

)
∆u+u = up, u > 0, in R3 (1.3)

for 1 < p < 5. They first established a uniqueness and non-degeneracy result of positive so-
lutions to (1.3), and they proved the existence of positive single-peak solutions to the related
perturbed problem

−
(

ε
2a+ εb

∫
R3
|∇u|2

)
∆u+V (x)u = up, u > 0, in R3. (1.4)

In [23], Luo, Peng, Wang, and Xiang proved the existence of positive multi-peak positive so-
lutions of (1.4) when V (x) satisfies some suitable assumptions. In [13], Hu and Shuai also ob-
tained multiple positive solutions to this type of perturbation problem with general nonlinearity
under some precise hypotheses. Recently, Liu [20] investigated the existence of multi-bump
solutions for the following Kirchhoff equation

−
(

a+b
∫
R3
|∇u|2

)
∆u+u = (1− εq(x))|u|p−2u,x ∈ R3,

where a,b > 0,2 < p < 6, and q(x) ∈ C
(
R3,R+

)
satisfies some suitable conditions. By us-

ing the Lyapunov-Schmidt reduction method, he extended the results in [17] to the Kirchhoff
problem.

Motivated by [16, 18, 20], the present paper is devoted to the existence of multi-bump solu-
tions to Kirchhoff problem (1.1). We use the positive radical solution Wk of

−
(

a+ kb
∫
R3
|∇w|2

)
∆w+w = wp−1, in R3

as the building block of our approximate solutions. From [15], we have the following results
about Wk.

Let u be the unique radical ground state to the equation: −a∆u+ u = up−1. Then, Wk(x) =
u
(

x
µk

)
, where µk is the positive root to equation µ2−kb|∇u|22µ−a = 0. There exists C1,C2 > 0

such that

lim
|x|→+∞

DiWk(x)|x|e
|x|
µk =Ciµ

1−i
k , i = 0,1.

Moreover, Wk is nondegenerate in H1 (R3) in the sense that there holds

kerL = span{∂x1Wk,∂x2Wk,∂x3Wk} ,

where L is defined as

Lϕ =−
(

a+ kb
∫
R3
|∇Wk|2

)
∆ϕ +ϕ− pW p−1

k ϕ−2kb
(∫

R3
∇Wk ·∇ϕ

)
∆Wk,

acting on L2 (R3) with domain H1 (R3).
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In the Hilbert space H1 (R3), we use the following inner space

(u,v)ε :=
∫
R3

a∇u ·∇v+(1+ εV (x))uv

and the induced norm ‖u‖ε :=
√
(u,u)ε . The usual inner in H1 (R3) is denoted by (u,v) :=∫

R3 a∇u ·∇v+uv and the corresponding norm is ‖u‖ :=
√
(u,u). Let

Iε(u) =
1
2
‖u‖2

ε +
b
4

(∫
R3
|∇u|2dx

)2

− 1
p

∫
R3
|u|p.

Then Iε is well defined in H1 (R3) and belongs to C1 class.
In order to state our main results, we assume that the potential V (x) satisfies the following

restrictions:
(V1) : V (x) ∈C

(
R3,R+

)
and lim

|x|→∞

V (x) = 0.

(V2) : lim
|x|→∞

lnV (x)
|x| = 0.

Now we have following theorem.

Theorem 1.1. Let (V1) and (V2) hold. Then, for any positive integer k, there exists ε(k) > 0
such that, for 0 < ε < ε(k), Eq. (1.1) has a k-bump positive solution.

Our paper is organized as follows. In Section 2, we carry out the reduction procedure. In
Section 3, the last section, we construct the multi-bump solution to (1.1).

Notation. In this paper, we make use of the following notations.
• For any R > 0 and x ∈ R3, BR(x) denotes the open ball of radius R centered at x.
• The letter C and Ci stand for positive constants (possibly different from line to line).
• |u|q = (

∫
R3 |u|qdx)

1
q denotes the norm of u in Lq(R3) for 2≤ q≤ 6.

•
∫
R3 f means the Lebesgue integral of f (x) in R3.

• The ordinary inner product between two vectors a,b ∈ R3 is be denoted by a ·b.

2. PRELIMINARIES

For λ > 0 and k ≥ 2, define

Ωλ =
{
(y1, . . . ,yk) ∈

(
R3)k

,
∣∣yi− y j

∣∣> λ for i 6= j
}
,

and Ωλ = R3 for k = 1. For y = (y1, . . . ,yk) ∈ Ωλ , denote Wy(x) = ∑
k
i=1Wk,yi, where Wk,yi

=Wk (x− yi). Let y ∈Ωλ , and define

Hy =

{
ϕ ∈ H1 (R3) | ∫

R3
W p−2

k,y j

∂Wk,y j

∂xα

ϕ = 0,α = 1,2,3; j = 1,2, . . . ,k
}
.

Let J (ϕ) = Iε (Wy +ϕ) ,ϕ ∈Hy. We expand J (ϕ) as follows:

J (ϕ) =: J(0)+ ly (ϕ)+
1
2
〈
Lyϕ,ϕ

〉
−Ry (ϕ) , ϕ ∈Hy,

where J(0) = Iε (Wy) and ly, Ly, and Ry are defined for ϕ,ψ ∈Hy as follows:

ly (ϕ) = (Wy,ϕ)ε
+b

∫
R3

∣∣∇Wy
∣∣2 ∫

R3
∇Wy ·∇ϕ−

∫
R3

W p−1
y ϕ,
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and Ly is a bounded linear operator from Hy to Hy defined by〈
Lyϕ,ψ

〉
=(ϕ,ψ)

ε
+2b

(∫
R3

∇Wy ·∇ϕ

)(∫
R3

∇Wy ·∇ψ

)
+b

∫
R3

∣∣∇Wy
∣∣2 ∫

R3
∇ϕ ·∇ψ− (p−1)

∫
R3

W p−2
y ϕψ,

and

Ry (ϕ) =
1
p

∫
R3

(∣∣Wy +ϕ
∣∣p−W p

y −W p−1
y ϕ− p(p−1)

2
W p−2

y ϕ
2
)

− b
4

(∫
R3
|∇ϕ|2

)2

−b
∫
R3
|∇ϕ|2

∫
R3

∇Wy ·∇ϕ.

Now, we demonstrate that Ly is invertible in Hy.

Lemma 2.1. There are constants λ0 > 0,ε0 > 0, and C0 > 0 such that, for any λ > λ0,0 < ε <
ε0,y ∈Ωλ , and ϕ ∈Hy,

∥∥Lyϕ
∥∥

ε
≥C0‖ϕ‖ε .

Proof. We make a contradiction argument. Assume that there exist εn→ 0,
{

yl,n
}∞

n=1 ⊂R3, l =
1, . . . ,k, with

∣∣y j,n− yl,n
∣∣→ ∞( j 6= l), and ϕn ∈Hyn with ‖ϕn‖εn

= 1 such that∥∥Lynϕn
∥∥

εn
= o(1)‖ϕn‖εn

= o(1),

where yn =
(
y1,n, . . . ,yk,n

)
. Up to a subsequence, we may assume that ϕn

(
·+ y j,n

)
⇀ ϕ∗j in

H1 (R3) , j = 1,2, . . . ,k, as n→ ∞ and ϕn
(
·+ y j,n

)
→ ϕ∗j strongly in L2

loc

(
R3) , j = 1,2, . . . ,k,

as n→ ∞. From ∫
R3

W p−2
k,y j,n

∂Wk,y j,n

∂xα

ϕn = 0, α = 1,2,3; j = 1,2, . . . ,k,

we obtain ∫
R3

W p−2
k

∂Wk

∂xα

ϕn(x+ y j,n) = 0, α = 1,2,3; j = 1,2, . . . ,k.

Thus ϕ∗j satisfies ∫
R3

W p−2
k

∂Wk

∂xα

ϕ
∗
j = 0, α = 1,2,3; j = 1,2, . . . ,k. (2.1)

Define

H̃ =

{
φ : φ ∈ H1 (R3) ,∫

R3
W p−2

k
∂Wk

∂xα

φ = 0,α = 1,2,3
}
.

Note that
o(1)‖φ‖=

〈
Lynϕn,φ

〉
=
∫
R3

(a∇ϕn ·∇φ +(1+ εnV (x))ϕnφ)+2b
∫
R3

∇Wyn ·∇ϕn

∫
R3

∇Wyn ·∇φ

+b
∫
R3

∣∣∇Wyn

∣∣2 ∫
R3

∇ϕn ·∇φ − (p−1)
∫
R3

W p−2
yn

ϕnφ .

(2.2)

Let φ ∈ C∞
0
(
R3)∩ H̃. Then φn(x) =: φ

(
x− y j,n

)
∈ C∞

0
(
R3). Inserting φn(x) into (2.2) and

letting n→ ∞, we obtain that∫
R3

(
a∇ϕ

∗
j ·∇φ +ϕ

∗
j φ
)
+2kb

∫
R3

∇Wk ·∇ϕ
∗
j

∫
R3

∇Wk ·∇φ

+ kb
∫
R3
|∇Wk|2

∫
R3

∇ϕ
∗
j ·∇φ − (p−1)

∫
R3

W p−2
k ϕ

∗
j φ = 0.

(2.3)
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By the density of C∞
0
(
R3) in H1 (R3), we see that (2.3) also holds for any φ ∈ H̃.

On the other hand, (2.3) is true for ∂Wk
∂xα

, α = 1,2,3. Thus (2.3) is true for any ϕ ∈ H1 (R3).
Since Wk is non-degenerate, we can obtain

ϕ
∗
j =

3

∑
α=1

cα, j
∂Wk

∂xα

, j = 1,2, . . . ,k.

It follows from (2.1) that cα, j = 0,α = 1,2,3; j = 1,2, . . . ,k. Consequently, ϕ∗j = 0, j = 1,2, . . . ,k.
Therefore, for any R > 0,

∫
BR(0)ϕn(x+ y j,n)

2 = o(1). It follows that

o(1) =o(1)‖ϕn‖εn
=
〈
Lynϕn,ϕn

〉
=‖ϕn‖2

εn
+2b

(∫
R3

∇Wyn ·∇ϕn

)2

+b
∫
R3

∣∣∇Wyn

∣∣2 ∫
R3
|∇ϕn|2− (p−1)

∫
R3

W p−2
yn

ϕ
2
n

≥‖ϕn‖2
εn
− (p−1)

∫
R3

W p−2
yn

ϕ
2
n

≥1−Ce−
(p−2)R

µk

k

∑
j=1

∫
Bc

R(0)
ϕ

2
n (x+ y j,n)−C

k

∑
j=1

∫
BR(0)

ϕ
2
n (x+ y j,n)

≥1
2
+oR(1)+o(1),

which reaches a contradiction. This completes the proof. �

Lemma 2.2. For any y ∈Ωλ , there exists constant C > 0 such that∣∣ly (ϕ)∣∣≤C

(
∑
i6= j

e−
p−1
pµk
|yi−y j|+ ε

)
||ϕ‖ε ,

for large λ .

Proof. Since Wk,yi is the weak solution to the equation

−
(

a+ kb
∫
R3
|∇w|2dx

)
∆w+w = wp−1,

we have

a
∫
R3

∇Wk,yi ·∇ϕ + kb
∫
R3

∣∣∇Wk,yi

∣∣2 ∫
R3

∇Wk,yi ·∇ϕ +
∫
R3

Wk,yiϕ =
∫
R3

W p−1
k,yi

ϕ.

Thus

ly (ϕ) =
∫
R3

(a∇Wy ·∇ϕ +(1+ εV (x))Wyϕ)+b
∫
R3

∣∣∇Wy
∣∣2 ∫

R3
∇Wy ·∇ϕ−

∫
R3

W p−1
y ϕ

=
∫
R3

∇Wy ·∇ϕ

(
b
∫
R3

∣∣∇Wy
∣∣2− kb

∫
R3
|∇Wk|2

)
+

k

∑
i=1

∫
R3

W p−1
k,yi

ϕ−
∫
R3

W p−1
y ϕ + ε

∫
R3

V (x)Wyϕ.

By Lemma 2.5, for i 6= j, one has∫
R3

∣∣∇Wk,yi ·∇Wk,y j

∣∣≤Ce−
|yi−y j|

µk . (2.4)
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By Lemmas 2.7 and 2.10, one has∣∣∣∣∣
∫
R3

W p−1
y ϕ−

k

∑
i=1

∫
R3

W p−1
k,yi

ϕ

∣∣∣∣∣≤
(∫

R3
(W p−1

y −
k

∑
i=1

W p−1
k,yi

)
p

p−1

) p−1
p

(
∫
R3
|ϕ|p)

1
p

≤C

(
∑
i 6= j

∫
R3

W p−1
k,yi

Wk,y j

) p−1
p

‖ϕ‖ε

≤C

(
∑
i 6= j

e−
p−1
pµk
|yi−y j|

)
‖ϕ‖

ε

(2.5)

Then, it follows from (2.4) and (2.5) that∣∣ly (ϕ)∣∣≤C
∫
R3

∣∣∇Wy ·∇ϕ
∣∣(∑

i 6= j

∫
R3

∣∣∇Wk,yi ·∇Wk,y j

∣∣)

+C

(
∑
i 6= j

e−
p−1
pµk
|yi−y j|

)
‖ϕ‖

ε
+ ε

∫
R3

V (x)Wy |ϕ|

≤Ck |∇Wk|2 ‖ϕ‖ε

(
∑
i6= j

e−
|yi−y j|

µk

)
+C

(
∑
i6= j

e−
p−1
pµk
|yi−y j|

)
‖ϕ‖ε +Cε ‖ϕ‖

ε

≤Ck

(
∑
i 6= j

e−
|yi−y j|

µk

)
‖ϕ‖

ε
+C

(
∑
i 6= j

e−
p−1
pµk
|yi−y j|

)
‖ϕ‖

ε
+Cε ‖ϕ‖

ε

≤C

(
∑
i 6= j

e−
p−1
pµk
|yi−y j|

)
‖ϕ‖

ε
+Cε ‖ϕ‖

ε
.

The result follows immediately. �

Lemma 2.3. If ‖ϕ‖
ε
≤ 1, then there exists a constant C > 0, independent of y, such that∥∥∥R(i)

y (ϕ)
∥∥∥≤C‖ϕ‖p∗−i

ε
, i = 0,1,2, where p∗ = min{3, p}.

Proof. The proof of this lemma is the same as the proof of [12, Lemma 3.3], so we omit the
details here. �

Proposition 2.1. There exist ε0 > 0 and λ0 > 0 such that, for all 0 < ε < ε0 and λ > λ0, there
exists a C1 map vλ ,ε : Ωλ → H1 (R3) satisfying

(i) for any y ∈Ωλ ,vλ ,ε,y ∈Hy and
〈

∂J(vλ ,ε,y)
∂vλ ,ε,y

,ϕ

〉
= 0 for all ϕ ∈Hy,

(ii)
∥∥vλ ,ε,y

∥∥
ε
≤ ∑i6= j e−

p−1
pµk
|yi−y j|(1−τ)

+ ε1−τ , where τ > 0 is a sufficiently small number.

Proof. By Lemma 2.2, we see that ly is a bounded linear functional in Hy, so there exists
an ly,k ∈Hy such that ly

(
vλ ,ε,y

)
=
(
ly,k,vλ ,ε,y

)
ε
. Thus, finding a critical point of J

(
vλ ,ε,y

)
is

equivalent to solving ly,k +Lyvλ ,ε,y−R′y
(
vλ ,ε,y

)
= 0. From Lemma 2.1, we only need to solve

vλ ,ε,y = T
(
vλ ,ε,y

)
=:−L−1

y ly,k +L−1
y R′y

(
vλ ,ε,y

)
.
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Let

N =

{
vλ ,ε,y : vλ ,ε,y ∈Hy, ||vλ ,ε,y||ε ≤∑

i 6= j
e−

p−1
pµk
|yi−y j|(1−τ)

+ ε
1−τ

}
where τ > 0 is a small constant. It follows from Lemma 2.3 that∥∥∥R(i)

y
(
vλ ,ε,y

)∥∥∥≤C
∥∥vλ ,ε,y

∥∥p∗−i
ε

, i = 0,1,2,

where p∗ = min{3, p}. In view of Lemmas 2.1 and 2.2, we can obtain∥∥T
(
vλ ,ε,y

)∥∥
ε
≤C

∥∥ly,k
∥∥+C

∥∥R′y
(
vλ ,ε,y

)∥∥
≤C

(
∑
i6= j

e−
p−1
pµk
|yi−y j|+ ε

)
+C

(
∑
i6= j

e−
p−1
pµk
|yi−y j|(1−τ)

+ ε
1−τ

)p∗−1

≤∑
i6= j

e−
p−1
pµk
|yi−y j|(1−τ)

+ ε
1−τ .

This proves that T (N )⊂N . Since p∗−2 > 0, we have

‖T
(

v1
λ ,ε,y

)
−T

(
v2

λ ,ε,y

)
‖ε ≤C

∥∥∥R′y
(

v1
λ ,ε,y

)
−R′y

(
v2

λ ,ε,y

)∥∥∥
≤C

(∥∥∥v1
λ ,ε,y

∥∥∥p∗−2

ε
+
∥∥∥v2

λ ,ε,y

∥∥∥p∗−2

ε

)∥∥∥v1
λ ,ε,y− v2

λ ,ε,y

∥∥∥
ε

≤ 1
2

∥∥∥v1
λ ,ε,y− v2

λ ,ε,y

∥∥∥
ε
.

This shows that T is a contraction map. Thus, by contraction mapping theorem, we see that
there exists vλ ,ε,y ∈N such that vλ ,ε,y = T

(
vλ ,ε,y

)
. Moreover, similar to the proof in [5], we

have that vλ ,ε is a C1 map with respect y. The proof is finished. �

For any y = (y1,y2, . . . ,yk) ∈Ωλ , define fk,ε(y) = fk,ε(y1,y2, . . . ,yk) = Iε(Wy + vλ ,ε,y). From
Proposition 2.1, we derive the following result, whose proof is standard and thus is omitted (see,
e.g., [4, 18])

Lemma 2.4. For large λ and small ε , if y0 = (y0
1, . . . ,y

0
k) ∈ Ωλ is a critical point to fk,ε , then

Wy0 + vλ ,ε,y0 is a critical point to Iε .

We also give some technical lemmas which are useful in our proof, and some of them can be
founded in [2, 15, 17, 18].

Lemma 2.5. Let u,u′ : R3 → R be two positive continuous radical function such that u(x) ∼
|x|ae−b|x| and u′(x) ∼ |x|a′e−b′|x|(x → ∞), where a,a′ ∈ R and b,b′ > 0. If ξ ∈ R3 tend to
infinity, then the following asymptotic estimates hold. (1) If b < b′, then

∫
R3 uξ u′ ∼ |ξ |ae−b|ξ |.

(2) If b = b′ (suppose, for simplicity, that a > a′), then

∫
R3

uξ u′ ∼


|ξ |a+a′+2e−b|ξ |,a′ >−2,
|ξ |ae−b|ξ | log |ξ |,a′ =−2,
|ξ |ae−b|ξ |,a′ <−2.

Lemma 2.6. For p > 1, there exists C > 0 such that, for any a,b ∈ R,

||a+ b|p−|a|p− |b|p| ≤C|a|p−1 |b|+C|a||b|p−1.
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Lemma 2.7. For p≥ 2 and k ∈ N, there exists C > 0 such that, for any a j ≥ 0, j = 1,2, . . . ,k,( k

∑
j=1

a j

)p−1

−
k

∑
j=1

ap−1
j


p

p−1

≤C ∑
i 6= j

ap−1
i a j.

Lemma 2.8. For p≥ 2,k ∈ N, and a j ≥ 0, j = 1,2, . . . ,k,(
k

∑
j=1

a j

)p

≥
k

∑
j=1

ap
j +2(p−1) ∑

1≤l< j≤k
ap−1

l a j.

Lemma 2.9. For p≥ 2, k ∈ N, and a j ≥ 0, j = 1,2, . . . ,k,(
k

∑
j=1

a j

)p

≥
k

∑
j=1

ap
j + p ∑

1≤l< j≤k
ap−1

l a j.

Lemma 2.10. There exists a positive constant C > 0 such that, as
∣∣yi− y j

∣∣→ ∞,

∫
R3

W p−1
k,yi

Wk,y j ∼C
∣∣yi− y j

∣∣−1 e−
|yi−y j|

µk .

3. PROOF OF THE MAIN RESULTS

We are now in a position to prove Theorem 1.1. We first consider the case k ≥ 2. Define

d = sup
y∈(R3)

k

∫
R3

V (x)W 2
y .

Choose a number m such that m > max{1, 3pd
p−2}, and set

e = min

{
ε0,

(
m(p−2)

2pC3

) 1
2(p−1)

p (1−2τ)−1
,

1
m
|Wk|pp

}
,

where C3 is the positive constant in Lemma 3.1, ε0 is the number in Lemma 2.1, and τ is the
small number in Proposition 2.1 and can be chosen such that 1

2(p−1)
p (1−2τ)−1

> 0. Then, for

any ε satisfying 0 < ε < e, there exist λ ∗ = λ ∗(ε) > λ̃ = λ̃ (ε) > 0 such that, for z ∈ R3 with
|z| ∈

[
λ̃ (ε),λ ∗(ε)

]
,

mε ≤
∫
R3

W p−1
k Wk,z ≤ 2mε. (3.1)

Define Fε := sup
{

fk,ε(y) | y ∈Ω
λ̃ (ε)

}
. In order to obtain a k-bump solution of (1.1), it suffices

to prove that Fε is achieved in the interior of Ω
λ̃ (ε)

Lemma 3.1. . Let k ≥ 2. Then, for ε > 0 sufficiently small,

Fε > sup
{

fk,ε(y) | y ∈Ω
λ̃ (ε)

and
∣∣yi− y j

∣∣ ∈ [λ̃ (ε),λ ∗(ε)] for some i 6= j
}
.
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Proof. From (3.1) and Lemma 2.10, we can obtain λ̃ (ε) = O(ln 1
ε
)→ ∞ as ε → 0. Then, for

y = (y1, . . . ,yk) ∈Ω
λ̃ (ε)

, we have

|yi− y j|−1e−
|yi−y j|

µk ≤Cε.

Thus, for τ small enough,

e−
|yi−y j|

µk
(1−τ) ≤Cε

1−2τ .

Then, by Proposotion 2.1, for y = (y1, . . . ,yk) ∈Ω
λ̃ (ε)

, we have

∥∥∥v
λ̃ ,ε,y

∥∥∥
ε
≤∑

i6= j
e−

p−1
pµk
|yi−y j|(1−τ)

+ ε
1−τ ≤Cε

p−1
p (1−2τ).

It is easy to see that

1
2

〈
Lyv

λ̃ ,ε,y,vλ̃ ,ε,y

〉
≤C

∥∥∥v
λ̃ ,ε,y

∥∥∥2

ε

and ∣∣∣Ry

(
v

λ̃ ,ε,y

)∣∣∣≤C
∥∥∥v

λ̃ ,ε,y

∥∥∥p∗

ε
,

where p∗ = min{3, p}> 2. By direct computation, we have∫
R3

(
a
∣∣∇Wy

∣∣2 + ∣∣Wy
∣∣2)

= k
∫
R3

(
a |∇Wk|2 + |Wk|2

)
+2 ∑

j<l

∫
R3

(
a∇Wk,y j ·∇Wk,yl +Wk,y jWk,yl

)
= k

∫
R3

(
a |∇Wk|2 + |Wk|2

)
+2 ∑

j<l

∫
R3

W p−1
k,y j

Wk,yl −2 ∑
j<l

kb
∫
R3
|∇Wk|2

∫
R3

∇Wk,y j ·∇Wk,yl ,

(3.2)
and (∫

R3

∣∣∇Wy
∣∣2)2

=k2
(∫

R3
|∇Wk|2

)2

+4k
∫
R3
|∇Wk|2 ∑

j<l

∫
R3

∇Wk,y j ·∇Wk,yl

+4

(
∑
j<l

∫
R3

∇Wk,y j ·∇Wk,yl

)2

.

(3.3)

Letting τ small enough, we have(
∑
j<l

∫
R3

∇Wk,y j ·∇Wk,yl

)2

≤Ce−
2|yi−y j|

µk ≤Cε
2(1−2τ)

1−τ ≤Cε
2(p−1)

p (1−2τ) (3.4)
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Then, from (3.2), (3.3), and (3.4), we have

Iε(Wy + v
λ̃ ,ε,y)

=Iε (Wy)+ ly
(

v
λ̃ ,ε,y

)
+

1
2

〈
Lyv

λ̃ ,ε,y,vλ̃ ,ε,y

〉
−Ry

(
v

λ̃ ,ε,y

)
=Iε(Wy)+O

(
‖ly‖‖v

λ̃ ,ε,y‖ε +
∥∥∥v

λ̃ ,ε,y

∥∥∥2

ε

)
=

1
2
||Wy‖2 +

b
4

(∫
R3

∣∣∇Wy
∣∣2)2

+
ε

2

∫
R3

V (x)W 2
y −

1
p

∫
R3

W p
y +O

(
ε

2(p−1)
p (1−2τ)

)
=ck +∑

j<l

∫
R3

W p−1
k,y j

Wk,yl +
k

∑
j=1

1
p

∫
R3

W p
k,y j
− 1

p

∫
R3

W p
y

+
ε

2

∫
R3

V (x)W 2
y +O

(
ε

2(p−1)
p (1−2τ)

)
=ck−Ly +

ε

2

∫
R3

V (x)W 2
y ,

where

ck =
k
2

∫
R3

(
a|∇Wk|2 +W 2

k
)
+

bk2

4

(∫
R3
|∇Wk|2

)2

− k
p

∫
R3

W p
k

and

Ly =−∑
j<l

∫
R3

W p−1
k,y j

Wk,yl −
k

∑
j=1

1
p

∫
R3

W p
k,y j

+
1
p

∫
R3

W p
y +O

(
ε

2(p−1)
p (1−2τ)

)
.

Assume that y = (y1, . . . ,yk) ∈ Ω
λ̃ (ε)

and
∣∣y j− yl

∣∣ ∈ [λ̃ (ε),λ ∗(ε)] for some j 6= l. Then, by
(3.1) and Lemma 2.8, we obtain

Ly =−∑
j<l

∫
R3

W p−1
k,y j

Wk,yl −
k

∑
j=1

1
p

∫
R3

W p
k,y j

+
1
p

∫
R3

W p
y +O

(
ε

2(p−1)
p (1−2τ)

)
≥ p−2

p ∑
j<l

∫
R3

W p−1
k,y j

Wk,yl −C3ε
2(p−1)

p (1−2τ)

≥ p−2
p

mε−C3ε
2(p−1)

p (1−2τ)

≥3
2

dε.

So,

fk,ε(y) = Iε

(
Wy + v

λ̃ ,ε,y

)
≤ ck−

3d
2

ε +
d
2

ε = ck−dε. (3.5)
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On the other hand, if y = (y1, . . . ,yk) ∈Ω
λ̃

with
∣∣y j− yl

∣∣→∞ for all j 6= l, then we find from
Lemma 2.6 that

Ly =−∑
j<l

∫
R3

W p−1
k,y j

Wk,yl −
k

∑
j=1

1
p

∫
R3

W p
k,y j

+
1
p

∫
R3

W p
y +O

(
ε

2(p−1)
p (1−2τ)

)
≤C ∑

j<l

∫
R3

W p−1
k,y j

Wk,yl +O
(

ε
2(p−1)

p (1−2τ)
)

=o(1)+O
(

ε
2(p−1)

p (1−2τ)
)
,

where o(1) denotes some quantities depend only on y and converge to 0 as
∣∣yl− y j

∣∣→∞. Hence,

fk,ε(y) = Iε

(
Wy + v

λ̃ ,ε,y

)
=ck−Ly +

ε

2

∫
R3

V (x)W 2
y

≥ck +
ε

2

∫
R3

V (x)W 2
y −Cε

2(p−1)
p (1−2τ)+o(1)

Therefore, for ε > 0 small, liminf|yi−y j|→∞
fk,ε(y) ≥ ck. This together with (3.5) obtains the

desired result immediately. �

Choose y(h)(ε)=
(

y(h)1 (ε), . . . ,y(h)k (ε)
)
∈Ω

λ̃ (ε)
such that limh→∞ fk,ε

(
y(h)1 (ε), . . . ,y(h)k (ε)

)
=

Fε . By Lemma 3.1, we can obtain infh minl 6= j

∣∣∣y(h)l (ε)− y(h)j (ε)
∣∣∣≥ λ ∗. Then, for any 1≤ l ≤ k,

after passing to a subsequence if necessary, we may assume either limh→∞ y(h)l (ε)= y(0)l (ε)∈R3

with
∣∣∣y(0)l (ε)− y(0)j (ε)

∣∣∣≥ λ ∗ for l 6= j or limh→∞

∣∣∣y(h)l (ε)
∣∣∣= ∞. Let

Π(ε) =
{

1≤ l ≤ k : |y(h)l (ε) |→ ∞, as h→ ∞

}
.

We shall prove that Π(ε) = /0 for ε > 0 small enough and hence fk,ε achieves its maximum at(
y(0)1 (ε), . . . ,y(0)k (ε)

)
∈ int

(
Ω

λ̃ (ε)

)
.

Lemma 3.2. Let k ≥ 2. If conditions (V1) and (V2) hold, then there exists ε(k) > 0 such that,
for ε ∈ (0,ε(k)), Π(ε) = /0.

Proof. Assume that Π(ε) 6= /0 along a sequence εn → 0. Without loss of generality, we may
assume Π(εn) = {1,2, . . . , lk} for all n ∈ N and for some 1 ≤ lk < k. The case lk = k can be
handled similarly. For simplicity, denote ε = εn and

(
y(h)1 , . . . ,y(h)k

)
=
(

y(h)1 (εn) , . . . ,y
(h)
k (εn)

)
for h = 0,1,2, . . .. As h→ ∞, one has∣∣∣y(h)1

∣∣∣→ ∞, . . . ,
∣∣∣y(h)lk

∣∣∣→ ∞ and y(h)lk+1→ y(0)lk+1, . . . ,y
(h)
k → y(0)k .

Let
y(h) =

(
y(h)1 , . . . ,y(h)k

)
, y(h)∗ =

(
y(h)lk+1, . . . ,y

(h)
k

)
,

and define

Wh =
k

∑
l=1

W
k,y(h)l

,Wh,1 =
lk

∑
l=1

W
k,y(h)l

,Wh,2 =
k

∑
l=lk+1

W
k,y(h)l

.
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Similar to the computation in Lemma 3.1, we have

fk,ε

(
y(h)1 , . . . ,y(h)k

)
=Iε

(
Wh + v

λ̃ ,ε,y(h)

)
=kEk−Ly(h) +

ε

2

∫
R3

V (x)W 2
h +

bk2

4

(∫
R3
|∇Wk|2

)2

=lkEk +(k− lk)Ek−L
y(h)∗

+L
y(h)∗
−Ly(h)

+
ε

2

∫
R3

V (x)W 2
h,2−

ε

2

∫
R3

V (x)W 2
h,2 +

ε

2

∫
R3

V (x)W 2
h

+
b(k− lk)2

4

∫
R3
|∇Wk|2

)2

+
bk2

4

(∫
R3
|∇Wk|2

)2

− b(k− lk)2

4

(∫
R3
|∇Wk|2

)2

=lkEk + Iε

(
Wh,2 + v

λ̃ ,ε,y(h)∗

)
+L

y(h)∗
−Ly(h) +

ε

2

∫
R3

V (x)W 2
h −

ε

2

∫
R3

V (x)W 2
h,2

+
blk(2k− lk)

4

(∫
R3
|∇Wk|2

)2

,

(3.6)

where

Ek =
k
2

∫
R3

(
a|∇Wk|2 +W 2

k
)
− k

p

∫
R3

W p
k ,

Ly(h) =−∑
j<l

∫
R3

W p−1

k,y(h)j

W
k,y(h)l
−

k

∑
j=1

1
p

∫
R3

W p

k,y(h)j

+
1
p

∫
R3

W p
h +O

(
ε

2(p−1)
p (1−2τ)

)
,

and

L
y(h)∗

=− ∑
lk< j<l

∫
R3

W p−1

k,y(h)j

W
k,y(h)l
−

k

∑
j=lk+1

1
p

∫
R3

W p

k,y(h)j

+
1
p

∫
R3

W p
h,2 +O

(
ε

2(p−1)
p (1−2τ)

)
.

Then, by Lemma 2.9, we have

L
y(h)∗
−Ly(h) = ∑

j<l≤lk

∫
R3

W p−1

k,y(h)j

W
k,y(h)l

+
lk

∑
j=1

∫
R3

W p−1

k,y(h)j

Wh,2 +
lk

∑
j=1

1
p

∫
R3

W p

k,y(h)j

+
1
p

∫
R3

W p
h,2−

1
p

∫
R3

W p
h +O

(
ε

2(p−1)
p (1−2τ)

)
<O

(
ε

2(p−1)
p (1−2τ)

)
.

From (V1) and y(h)l → ∞, l = 1,2, . . . , lk, we conclude that

ε

2

∫
R3

V (x)W 2
h −

ε

2

∫
R3

V (x)W 2
h,2 = o(1),

where o(1) converge to 0 as h→ ∞. Letting h→ ∞ in (3.6), we have

Mε ≤ lkEk + Iε

(
W

y(0)∗
+ v

λ̃ ,ε,y(0)∗

)
+

blk(2k− lk)
4

(∫
R3
|∇Wk|2

)2

+O
(

ε
2(p−1)

p (1−2τ)
)

(3.7)
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In view of Lemma 2.10 and (3.1), we have C4ε ≤ λ̃−1e−
λ̃

µk ≤C5ε, which implies that

2
3

µk ln
1
ε
< λ̃ < 2µk ln

1
ε
, (3.8)

for ε > 0 small enough. Choose δ such that

0 < δ <
2(p−1)(1−2τ)− p

14kp
.

From assumption (V2), one sees that there exists T > 0 such that

V (x)≥ e−δ |x|, |x| ≥ T. (3.9)

Define

ȳ(ε)l = (14k ln
1
ε
−6lλ̃ −1,0,0) ∈ R3, l = 1,2, . . . ,k.

We know that the open balls B
(

ȳ(ε)l ,3λ̃

)
(l = 1,2, . . . ,k) are mutually disjoint. Thus there

are lk integers from {1,2, . . . ,k}, denoted by t1 < t2 < · · · < tlk , such that
∣∣∣ȳ(ε)ti − ȳ(0)j

∣∣∣ ≥ 3λ̃ ,

i = 1, . . . , lk, j = lk +1, . . . ,k. Denote ȳ(ε)ti by y(ε)i , i = 1,2, . . . , lk. Then, for ε small enough,

T +1≤
∣∣∣y(ε)i

∣∣∣≤ 14k ln
1
ε
−1, i = 1, . . . , lk, (3.10)∣∣∣y(ε)i − y(ε)j

∣∣∣≥ 3λ̃ , 1≤ i < j ≤ lk, (3.11)

and ∣∣∣y(ε)i − y(0)j

∣∣∣≥ 3λ̃ , i = 1, . . . , lk, j = lk +1, . . . ,k. (3.12)

Therefore (
y(ε)1 , . . . ,y(ε)lk

,y(0)lk+1, . . . ,y
(0)
k

)
∈Ω

λ̃
.

Denote
y(ε) =

(
y(ε)1 , . . . ,y(ε)lk

,y(0)lk+1, . . . ,y
(0)
k

)
and y(0)∗ =

(
y(0)lk+1, . . . ,y

(0)
k

)
.

Let Wε,1 = ∑
lk
j=1W

k,y(ε)j
and Wε,2 = ∑

k
j=lk+1W

k,y(0)j
. Then

Iε(Wy(ε) + v
λ̃ ,ε,y(ε)

)
=lkEk + Iε

(
W

y(0)∗
+ v

λ̃ ,ε,y(0)∗

)
+L

y(0)∗
−Ly(ε)

+
ε

2

∫
R3

V (x)(Wε,1 +Wε,2)
2− ε

2

∫
R3

V (x)W 2
ε,2

+
blk(2k− lk)

4

(∫
R3
|∇Wk|2

)2

.

(3.13)

From (3.9) and (3.10), we can obtain
ε

2

∫
R3

V (x)(Wε,1 +Wε,2)
2− ε

2

∫
R3

V (x)W 2
ε,2 ≥

ε

2

∫
R3

V (x)W 2
k,y(ε)1
≥ ε

2

∫∣∣∣x−y(ε)1

∣∣∣≤1
V (x)W 2

k,y(ε)1

≥C6εe−δ

(∣∣∣y(ε)1

∣∣∣+1
)
≥C6εe−δ14k ln 1

ε =C6ε
14kδ+1.

(3.14)
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By Lemma 2.6, we have

L
y(0)∗
−Ly(ε) = ∑

j<l≤lk

∫
R3

W p−1

k,y(ε)j

W
k,y(ε)l

+
lk

∑
j=1

1
p

∫
R3

W p−1

k,y(ε)j

Wε,2

+
1
p

lk

∑
j=1

∫
R3

W p

k,y(ε)j

+
1
p

∫
R3

W p
ε,2−

1
p

∫
R3

(Wε,1 +Wε,2)
p +O

(
ε

2(p−1)
p (1−2τ)

)

≥
lk

∑
j=1

1
p

∫
R3

W p

k,y(ε)j

+
1
p

∫
R3

W p
ε,2−

1
p

∫
R3

(Wε,1 +Wε,2)
p +O

(
ε

2(p−1)
p (1−2τ)

)

≥−C
lk

∑
j=1

∫
R3

W p−1

k,y(ε)j

Wε,2−C
lk

∑
j=1

∫
R3

W p−1
ε,2 W

k,y(ε)j

−C ∑
l≤i< j≤lk

∫
R3

W p−1

k,y(ε)i

W
k,y(ε)j

+O
(

ε
2(p−1)

p (1−2τ)
)
.

By Lemma 2.10, (3.8) and (3.11), we have

∑
l≤i< j≤lk

∫
R3

W p−1

k,y(ε)i

W
k,y(ε)j

= o(1)e
−3λ̃

µk = o(1)e
−3µk

2
3 ln 1

ε

µk = o
(
ε

2) , as ε → 0.

According to (3.12), a similar argument shows that
lk

∑
j=1

∫
R3

W p−1

k,y(ε)j

Wε,2 +
lk

∑
j=1

∫
R3

W p−1
ε,2 W

k,y(ε)j
= o

(
ε

2) , as ε → 0.

Thus L
y(0)∗
−Ly(ε) ≥ O

(
ε

2(p−1)
p (1−2τ)

)
, which with (3.13) and (3.14) yields

Iε

(
Wy(ε) + v

λ̃ ,ε,y(ε)

)
≥ lkEk + Iε

(
W

y(0)∗
+ v

λ̃ ,ε,y(0)∗

)
+C6ε

14kδ+1−C7ε
2(p−1)

p (1−2τ)

≥ lkEk + Iε

(
W

y(0)∗
+ v

λ̃ ,ε,y(0)∗

)
+

blk(2k− lk)
4

(∫
R3
|∇Wk|2

)2

+C8ε
14kδ+1,

which contradicts (3.7). Thus, Π(ε) = /0 and fk,ε achieves its maximum at some point y0 ∈
int
(

Ω
λ̃ (ε)

)
. �

We are now to prove Theorem 1.1.
Proof of Theorem 1.1. For k ≥ 2, by Lemma 3.2, if 0 < ε < ε(k), then fk,ε achieves its

maximum at some point y0 ∈ int
(

Ω
λ̃ (ε)

)
. Therefore, Wy0 +v

λ̃ ,ε,y0 is a k-bump solution to (1.1).
For k = 1, by Proposition 2.1, if ε ∈ (0,ε0], then

lim
|y|→∞

fk,ε(y) = lim
|y|→∞

Iε

(
Wy + v

λ̃ ,ε,y

)
=

1
2
||Wk‖2 +

b
4

(∫
R3
|∇Wk|2 dx

)2

− 1
p

∫
R3

W p
k .

Since fk,ε is defined on all R3, we have that fk,ε has a critical point y0 ∈ R3 and Wy0 + v
λ̃ ,ε,y0 is

a 1-bump solution to (1.1). This completes the proof.
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