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Abstract. In this paper, we first introduce the notion of (incident) higher-order generalized epiderivative
for a set-valued map and obtain a crucial result of the epiderivative. Then we use this result to establish
the higher-order sufficient and necessary optimality conditions of a constrained set-valued optimization
problem. By virtue of the epiderivatives and the optimality conditions, we establish the higher-order
mixed duality problem for the set-valued optimization problem and obtain the corresponding duality
theorems.
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1. INTRODUCTION

The duality theory for set-valued optimization problems has always been one of the main is-
sues in the fields of economics, operations research, management science, and so on. The most
crucial tool to investigate the Wolfe and Mond-Weir dualities for set-valued optimization prob-
lems is graphical or/and epigraphical derivatives; see, for example, [4, 5, 8, 10, 11, 21] and the
references therein. For a constrained set-valued optimization problem, Chen et al. [10] intro-
duced its higher-order Mond-Weir and Wolfe type dual problems by virtue of the higher order
weak adjacent (contingent) epiderivatives, and furthermore obtained the higher-order Kuhn-
Tucker type necessary and sufficient optimality conditions. Wang et al. [21] used the higher-
order generalized adjacent derivative to study a Mond-Weir type dual problem for a constrained
set-valued optimization problem. Anh [4] introduced the higher-order radial epiderivative and
established a mixed dual problem in dealing with generalized strict minimizers by virtue of the
higher-order radial epiderivative.

Concerning on studying the duality of optimization problems, we first discuss their optimality
conditions. Recently, there are several results on the optimality conditions; see, e.g., [1, 2,
3, 9, 12, 13, 14, 15, 16, 17, 20, 22, 23] and the references therein. Now, let us recall some
important results in this field. Jahn and Rauh [12] introduced the notion of the contingent
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epiderivative for a set-valued map which modified a concept introduced by Aubin [6] and proved
the optimality conditions based on the notion of the contingent epiderivative that are necessary
and sufficient for a set-valued optimization problems under appropriate assumptions. Chen and
Jahn [9] introduced a generalized contingent epiderivative of a set-valued map and established a
unified sufficient and necessary conditions for set-valued optimization problems in terms of the
generalized contingent epiderivative. Li and Chen [14] established the optimality conditions for
Henig properly efficient solutions by using the higher-order generalized (contingent) adjacent
epiderivatives in a set-valued optimization problem.

It is well known that the above higher-order derivatives need to know their lower order direc-
tions, such as first order direction, second order direction, and so on. However, it is difficult to
obtain their lower order directions (see Definition 5.61 of [7]), which only can be calculated step
by step. We are committed to finding a more streamlined direction to deal with the higher-order
optimality conditions and duality. The (incident) higher-order derivatives, which introduced
by using (incident) tangent sets by Penot in [19], give us a way of thinking. In this paper, we
mainly consider the optimality conditions for weakly efficient solutions and the higher-order
mixed type dual of a optimization problem by virtue of the (incident) higher-order generalized
epiderivatives.

The paper is organized as follows. Section 2 describes some basic definitions and obtains
some properties. In Section 3, we establish the higher-order necessary and sufficient optimality
conditions for a constrained set-valued optimization problem (P) by virtue of the higher-order
generalized epiderivatives, which are defined at the beginning of this section. In Section 4, the
last section, we establish the higher-order mixed type dual problem (DP) of (P) and obtain the
corresponding weak duality, strong duality, and converse duality theorems.

2. PRELIMINARIES

Throughout this paper, let X ,Y , and Z be real normed linear spaces. Let C ⊆Y (resp. D⊆ Z)
be a nontrivial pointed closed convex cone, which introduces the partial order in Y (resp. Z).
Let B(c,r) denote the open ball with centered at c and radius r. For a nonempty set A⊆ X , intA
and clA stand for the interior and closure of A, respectively. Let F : A ⇒Y be a set-valued map.
The domain, the graph, and the epigraph of F are defined by domF := {x ∈ A : F(x) 6= /0},
graphF :={(x,y)∈ X×Y : x∈ A,y∈ F(x)}, and epiF := {(x,y)∈ X×Y : x∈ A,y∈ F(x)+C},
respectively. The profile map of F , denoted by F+, is defined by F+(x) := F(x)+C for every
x ∈ domF . The map F is said to be C-convex on a convex set A ⊆ X if and only if, for any
x1,x2 ∈ A and λ ∈ [0,1],

λF(x1)+(1−λ )F(x2)⊆ F
(
λx1 +(1−λ )x2

)
+C.

Obviously, epiF is a convex set in X ×Y when F is C-convex on A. The dual cone C∗ of C is
defined by

C∗ := {λ ∈ Y ∗ : λ (y)≥ 0},
where Y ∗ is the topological dual of Y and λ (y) = 〈λ ,y〉 denotes the value λ at y.

Now, we recall the higher-order tangent cone and the incident higher-order tangent cone arise
in [19].

Definition 2.1. Let A be a subset of X , x ∈ clA, and v ∈ X .
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(i) The higher-order tangent cone to A at x in the direction v is the set

T h(A,x,v) := limsup
(t,s)→(0+,0+)

A− x− tv
st

={y ∈ X : liminf
(t,s)→(0+,0+)

d(y,
A− x− tv

st
) = 0}.

Thus y ∈ T h(A,x,v) if and only if there exist sequences (tn), (sn)→ 0+ and (yn)→ y
such that x+ tnv+ tnsnyn ∈ A for all n.

(ii) The incident higher-order tangent cone to A at x in the direction v is the set

T hi(A,x,v) := liminf
(t,s)→(0+,0+)

A− x− tv
st

={y ∈ X : lim
(t,s)→(0+,0+)

d(y,
A− x− tv

st
) = 0}.

Thus y ∈ T hi(A,x,v) if and only if, for any sequences (tn), (sn)→ 0+, there exists a
sequence (yn)→ y such that x+ tnv+ tnsnyn ∈ A for all n.

Remark 2.1.
(i) The mth-order contingent set T (m)

A (x,v1, ...,vm−1) := limsup
t→0+

1
tm (A−x−tv1−...−tm−1vm−1)=

limsup
t→0+

1
tm−1t

(
A−x−t(v1− ...−tm−2vm−1)

) (
resp. mth-order adjacent set T b(m)

A (x,v1, ..., vm−1)
)

in [7, 14] carries a more precise information than T h(A,x,v)
(
resp. T hi(A,x,v)

)
even if it is

smaller.
(ii) The following inclusions hold:

T hi(A,x0,v− x0)⊆ T h(A,x0,v− x0)⊆ cl
( ⋃

t>0,s>0

A− x0− t(v− x0)

st

)
.

The converse relations hold when A is a convex set and x0,v ∈ A; see Proposition 2.2.
(iii) If A⊆ X is closed, then, for any λ > 0,

T h(A,x,λv) = λT h(A,x,v) and T hi(A,x,λv) = λT hi(A,x,v).

To verify the above assertions, it suffices to show the first one since the second one is similar.
Indeed, take any y∈ T h(A,x,λv). Then there exist sequences (tn), (sn)→ 0+ and (yn)→ y such
that x+ tnλv+ tnsnyn ∈ A for all n. Let t ′n := λ tn. Then, x+ t ′nv+ t ′nsn

yn
λ
∈ A, so y

λ
∈ T h(A,x,v)

(noting that t ′n→ 0+ and yn→ y).
Conversely, for any y ∈ λT h(A,x,v), there exist sequences (tn), (sn)→ 0+ and yn→ y

λ
such

that x+ tnv+ tnsnyn ∈ A, ∀n. Let t ′n := tn
λ

. Then, x+ t ′nλv+ t ′nsnλyn ∈ A, which together with
t ′n→ 0+ implies that y ∈ T h(A,x,λv).

Penot [19] proved that T hi(A,x,v) is a convex cone for each v ∈ X
(
further more, v ∈

T (A,x) := limsup
t→0+

A−x
t , the tangent cone (or contingent cone) to F at x, T hi(A,x,v) 6= /0

)
. Simi-

larly, we can show that T h(A,x,v) is also a convex cone.

Proposition 2.1. If A is convex and v ∈ X, then T h(A,x,v) is a convex cone.
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Proof. Since T h(A,x,v) is a cone, we only need to show that y+y′ ∈ T h(A,x,v) for each y, y′ ∈
T h(A,x,v). To finish it, we can find sequences (tn), (sn), (t ′n), (s

′
n)→ 0+, (yn)→ y and (y′n)→ y′

such that an := x+ tnv+ tnsnyn ∈ A and a′n := x+t ′nv+ t ′ns′ny′n ∈ A for all n. Note that A is convex.
Then

t ′ns′n
tnsn + t ′ns′n

an +
tnsn

tnsn + t ′ns′n
a′n = x+

tnt ′n(sn + s′n)
tnsn + t ′ns′n

v+
tnsnt ′ns′n

tnsn + t ′ns′n
(yn + y′n) ∈ A, ∀n. (2.1)

Let t̃n := tnt ′n(sn+s′n)
tnsn+t ′ns′n

and s̃n := sns′n
sn+s′n

. We can easily verify that

0 < t̃n =
tnt ′nsn

tnsn + t ′ns′n
+

tnt ′ns′n
tnsn + t ′ns′n

≤ t ′n + tn→ 0+

and 0 < s̃n ≤ s′n→ 0+. Hence, t̃n→ 0+ and s̃n→ 0+. Then, from (2.1) it follows that y+ y′ ∈
T h(A,x,v). The proof is complete. �

Proposition 2.2. If A is a convex set and x0, v ∈ A, then

T hi(A,x0,v− x0) = T h(A,x0,v− x0) = cl
( ⋃

t>0,s>0

A− x0− t(v− x0)

st

)
.

Proof. By Remark 2.1 (ii), we only need to prove that, for any w0 ∈ cl
(⋃

t>0,s>0
A−x0−t(v−x0)

st

)
,

w0 ∈ T hi(A,x0,v− x0). Let ε > 0 be fixed. Then there exist y ∈ A and s, t > 0 such that

w0−
y− x0− t(v− x0)

ts
∈ B(0,ε).

We can choose t̂ with 0 < t̂ ≤ min{t,1} and ŝ with 0 < ŝ ≤ s. Then, take any h ∈]0, t̂[ and
m ∈]0, ŝ[. To simplify the proof, we set w := y−x0−t(v−x0)

ts to see

x0 +h(v− x0)+hmw

=x0 +h(v− x0)+hm
y− x0− t(v− x0)

st

=(1−h− mh
st

+
mh
s
)x0 +(h− mh

s
)v+

mh
st

y.

We can easily check that

1−h− mh
st

+
mh
s
≥t(m− s)(h−1)

st
≥ 0, h− mh

s
= h(1− m

s
)≥ 0

and mh
st ≥ 0. Note that x0,v ∈ A. The convexity of A yields that x0+h(v−x0)+hmw ∈ A. Thus,

w0 ∈ T hi(A,x0,v− x0), and the proof is complete. �

Similar to the proof of [15, Proposition 3.2], it easy to obtain the following proposition.

Proposition 2.3. If A is convex, then T hi(A,x,v) is convex.

3. HIGHER-ORDER OPTIMALITY CONDITIONS

In this section, we first introduce the notions of the higher-order generalized epiderivatives
for set-valued mappings. Then, under appropriate conditions, we establish the higher-order
necessary and sufficient optimality conditions by virtue of the higher-order generalized epi-
derivatives.
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Definition 3.1. (See [18])

(i) Let M ⊆ Y . Y ∈M is said to be a minimal point of M if (M− y)∩ (−C) = {0Y}. The
set of all minimal elements of M is denoted by MinCM.

(ii) The domination property is said to hold for a subset M ⊆ Y if M ⊆MinCM+C.

Definition 3.2. [19] Let F be a set-valued map from X to Y , (x0,y0) ∈ graphF and (u,v) ∈
X×Y .

(i): The higher-order derivative DhF
(
(x0,y0),(u,v)

)
of F at (x0,y0) in the direction (u,v)

is defined as

DhF
(
(x0,y0),(u,v)

)
(x) :=

{
y ∈ Y : (x,y) ∈ T h(graphF,(x0,y0),(u,v)

)}
.

(ii): The incident higher-order derivative DhiF
(
(x0,y0),(u,v)

)
of F at (x0,y0) in the direc-

tion (u,v) is defined as

DhiF
(
(x0,y0),(u,v)

)
(x) :=

{
y ∈ Y : (x,y) ∈ T hi(graphF,(x0,y0),(u,v)

)}
.

Similar to [14, Definition 3.2], we introduce the higher-order generalized derivatives as fol-
lows.

Definition 3.3. Let F be a set-valued map from X to Y , (x0,y0) ∈ graphF and (u,v) ∈ X×Y .

(i): The higher-order generalized epiderivative of F at (x0,y0) in the direction (u,v), de-
noted by Dh

gF
(
(x0,y0),(u,v)

)
, is defined as

Dh
gF
(
(x0,y0),(u,v)

)
(x) := MinC

{
y ∈ Y : (x,y) ∈ T h(epiF,(x0,y0),(u,v)

)}
= MinC

{
y ∈ Y : y ∈ DhF+

(
(x0,y0),(u,v)

)
(x)
}
,

∀x ∈ dom
[
DhF+

(
(x0,y0),(u,v)

)]
(ii): The incident higher-order generalized epiderivative of F at (x0,y0) in the direction

(u,v), denoted by Dhi
g F
(
(x0,y0),(u,v)

)
, is defined as

Dhi
g F
(
(x0,y0),(u,v)

)
(x) := MinC

{
y ∈ Y : (x,y) ∈ T hi(epiF,(x0,y0),(u,v)

)}
= MinC

{
y ∈ Y : y ∈ DhiF+

(
(x0,y0),(u,v)

)
(x)
}
,

∀x ∈ dom
[
DhiF+

(
(x0,y0),(u,v)

)]
.

Remark 3.1. When F reduces to a single-valued mapping, the higher-order generalized epi-
derivative and the incident higher-order generalized epiderivative reduce to the lower higher-
order derivatives, which were defined by Penot in [19, Definition 18].

Assuming that the set-valued mapping is cone-convex, we use higher-order generalized epi-
derivatives to establish a crucial result, which is motivated by [14, Proposition 3.1] and [15,
Theorem 4.1].
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Proposition 3.1. Let F be C-convex on a nonempty convex set E ⊆ X. Let x0 ∈ E, y0 ∈ F(x0),
u ∈ E and v ∈ F(u)+C. If Dhi

g F
(
(x0,y0),(u− x0,v− y0)

)
(x− x0) 6= /0 and the set P(x− x0) :={

y ∈Y : (x−x0,y) ∈ T hi(epiF,(x0,y0),(u−x0,v−y0)
)}

fulfills the domination property for all
x ∈ E, then

F(x)− y0 ⊆ Dhi
g F
(
(x0,y0),(u− x0,v− y0)

)
(x− x0)+C.

Proof. Take any x ∈ E and y ∈ F(x). For arbitrary sequences {tn}, {sn} ⊆ ]0,1[ with tn→ 0+
and sn → 0+, since E is convex and F is C-convex on E, we have x0 + tn(u− x0) ∈ E and
x0 + tnsn(x− x0) ∈ E due to 0 < sntn < 1 and

y0 + tn(v− y0) ∈ F
(
x0 + tn(u− x0)

)
+C,

and
y0 + tnsn(y− y0) ∈ F

(
x0 + tnsn(x− x0)

)
+C.

Consequently, by convexity again, one has

xn := x0 +
1
2

tn(u− x0)+
1
2

tnsn(x− x0) ∈ E

and

yn := y0 +
1
2

tn(v− y0)+
1
2

tnsn(y− y0) ∈ F(xn)+C.

It means (xn,yn) ∈ epiF and

(xn,yn)− (x0,y0)− tn
2 (u− x0,v− y0)

tnsn
2

= (x− x0,y− y0).

Take t ′n := tn
2 → 0+. It follows that

(x− x0,y− y0) ∈ T hi(epiF,(x0,y0),(u− x0,v− y0)
)
.

Then, by the domination property of P(x− x0), we have

y− y0 ∈ P(x− x0)⊆MinCP(x− x0)+C = Dhi
g F
(
(x0,y0),(u− x0,v− y0)

)
(x− x0)+C.

Since y is arbitrary given, we have F(x)−y0 ⊆Dhi
g F
(
(x0,y0),(u−x0,v−y0)

)
(x−x0)+C. �

Now we consider the following constrained set-valued optimization problem (P):

(P)
{

min F(x),
s.t. x ∈ S,G(x)∩ (−D) 6= /0,

where S is a nonempty subset of X , F : X ⇒ Y is C-convex, and G : X ⇒ Z is D-convex on
S. A triple (x,y,z) ∈ S×Y × Z is said to be feasible if x ∈ domF ∩ domG, y ∈ F(x), and
z ∈ G(x)∩ (−D). Set

A := {x ∈ S : G(x)∩ (−D) 6= /0} and F(A) :=
⋃
{F(x) : x ∈ A}.

The notation (F,G)(x) is used to denote F(x)×G(x).

Definition 3.4. [18] A pair (x0,y0) with x0 ∈ A and y0 ∈ F(x0) is called a weak efficient solution
to (P) if

(
F(A)− y0

)
∩ (−intC) = /0.
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Theorem 3.1. Let (x0,y0)∈ graphF and (u,v−y0,w)∈ X×(−C)×(−D). If (x0,y0) is a weak
efficient solution to (P), then, for any z0 ∈ G(x0)∩ (−D),[

Dhi
g (F,G)

(
(x0,y0,z0),(u− x0,v− y0,w− z0)

)
(x)

+C×D+(0Y ,z0)
]
∩ (−int(C×D)

)
= /0, (3.1)

for all x ∈Ω := dom
[
Dhi

g (F,G)
(
(x0,y0,z0),(u− x0,v− y0,w− z0)

)]
.

Proof. Since (x0,y0) is a weak efficient solution of (P), then

(F(A)− y0)∩ (−intC) = /0. (3.2)

Assume that (3.1) does not hold. Then there exist z0 ∈G(x0)∩(−D), x ∈Ω, (y,z)∈Y ×Z, c0 ∈
C and d0 ∈ D such that

(y,z) ∈ Dhi
g (F,G)

(
(x0,y0,z0),(u− x0,v− y0,w− z0)

)
(x) (3.3)

and
(y,z)+(c0,d0)+(0,z0) = (y+ c0,z+d0 + z0) ∈ −int(C×D). (3.4)

It follows from the definition of Dhi
g (F,G)

(
(x0,y0,z0),(u− x0,v− y0,w− z0)

)
(x) and (3.3) that

(x,y,z) ∈ T hi(epi(F,G),(x0,y0,z0),(u− x0,v− y0,w− z0)
)
.

Then, for any sequences {tn}, {sn} with tn,sn → 0+, there exists (xn,yn,zn) ∈ epi(F,G) such
that

(xn,yn,zn)− (x0,y0,z0)− tn(u− x0,v− y0,w− z0)

tnsn
→ (x,y,z). (3.5)

From (3.4) and (3.5), there exists a sufficiently large N > 0 such that

(yn,zn)− (y0,z0)− tn(v− y0,w− z0)

tnsn
+(c0,d0)+(0,z0) ∈ −int(C×D),

for n > N. Since C and D are cones, one has

yn− y0− tn(v− y0)+ tnsnc0 ∈ −intC, forn > N (3.6)

and
zn− z0− tn(w− z0)+ tnsn(d0 + z0) ∈ −intD, forn > N.

Note that as v− y0 ∈ −C, we have tn(v− y0) ∈ −C. By (3.6), one has

yn− y0 ∈ −intC+ tn(v− y0)− tnsnc0 ∈ −intC−C−C =−intC, forn > N.

Similarly, we have for all n > N, tn + tnsn < 1 and

zn ∈ −intD+(1− tn− tnsn)z0 + tnw− tnsnd0 ⊆−intD−D−D−D =−intD.

Since (xn,yn,zn) ∈ epi(F,G), then there exist ỹn ∈ F(xn) and z̃n ∈G(xn) such that ỹn ≤C yn and
z̃n ≤D zn. Then, for every n > N,

ỹn− y0 ∈ yn−C− y0 ⊆−intC−C =−intC

and z̃n ∈ zn−D⊆−intD. Thus, (xn, ỹn, z̃n) is a feasible triple for all n > N and ỹn−y0 ∈−intC,
which contradicts to (3.2). Thus (3.1) holds and the proof is complete. �

From the proof of Theorem 3.1, we have the following result.
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Corollary 3.1. Let (x0,y0) ∈ graphF and (u,v,w) ∈ X × (−C)× (−D). If (x0,y0) is a weak
efficient solution to (P), then, for any z0 ∈ G(x0)∩ (−D),[

Dhi
g (F,G)

(
(x0,y0,z0),(u,v,w)

)
(x)+C×D+(0Y ,z0)

]
∩
(
-int(C×D)

)
= /0,

for all x ∈Ω := dom
[
Dhi

g (F,G)
(
(x0,y0,z0),(u,v,w)

)]
.

Remark 3.2. We can easily see that the results of Theorem 3.1 and Corollary 3.1 also hold
whenever Dhi

g (F,G)
(
(x0,y0,z0),(u,v,w)

)
(x) is replaced by Dh

g(F,G)
(
(x0,y0,z0),(u,v,w)

)
(x).

Based on Proposition 3.1 and Theorem 3.1, we establish the following higher-order sufficient
optimality conditions and necessary optimality conditions of problem (P).

Theorem 3.2. Assume that all the following conditions are satisfied:

(i) (F×G) is (C×D)-convex on the convex set S;
(ii) (x0,y0) ∈ graphF and (u,v− y0,w) ∈ X× (−C)× (−D);

(iii) P(x) :=
{
(y,z) ∈ Y × Z : (x,y,z) ∈ T hi(epi(F,G),(x0,y0,z0),(u− x0,v− y0,w− z0)

)}
fulfills domination property for all z0 ∈ G(x0)∩ (−D), x ∈ S and (0Y ,0Z) ∈ P(0X);

(iv) (x0,y0) is a weak efficient solution of (P).

Then, for any z0 ∈G(x0)∩ (−D), there exist λ ∈C∗ \{0Y ∗} and µ ∈D∗ but not both being zero
functionals such that µ(z0) = 0 and λ (y)+ µ(z) ≥ 0 for all (y,z) ∈ Dhi

g (F,G)
(
(x0,y0,z0),(u−

x0,v− y0,w− z0)
)
(x), and x ∈Ω := dom

[
Dhi

g (F,G)
(
(x0,y0,z0),(u− x0,v− y0,w− z0)

)]
.

Proof. Let z0 ∈ G(x0)∩ (−D). Define

H :=
⋃

x∈Ω

Dhi
g (F,G)

(
(x0,y0,z0),(u− x0,v− y0,w− z0)

)
(x)+C×D+(0Y ,z0).

Now we prove that H is a convex set by showing that H0 = H − (0Y ,z0) is convex. Let
(yi,zi) ∈H0, i = 1,2. Then there exist xi ∈Ω, (y′i,z

′
i) ∈Dhi

g (F,G)
(
(x0,y0,z0),(u−x0,v−y0,w−

z0)
)
(xi) and (ci,di) ∈C×D such that (yi,zi) = (y′i,z

′
i)+(ci,di) i = 1,2. Then, we have

(xi,y′i,z
′
i) ∈ T hi(epi(F,G),(x0,y0,z0),(u− x0,v− y0,w− z0)

)
, i = 1,2.

Since F and G are cone-convex, then epigraph epi(F,G) is convex. By Proposition 2.3, T hi(epi(F,
G),(x0,y0,z0),(u− x0,v− y0,w− z0)

)
is a convex set. Then, for any λ ∈ [0,1],

λ (x1,y′1,z
′
1)+(1−λ )(x2,y′2,z

′
2) ∈ T hi(epi(F,G),(x0,y0,z0),(u− x0,v− y0,w− z0)

)
.

By the domination property of P(x), we have

λ (y′1,z
′
1)+(1−λ )(y′2,z

′
2)

∈ Dhi
g (F,G)

(
(x0,y0,z0),(u− x0,v− y0,w− z0)

)(
λx1 +(1−λ )x2

)
+C×D.

Since C and D are convex cones, we have

λ (y1,z1)+(1−λ )(y2,z2) = λ
(
(y′1,z

′
1)+(c1,d1)

)
+(1−λ )

(
(y′2,z

′
2)+(c2,d2)

)
∈ H0,

which means H is a convex set. By Theorem 3.1, one has H ∩
(
− int(C×D)

)
= /0. By the

separation theorem for convex sets, there exist 0 6= (λ ,µ) ∈ Y ∗×Z∗ and γ ∈ R such that

λ (ȳ)+µ(z̄)< γ ≤ λ (ỹ)+µ(z̃), for all (ȳ, z̄) ∈ −int(C×D), (ỹ, z̃) ∈ H.
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Then we have λ (ȳ)+µ(z̄)≤ 0, for all (ȳ, z̄) ∈ −int(C×D) and

0≤ λ (ỹ)+µ(z̃), for all (ỹ, z̃) ∈ H. (3.7)

Obviously, we have λ (ȳ) ≤ 0, for all ȳ ∈ −C and µ(z̄) ≤ 0 for all z̄ ∈ −D. Thus, λ ∈C∗ and
µ ∈ D∗. By the domination property of P(x) for all x ∈ S, one has

P(x)⊆ Dhi
g (F,G)

(
(x0,y0,z0),(u− x0,v− y0,w− z0)

)
(x)+C×D, for allx ∈Ω.

Then, we have
⋃

x∈Ω

P(x) ⊆ H0. Noting that (0Y ,0Z) ∈ P(0X), one has (0Y ,0Z) ∈ H − (0Y ,z0),

which means (0Y ,z0) ∈ H. By (3.7), we have µ(z0) ≥ 0. It follows from µ ∈ D∗ and z0 ∈ −D
that µ(z0) ≤ 0. Hence, we obtain µ(z0) = 0. Thus, is follows from (3.7) that λ (y)+ µ(z) ≥ 0
for all (y,z) ∈ Dhi

g (F,G)
(
(x0,y0,z0),(u− x0,v− y0,w− z0)

)
(x) and x ∈Ω. �

From the proof of Theorem 3.2, we have the following corollary.

Corollary 3.2. Assume that all the following conditions are satisfied:
(i) (F×G) is (C×D)-convex on the convex set S;

(ii) (x0,y0) ∈ graphF and (u,v,w) ∈ X× (−C)× (−D);
(iii) P(x) :=

{
(y,z) ∈ Y ×Z : (x,y,z) ∈ T hi(epi(F,G),(x0,y0,z0),(u,v,w)

)}
fulfills domina-

tion property for all z0 ∈ G(x0)∩ (−D), x ∈ S and (0Y ,0Z) ∈ P(0X);
(iv) (x0,y0) is a weak efficient solution of (P).

Then, for any z0 ∈G(x0)∩ (−D), there exist λ ∈C∗ \{0Y ∗} and µ ∈D∗ but not both being zero
functionals such that

µ(z0) = 0 and λ (y)+µ(z)≥ 0,
for all (y,z)∈Dhi

g (F,G)
(
(x0,y0,z0),(u,v,w)

)
(x) and x∈ dom

[
Dhi

g (F,G)
(
(x0,y0,z0),(u,v,w)

)]
.

Now, we give a example to verify the 2th-order necessary optimality condition of Theorem
3.2.

Example 3.1. Suppose that X = Y = Z = R, S = [−1,1] ⊆ X , and C = D = R+ = [0,+∞).
Let F : X ⇒ Y and G : X → Z, respectively, with F(x) = {y ∈ R : x4 ≤ y ≤ 4} and G(x) =
2x−1. Naturally, F and G are two R+-convex functions on the convex set [−1,1], respectively.
Consider the following constrained set-valued optimization problem (P):{

min F(x),
s.t. x ∈ S,G(x)∩ (−D) 6= /0.

Then we have A := {x ∈ S : G(x)∩ (−D) 6= /0}= [−1, 1
2 ] and F(A) = [0,4].

Let (x0,y0) = (0,0) ∈ grF . It is easy to verify the point (x0,y0) is a weak efficient solution
of (P). By the definitions of F and G, one sees that

epi(F,G) = {(x,(y,z)) ∈ R×R2 :−1≤ x≤ 1,y≥ x4,z≥ 2x}.
Taking z0 =−1 ∈ G(x0)∩ (−D), one has

Tepi(F,G)(x0,y0,z0) = {(x,(y,z)) ∈ R×R2 : y≥ 0,z≥ 2x}
and

Dg(F,G)(x0,y0,z0)(x) = {(y,z) ∈ R2 : y = 0,z = 2x}, x ∈ R.
Let P(x)= {(y,z)∈R2 : (x,(y,z))∈ Tepi(F,G)(x0,y0,z0)}. Obviously, P(x) fulfills the domination
property and (0,0)∈ P(0). Then, all the conditions of Theorem 3.2 hold. Take λ > 0 and µ = 0,
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for any (y,z) ∈ Dg(F,G)(x0,y0,z0)(x) and x ∈ R, µ(z0) = 0 and λ (y)+µ(z)≥ 0, which shows
that the 1th-order necessary optimality condition of Theorem 3.2 holds. Take u = 1/4,v = 0,
and w =−1/2 ∈ −D. Then, u− x0 = 1/4,v− y0 = 0 and w− z0 = 1/2. Hence,

T hi
epi(F,G)(x0,y0,z0,u− x0,v− y0,w− z0) = {(x,(y,z)) ∈ R×R2 : y≥ 0,z≥ 2x−1}

and

Dhi
g (F,G)(x0,y0,z0,u− x0,v− y0,w− z0)(x) = {(y,z) ∈ R2 : y = 0,z = 2x−1}, x ∈ R.

Hence, it follows that the conditions of Theorem 3.2 hold. Simultaneously, taking λ > 0 and
µ = 0, we have that the 2th-order necessary optimality condition of Theorem 3.2 holds.

Theorem 3.3. Suppose that the following conditions are satisfied:
(i) (F×G) is (C×D)-convex on the convex set S⊆ domF ∩domG;

(ii) A =
{

x ∈ S : G(x)∩ (−D) 6= /0
}

, u ∈ A, v ∈ F(u)+C, w ∈G(u)+D, (x0,y0) ∈ graphF;
(iii) P(x−x0) :=

{
(y,z)∈Y×Z : (x−x0,y,z)∈ T hi(epi(F,G),(x0,y0,z0),(u−x0,v−y0,w−

z0)
)}

fulfills domination property for all z0 ∈ G(x0)∩ (−D) and x ∈ S;
(iv) there exist z0 ∈ G(x0)∩ (−D), λ ∈ C∗\{0Y ∗} and µ ∈ D∗ such that µ(z0) = 0 and

λ (y) + µ(z) ≥ 0, for all (y,z) ∈ Dhi
g (F,G)

(
(x0,y0,z0),(u− x0,v− y0,w− z0)

)
(x) and

x ∈ A.
Then (x0,y0) is a weak efficient solution of (P).

Proof. On the contrary, assume that(
F(A)− y0

)
∩ (−intC) 6= /0. (3.8)

Then, there exist x′ ∈ A and y′ ∈ F(x′) such that y′− y0 ∈ −intC. Since x′ ∈ A, there exists a
point z′ ∈ G(x′)∩ (−D). By Proposition 3.1 and the domination property, we have

(y′− y0,z′− z0)⊆ Dhi
g (F,G)

(
(x0,y0,z0),(u− x0,v− y0,w− z0)

)
(x′− x0)+C×D.

Thus
λ (y′− y0− c)+µ(z′− z0−d)≥ 0, for any c ∈C, d ∈ D. (3.9)

Since y′− y0 ∈ −intC, then y′− y0− c ∈ −intC−C = −intC, and λ ∈C∗\{0Y ∗}, then λ (y′−
y0− c)< 0. Since z′ ∈ G(x′)∩ (−D), µ ∈ D∗ and µ(z0) = 0, one has µ(z′− z0−d) = µ(z′)−
µ(z0) ≤ 0. Thus λ (y′− y0− c)+ µ(z′− z0− d) < 0, which contradicts to (3.9). Then, (3.8)
does not hold, namely, (F(A)− y0)∩−intC = /0. Thus, (x0,y0) is a weak efficient solution of
(P) and the proof is complete. �

Similar to the Theorem 3.3, we have the following result.

Corollary 3.3. Suppose that the following conditions are satisfied:
(i) (F×G) is (C×D)-convex on the convex set S⊆ domF ∩domG;

(ii) A =
{

x ∈ S : G(x)∩ (−D) 6= /0
}

, u ∈ A, v ∈ F(u)+C, w ∈G(u)+D, (x0,y0) ∈ graphF;
(iii) P(x−x0) :=

{
(y,z) ∈Y ×Z : (x−x0,y,z) ∈ T hi(epi(F,G),(x0,y0,z0),(u,v,w)

)}
fulfills

domination property for all z0 ∈ G(x0)∩ (−D) and x ∈ S;
(iv) There exist z0 ∈ G(x0)∩ (−D), λ ∈ C∗\{0Y ∗} and µ ∈ D∗ such that µ(z0) = 0 and

λ (y)+µ(z)≥ 0, for all (y,z) ∈ Dhi
g (F,G)

(
(x0,y0,z0),(u,v,w)

)
(x) and x ∈ A.

Then (x0,y0) is a weak efficient solution to (P).
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Remark 3.3. We can easily see that the results of Theorems 3.2, 3.3 and Corollaries 3.2, 3.3 also
hold whenever Dhi

g (F,G)
(
(x0,y0,z0),(u,v,w)

)
(x) is replaced by Dh

g(F,G)
(
(x0,y0,z0),(u,v,w)

)
(x).

4. HIGHER-ORDER MIXED DUALITY

In this section, we use the higher-order necessary and sufficient optimality conditions to
establish a higher-order mixed dual problem (DP) of (P) inspired by [8]. The higher-order
mixed dual problem (DP) of (P) as follows:

(DP)


max h(x0,y0,z0,λ ,µ),
s.t. 〈λ ,y〉+ 〈µ,z〉 ≥ 0,∀(y,z) ∈ Dhi

g (F,G)
(
(x0,y0,z0),(u,v,w)

)
(Ω),

δ 〈µ,z0〉 ≥ 0,
λ ∈C∗\{0Y ∗},

µ ∈ D∗,

where e∈ intC, z0 ∈G(x0)∩(−D), δ ∈ {0,1}, Ω := dom
[
Dhi

g (F,G)
(
(x0,y0,z0),(u,v,w)

)]
, and

h(x0,y0,z0,λ ,µ) := y0 +
e
〈λ ,e〉(1−δ )〈µ,z0〉.

Let M :=
{
(x0,y0,z0,λ ,µ) : (x0,y0) ∈ graphF,z0 ∈ G(x0)∩ (−D), and(x0,y0,z0,λ ,µ) holds

and all the conditions of (DP)
}

be the feasible set of (DP). Then a feasible element (x0,y0,z0,λ ,µ)

is called a weak efficient solution to (DP) if, for all (x0,y0,z0, λ̂ , µ̂) ∈M,(
h(x0,y0,z0, λ̂ , µ̂)−h(x0,y0,z0,λ ,µ)

)
∩ intC = /0.

Some duality theorems of (P) and (DP) are established as follows.

Theorem 4.1. [Weak duality] Let (x0,y0) ∈ graphF, z0 ∈ G(x0)∩ (−D), and Proposition 3.1
hold for (F,G)(x). Suppose that (x̄, ȳ) is a feasible element of (P) and (x0,y0,z0,λ ,µ) is a
feasible element of (DP). Then,

y0 +
e
〈λ ,e〉

(1−δ )〈µ,z0〉− ȳ /∈ intC. (4.1)

Proof. Suppose on the contrary that

y0 +
e
〈λ ,e〉

(1−δ )〈µ,z0〉− ȳ ∈ intC. (4.2)

Since x̄ ∈ A, then there exists a point z̄ ∈ G(x̄)∩ (−D). By Proposition 3.1, there exist (a,b) ∈
Dhi

g (F,G)
(
(x0,y0,z0),(u− x0,v− y0,w− z0)

)
(x− x0) and (c,d) ∈C×D such that

ȳ− y0 = a+ c, z̄− z0 = b+d. (4.3)

Combining (4.2) and (4.3), we have

m :=
e
〈λ ,e〉

(1−δ )〈µ,z0〉−a ∈ intC+ c⊆ intC.

Since λ ∈C∗\{0Y ∗} and µ ∈ D∗, one has 〈λ ,m〉> 0 = 〈µ,b+d− z̄+ z0〉, which implies that

〈µ, z̄〉−δ 〈µ,z0〉−〈µ,d〉> 〈λ ,a〉+ 〈µ,b〉.

Hence 〈λ ,a〉+ 〈µ,b〉< 0, which contradicts to the first constraint of (DP). Consequently, (4.1)
holds and the proof is complete. �
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Theorem 4.2. [Strong duality] Assume that all the conditions of Corollary 3.2 are satisfied.
Then there exist λ ∈C∗\{0Y ∗} and µ ∈D∗ such that (x0,y0,z0,λ ,µ) is a weak efficient solution
to (DP).

Proof. By Corollary 3.2, for any z0 ∈G(x0)∩ (−D), there exist λ ∈C∗\{0Y ∗} and µ ∈D∗ such
that µ(z0) = 0 and λ (y)+µ(z)≥ 0, for all (y,z)∈Dhi

g (F,G)
(
(x0,y0,z0),(u,v,w)

)
(x) and x∈Ω.

It means that (x0,y0,z0,λ ,µ) is a feasible element of (DP).
Now, we prove that (x0,y0,z0,λ ,µ) is a weak efficient solution to (DP). Otherwise, there

exists (x̂, ŷ, ẑ, λ̂ , µ̂) ∈M such that h(x̂, ŷ, ẑ, λ̂ , µ̂)−h(x0,y0,z0,λ ,µ) ∈ intC, that is,

ŷ+
e

〈λ̂ ,e〉
(1−δ )〈µ̂, ẑ〉− y0 ∈ intC,

which contradicts (4.1) and the proof is complete. �

Theorem 4.3. [Converse duality] Assume that all the conditions of Corollary 3.3 are satisfied,
and (x0,y0,z0,λ ,µ) is a efficient element of (DP). Then, (x0,y0) is a weak efficient solution to
(P).

Proof. By Corollary 3.3, all the constraints of (DP) are satisfied. Then (x0,y0,z0,λ ,µ) is a
efficient element of (DP) and (x0,y0) is a weak efficient solution to (P). �

Remark 4.1. (i). The duality theorems hold whenever Dhi
g (F,G)

(
(x0,y0,z0),(u,v,w)

)
(x) is

replaced by Dh
g(F,G)

(
(x0,y0,z0),(u,v,w)

)
(x) in dual problem (DP).

(ii). If δ = 1, then (DP) reduces to the higher-order Mond-Weir dual problem:

(MDP)


max y0
s.t. 〈λ ,y〉+ 〈µ,z〉 ≥ 0,∀(y,z) ∈ Dhi

g (F,G)
(
(x0,y0,z0),(u,v,w)

)
(Ω),

〈µ,z0〉 ≥ 0,
λ ∈C∗\{0Y ∗},

µ ∈ D∗.

If δ = 0, we have h(x0,y0,z0,λ ,µ) = y0 +
e
〈λ ,e〉(1− 0)〈µ,z0〉 = e

〈λ ,e〉
(
〈λ ,y0〉+ 〈µ,z0〉

)
. Since

e
〈λ ,e〉 ∈ intC, the (DP) reduces to the higher-order Wolfe dual problem:

(WDP)


max 〈λ ,y0〉+ 〈µ,z0〉
s.t. 〈λ ,y〉+ 〈µ,z〉 ≥ 0,∀(y,z) ∈ Dhi

g (F,G)
(
(x0,y0,z0),(u,v,w)

)
(Ω),

λ ∈C∗\{0Y ∗},
µ ∈ D∗.
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