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DIFFERENCE OF COMPOSITION OPERATORS ON THE BÉKOLLÉ WEIGHTED
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Abstract. In this paper, we completely characterize the boundedness and compactness of the differences
for composition operators on the weighted Bergman spaces with Békollé weights in the open unit ball
and estimate the norm and essential norm of weighted composition operators.
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1. INTRODUCTION

Let Bn denote the open unit ball in the n dimensional Euclidean complex space Cn and H(Bn)
the space of analytic functions on Bn. If n = 1, then Bn is the unit disk in the complex plane.
Every analytic self mapping ϕ of Bn can induce a composition operator Cϕ on H(Bn) defined
by

Cϕ f = f ◦ϕ

for f ∈ H(Bn). Furthermore, if v is a function defined on Bn, functions v and ϕ can induce a
weighted composition operator vCϕ for which

vCϕ f = v · f ◦ϕ

where f ∈ H(Bn).
It is followed by the Littlewood subordination principle that every composition operator acts

continuously on the classic Hardy space and standard weighted Bergman spaces of the unit disk.
The boundedness and compactness of weighted composition operators on standard weighed
Bergman spaces are characterized by C̆uc̆ković and Zhao [6] in terms of generalized Berezin
transforms. Later, in 2007, they applied the Bergman projection to generalize those results to
the higher dimensional case in [7]. Efforts have been expended on characterizing those analytic
maps which induce bounded composition operators on various analytic function spaces. Read-
ers interested in this topic can refer to the books [3] by Cowen and MacCluer, [22] by Shapiro,
[27] by Zhao and Zhu, and [28, 29] by Zhu, which are excellent sources for the development of
the theory on composition operators and functions spaces.
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Another active topic in the past decades is the differences of two composition operators acting
between two analytic function spaces. In 1989, Shapiro and Sundberg [23] characterized the
compactness of the differences Cϕ −Cψ by the boundary conditions of ϕ and ψ . In 2005,
Moorhouse [16] used pseudohyperbolic distance between ϕ(z) and ψ(z) to study the difference
on the standard weighted Bergman spaces. In 2007, Kriete and Moorhouse [13] extended those
results to general linear combinations of composition operators. In 2011, Saukko [20, 21]
studied the differences of composition operators between standard weighted Bergman spaces.
The key tools are Carleson measures and interpolation sequences, and the proof of their main
theorem depends highly on the density of the polynomials in the standard Bergman spaces.

Muckenhoupt weights and weighted inequalities arise naturally in Fourier analysis, but their
use is best justified by the variety of applications in which they appear. In the 1970s, Mucken-
houpt characterized those positive functions u for which the Hardy-Littlewood maximal opera-
tor maps Lp(Rn,u(x)dx) to itself. This characterization led to the introduction of the Mucken-
houpt class Ap and the development of weighted inequalities. Its extensions to complex valued
spaces and vector valued spaces become active in the past decades. The weighted Bergman
spaces considered in this paper are equipped with the so-called Békollé weights (see more de-
tails in Preliminaries). These weights are the Bergman space analogues of the Muckenhoupt
class Ap used in harmonic analysis. Békollé and Bonami introduced these weights in [1, 2],
and characterized the boundedness of the Bergman projection. The Sharp dependence of the
operator norm on the Bp,b characteristic were given by Pott and Reguera in [17] and Rahm,
Tchoundja and Wick in [19]. Constantin [5] proved Carleson-type embedding theorems for
weighted Bergman spaces with Békollé weights on the unit disk, and characterized the bound-
edness, compactness and Schatten class of Toeplitz type operators, integral operators, and com-
position operators.

The motivation of this paper is to characterize the boundedness and compactness of weighted
composition operators and then the differences on the Bergman spaces with Békollé weights.
Our main results can be regarded as a generalization of [6] and [20, 21] in the Békollé weights
settings. Inspired by the ideas of [7] and [26], we mainly apply the Bergman projection in
[1] and employ some results on Carleson measures in [4, 5, 19] to overcome the obstacles. In
[21], Saukko’s proof of difference when 0 < q < p < ∞ is base on the atomic decomposition
and interpolation. Unfortunately, these keys are not available for the high dimensional cases.
Inspired by the ideas of [24], we mainly apply joint pull-back measure, Carleson embedding
theorem, and Khinchine inequality to overcome it. At the same time, Saukko pointed out that,
by Pitt’s theorem, the operator Cϕ −Cψ : Ap

b → Lq(µ) is compact whenever it is bounded for
1 < q < p < ∞. In fact, we can prove that it is true for full range 0 < q < p < ∞ on the weighted
Bergman spaces with Békollé weights in the open unit ball.

Now, we introduce our main results first. All the notations will be specified in Sections 2 and
3. The first two results are on the essential norms of weighted composition operators.

Theorem 1.1. Suppose 1 < p≤ q < ∞, 0 < r < 1, 1 < p0 ≤ q, b >−1, and u ∈ Bp0,b. Let v be
an analytic function on Bn and ϕ an analytic self mapping of Bn such that vCϕ : Ap

b(u)→ Aq
b(u)

is bounded. Then

‖vCϕ : Ap
b(u)→ Aq

b(u)‖
q
e .

∥∥∥(µ
q,u,b
v,ϕ

)
δ

∥∥∥
r,Geo

.
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Theorem 1.2. Let 1 < p ≤ q < ∞, 1 < p0 ≤ p, b > −1, and u ∈ Bp0,b. Suppose that v is a
measurable function on Bn and vCϕ is bounded from Ap

b(u) into Lq
b(u). Then

‖vCϕ : Ap
b(u)→ Lq

b(u)‖e ' limsup
|w|→1

‖vCϕ(gs
w)‖Lq

b(u)
,

where s≥ (n+1+b)p0/p and gs
w is the test function as (2.5).

We next characterize the differences of composition operators by the following two theorems.

Theorem 1.3. Let 0 < p ≤ q < ∞, 0 < r < 1, p0 > 1, b > −1, u ∈ Bp0,b, and positive r small
enough. Suppose that ϕ and ψ are holomorphic self mappings of Bn. Then

Cϕ −Cψ : Ap
b(u)→ Aq

b(u)

is bounded if and only if σCϕ and σCψ are bounded from Ap
b(u) into Lq

b(u). Furthermore,
(i):

‖Cϕ −Cψ‖Ap
b(u)→Aq

b(u)
'max

{∥∥∥µ
q,u,b
σ ,ϕ

∥∥∥
r,Geo

,
∥∥∥µ

q,u,b
σ ,ψ

∥∥∥
r,Geo

}
;

(ii): if 1 < p0 ≤ p, then

‖Cϕ −Cψ‖Ap
b(u)→Aq

b(u),e
'max

{
lim
δ→1

∥∥∥(µ
q,u,b
σ ,ϕ

)
δ

∥∥∥
r,Geo

, lim
δ→1

∥∥∥(µ
q,u,b
σ ,ψ

)
δ

∥∥∥
r,Geo

}
.

We now introduce the joint pull-back measure ωµ,q on Bn defined by

ωµ,q(E) =
∫

ϕ−1(E)
σ(z)qdµ(z)+

∫
ψ−1(E)

σ(z)qdµ(z)

for all Borel sets E in Bn. This measure, which first appeared in [12, Theorem 1.1], satisfies the
key property that ∥∥σCϕ f

∥∥q
Lq(µ)

+
∥∥σCψ f

∥∥q
Lq(µ)

=
∫
Bn

| f (z)|qdωµ,q(z). (1.1)

The above equality is from [11, p.163].

Theorem 1.4. Let 0 < q < p < ∞, 0 < r < 1, p0 > 1, b > −1, and u ∈ Bp0,b. Let µ be a finite
positive Borel measure on Bn, and let ϕ and ψ be holomorphic self mappings of Bn. Then the
following are equivalent:

(i): The operator Cϕ −Cψ : Ap
b(u)→ Lq(µ) is bounded;

(ii): The operator Cϕ −Cψ : Ap
b(u)→ Lq(µ) is compact;

(iii): The joint pull-back measure ωµ,q is a q-Carleson measure.

The paper is organized as follows. the Békollé weights condition and related weighted
Bergman spaces are introduced in Section 2. We also give some key lemmas, which will be
used frequently in the later sections. In Section 3, we apply Carleson embedding theorems
to estimate the essential norms of weighted composition operators in terms of both geometric
norms of pullback measures and test functions. In Section 4, we investigate the differences
of composition operators when 0 < p ≤ q < ∞. Our main result, Theorem 1.3, illustrates the
equivalence between the norms of the differences and the norms of the pullback measures. In
Section 5, we investigate the boundedness and compactness of differences for composition op-
erators when 0 < q < p < ∞. The methods are different from the standard weighted Bergman
spaces.
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Throughout the paper, for real positive quantities Q1 and Q2, we write Q1 .Q2 (or Q2 &Q1)
if there is a positive constant C such that Q1 ≤C ·Q2. And we write Q1 ' Q2 if Q1 . Q2 and
Q1 & Q2.

2. PRELIMINARIES

If µ is a positive measure on Bn and p > 0, we denote Lp(µ) the Lebesgue space over Bn
with respect to µ . That is, Lp(µ) consists of all functions f defined on Bn for which

‖ f‖Lp(µ) :=
[∫

Bn

| f (z)|pdµ(z)
]1/p

< ∞.

When p≥ 1, ‖ · ‖Lp(µ) defines a norm and Lp(µ) becomes a Banach space.
Let dV denotes the standard Lebesgue measure on Bn. For b >−1, the constant cb is chosen

so that
∫
Bn

cb(1− |z|2)bdV (z) = 1. We define dνb(z) = cb(1− |z|2)bdV (z). If u is a positive
locally integrable function on Bn, i.e. positive u ∈ L1

loc(dνb), we let Lp
b(u) denote the space of

measurable functions on Bn that are pth power integrable with respect to udνb. That is,

‖ f‖Lp
b (u)

:=
(∫

Bn

| f (z)|pu(z)dνb(z)
)1/p

< ∞.

The Bergman space Ap
b(u) is defined to be a subspace of analytic functions in Lp

b(u) with Lp
b(u)-

norm. We write Ap(u) = Ap
0(u) for short. The most common reproducing kernel for the unit

ball has the form

Ks
w(z) =

1
(1−〈z,w〉)n+1+s ,

where 〈z,w〉= ∑
n
i=1 w̄izi for w = (w1, . . . ,wn) ∈ Bn and z = (z1, . . . ,zn) ∈ Bn, and it corresponds

to the space A2(1).
The following notations are used throughout the paper. For a weight u and a Borel subset

E ⊂ Bn, we set ub(E) =
∫

E udνb, νb(E) =
∫

E dνb, and u(E) = u0(E), ν(E) = ν0(E) for short.
We use 11E to represent the characteristic function of E. We denote by

〈 f 〉dµ

E :=
∫

E f (z)dµ(z)
µ(E)

for integrable f and measure µ .
If we define Pb by

Pb f (z) =
∫
Bn

f (w)
(1−〈z,w〉)n+1+b dνb(w).

The problem of characterizing the weights for which the Bergman projection Pb is a bounded
orthogonal projection from Lp0

b (u) to Ap0
b (u) was solved by Békollé [1] who found that these

weights are precisely u ∈ Bp0,b.
Bp0,b condition. The Carleson tent over nonzero a ∈ Bn is defined to be the set:

Ta :=
{

z = (z1, . . . ,zn) ∈ Bn :
∣∣∣∣1− 〈z,a〉|a|

∣∣∣∣< 1−|a|
}
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where a = (a1, . . . ,an). The Carleson tent over 0 is Bn. We say u satisfies Bp0,b condition, or
u ∈ Bp0,b, if

[u]Bp0,b
:= sup

a∈Bn

〈u〉dνb
Ta

(
〈u−p′0/p0〉dνb

Ta

)p0−1
. 1,

where 1/p0 +1/p′0 = 1.
Let Φa be the involution of Bn, that is,

Φa(w) =
a−Pa(w)− saQa(w)

1−wā
,

where Pa(w) =
〈w,a〉
|a|2 z, Qa(w) = w−Pa(w), and sa =

√
1−|a|2. It is well known that Φa is a

biholomorphic mapping of Bn onto itself, also called an involution of Bn, with the following
properties (see [18]):

(i): Φa(0) = a, Φa(a) = 0;
(ii): Φa(Φa(z)) = z;
(iii): 1−|Φa(z)|2 = (1−|a|2)(1−|z|2)/|1−〈z,a〉|2;
(iv): 1−〈Φa(z),Φa(w)〉= (1−|a|2)(1−〈z,w〉)/(1−〈z,a〉)(1−〈a,w〉).

Recall that the pseudohyperbolic metric ρ : Bn×Bn → [0,1) is defined by ρ(z,w) = |Φz(w)|
for z,w ∈ Bn. We denote the pseudohyperbolic ball by Bρ(a,r) = {z ∈ Bn : ρ(z,a) < r}. It is
also well known that the pseudohyperbolic metric of Bn has the following properties (see [9]):
for z,w,a ∈ Bn and the unitary matrix U , we have

ρ(U(z),U(w)) = ρ(z,w), and

ρ(Φa(z),Φa(w)) = ρ(z,w), and

|ρ(z,a)−ρ(a,w)|
1−ρ(z,a)ρ(a,w)

≤ ρ(z,w)≤ ρ(z,a)+ρ(a,w)
1+ρ(z,a)ρ(a,w)

. (2.1)

We can define the so-called Bergman metric, β on Bn, by:

β (z,w) =
1
2

log
1+ρ(z,w)
1−ρ(z,w)

.

Let Bβ (z,r) be the ball in the Bergman metric of radius r centered at z. It is well known that for
w ∈ Bβ (z,arctanhr) (equivalently w ∈ Bρ(z,r)) there holds:

volbBβ (z,arctanhr)' |1− zw̄|n+1+b ' (1−|z|2)n+1+b ' (1−|w|2)n+1+b, (2.2)

where the constants depend only on r. (See [29].) We will make heavy use of these estimates.
We also need the following covering lemma in the proofs of the embedding theorem.

Lemma 2.1 (Theorem 2.23 in [29]). There exists a positive N such that for any 0 < r ≤ 1 we
can find a sequence {ak} in Bn with the following properties.

(1): Bn = ∪kBβ (ak,r);
(2): The set Bβ (ak,r/4) are mutually disjoint;
(3): Each point z ∈ Bn belongs to at most N of the sets Bβ (ak,2r).
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We will also use the following class of weights, which is denoted by Cp,b. For p > 1 and
b >−1, a positive locally integrable weights u belongs to Cp,b, or say u satisfies Cp,b condition
if

[u]Cp,b := sup
z∈Bn,r>0

〈u〉dνb
Bρ (z,r)

(
〈u−p′/p〉dνb

Bρ (z,r)

)p−1
. 1

where 1/p+ 1/p′ = 1. Condition Cp,b seems to depend on a choice of r < 1, but it is known
that the same class of weights is obtained for any r ∈ (0,1) and Bp,b ⊂Cp,b for every b > −1.
To see this, we note that, for a ∈ Bn and a given r > 0, there is a a′ ∈ Bn such that Bρ(a,r)⊂ Ta′

with comparable volumes; see more details in [14].
In the Békollé setting, two Bergman metric balls have comparable weighted volumes when

their centers are close enough.

Lemma 2.2. Let u ∈Cp,b for some p > 1, and let t,s ∈ (0,1) and z,w ∈ Bn with ρ(z,w)< r for
some r > 0. Then

ub(Bρ(z, t))' ub(Bρ(w,s)),

where the constant is independent of z and w.

Proof. Notice that if Bρ(z, t)⊂ Bρ(w,s), then u ∈Cp,b and ρ(z,w)< r imply that

ub(Bρ(z, t))1/p ≤ ub(Bρ(w,s))1/p . volb(Bρ(w,s))
[(

u−p′/p
)

b
(Bρ(w,s))

]− 1
p′

≤ volb(Bρ(w,s))
[(

u−p′/p
)

b
(Bρ(z, t))

]− 1
p′ .

volb(Bρ(w,s))
volb(Bρ(z, t))

ub(Bρ(z, t))1/p

' ub(Bρ(z, t))1/p.

We can easily see that both Bρ(z, t) and Bρ(w,s) are subsets of Bρ(w, t + s+ r), and hence

ub(Bρ(z, t)' ub(Bρ(w, t + s+ r))' ub(Bρ(w,s)).

�

Similarly, if u ∈ Bp0,b, it is worthy to be noted that

ub(Bρ(a,r))' ub(Ta′)

whenever Bρ(a,r)⊂ Ta′ with comparable volumes. Interested readers can refer to [14] and [29,
Lemma 5.23] for details.

The point evaluations on Ap
b(u) are bounded linear functionals for p > 0. To be more pre-

cisely, we have the following estimate. The proof is included for the completeness.

Lemma 2.3. If p > 0, p0 > 1,0 < r < 1, and a weight u ∈ Cp0,b, σ := u−p′0/p0 , we have the
following estimate

| f (z)|p . ub(Bρ(z,r))
−1
∫

Bρ (z,r)
| f (w)|pu(w)dνb(w).

‖ f‖p
Lp

b (u)

ub(Bρ(z,r))
,

where the constant involved is independent of z ∈ Bn.
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Proof. For any f ∈ Ap
b(u), by the subharmonicity of | f (z)|, one can obtain that

| f (z)|p/p0 .
1

volb(Bρ(z,r))

∫
Bρ (z,r)

| f (w)|p/p0dνb(w)

=
1

volb(Bρ(z,r))

∫
Bρ (z,r)

| f (w)|p/p0u1/p0(w) ·u−1/p0(w)dνb(w)

≤

[(
u−p′0/p0

)
b
(Bρ(z,r))

]1/p′0

volb(Bρ(z,r))

(∫
Bρ (z,r)

| f (w)|pu(w)dνb(w)
)1/p0

.
1

ub(Bρ(z,r))
1
p0

(∫
Bρ (z,r)

| f (w)|pu(w)dνb(w)
)1/p0

,

where the last inequality follows by the fact that u ∈Cp0,b. That completes the proof. �

The following lemma will be used to connect the difference of composition operators with
weighted composition operators, which is analogues to [15, Lemma 3.5].

Lemma 2.4. Let 0 < p ≤ q < ∞, p0 > 1, b > −1, 0 < r < 1, and the weight u ∈ Cp0,b. Then
there exist constants C =C(b,r, p) and R′ = R′(r) such that

| f (z)− f (a)|q ≤Cρ(z,a)q

∫
Bρ (a,R′) | f (w)|

pu(w)dνb(w)

ub(Bρ(a,R′))q/p

for z,a such that ρ(z,a)< r, where f ∈ Ap
b(u) with ‖ f‖Ap

b(u)
≤ 1.

Proof. We firstly prove the case when q = p. Let g = f ◦Φa, where Φa is the involution inter-
changing the origin and a. Hence f = g◦Φa, and

| f (z)− f (a)|= |g(Φa(z))−g(0)| ≤ |Φa(z)| sup
|ξ |<|Φa(z)|

|∇g(ξ )|,

where

∇g(ξ ) =
(

∂

∂ z1
g, . . . ,

∂

∂ zn
g
)
(ξ ).

Let R = 1+r
2 . According to Theorem 2.2 in [29], one has

g(Rξ ) =
∫
Bn

g(Rη)

(1−〈ξ ,η〉)n+1 dν(η), ∀ξ ∈ Bn.

Changing variables gives

g(ξ ) =
∫
Bn

g(Rη)(
1− 〈ξ ,η〉R

)n+1 dν(η) = R2
∫

RBn

g(η)

(R2−〈ξ ,η〉)n+1 dν(η).
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Then we have ∣∣∣∣ ∂

∂ z j
g(ξ )

∣∣∣∣= ∣∣∣∣R2
∫

RBn

g(η)(n+1)η̄ j

(R2−〈ξ ,η〉)n+2 dν(η)

∣∣∣∣
≤(n+1)

(
1+ r

2

)2( 4
1− r2

)n+2 ∫
RBn

|g(η)|dν(η)

≤Cr sup
|η |<R
|g(η)|.

It follows that
|∇g(ξ )|p ≤ np/2Cr sup

|η |<R
|g(η)|p

for every |ξ |< r. Hence

| f (z)− f (a)|p ≤ |Φa(z)|p sup
|ξ |<|Φa(z)|

|∇g(ξ )|p (2.3)

≤np/2Cr|Φa(z)|p sup
|η |<R
|g(η)|p = np/2Cr|Φa(z)|p sup

|Φa(ζ )|<R
| f (ζ )|p.

For every ζ ∈ Bn with ρ(a,ζ ) < R = (1+ r)/2, we let R′ = 1+3r
2+r+r2 . According to the strong

triangle inequality (2.1), it is easy to find that ρ(ζ ,a) < (1+ r)/2 and ρ(ζ ,ω) < r imply that
ρ(a,ω)< (1+r)/2+r

1+r(1+r)/2 = R′. By Lemma 2.3 and Lemma 2.2 we have

| f (ζ )|p . 1
ub(Bρ(ζ ,r))

∫
ρ(ζ ,ω)<r

| f (ω)|pu(ω)dνb(ω) (2.4)

.
1

ub(Bρ(a,R′))

∫
ρ(a,ω)<R′

| f (ω)|pu(ω)dνb(ω).

The inequality that we need can be obtained by plugging (2.4) into (2.3). The case when q > p
can be proved by the fact that | f (z)− f (a)|q = (| f (z)− f (a)|p)q/p and ‖ f‖Ap

b(u)
≤ 1. �

2.1. Carleson measures. Carleson measure plays a role in the study of composition operators.
Let p,q > 0. A positive Borel measure µ on Bn is called a q-Carleson measure for Ap

b(u) if the
embedding I : Ap

b(u)→ Lq(dµ) is bounded. If s > 0, we denote

Gs
w(z) = (1−〈z,w〉)−s z,w ∈ Bn.

The following Lemma is from [25, lemma 2.4].

Lemma 2.5. Let p > 0, p0 > 1, b >−1, and the weight u ∈ Bp0,b. Then

ub(Tw)
1
p

(1−|w|)s . ‖G
s
w‖Lp

b (u)
.

ub(Tw)
1
p

(1−|w|)max{(n+1+b)p0/p,s}

where the constant involved is independent of w ∈ Bn.

Let u ∈ Bp0,b. If s≥ (n+1+b)p0/p, we denote by

gs
w =

(1−|w|)s

ub(Bρ(w,r))1/p
Gs

w, (2.5)
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and then

‖gs
w‖Lp

b (u)
'
∥∥∥∥ (1−|w|)s

ub(Tw′)1/p
Gs

w′

∥∥∥∥
Lp

b (u)
' 1

for some w′ with 1−|w| ' 1−|w′|, which can be derived from [29, Lemma 5.23].
Boundedness and compactness of the embedding I : Ap

b(u)→ Lq(dµ) when 0 < p,q < ∞ are
characterized in [25] and we summarize them as below lemmas.

Lemma 2.6. Let q≥ p > 0, p0 > 1, u ∈ Bp0,b is a weight, and µ is a positive Borel measure on
Bn. Then the following conditions are equivalent

(a): I : Ap
b(u)→ Lq(dµ) is bounded, that is,(∫

Bn

| f (z)|qdµ(z)
)1/q

.

(∫
Bn

| f (z)|pu(z)dνb(z)
)1/p

for all holomorphic f in Bn;
(b): µ(Ta). ub(Ta)

q/p for all a ∈ Bn;
(c): there is a r > 0 such that µ(Bβ (a,r)). ub(Bβ (a,r))q/p for all a ∈ Bn;
(d): there is a r > 0 such that µ(Bβ (ak,r)) . ub(Bβ (ak,r))q/p for the sequence {ak} de-

scribed in Lemma 2.1;
(e): whenever s≥ (n+1+b)p0/p,

sup
w∈Bn

∫
Bn

∣∣∣∣ 1−|w|2

1−〈z,w〉

∣∣∣∣qs

ub(Bβ (w,r))
−q/pdµ(z). 1.

Lemma 2.7. Let u ∈ Bp0,b for some p0 > 1, and let µ be a positive finite Borel measure on Bn.
If p > q > 0, then the embedding from Ap

b(u) into Lq( dµ) is bounded. To be more precisely,∫
Bn

| f (z)|q dµ(z). ‖ f‖q
Ap

b(u)

if and only if the function

Bn 3 z 7→
µ
(
Bρ(z,r)

)
ub
(
Bρ(z,r)

)
belongs to L

p
p−a
b (u) for some r ∈ (0,1).

Lemma 2.8. Let 0 < p≤ q < ∞, 0 < r < 1, p0 > 1, b >−1, and u ∈ Bp0,b. Let µ be a positive
Borel measure on Bn. Then the following assertions are equivalent:

(a): the embedding I : Ap
b(u)→ Lq(dµ) is compact, that is,

lim
k→∞

∫
D
| fk(z)|qdµ(z) = 0

whenever { fk} is bounded in Ap
b(u) that converges to 0 uniformly on compact subsets of

Bn;
(b): let Ta = {z ∈ Bn : |1−〈z,a/|a|〉|< 1−|a|},

lim
|a|→1

µ(Ta)

ub(Ta)q/p
= 0;
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(c): let Bβ (a,r) be the Bergman metric ball,

lim
|a|→1

µ(Bβ (a,r))

ub(Bβ (a,r))q/p
= 0;

(d):

lim
k→∞

µ(Bβ (ak,r))

ub(Bβ (ak,r))q/p
= 0,

where {ak} is the sequence described in Lemma 2.1.

Lemma 2.9. Let p > q > 0, r > 0, u ∈ Bp0,b be a weight and µ be a positive Borel measure on
Bn. Then the embedding I : Ap

b(u)→ Lq(dµ) is compact if and only if I is bounded.

3. WEIGHTED COMPOSITION OPERATORS

The embedding theorem can be applied to weighted composition operators. For a q-Carleson
measure on Ap

b(u), we denote by

‖µ‖q
Oper := sup

‖ f‖Ap
b (u)
≤1

∫
Bn

| f (z)|qdµ(z).

Suppose that v : Bn→ C is a measurable function and ϕ is an analytic self mapping of Bn. We
define the pullback measure µ

q,u,b
v,ϕ of v and ϕ by

µ
q,u,b
v,ϕ (E) :=

∫
ϕ−1(E)

|v(z)|qu(z)dνb(z)

for a Borel set E ⊂ Bn. The geometric norm of the pullback measure µ
q,u,b
v,ϕ is defined by∥∥∥µ

q,u,b
v,ϕ

∥∥∥
r,Geo

:= sup
w∈Bn

µ
q,u,b
v,ϕ (Bβ (w,r))

ub(Bβ (w,r))q/p
,

where Bβ (w,r) is the Bergman metric ball of radius r centered at w.
The following result is a direct consequence of Carleson embedding theorem.

Corollary 3.1. Let 0 < p ≤ q < ∞, 0 < r < 1, p0 > 1, b > −1, and u ∈ Bp0,b. Let v be a
measurable function on Bn and ϕ an analytic self mapping of Bn. Then the following are
equivalent:

(i): The weighted composition operator vCϕ : Ap
b(u)→ Lq

b(u) is bounded;
(ii): the geometric norm of the pullback measure µ

q,u,b
v,ϕ is finite, that is,∥∥∥µ

q,u,b
v,ϕ

∥∥∥
r,Geo

< ∞;

(iii): let gs
w be defined as equation (2.5), then

sup
w∈D

∥∥vCϕ(gs
w)
∥∥q

Lq
b(u)

< ∞.

Furthermore, ‖vCϕ‖q
Ap

b(u)→Lq
b(u)

and
∥∥∥µ

q,u,b
v,ϕ

∥∥∥
r,Geo

, and the quantity in (iii) are comparable.
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We denote µδ (E) := µ((Bn\δBn)∩E) for δ ∈ (0,1) and positive Borel measure µ . It is clear
that µδ is a Carleson measure if µ is a Carleson measure. We are going to estimate the essential
norm of weighted composition operators between Bergman spaces with Békollé weights by the
pullback measures. That is to prove Theorem 1.1.

Proof of Theorem 1.1. For 0 < δ < 1, we define Mϕ

δ
: Ap

b(u)→ Lp
b(u) by

Mϕ

δ
f (z) = 11ϕ−1(δBn)

(z) f (z).

It is easy to see that every Mϕ

δ
is compact since ϕ is analytic on Bn. Recall that Pb is a projection

from Lq
b(u) onto Aq

b(u) when u ∈ Bp0,b ⊂ Bq,b for q ≥ p0. Now we can estimate the essential
norm of vCϕ as follows

‖vCϕ : Ap
b(u)→ Aq

b(u)‖
q
e

= inf{‖vCϕ −K : Ap
b(u)→ Aq

b(u)‖ : K is compact}q

≤
∥∥vCϕ −PbMϕ

δ
(vCϕ) : Ap

b(u)→ Aq
b(u)

∥∥q

= sup
‖ f‖Ap

b (u)
≤1
‖Pb(I−Mϕ

δ
)vCϕ( f )‖q

Aq
b(u)

≤‖Pb : Lq
b(u)→ Aq

b(u)‖
q sup
‖ f‖Ap

b (u)
≤1

∫
Bn\ϕ−1(δBn)

|v(z) f (ϕ(z))|qu(z)dνb(z)

. sup
‖ f‖Ap

b (u)
≤1

∫
ϕ−1(Bn\δBn)

|v(z) f (ϕ(z))|qu(z)dνb(z).

Since vCϕ is bounded from Ap
b(u) to Lq

b(u), the pullback measure µ
q,u,b
v,ϕ is a Carleson measure,

so is
(

µ
q,u,b
v,ϕ

)
δ

for any δ ∈ (0,1). Combining this fact with Lemma 2.3 and Fubini’s Theorem,
we have ∫

ϕ−1(Bn\δBn)
|v(z) f (ϕ(z))|qu(z)dνb(z)

.
∫
Bn

11ϕ−1(Bn\δBn)
|v(z)|q

∫
Bβ (ϕ(z),r)

| f (w)|qu(w)dνb(w)

ub(Bβ (ϕ(z),r))
u(z)dνb(z)

'
∫
Bn

| f (w)|q
∫

ϕ−1(Bβ (w,r)∩(Bn\δBn))
|v(z)|qu(z)dνb(z)

ub(Bβ (w,r))
u(w)dνb(w)

=
∫
Bn

| f (w)|q

(
µ

q,u,b
v,ϕ

)
δ
(Bβ (w,r))

ub(Bβ (w,r))q/p
ub(Bβ (w,r))

q−p
p u(w)dνb(w)

≤
∥∥∥(µ

q,u,b
v,ϕ

)
δ

∥∥∥
r,Geo

∫
Bn

| f (w)|p
[
| f (w)|ub(Bβ (w,r))

1/p
]q−p

u(w)dνb(w)

≤
∥∥∥(µ

q,u,b
v,ϕ

)
δ

∥∥∥
r,Geo
‖ f‖p

Ap
b(u)
‖ f‖q−p

Ap
b(u)

=
∥∥∥(µ

q,u,b
v,ϕ

)
δ

∥∥∥
r,Geo
‖ f‖q

Ap
b(u)

,

which completes the proof. �
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In the rest of this section, we are going to characterize the essential norm of weighted com-
position operators in terms of test functions. We firstly prove two key lemmas which will be
used to get the main result of this section.

Lemma 3.1. Let 0 < p ≤ q < ∞, p0 > 1, u ∈ Bp0,b, and δ ∈ (0,1). Suppose that a positive
measure µ on Bn is a q-Carleson measure for Ap

b(u). Then µδ is also a q-Carleson measure for
Ap

b(u). Moreover, for any fixed 0 < ε < 1 and s≥ (n+1+b)p0/p, we have

‖µδ‖
q
Oper . sup

w∈Bn\(1−ε)δBn

∫
Bn

|gs
w(z)|qdµ(z).

Proof. For z ∈ Bn \δBn, we have ρ(z,0) = |z| ≥ δ . For 0 < ε < 1 fixed, ρ(w,z) < εδ implies
that

ρ(w,0)≥ ρ(z,0)−ρ(w,z)> δ (1− ε).

Keeping this fact in mind, we have that

‖µδ‖
q
Oper = sup

‖ f‖Ap
b (u)
≤1

∫
Bn

| f (z)|qdµδ (z)

. sup
‖ f‖Ap

b (u)
≤1

∫
Bn

(
1

ub(Bρ(z,δε))

∫
Bρ (z,δε)

| f (w)|pu(w)dνb(w)
)q/p

dµδ (z)

= sup
‖ f‖Ap

b (u)
≤1

∫
Bn

(∫
Bn

11Bρ (z,δε)(w)

ub(Bρ(z,δε))
| f (w)|pu(w)dνb(w)

)q/p

dµδ (z)

. sup
‖ f‖Ap

b (u)
≤1

∫
Bn

(∫
Bn

11Bρ (z,δε)(w)

ub(Bρ(z,δε))q/p
| f (w)|qdµδ (z)

)p/q

u(w)dνb(w)

q/p

' sup
‖ f‖Ap

b (u)
≤1

∫
Bn

 ∫
Bρ (w,δε)

1
ub(Bρ(w,δε))q/p

dµδ (z)


p/q

| f (w)|pu(w)dνb(w)


q/p

' sup
‖ f‖Ap

b (u)
≤1

∫
Bn

 ∫
Bρ (w,δε)

(1−|w|)qs|1−〈z,w〉|−qs

ub(Bρ(w,δε))q/p
dµδ (z)


p/q

| f (w)|pu(w)dνb(w)


q/p

≤ sup
‖ f‖Ap

b (u)
≤1

(
sup

w∈Bn\(1−ε)δBn

∫
Bn

|gs
w(z)|qdµ(z)

)
· ‖ f‖q

Ap
b(u)

,

where the first inequality follows from Lemma 2.3; the second inequality follows from Minkowski’s
inequality for integrals; the fifth line follows from the fact that 11Bρ (z,r)(w) = 11Bρ (w,r)(z) and
Lemma 2.2; the sixth line follows from the equation (2.2), and the last inequality follows from
the observation in the beginning of the proof. �
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Lemma 3.2. Let 1 < p0 ≤ p < ∞, b > −1, and u ∈ Bp0,b. Suppose that Pb is the Bergman
projection from Lp

b(u) into Ap
b(u). Then, for f ∈ Ap

b(u),

lim
δ→1−

sup
‖ f‖Ap

b (u)
≤1
|Pb( f −11δBn f )(w)|= 0

uniformly on compact subsets of Bn.

Proof. Using Hölder’s inequality for f ∈ Ap
b(u) with ‖ f‖Ap

b(u)
≤ 1 and noting that w is in a

compact subset of Bn, we have

|Pb( f −11δBn f )(w) =
∣∣∣∣∫Bn\δBn

f (z)
(1−〈z,w〉)n+1+b dνb(z)

∣∣∣∣
≤
(∫

Bn\δBn

| f (z)|pu(z)dνb(z)
)1/p

·

(∫
Bn\δBn

u−p′/p(z)dνb(z)
|1−〈z,w〉|p′(n+1+b)

)1/p′

.

(∫
Bn\δBn

u−p′/p(z)dνb(z)
)1/p′

· ‖ f‖Ap
b(u)

where p′ = p/(p−1). By Lemma 4 in [1], the conjugate weight u−p′/p is integrable. Hence,

sup
‖ f‖Ap

b (u)
≤1
|Pb( f −11δBn)(w)|.

(
u−p′/p

)
b
(Bn \δBn)

1/p′ → 0

as δ → 1, which completes the proof. �

Now we can estimate the essential norm in terms of test functions. That is prove Theorem
1.2.

Proof of Theorem 1.2. We firstly note that gs
w converges to 0 uniformly on compact subsets of

Bn as |w| → 1 whenever s ≥ (n+ 1+ b)p0/p. For any compact operator K : Ap
b(u)→ Lq

b(u),
one has ‖K gs

w‖Lq
b(u)
→ 0 as |w| → 1. Therefore,

‖vCϕ −K ‖Ap
b(u)→Lq

b(u)
& limsup
|w|→1

‖(vCϕ −K )gs
w‖Lq

b(u)

≥ limsup
|w|→1

(
‖(vCϕ)gs

w‖Lq
b(u)
−‖K gs

w‖Lq
b(u)

)
= limsup
|w|→1

‖(vCϕ)gs
w‖Lq

b(u)
.

Hence the essential norm ‖vCϕ‖Ap
b(u)→Lq

b(u),e
equals to

inf
{
‖vCϕ −K ‖Ap

b(u)→Lq
b(u)

: K is compact
}
≥ limsup
|w|→1

‖(vCϕ)gs
w‖Lq

b(u)
.

To prove the contrary inequality, it is easy to see that (11κBn ·) : Ap
b(u)→ Lp

b(u) is compact for
any 0 < κ < 1. And we define Tκ : Ap

b(u)→ Lq
b(u) by

Tκ( f ) = vCϕPb(11κBn f ),
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where κ ∈ (0,1) and the Bergman projection Pb : Lp
b(u)→ Ap

b(u). Hence Tκ is compact. For
any f ∈ Ap

b(u) with norm 1, we have

‖(vCϕ −Tκ) f‖q
Lq

b(u)
=
∫
Bn

|vCϕ f (w)− vCϕPb(11κBn(w) f (w))|qu(w)dνb(w)

≤
∫
Bn

| f (w)−Pb(11κBn f )(w)|qdµ
q,u,b
v,ϕ (w)

=

(∫
δBn

+
∫
Bn\δBn

)
|Pb( f −11κBn f )(w)|qdµ

q,u,b
v,ϕ (w)

:=I1 + I2

where 0 < δ < 1. Item I1 can be estimated by Lemma 3.2. Indeed, for any ε > 0, there exists a
0 < κ0 < 1 so that, for any κ ∈ (κ0,1), sup‖ f‖Ap

b (u)
≤1I1 < ε.

To estimate I2, noting that
(

µ
q,u,b
v,ϕ

)
δ

is also an q-Carleson measure for Ap
b(u), we have

I2 =
∫
Bn

|Pb( f −11κBn f )(w)|qd
(

µ
q,u,b
v,ϕ

)
δ
(w)

≤
∥∥∥(µ

q,u,b
v,ϕ

)
δ

∥∥∥q

Oper
· ‖Pb( f −11κBn f )‖q

Ap
b(u)

≤
∥∥∥(µ

q,u,b
v,ϕ

)
δ

∥∥∥q

Oper
· ‖(1−11κBn) f‖q

Ap
b(u)
· ‖Pb‖q

Lp
b (u)→Ap

b(u)

≤
∥∥∥(µ

q,u,b
v,ϕ

)
δ

∥∥∥q

Oper
· ‖Pb‖q

Lp
b (u)→Ap

b(u)
.

Combining the estimate above, for any fixed 0 < δ < 1, whenever κ0 < κ < 1, we see that

‖vCϕ −Tκ‖q
Ap

b(u)→Lq
b(u)

= sup
‖ f‖Ap

b (u)
≤1
‖(vCϕ −Tκ) f‖q

Lq
b(u)

≤ ε +
∥∥∥(µ

q,u,b
v,ϕ

)
δ

∥∥∥q

Oper
‖Pb‖q

Lp
b (u)→Ap

b(u)
.

Since ε is arbitrary, the essential norm of vCϕ : Ap
b(u)→ Lq

b(u) can be controlled by

inf
κ
‖vCϕ −Tκ‖Ap

b(u)→Lq
b(u)
≤
∥∥∥(µ

q,u,b
v,ϕ

)
δ

∥∥∥q

Oper
‖Pb‖q

Ap
b(u)→Lq

b(u)

for any 0 < δ < 1. By letting δ → 1−, we obtain that

‖vCϕ‖Ap
b(u)→Lq

b(u),e
≤ ‖Pb‖Lp

b (u)→Ap
b(u)
· limsup

δ→1−

∥∥∥(µ
q,u,b
v,ϕ

)
δ

∥∥∥q

Oper
.

To complete the proof, we use Lemma 3.1 to conclude that

‖vCϕ‖q
Ap

b(u)→Lq
b(u),e

. limsup
|w|→1−

∫
Bn

|gs
w(z)|qdµ

q,u,b
v,ϕ (z)

= limsup
|w|→1−

∫
Bn

|v(z)|q|gs
w(ϕ(z))|qu(z)dνb(z)

= limsup
|w|→1−

‖vCϕ(gs
w)‖

q
Lq

b(u)
.

�
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4. THE PROOF OF THEOREM 1.3

In this section, we characterize the boundedness, compactness, the operator norm, and the
essential norm of the difference Cϕ −Cψ when 0 < p ≤ q < ∞. That is to prove Theorem 1.3.
We divide the proof into the following 4 propositions: Proposition 4.1 to Proposition 4.4. We
first look into the upper bound of the operator norm and the essential norm.

Proposition 4.1. Let 0 < p≤ q < ∞, 0 < r < 1, p0 > 1, b >−1, and u ∈ Bp0,b. Suppose that ϕ

and ψ are analytic self mappings of Bn. We denote by σ := ρ(ϕ,ψ). If the operators σCϕ and
σCψ map Ap

b(u) into Lq
b(u), then the difference operator Cϕ −Cψ is bounded from Ap

b(u) into
Aq

b(u) with

‖Cϕ −Cψ‖q
Ap

b(u)→Aq
b(u)
.max

{∥∥∥µ
q,u,b
σ ,ϕ

∥∥∥
R′,Geo

,
∥∥∥µ

q,u,b
σ ,ψ

∥∥∥
R′,Geo

}
,

where the involved constants depend only on R′ and r.

Proof. Denote by E = {z ∈ Bn : σ(z)≥ r} and E ′ = Bn \E. Then

‖(Cϕ −Cψ)‖q
Ap

b(u)→Aq
b(u)

=
∫
Bn

|(Cϕ −Cψ) f (z)|qu(z)dνb(z)

=
∫

E
|(Cϕ −Cψ) f (z)|qu(z)dνb(z)+

∫
E ′
|(Cϕ −Cψ) f (z)|qu(z)dνb(z) := E +E ′.

According to the triangle inequality, we have

E =
∫

E
|(Cϕ −Cψ) f (z)|qu(z)dνb(z)

.
∫

E
|(σCϕ) f (z)|qu(z)dνb(z)+

∫
E
|(σCψ) f (z)|qu(z)dνb(z)

≤ ‖σCϕ‖q
Ap

b(u)→Lq
b(u)

+‖σCψ‖q
Ap

b(u)→Lq
b(u)

whenever ‖ f‖Ap
b(u)
≤ 1. By Corollary 3.1, item E can be controlled by∥∥∥µ

q,u,b
σ ,ϕ

∥∥∥
R′,Geo

+
∥∥∥µ

q,u,b
σ ,ψ

∥∥∥
R′,Geo

.

By Lemma 2.4 and Fubini’s theorem we have

E ′ =
∫

E ′
| f (ϕ(z))− f (ψ(z))|qu(z)dνb(z)

.
∫

E ′
σ(z)q

∫
ρ(ϕ(z),ω)<R′ | f (ω)|pu(ω)dνb(ω)

ub(Bρ(ϕ(z),R′))q/p
u(z)dνb(z)

.
∫
Bn

| f (ω)|p
∫

ϕ−1({ρ(z,ω)<R′})∩E ′ σ(z)qu(z)dνb(z)

ub(Bρ(ω,R′))q/p
u(ω)dνb(ω)

≤ ‖ f‖p
Ap

b(u)

∥∥∥µ
q,u,b
σ ,ϕ

∥∥∥
R′,Geo

.

Combining the above estimates for E and E ′, we see that the upper bound for the norm of
Cϕ −Cψ

‖Cϕ −Cψ‖q
Ap

b(u)→Aq
b(u)
.max

{∥∥∥µ
q,u,b
σ ,ϕ

∥∥∥
R′,Geo

,
∥∥∥µ

q,u,b
σ ,ψ

∥∥∥
R′,Geo

}
.
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�

To see the upper bound of the essential norm of the difference, the method for the standard
weighted Bergman spaces in [20] does not work any longer.

Proposition 4.2. Let 1 < p0 ≤ p≤ q < ∞, b >−1, and u ∈ Bp0,b. Suppose that ϕ,ψ and σ are
the same as in Proposition 4.1. Then

‖Cϕ −Cψ‖q
Ap

b(u)→Aq
b(u),e

.max
{

lim
δ→1

∥∥∥(µ
q,u,b
σ ,ϕ

)
δ

∥∥∥
r,Geo

, lim
δ→1

∥∥∥(µ
q,u,b
σ ,ϕ

)
δ

∥∥∥
r,Geo

}
.

Proof. Let Pb be the Bergman projection from Lp
b(u) to Ap

b(u). We have

‖Cϕ −Cψ‖q
Ap

b(u)→Aq
b(u),e

= inf
{
‖Cϕ −Cψ −K ‖q

Ap
b(u)→Aq

b(u)
: K is compact

}
≤‖(Cϕ −Cψ)− (Cϕ −Cψ)Pb(11κBn·)‖

q
Ap

b(u)→Aq
b(u)

= sup
‖ f‖Ap

b (u)
≤1

∫
Bn

|(Cϕ −Cψ)Pb[(1−11κBn) f ](z)|qu(z)dνb(z).

Denote by E = {z ∈ Bn : σ(z)≥ r} and E ′ = Bn \E. Then the integral in the expression above
can be divided into the following two parts(∫

E
+
∫

E ′

)
|(Cϕ −Cψ)Pb[(1−11κBn) f ](z)|qu(z)dνb(z) := E +E ′.

We apply the triangle inequality to estimate E . With the analogous arguments in the proof of
Theorem 1.2, the first part E can be dominated by∫

E
|(σCϕ)Pb[(1−11κBn) f ](z)|qu(z)dνb(z)+

∫
E
|(σCψ)Pb[(1−11κBn) f ](z)|qu(z)dνb(z)

.
∥∥∥(µ

q,u,b
σ ,ϕ

)
δ

∥∥∥q

Oper
+
∥∥∥(µ

q,u,b
σ ,ψ

)
δ

∥∥∥q

Oper
'
∥∥∥(µ

q,u,b
σ ,ϕ

)
δ

∥∥∥q

r,Geo
+
∥∥∥(µ

q,u,b
σ ,ψ

)
δ

∥∥∥q

r,Geo
.

Now we turn to E ′. Let 0 < δ < 1 be arbitrary. By Lemma 3.2, we see that

lim
κ→1−

∫
E ′∩ϕ−1(δBn)

∣∣CϕPb[(1−11κBn) f ](z)
∣∣q u(z)dνb(z)

≤ lim
κ→1−

∫
δBn

|Pb[(1−11κBn) f ](w)|qdµ
q,u,b
1,ϕ (w) = 0.

By the strong triangle inequality (2.1), we find δ ′ ∈ (0,1) such that

E ′∩ϕ
−1(δBn)⊂ ϕ

−1(δ ′Bn).

Applying Lemma 3.2 one more time yields

lim
κ→1−

∫
E ′∩ϕ−1(δBn)

∣∣CϕPb[(1−11κBn) f ](z)
∣∣q u(z)dνb(z)

≤ lim
κ→1−

∫
ψ−1(δBn)

∣∣CϕPb[(1−11κBn) f ](z)
∣∣q u(z)dνb(z).
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Consequently, we note that Pb[(1− 11κBn)·] : Ap
b(u)→ Ap

b(u) are uniformly bounded for κ and
then

limsup
κ→1−

sup
‖ f‖Ap

b (u)
≤1

E ′ . sup
‖ f‖Ap

b (u)
≤1

∫
F
|(Cϕ −Cψ) f (z)|qu(z)dνb(z),

where F = E ′∩ϕ−1(Bn \δBn). Following Lemma 2.4 and Fubini’s theorem, we have∫
F
|(Cϕ −Cψ) f (z)|qu(z)dνb(z)

.
∫

F
σ

q(z)

∫
{w:ρ(ϕ(z),w)<R′} | f (w)|pu(w)dνb(w)

ub(Bρ(ϕ(z),R′))q/p
u(z)dνb(z)

.
∫
Bn

| f (w)|p
∫

ϕ−1({z:ρ(z,w)<R′})∩F σ(z)qu(z)dνb(z)

ub(Bρ(w,R′))q/p
u(w)dνb(w)

≤
∫
Bn

| f (w)|p
∫

ϕ−1({z:ρ(z,w)<R′})∩(Bn\δBn)
σ(z)qu(z)dνb(z)

ub(Bρ(w,R′))q/p
u(w)dνb(w)

≤‖ f‖p
Ap

b(u)

∥∥∥(µ
q,u,b
σ ,ϕ

)
δ

∥∥∥
r,Geo

.

Letting δ → 1 and using the above estimates, we arrive at

‖Cϕ −Cψ‖q
Ap

b(u)→Aq
b(u),e

≤ lim
κ→1−

sup
‖ f‖Ap

b (u)
≤1

E + lim
κ→1−

sup
‖ f‖Ap

b (u)
≤1

E ′

.max
{

lim
δ→1

∥∥∥(µ
q,u,b
σ ,ϕ

)
δ

∥∥∥
r,Geo

, lim
δ→1

∥∥∥(µ
q,u,b
σ ,ψ

)
δ

∥∥∥
r,Geo

}
.

That completes the proof. �

In the rest of the section, we prove the lower bound for the norm of the differences Cϕ −Cψ .

Lemma 4.1. Suppose 0 < r < 1. Then, for every w ∈ Bn,∣∣∣∣1− 1−〈z,a〉
1−〈w,a〉

∣∣∣∣& |a|ρ(z,w)
whenever a ∈ Bn and z ∈ Bρ(a,r).

Proof. Let a,z ∈ Bn such that ρ(a,z)< r. For every w ∈ Bn, we have that

|z−w|2 = |z− (Pz(w)+Qz(w))|2 = |z−Pz(w)|2 + |Qz(w)|2

≥ |z−Pz(w)|2 + |szQz(w)|2 = |z−Pz(w)− szQz(w)|2

where sz = (1−|z|2)1/2 < 1. It folows that∣∣∣∣1− 1−〈z,a〉
1−〈w,a〉

∣∣∣∣= |a| |z−w|
|1−〈z,w〉|

∣∣∣∣ 1−〈w,z〉1−〈w,a〉

∣∣∣∣& |a|ρ(z,w)
where the last inequality follows from the estimate above. �

We need the following lemma which is an analogue to [20, Lemma 4.4].
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Lemma 4.2. Let 0 < r < 1 and s > 0. Then, for a ∈ Bn, z ∈ Bρ(a,r), and w ∈ Bn,∣∣∣∣∣
(

1−|a|2

1−〈z,a〉

)s

−
(

1−|a|2

1−〈w,a〉

)s
∣∣∣∣∣& |a|ρ(z,w),

where the constant involved depends only on r and s.

Proof. For a,w ∈ Bn and z ∈ Bρ(a,r), we note that∣∣∣∣∣
(

1−|a|2

1−〈z,a〉

)s

−
(

1−|a|2

1−〈w,a〉

)s
∣∣∣∣∣=
∣∣∣∣ 1−|a|2

1−〈z,a〉

∣∣∣∣s ∣∣∣∣1−( 1−〈z,a〉
1−〈w,a〉

)s∣∣∣∣ .
By the same arguments as those in [20, Lemma 4.4], we can obtain the desired inequality.
Hence we omit the details here. �

Now we are ready to give the lower bound for the operator norm of the differences Cϕ −Cψ .

Proposition 4.3. Let 0 < p≤ q < ∞, 0 < r < 1/8, p0 > 1, b >−1, and u ∈ Bp0,b. Suppose that
ϕ and ψ are analytic self mappings of Bn such that Cϕ −Cψ is bounded from Ap

b(u) into Aq
b(u).

Then the operator norm of Cϕ −Cψ is bounded below by

‖Cϕ −Cψ‖Ap
b(u)→Aq

b(u)
&max

{∥∥∥µ
q,u,b
σ ,ϕ

∥∥∥
r,Geo

,
∥∥∥µ

q,u,b
σ ,ψ

∥∥∥
r,Geo

}
.

Proof. For s ≥ (n+ 1+ b)p0/p and fixed 0 < r < 1/8, let gs
w,r be the test function defined as

follows

gs
w,r =

(1−|w|)s

ub(Bρ(w,r))1/p
Gs

w.

Notice that ‖gs
w,r‖Ap

b(u)
' 1 by Lemma 2.5. It suffices to prove that

‖(Cϕ −Cψ)‖q
Ap

u(u)→Aq
b(u)
&

µ
q,u,b
σ ,ϕ (Bρ(w,r))

ub(Bρ(w,r))q/p

for every w ∈ Bn. Denote by gs
w = gs

w,1/2. Applying Lemma 4.2, one can calculate that

‖(Cϕ −Cψ)gs
w‖

q
Aq

b(u)

≥
∫

ρ(ϕ(z),w)< 1
2

∣∣∣∣∣
(

1−|w|2

1−〈ϕ(z),w〉

)s

−
(

1−|w|2

1−〈ψ(z),w〉

)s
∣∣∣∣∣
q

ub(Bρ(w,1/2))−q/pu(z)dνb(z)

&
∫

ρ(ϕ(z),w)< 1
2

|w|qσ(z)qub(Bρ(w,1/2))−q/pu(z)dνb(z).
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Note that, for 0 < r < 1/8,

‖Cϕ −Cψ‖Ap
b(u)→Aq

b(u)
≥ sup
|w|≥2−3

‖(Cϕ −Cψ)gs
w‖

q
Aq

b(u)

& sup
|w|≥2−3

∫
ϕ−1(Bρ (w,1/2))

σ(z)qu(z)dνb(z) ·ub(Bρ(w,1/2))−q/p

= sup
|w|≥2−3

µ
q,u,b
σ ,ϕ (Bρ(w,1/2))

ub(Bρ(w,1/2))q/p
& sup
|w|≥2−3

µ
q,u,b
σ ,ϕ (Bρ(w,r))

ub(Bρ(w,r))q/p
,

where the last inequality follows from Lemma 2.2 and the constant involved depends on r
but not on w. For every w ∈ Bρ(0,1/8), one can use triangle inequality (2.1) to conclude
Bρ(w,r)⊂ Bρ(w,1/8)⊂ Bρ(1/4,1/2). Again, we use the arguments above to have

sup
|w|<1/8

µ
q,u,b
σ ,ϕ (Bρ(w,r))

ub(Bρ(w,r))q/p
.

µ
q,u,b
σ ,ϕ (Bρ(1/4,1/2))

ub(Bρ(1/4,1/2))q/p
. ‖Cϕ −Cψ‖Ap

b(u)→Aq
b(u)

,

which completes the proof. �

Similarly, we can obtain the lower bound for the essential norm of the differences Cϕ −Cψ .

Proposition 4.4. Let 0 < p≤ q < ∞, 0 < r < 1/8, p0 > 1, b >−1, and u ∈ Bp0,b. Suppose that
ϕ and ψ are analytic self mappings of Bn such that Cϕ −Cψ is bounded from Ap

b(u) into Aq
b(u).

Then,

‖Cϕ −Cψ‖Ap
b(u)→Aq

b(u),e
&max

{
lim
δ→1

∥∥∥(µ
q,u,b
σ ,ϕ

)
δ

∥∥∥
r,Geo

, lim
δ→1

∥∥∥(µ
q,u,b
σ ,ψ

)
δ

∥∥∥
r,Geo

}
.

Proof. Let gs
w be the test function defined in (2.5). By the same process as those in Proposition

4.3 with some modifications, we have

limsup
|w|→1

‖(Cϕ −Cψ)gs
w‖Aq

b(u)
&max

{
lim
δ→1

∥∥∥(µ
q,u,b
σ ,ϕ

)
δ

∥∥∥
r,Geo

, lim
δ→1

∥∥∥(µ
q,u,b
σ ,ψ

)
δ

∥∥∥
r,Geo

}
.

Then the desired result follows by

‖Cϕ −Cψ‖Ap
b(u)→Aq

b(u),e
≥ limsup
|w|→1

‖(Cϕ −Cψ)gs
w‖Aq

b(u)
,

since gs
w converges to 0 uniformly on compact subsets of Bn. �

Summarizing Proposition 4.1, Proposition 4.2, Proposition 4.3, and Proposition 4.4, we con-
clude the proof of Theorem 1.3, which is a generalization of the standard weighted Bergman
spaces.

5. THE PROOF OF THEOREM 1.4

At the end of this paper, we study the boundedness and compactness of the difference Cϕ−Cψ

when 0 < q < p < ∞.
Khinchine inequality Consider a sequence of Rademacher functions rk(t); see [8, Appendix

A]. For almost every t ∈ (0,1), the sequence {γk(t)} consists of signs ±1. We state first the
classical Khinchine’s inequality; see [8, Appendix A].
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Khinchine’s inequality: Let 0 < p < ∞. Then, for any sequence {ck} of complex numbers,
we have (

∑
k
|ck|2

)p/2

'
∫ 1

0

∣∣∣∣∣∑k
ckrk(t)

∣∣∣∣∣
p

dt. (5.1)

Recall that if {ek} is an orthonormal basis of A2
b(u), then the Bergman kernel in A2

b(u) is given
by K(z,w) = ∑k ek(z)ek(w), and K(z,z) = ∑k |ek(z)|2 .

The following Lemma was given in [25, Lemma 4.1].

Lemma 5.1. Let p0 > 1 and u ∈ Bp0,b. Then there exists an r ∈ (0,1) such that K(z,z) '
ub
(
Bβ (z,r)

)−1
, z ∈ Bn.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. (ii) ⇒ (i) is obviously. First, we prove (i) ⇒ (iii). Let s ≥ (n+ 1+
b)p0/p. By (2.5), there exists a positive constant r < 1 such that the function

g̃s(z) :=
∞

∑
k=1

ck

ub(Bρ(ak,2r))1/p

(
1−|ak|

1−〈z,ak〉

)s

.

is in Ap
b(u), where {ak}∞

k=1 is any r-lattice and {ck}∞

k=1 is any sequence in lp. Moreover,

‖g̃s‖p
Ap

b(u)
' ‖{ck}‖p

lp =
∞

∑
k=1
|ck|p .

Put

g̃s
k(z) :=

1
ub(Bρ(ak,2r))1/p

(
1−|ak|

1−〈z,ak〉

)s

,

and let d =
∥∥Cϕ −Cψ

∥∥, which is finite by assumption. Then[∫
Bn

∣∣∣∣∣ ∞

∑
k=1

ck (g̃s
k(ϕ(z))− g̃s

k(ψ(z)))

∣∣∣∣∣
q

dµ(z)

]1/q

=
∥∥(Cϕ −Cψ

)
g̃s∥∥

Lq(µ)

≤ d‖g̃s‖Ap
b(u)

. d

(
∞

∑
k=1
|ck|p

)1/p

.

Replacing ck by ckrk(t), it follows that∫ 1

0

∫
Bn

∣∣∣∣∣ ∞

∑
k=1

ckrk(t)(g̃s
k(ϕ(z))− g̃s

k(ψ(z)))

∣∣∣∣∣
q

dµ(z)dt

. dq
∫ 1

0

[
∞

∑
k=1
|ckrk(t)|p

]q/p

dt

= dq

(
∞

∑
k=1
|ck|p

)q/p

.
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Applying (5.1) and Fubini’s theorem yields∫
Bn

[
∞

∑
k=1
|ck|2 |g̃s

k(ϕ(z))− g̃s
k(ψ(z))|2

]q/2

dµ(z)

'
∫
Bn

∫ 1

0

∣∣∣∣∣ ∞

∑
k=1

ckrk(t)(g̃s
k(ϕ(z))− g̃s

k(ψ(z)))

∣∣∣∣∣
q

dtdµ(z)

.dq

(
∞

∑
k=1
|ck|p

)q/p

.

By Lemma 4.2, one has

|g̃s
k(ϕ(z))− g̃s

k(ψ(z))|2

=
1

ub(Bρ(ak,2r))2/p

∣∣∣∣( 1−|ak|
1−〈ϕ(z),ak〉

)s

−
(

1−|ak|
1−〈ψ(z),ak〉

)s∣∣∣∣2
&
|ak|2 ρ(ϕ(z),ψ(z))211

ϕ−1(Bρ (ak,2r))(z)

ub(Bρ(ak,2r))2/p
,

(5.2)

for all z ∈ Bn and k ∈ N. By Lemma 2.1 (iii), each Bρ(ϕ(z),2r) (z ∈ Bn) contains at most N
points of {ak}∞

k=1 (this integer N depends on r only). Re-indexing the points of this r-lattice if
necessary so that they are of non-decreasing moduli, we also have |ak| ≥ 2r for all k ≥ N + 1.
These facts, together with (5.2), imply that∫

Bn

[
∞

∑
k=1
|ck|2 |g̃s

k(ϕ(z))− g̃s
k(ψ(z))|2

]q/2

dµ(z)

&
∫
Bn

 ∞

∑
k=1

|ak|2 |ck|2 ρ(ϕ(z),ψ(z))211
ϕ−1(Bρ (ak,2r))(z)

ub(Bρ(ak,2r))2/p

q/2

dµ(z)

≥max{N
q
2−1,1}

∫
D

∞

∑
k=1

|ak|q |ck|q ρ(ϕ(z),ψ(z))q11
ϕ−1(Bρ (ak,2r))(z)

ub(Bρ(ak,2r))q/p
dµ(z)

&
∫
Bn

∞

∑
k=N+1

|ck|q ρ(ϕ(z),ψ(z))q11
ϕ−1(Bρ (ak,2r))(z)

ub(Bρ(ak,2r))q/p
dµ(z)

=
∞

∑
k=N+1

|ck|q
∫

ϕ−1(Bρ (ak,2r))ρ(ϕ(z),ψ(z))qdµ(z)

ub(Bρ(ak,2r))q/p
.

Interchanging the roles of ϕ and ψ , we obtain∫
Bn

[
∞

∑
k=1
|ck|2 |g̃s

k(ψ(z))− g̃s
k(ϕ(z))|

2

]q/2

dµ(z)

&
∞

∑
k=N+1

|ck|q
∫

ψ−1(Bρ (ak,2r))ρ(ϕ(z),ψ(z))qdµ(z)

ub(Bρ(ak,2r))q/p
.
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Thus

∞

∑
k=N+1

|ck|q
ωµ,q(Bρ(ak,2r))
ub(Bρ(ak,2r))q/p

.
∫
Bn

[
∞

∑
k=1
|ck|2 |g̃s

k(ψ(z))− g̃s
k(ϕ(z))|

2

]q/2

dµ(z)

. dq

(
∞

∑
k=1
|ck|p

) q
p

.

(5.3)

If we now take ck = d1/q
k in (5.3), where {dk}∞

k=1 is an arbitrary sequence of lp/q, then

∞

∑
k=N+1

|dk|
ωµ,q(Bρ(ak,2r))
ub(Bρ(ak,2r))q/p

< ∞.

Therefore, {
ωµ,q(Bρ(ak,2r))
ub(Bρ(ak,2r))q/p

}∞

k=1
∈ lp/(p−q),

where lp/(p−q) is the dual space of lp/q, that is,

∞

∑
k=1

(
ωµ,q(Bρ(ak,2r))
ub(Bρ(ak,2r))

) p
p−q

·ub
(
Bρ (ak,2r)

)
< ∞.

Now we consider the L
p

p−q norm of the function

z 7→
ωµ,q(Bρ(z,r0))

ub(Bρ(z,r0))
,

where 0 < r0 <
r

r+1 . It is easy to see that Bρ(z,r0) ⊂ Bρ (w,2r) for those z ∈ Bρ (w,r). Hence
we obtain that∫

Bn

(
ωµ,q(Bρ(z,r0))

ub(Bρ(z,r0))

) p
p−q

u(z)dvb(z).
∞

∑
k=1

∫
Bρ (ak,r)

(
ωµ,q(Bρ(z,r0))

ub(Bρ(z,r0))

) p
p−q

u(z)dvb(z)

.
∞

∑
k=1

(
ωµ,q(Bρ(ak,2r))
ub(Bρ(ak,2r))

) p
p−q

·ub
(
Bρ (ak,2r)

)
< ∞.

By Lemma 2.7, we obtain (iii).
Finally, we prove (iii)⇒ (ii). Let { fn}∞

n=1 be any bounded sequence of Ap
b(u) such that fn→

0 uniformly on compact subsets of Bn. Write∥∥(Cϕ −Cψ

)
fn
∥∥q

Lq(µ)
:= I1 + I2,

where

I1 :=
∫

E
| fn(ϕ(z))− fn(ψ(z))|q dµ(z), I2 :=

∫
Bn\E
| fn(ϕ(z))− fn(ψ(z))|q dµ(z)
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and E = {z ∈ Bn : σ(z)≥ r}. We first estimate I1 by (1.1)

I1 =
∫

E

1
|σ(z)|q

|σ(z) fn(ϕ(z))−σ(z) fn(ψ(z))|q dµ(z)

≤
(

2
r

)q[∫
E
|σ(z)|q| fn(ϕ(z))|qdµ(z)+

∫
E
|σ(z)|q| fn(ψ(z))|qdµ(z)

]
=

(
2
r

)q ∫
Bn

| fn(z)|q dωµ,q(z).

Since ωµ,q is also a vanishing (p,q)-Carleson measure, we have∫
Bn

| fn(z)|q dωµ,q(z)→ 0, n→ ∞. (5.4)

It remains to consider J2. By Lemma 2.2, Lemma 2.4, and 11Bρ (ψ(z),R′)(w) = 11ψ−1(Bρ (w,R′)(z),
we have

I2 .
∫
Bn\E

σ(z)q

ub(Bρ(ψ(z),R′))

∫
Bρ (ψ(z),R′)

| fn(w)|q u(w)dAb(w)dµ(z)

'
∫
Bn\E

σ(z)q
∫
Bn

| fn(w)|q11Bρ (ψ(z),R′)(w)

ub(Bρ(w,R′))
u(w)dAb(w)dµ(z)

=
∫
Bn\E

σ(z)q
∫
Bn

| fn(w)|q11ψ−1(Bρ (w,R′)(z)

ub(Bρ(w,R′))
u(w)dAb(w)dµ(z)

=
∫
Bn

| fn(w)|q

ub(Bρ(w,R′))

∫
ψ−1(Bρ (w,R′))∩Bn\E

σ(z)qdµ(z)u(w)dAb(w)

≤
∫
Bn

| fn(w)|q
ωµ,q(Bρ(w,R′))
ub(Bρ(w,R′))

u(w)dAb(w).

Let Br := {z ∈ Bn : |z|< r}. With

ωµ,q(Bρ(w,R′))
ub(Bρ(w,R′))

∈ Lp/(p−q)
b (u) ,

and the dominated convergence theorem, we have that∫
Bn

[
ωµ,q(Bρ(w,R′))
ub(Bρ(w,R′))

]p/(p−q)

11B\Br(w)u(w)dAb(w)→ 0 as r→ 1−.

Thus, by Hölder’s inequality, we obtain∫
B\Br

| fn(w)|q
ωµ,q(Bρ(w,R′))
ub(Bρ(w,R′))

u(w)dAb(w)

≤‖ fn‖q
Ap

b(u)

∥∥∥∥ωµ,q(Bρ(w,R′))
ub(Bρ(w,R′))

11B\Br

∥∥∥∥
Lp/(p−q)

b (u)
→ 0.

(5.5)

Moreover, since ωµ,q(Bρ(w,R′)≤ 2µ(Bn)) and Lemma 5.1, we arrive at∫
Br

| fn(w)|q
ωµ,q(Bρ(w,R′))
ub(Bρ(w,R′))

u(w)dAb(w).
∫
Br

| fn(w)|q u(w)dAb(w).
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From the uniform convergence of the sequence { fn}∞

n=1 to zero on the compact set Br, we have∫
Br

| fn(w)|q u(w)dAb(w)→ 0, n→ ∞,

which together with (5.4) and (5.5) gives
∥∥(Cϕ −Cψ

)
fn
∥∥

Lq(µ)
→ 0. �

6. FURTHER QUESTIONS

We completely characterized the boundedness and compactness of the differences for compo-
sition operators on the weighted Bergman spaces with Békollé weights. Another topic related to
the differences of composition operators is the topological structure of the space of all compo-
sition operators C (Ap

b(u)) with the norm topology. This topic was initiated by Berkson in 1981
and studied extensively by Shapiro, Bourdon, Gallardo-Gutiërrez, Moorhouse, and many other
mathematicians. Hence, our further questions in the Békollé weighted settings raise naturally
as follows:

(1): do all the compact composition operators on Ap
b(u) form a connected component in

C (Ap
b(u))?

(2): how to characterize the connected components in C (Ap
b(u))?

(3): how to characterize the isolated elements in C (Ap
b(u))?

An effective method to study those problems on the unweighed Bergman spaces is to use the
fractional linear mappings of D or Bn, but that trick could hardly work on the weighted Bergman
spaces with Békollé weights. That is because we do not know the explicit expression of the
weights and we can hardly conduct the computations directly. We probably have to use some
abstract tools to push our study forward, just like the Aleksandrov measures introduced in [10].
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