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Abstract. In this paper, we consider an infinite inequality system defined by a family of proper lower
semicontinuous quasiconvex functions in real normed linear spaces. By using the interior-point condition
and approximate continuity assumption of the functions, we establish some sufficient conditions for
ensuring the basic constraint qualification for quasiconvex programming.
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1. INTRODUCTION

Consider the inequality system of the following quasiconvex optimization problem:

(P)
inf h(x)
s. t. hi(x)≤ 0, i ∈ I,

x ∈ D,

where I denotes a nonempty (possibly infinite) index set, D is a nonempty convex subset of a
real normed linear space X , h : X→R :=R∪{+∞} is a proper convex function, and hi : X→R
is a proper quasiconvex function for each i ∈ I.

Since the constraint qualifications play an important role in studying Farkas lemma, duality
theory, and optimality condition for optimization problem, the constraint qualifications for qua-
siconvex programming and their applications were widely studied and extensively developed;
see, e.g., [2, 3, 12, 13, 14, 15, 16, 18, 20] and the references therein. Among these constraint
qulifications, the basic constraint qualification for quasiconvex programming (Q-BCQ in short)
is a sort of constraint qualification that of much significance. For example, in [15], the authors
introduced the Q-BCQ and established the optimality conditions of quasiconvex programming
via the Q-BCQ in the case that I is a finite index set and D is the whole space in a locally con-
vex Hausdorff topological space. Later, this condition was extended in [16] to the general case
that I is an infinite index set. Recently, in order to generalize the Q-BCQ, in [3], the authors
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introduced the constraint qualification (Q-BCQ)h and established sufficient and necessary con-
ditions to characterize the total Lagrange duality for quasiconvex programming by applying the
(Q-BCQ)h.

In light of the importance of the Q-BCQ, it is not only natural but also beneficial to investi-
gate the sufficient conditions to guarantee it. For this purpose, in [16], the authors introduced
the constraint qualification Q-CCCQ and showed that the Q-BCQ is a necessary condition of
the Q-CCCQ. While, in [20], the author established some sufficient conditions for the Q-CCCQ
by applying an interior-point condition when functions have continuity. Obviously, those con-
ditions in [20] can guarantee that the Q-BCQ is satisfied. But, we hope to find some weaker
conditions that makes the Q-BCQ condition hold.

Note that, in the case that hi, i ∈ I are proper convex functions on X , problem (P) is trans-
formed into a classical convex programming, and the Q-BCQ is converted into the basic con-
straint qualification (BCQ in brief) for the convex inequality system. For convex programming,
many scholars have introduced a series of constraint conditions to make the BCQ hold; see,
e.g., [4, 5, 6, 7, 8, 9, 10, 11] and the references therein. Especially, the authors in [8] intro-
duced the concepts of the Slater condition and the weak Slater condition and established some
sufficient conditions to guarantee the BCQ for an infinite convex inequality system, and they
also established in [9] some sufficient conditions for the closed convex sets system to satisfy the
strong CHIP in terms of the interior-point condition in the special case that constraint functions
hi, i ∈ I are indicator functions of closed convex sets. While, in [10], the authors established the
equivalence of the BCQ and the strong CHIP under certain conditions.

Motivated by the works mentioned above, we in this paper aim to establish some sufficient
conditions to ensure that Q-BCQ holds in normed spaces in terms of the interior-point condi-
tion. Note that the Q-BCQ for quasiconvex programming is closely related to the strong CHIP
for convex programming. By applying these relations, we study the property of the Q-BCQ and
give some alternative forms of the Q-BCQ. Then, by applying the sufficient conditions that were
originally proposed in [9] to ensure the strong CHIP, we provide some sufficient conditions to
ensure the Q-BCQ in terms of the interior-point condition together with the lower semiconti-
nuity or the Kuratowski continuity of the function i 7→ hi(x) and some property of some finite
subsystems of the constraint system.

The paper is organized as follows. In Section 2, we recall some necessary notations and
preliminary results. In Section 3, the last section, the alternative form of the Q-BCQ is given and
sufficient conditions to ensure the Q-BCQ in terms of the interior-point condition are provided.

2. NOTATIONS AND PRELIMINARY RESULTS

The notations used in the present paper are standard (see [13] and [19]). In particular, we
assume throughout the whole paper that X is a real normed linear space with its dual spaces X∗,
endowed with the weak∗-topology w∗(X∗,X). By 〈x∗,x〉, we denote the value of the functional
x∗ ∈ X∗ at x ∈ X , i.e., 〈x∗,x〉= x∗(x). We use B(x,ε) to denote the closed ball with center x and
radius ε . Let C be a nonempty subset in X . The interior (resp. convex cone hull, affine hull,
boundary, relative boundary) of C is denoted by int C (resp. cone C, aff C, bd C, rb C). The
indicator function and the distance function of C are defined respectively by

δC(x) :=
{

0, x ∈C,
+∞, otherwise
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and
d(x,C) := inf{‖x− c‖ : c ∈C} for each x ∈ X .

Let Z be a nonempty, convex, and closed subset in X . The interior and boundary of C relative
to Z are denoted by rintZ C and bdZ C, respectively; they are defined to be, respectively, the
interior and boundary of the set aff Z ∩C in the metric space aff Z. Thus, a point z ∈ rintZ C
if and only if there exists ε > 0 such that z ∈ aff Z ∩B(z,ε) ⊆ C. Obviously, ri C = rintC C.
While z ∈ bdZ C if and only if z ∈ aff Z and, for any ε > 0, aff Z ∩B(z,ε) intersects Z and its
complement. The normal cone N(x;Z) of a convex set Z ⊆ X at the point x ∈ Z are defined by

NZ(x) := {x∗ ∈ X∗ : 〈x∗,z− x〉 ≤ 0 for each z ∈ Z}.
Furthermore, let T be an arbitrary (possibly infinite) index set. We use R(T ) to denote the space
of real tuples λ := (λt)t∈T with only finitely many λt 6= 0, and let R(T )

+ denote the nonnegative
cone in R(T ), that is,

R(T )
+ :=

{
(λt)t∈T ∈ R(T ) : λt ≥ 0 for each t ∈ T

}
.

Let {At : t ∈ T} be a family of subsets of X . The set ∑t∈T At is defined by

∑
t∈T

At :=
{
{∑t∈T0 at : at ∈ At ,T0 ⊆ T is finite}, T 6= /0,
{0}, T = /0.

Let f : X→R be a proper convex function. The effective domain and epigraph of f are defined,
respectively, by dom f := {x ∈ X : f (x)<+∞} and epi f := {(x,r) ∈ X ×R : f (x)≤ r}. The
subdifferential of f at x ∈ dom h is defined by

∂ f (x) := {x∗ ∈ X∗ : f (x)+ 〈x∗,y− x〉 ≤ f (y) for all y ∈ X} .
In particular,

NZ(x) = ∂δZ(x) for each x ∈ Z. (2.1)
If f ,g : X → R are proper convex functions satisfying dom f ∩dom g 6= /0, then

∂ f (x)+∂g(x)⊆ ∂ ( f +g)(x) for each x ∈ dom f ∩dom g. (2.2)

The infimal convolution function f�g : X → R∪{±∞} of f and g is defined by

( f�g)(a) := inf
x∈X
{ f (x)+g(a− x)} for each a ∈ X ,

which is called exact at a ∈ X when there is an x ∈ X such that ( f�g)(a) = f (x)+g(a− x).
The following lemma is be used in the sequel (see [19]).

Lemma 2.1. Let f ,g : X → R be proper convex functions such that dom f ∩ dom g 6= /0. If f
or g is continuous at some point of dom f ∩dom g, then ∂ ( f +g)(x) = ∂ f (x)+∂g(x) for each
x ∈ dom f ∩dom g.

Recall that a function f : X→R is said to be quasiconvex if, for all x,y∈ X and α ∈ [0,1], the
following inequality holds: f ((1−α)x+αy)≤max{ f (x), f (y)}, and f is said to quasiconcave
if − f is quasiconvex. Obviously, each convex function is quasiconvex, but the opposite is not
true. Moreover, f is said to be quasiaffine iff it is quasiconvex and quasiconcave. By [13], it is
known that f is lower semicontinuous (lsc in brief) quasiaffine if and only if there exist k ∈ Q
and w ∈ X∗ such that f = k ◦w, where Q = {k : R→ R : k is lsc and non-decreasing}. Recall
from [14] that a set G = {(k j,w j) | j ∈ J} ⊆ Q×X∗ is said to be a generator of f if and only if
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f = sup j∈Jk j ◦w j. The following lemma is taken from [13] that shows that each lsc quasiconvex
function has at least one generator.

Lemma 2.2. Let f be a function from X to R. Then f is lsc quasiconvex if and only if exist
{(k j,w j) : j ∈ J} ⊆ Q×X∗ such that f = sup j∈Jk j ◦w j.

3. SUFFICIENT CONDITIONS FOR THE Q-BCQ

Throughout this paper, let I be an arbitrary index set, D be a nonempty, convex, and closed
subset of the real normed linear space X , and {hi : i ∈ I} be a family of proper lsc quasiconvex
functions on X . Consider the following quasiconvex inequality system

x ∈ D;hi(x)≤ 0, i ∈ I. (3.1)

Let {(k(i, j),w(i, j)) | j ∈ Ji} ⊆ Q×X∗ be a generator of hi for each i ∈ I, and let T := {t =
(i, j) | i ∈ I, j ∈ Ji}. For each x ∈ X , let T (x) be the active index set of the system (3.1) relative
to {(kt ,wt) : t ∈ T}, that is, T (x) := {t ∈ T : 〈wt ,x〉= k−1

t (0)}, where k−1
t is the hypo-epi-inverse

of kt and defined by

k−1
t (r) = inf{u ∈ R | r < kt(u)}= sup{s ∈ R | kt(s)≤ r}.

As usual, we use A to denote the solution set of the system (3.1), that is, A := {x ∈ D : hi(x)≤
0, i ∈ I}, and assume that A 6= /0. Note that, since D is convex and hi, i ∈ I are quasiconvex, it
follows that A is convex.

The following constraint qualification for quasiconvex programming extends the one intro-
duced in [15], where the authors only considered the case when D is the whole space.

Definition 3.1. The system {D;hi : i ∈ I} is said to satisfy the basic constraint qualification for
quasiconvex programming (Q-BCQ in brief) with respect to (w.r.t. in short) {(kt ,wt) | t ∈ T} at
x ∈ A if

NA(x) = ND(x)+ cone
⋃

t∈T (x)

{wt}. (3.2)

Moreover, {D;hi : i ∈ I} is said to satisfy the Q-BCQ w.r.t. {(kt ,wt) | t ∈ T} if it satisfies the
Q-BCQ w.r.t. {(kt ,wt) | t ∈ T} at each point x ∈ A.

For each t ∈ T , we define ft : X→R by ft(x) = 〈wt ,x〉−k−1
t (0) for each x ∈ X . Then system

(3.1) can be rewritten as the following convex inequality system

x ∈ D; ft(x)≤ 0, t ∈ T, (3.3)

and hence the solution set of (3.1) reduces to A = {x ∈ D : ft(x) ≤ 0, t ∈ T}. For each x ∈ X ,
let T̃ (x) be the active index set of system (3.3), that is, T̃ (x) := {t ∈ T : ft(x) = 0}. Then, by
definition of the function ft ,

T̃ (x) = {t ∈ T : 〈wt ,x〉= k−1
t (0)}= T (x). (3.4)

The following theorem gives an alternative form of the Q-BCQ.

Theorem 3.1. Let x ∈ A. The following statements are equivalent.
(i) System {D;hi : i ∈ I} satisfies the Q-BCQ w.r.t. {(kt ,wt) | t ∈ T} at x.
(ii) System {D; ft : t ∈ T} satisfies the BCQ at x, that is,

NA(x) = ND(x)+ cone
⋃

t∈T̃ (x)

{∂ ft(x)}. (3.5)
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Proof. Since ft is an affine function for each t ∈ T , it can be verified by definition that

∂ ft(x) = {x∗ ∈ X∗ : ft(x)+ 〈x∗,y− x〉 ≤ ft(y),∀y ∈ X}
= {x∗ ∈ X∗ : 〈wt ,x〉+ 〈x∗,y− x〉 ≤ 〈wt ,y〉,∀y ∈ X}
= {wt}.

Thus, by (3.4), the desired result follows immediately. �

Remark 3.1. Let x ∈ A. In view of (2.1) and (2.2), we see that

ND(x)+ cone
⋃

t∈T (x)

{wt} = ND(x)+ cone

 ⋃
t∈T̃ (x)

∂ ft(x)


⊆ ND(x)+

⋃
λ∈R(T )

+

∂

 ∑
t∈T̃ (x)

λt ft

(x)

⊆
⋃

λ∈R(T )
+

∂

δD + ∑
t∈T̃ (x)

λt ft

(x)

⊆ ∂δA(x) = NA(x).

Thus, (3.2) and (3.5) can be equivalently replaced by

NA(x)⊆ ND(x)+ cone
⋃

t∈T (x)

{wt}

and
NA(x)⊆ ND(x)+ cone

⋃
t∈T̃ (x)

{∂ ft(x)}.

In the remainder of this section, we always assume that I is a compact metric space. The
following interior-point conditions were introduced in [9, Definition 3.1].

Definition 3.2. Let D and Ci, i ∈ I be nonempty, convex, and closed subsets of X . System
{D,Ci : i ∈ I} is said to satisfy

(i) the D-interior-point condition if

D∩

(⋂
i∈I

rintD Ci

)
6= /0;

(ii) the strong D-interior-point condition if

D∩

(
rintD

⋂
i∈I

Ci

)
6= /0.

The following notion of semicontinuity of a function was introduced in [20].

Definition 3.3. A function h : I→ R is upper semicontinuous at i0 ∈ I if, for any ε > 0, there
exists a neighborhood U(i0) of i0 such that

h(i)< h(i0)+ ε for each i ∈U(i0), (3.6)

and that h is upper semicontinuous on I if (3.6) holds at each i0 ∈ I.
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For the following concept of the semicontinuity of a set-valued map, readers may refer to
standard texts such as [20].

Definition 3.4. Let H : I→ 2X\{ /0} be a set-valued mapping and i0 ∈ I. The mapping H is said
to be lower semicontinuous at i0 if, for any x0 ∈H(i0) and any ε > 0, there exists a neighborhood
U(i0) of i0 such that B(x0,ε)∩H(i) 6= /0, and H is said to be lower semicontinuous on I if it is
lower semicontinuous at each i0 ∈ I.

The following notion of Kuratowski continuity was introduced in [17].

Definition 3.5. Let H : I→ 2X\{ /0} be a set-valued function defined on I and i0 ∈ I. Then H is
said to be

(i) upper Kuratowski semicontinuous at i0 if, for any sequence {in}⊆ I, the relations lim
n→∞

in =

i0, lim
n→∞

xin = xi0 , xin ∈ H(in),n = 1,2, ... imply xi0 ∈ H(i0);

(ii) lower Kuratowski semicontinuous at i0 if, for any sequence {in}⊆ I, the relations lim
n→∞

in =

i0, x0 ∈ H(i0) imply lim
n→∞

dH(in)(x0) = 0;
(iii) Kuratowski continuous at i0 if H is both upper Kuratowski semicontinuous and lower

Kuratowski semicontinuous at i0;
(iv) Kuratowski continuous on I if it is Kuratowski continuous at each point of I.

Clearly, by [9],

H is lower semicontinuous ⇐⇒ H is lower Kuratowski semicontinuous.

Let i∈ I, and define Ci := {x∈ X : hi(x)≤ 0}. For any proper function ϕ : X→R and any x∈
X , define [ϕ(x)]+ := max{ϕ(x),0}. The following lemmas regarding the lower semicontinuity
were given in [9, Proposition 3.1] and [20, Lemma 4.4], respectively.

Lemma 3.1. Let H : I → 2X\{ /0} be a set-valued function and i0 ∈ I. Then the following
statements are equivalent

(i) H is lower semicontinuous at i0.
(ii) For any x0 ∈ H(i0), there exists xi ∈ H(i) for each i ∈ I such that lim

i→i0
‖xi− x0‖= 0.

(iii) For any x0 ∈ H(i0), lim
i→i0

dH(i)(x0) = 0.

Lemma 3.2. Let i0 ∈ I. Suppose that the function i 7→ hi(x) is upper semicontinuous at i0 for
each x ∈ aff D. Suppose further that at least one of the following statements is satisfied:

(i) /0 6= rintD Ci0 ⊆ {x ∈ X : hi0(x)< 0}.
(ii) For each x ∈ X, there exists τx > 0 such that

d(x,aff D∩Ci)≤ τx[hi(x)]+ for each i ∈ I.

Then the set-valued mapping i 7→ aff D∩Ci is lower semicontinuous at i0.

By [9], for each x0 ∈ D∩ (
⋂

i∈I Ci), let Irb
D (x0) = {i ∈ I : x0 ∈ bdD Ci}. Since bdD Ci =

bd Ci\intD C, it follows that Irb
D (x0) ⊆ {i ∈ I : x0 ∈ bd Ci}. Below we are going to state and

prove the main results of this section. The following theorems gives some sufficient conditions
for ensuring the Q-BCQ.
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Theorem 3.2. Let x ∈ D∩ (
⋂

i∈I Ci). Suppose that the following conditions are satisfied:
(a) System {D,Ci : i ∈ I} satisfies the strong D-interior-point condition.
(b) For each x0 ∈ aff D, the function i 7→ hi(x0) is upper semicontinuous on I.
(c) Either for each i ∈ I, /0 6= rintD Ci ⊆ {x ∈ X : hi(x) < 0} or for each x ∈ X, there exists

τx > 0 such that
d(x,aff D∩Ci)≤ τx[hi(x)]+ for each i ∈ I.

(d) The pair {aff D,Ci} has the strong CHIP at x for each i ∈ I, that is,

N(aff D)∩Ci(x) = Naff D(x)+NCi(x) for each i ∈ I.

(e) Either D is finite dimensional or Irb
D (x) is a finite set.

Then system {D;hi : i ∈ I} satisfies the Q-BCQ w.r.t. {(kt ,wt) | t ∈ T} at x.

Proof. By Lemma 3.2, conditions (b) and (c) ensure that the set-valued mapping i 7→ aff D∩Ci
is lsc on I. Furthermore, condition (a) implies that

D∩

(
rintD

⋂
i∈I

Ci

)
6= /0.

Hence, by applying [9, Theorem 4.1], we know that conditions (a)-(e) imply that system {D,Ci :
i ∈ I} satisfies the strong CHIP, that is,

ND∩(
⋂

i∈I Ci)(x) = ND(x)+∑i∈I NCi(x)⊆ ND(x)+N⋂
i∈I Ci(x). (3.7)

Define F : X → R by F(x) := supt∈T ft(x) for each x ∈ X . Then F is continuous. Moreover,
function t→ ft(x0) is upper semicontinuous on T . Thus, one can conclude by [9] that

∂F(x) = cone ∑
t∈T̃ (x)

∂ ft(x). (3.8)

Note that Ci = {x ∈ X : hi(x)≤ 0} for each i ∈ I. By definition of ft , one has that Ci = {x ∈ X :
ft(x)≤ 0}, where t = (i, j) ∈ T . Then

N⋂
i∈ICi(x) = N⋂

t∈T f−1
t (R−)(x) = NF−1(R−)(x)⊆ cone ∂F(x),

where the last inclusion holds by [1, Corollary 1]. This together with (3.8) implies that

N⋂
i∈ICi(x)⊆ cone ∑

t∈T̃ (x)

∂ ft(x),

and
NA(x)⊆ ND(x)+ cone ∑

t∈T̃ (x)

∂ ft(x),

thanks to (3.7). This means that system {D; ft : t ∈ T} satisfies the BCQ at x. Therefore, by
Theorem 3.1, we see that system {D;hi : i ∈ I} satisfies the Q-BCQ w.r.t. {(kt ,wt) | t ∈ T} at x.
The proof is complete. �

Theorem 3.3. Let x ∈ D∩ (
⋂

i∈I Ci). Suppose that the following conditions are satisfied:
(a) D is finite dimensional.
(b) The set-valued function i 7→ aff D∩Ci is Kuratowski continuous on I.
(c) For any finite subset J of I with |J| ≤ l, the subsystem {D,Ci : i ∈ J} satisfies the D-

interior-point condition, where |J| denotes the cardinality of the set J and l = dimD <+∞.
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(d) For each finite subset J of I, the subsystem {D;hi : i ∈ J} satisfies the Q-BCQ w.r.t.
{(kt ,wt) | t ∈ TJ} at x, where TJ = {t = (i, j) | i ∈ J, j ∈ Ji}, that is,

ND∩(
⋂

i∈J Ci)(x) = ND(x)+ cone
⋃

t∈TJ(x)

{wt}.

Then the system {D;hi : i ∈ I} satisfies the Q-BCQ w.r.t. {(kt ,wt) | t ∈ T} at x.

Proof. Note that condition (c) implies that, for each finite subset J of I,

D∩

(⋂
i∈J

rintD Ci

)
6= /0.

Furthermore, one can verify by definition that, for each i ∈ I,

cone

 ⋃
j∈Ji(x)

{w(i, j)}

⊆ NCi(x).

Thus, condition (d) implies that, for each finite subset J of I, system {D,Ci : i ∈ J} satisfies the
following condition

ND∩(
⋂

i∈J Ci)(x)⊆ ND(x)+∑
i∈J

NCi(x).

Hence, by applying [9, Theorem 5.1], we know that conditions (a)-(d) assert that

ND∩(
⋂

i∈I Ci)(x) = ND(x)+∑i∈I NCi(x)⊆ ND(x)+N⋂
i∈I Ci(x).

Then, by the proof of Theorem 3.2, we see that system {D;hi : i ∈ I} satisfies the Q-BCQ w.r.t.
{(kt ,wt) | t ∈ T} at x. The proof is complete. �

Below we are devoted to the optimality condition and total Lagrange duality of quasiconvex
optimization problem (P) by apply Theorems 3.2 and 3.3. To do this, we always assume that
dom h∩A 6= /0. Following [3], we define the dual problem of (P) by

(D) max
λ∈R(T )

+

inf
x∈C

{
h(x)+ ∑

t∈T
λt(wt(x)− k−1

t (0))

}
.

To establish the total duality between (P) and its dual problem (D), the authors in [3] intro-
duced the following constraint qualification.

Definition 3.6. The family {D;hi : i ∈ I} satisfies the basic constraint qualification for quasi-
convex programming relative to h ((Q-BCQ)h in brief) w.r.t. {(kt ,wt) | t ∈ T} at x ∈ dom h∩A
if

∂ (h+δA)(x) = ∂h(x)+ND(x)+ cone
⋃

t∈T (x)

{wt}.

Further, {D;hi : i ∈ I} is said to satisfy the (Q-BCQ)h w.r.t. {(kt ,wt) | t ∈ T} if it satisfies the
(Q-BCQ)h w.r.t. {(kt ,wt) | t ∈ T} at each x ∈ dom h∩A.

Note that, if h is continuous at some point of A, then, by Lemma 2.1,

the Q-BCQ =⇒ the (Q-BCQ)h.

Thus, by Theorem 3.2 and Theorem 3.3, we can obtain the following proposition.
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Proposition 3.1. Let x ∈ D∩ (
⋂

i∈I Ci). Suppose that h is continuous at some point of A. If the
conditions (a)-(e) in Theorem 3.2 or (a)-(d) in Theorem 3.3 hold, then {D;hi : i ∈ I} satisfies
the (Q-BCQ)h w.r.t. {(kt ,wt) | t ∈ T} at x.

The following theorem is a direct consequence of Proposition 3.1 and [3, Theorem 5.1].

Theorem 3.4. Let x ∈ D∩ (
⋂

i∈I Ci). Suppose that h is continuous at some point of A. If the
conditions (a)-(e) in Theorem 3.2 or (a)-(d) in Theorem 3.3 hold, then the stable total Lagrange
duality between (P) and (D) holds, that is, for each p ∈ X∗,

min
x∈A
{h(x)−〈p,x〉}= max

λ∈R(T )
+

inf
x∈C
{h(x)−〈p,x〉+ ∑

t∈T
λt(wt(x)− k−1

t (0))}.

From Theorem 3.2 and Theorem 3.3, we have the following corollary.

Corollary 3.1. Let x∈D∩(
⋂

i∈I Ci). Suppose that (a)-(e) in Theorem 3.2 or (a)-(d) in Theorem
3.3 hold. If (h,δA) satisfies (h+δA)

∗(0) = (h∗�δ ∗A)(0) and h∗�δ ∗A is exact at 0, then x is a
minimizer to problem (P) if and only if exists λ = (λt)t∈T ∈ R(T )

+ such that

0 ∈ ∂h(x)+ND(x)+ ∑
t∈T (x)

λtwt . (3.9)

In particularly, if h is continuous at some point of A, then x is a minimizer to problem (P) if and
only if exists λ = (λt)t∈T ∈ R(T )

+ such that (3.9) holds.

Proof. By Theorems 3.2 and 3.3, we see that {D;hi : i∈ I} satisfies the Q-BCQ w.r.t. {(kt ,wt) | t ∈
T} at x. Thus, by Theorem 3.1, {D; ft : t ∈ T} satisfies the BCQ at x. Moreover, by the proof of
Theorem 3.1, one has that ∂ ft(x) = {wt} for each x ∈ D∩ (

⋂
i∈I Ci). Therefore, the results hold

directly from [4, Corollary 4.2]. The proof is complete. �

Let S(P) denote the solution set of problem (P), that is, S(P) := {x ∈ A : h(x) = infy∈A h(y)}.
The proof of the following corollary is almost similar to that of Corollary 3.1, so we omit it
here.

Corollary 3.2. Let x ∈ D∩ (
⋂

i∈I Ci) and x0 ∈ S(P). Suppose that (a)-(e) in Theorem 3.2 or
(a)-(d) in Theorem 3.3 hold. If (h,δA) satisfies (h+δA)

∗(0) = (h∗�δ ∗A)(0) and h∗�δ ∗A is exact
at 0, then

h(x0) = max
λ∈R(T )

+

inf
x∈C
{h(x)+ ∑

t∈T
λt(wt(x)− k−1

t (0))}. (3.10)

In particularly, if h is continuous at some point of A, then (3.10) holds.
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