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Abstract. In this paper, we introduce the idea of gH-weak subdifferential for interval-valued functions (IVFs)
and show how to calculate gH-weak subgradients. It is observed that a nonempty gH-weak subdifferential
set is convex and closed. In characterizing the class of functions for which the gH-weak subdifferential set is
nonempty, it is identified that this class is the collection of gH-lower Lipschitz IVFs. In checking the validity
of the sum rule of gH-weak subdifferential for a pair of IVFs, a counterexample is obtained, which reflects
that the sum rule does not hold. However, under a mild restriction on one of the IVFs, one-sided inclusion
for the sum rule holds. As applications, we employ gH-weak subdifferential to provide a few optimality
conditions for nonsmooth IVFs. Further, a necessary optimality condition for interval optimization problems
with a difference of two nonsmooth IVFs as the objective is established. Next, a necessary and sufficient
condition via augmented normal cone and gH-weak subdifferential of IVFs for finding weak efficient points is
presented. Lastly, in investigating a ‘sup-relation’ between gH-direction derivative and gH-weak subgradients,
we approximately compute gH-weak subgradient at each iterative step. In the sequel, we propose W -gH-weak
subgradient method to identify a weak efficient solution of an unconstrained nonsmooth IOP. We apply the
proposed method to solve an interval optimization problem by taking a test example. We present a convergence
analysis of the proposed method for constant and diminishing step sizes.
Keywords. gH-weak subgradient; gH-Fréchet subdifferential; Interval optimization; Nonsmooth interval-
valued functions.

1. INTRODUCTION

The interval arithmetic of Moore [19] is the milestone in interval analysis. The realistic applicabil-
ity of Moore’s method is relevant till today. We can currently find several papers in the community of
interval-valued optimization problems (IOPs) where Moore’s interval analysis is applied extensively.
To find optimality conditions for IOPs, ideas of derivatives for interval-valued functions (IVFs) were
proposed [5, 13, 18, 21, 27]. In [18], the concept of gH-differentiability for IVFs was introduced.
Chalco-Cano et al. [6] addressed the algebraic property of gH-differentiable interval-valued func-
tions. Ghosh et al. [13] proved the existence of gH-directional derivative for convex IVFs and
presented optimality conditions for IOPs.
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It is a familiar fact that, in nonsmooth optimization, the classical gradient algorithm fails: even in
finding the optimum point, as there is no derivative, the conventional optimality condition ∇ f (x) = 0
does not hold. More crucially, it is observed that optima of almost everywhere differentiable function
categorically arise at nondifferentiable points—for instance, take the minimization of f (x) = |x|. The
notion of subdifferential, defined by Rockafellar [24], is a crucial factor in the body of optimiza-
tion theory that perfectly replaces the role of the gradient to identify optima for convex functions.
However, subdifferential is inadequate in developing optimality conditions for nonconvex optimiza-
tion problems. Due to this insufficiency, the idea of subdifferential has been generalized. The most
common of such generalizations is weak subdifferential [3]. Based on this notion, a strong duality
theorem for the nonconvex inequality-constrained problems has been found by defining a weak con-
jugate function [30]. A substantial application of this notion in duality theory with the help of a weak
subdifferentiable perturbation function was given in [26].

In the context of the nonsmooth calculus for nondifferentiable convex IVFs, Ghosh et al. [11] re-
cently proposed the idea of gH-subgradient and gH-subdifferential. The same article [11] found that
gH-directional derivative is the maximum of all the products of the direction and gH-subgradients.
Afterward, Anshika et al. [1] characterized weak efficiency for nonconvex composite optimization
problems with the subdifferential sets of convex interval-valued functions. In [1], by formulating
the supremum and infimum of an IVF, a Fermat-type, a Fritz-John-type, and a KKT-type weak ef-
ficiency condition for nonsmooth IOPs have been derived. Anshika and Ghosh [2] introduced gH-
subdifferential of the interval-valued function. Furthermore, Chauhan et al. [8] derived the notion
of gH-Clarke derivative for IVFs and IOPs. Under the Clarke subdifferentiablility assumption, Chen
and Li [7] provided KKT conditions for efficient solutions. In addition, Karaman [16] presented two
subdifferentials for interval-valued functions and some optimality criteria, which were obtained by
using subdifferentials.

From the available literature on nonsmooth IOPs, it is found that the study of gH-weak subdif-
ferential notion has not yet been addressed. However, the notion of gH-weak subdifferential might
be effective in characterizing and capturing the efficient solutions of IOPs with nonconvex and non-
smooth IVFs. By using a subgradient, one may face difficulties in solving the problem which does not
satisfy the convexity assumption because a subgradient refers to the slope of a supporting hyperplane
to the graph of convex functions in convex analysis. Thus, in this study, we introduce the notion of a
weak subgradient, which does not need any kind of convexity.

In this article, we attempt to show various properties of weak-subdifferential and their use in non-
smooth nonconvex IOPs. As an application of the proposed gH-weak subdifferential, we will give
a necessary and sufficient optimality condition for finding weak efficient points of difference of two
IVFs. In the last, similar to the conventional weak-subgradient method [9] for real-valued optimiza-
tion, we show a gH-weak subgradient method to obtain an efficient solution of nonsmooth, nonconvex
IOPs.

The rest of the article is presented as follows. Section 2 is devoted to the conventional properties
of intervals, followed by the calculus of IVFs. Section 3 introduces the notion of gH-weak subd-
ifferential for IVFs and discusses their properties such as convexity, closedness, and nonemptiness.
Additionally, the role of gH-weak subdifferential to derive the necessary condition for weak effi-
ciency for gH-weak subdifferentiable IVFs is presented in Section 3. In Section 4, we analyze the
necessary condition for obtaining an efficient solution of the difference of two IVFs. In Section 5,
we establish a ‘sup-relation’ between gH-direction derivative and gH-weak subgradients. Using this
relation, in Section 6, we present a W -gH-weak subgradient method to obtain a weak efficient solu-
tion to an unconstrained IOP with its algorithmic implementation and convergence analysis. Finally,
we draw a conclusion with future directions to extend the present study.



GENERALIZED HUKUHARA WEAK SUBDIFFERENTIAL AND ITS APPLICATION 335

2. PRELIMINARIES AND TERMINOLOGIES

In this section, required terminologies and notions on intervals, including calculus of IVFs are
given. Throughout the paper, we extensively use the following notations.

• R is the set of real numbers.
• R+ represents the set of nonnegative real numbers.
• I(R) is the collection of all compact intervals.
• I(R) = I(R)∪{−∞,+∞}.
• 0 = [0,0].
• Elements of I(R) are presented by bold capital letters: X,Y,Z, . . ..
• B(h,δ ) represents a ball with center at h and radius δ in Rn.
• I(R)n = I(R)× I(R)× I(R)×·· ·× I(R) (n times).
• Interval vectors in I(R)n are denoted by X̂, Ŷ, Ẑ, . . ..
• Bα(ū) is the open ball with center at ū ∈ Rn and radius α ≥ 0.
• N (x̄) is a neighborhood of x̄ ∈ Rn.
• ‖·‖I(R) denotes the norm on I(R).

2.1. Arithmetic and dominance of intervals. Throughout this subsection, we represent an element
X of I(R) by the corresponding small letter:

X = [x,x], where x and x are in R with x≤ x.

Recall that Moore’s interval addition (⊕), subtraction (	), and multiplication (�) [19, 20] are
given by

X⊕Y =
[

x+ y, x+ y
]
, X	Y =

[
x− y, x− y

]
, and

X�Y =
[
min

{
x y, xy, xy, xy

}
, max

{
x y, xy, xy, xy

}]
.

Definition 2.1. (gH-difference of intervals [25]). The gH-difference for a pair of intervals P and Q,
denoted by P	gH Q, is the interval Y such that P = Q⊕Y or Q = P	Y. It is well-known that, for
P =

[
p, p
]

and Q =
[
q,q
]
,

P	gH Q =
[
min{p−q, p−q},max{p−q, p−q}

]
and P	gH P = 0.

For two elements Î = (I1,I2, . . . ,In) and Ĵ = (J1,J2, . . . ,Jn) of I(R)n, the algebraic operation Î? Ĵ is
defined by Î? Ĵ = (I1 ?J1,I2 ?J2, . . . ,In ?Jn), where ? ∈ {⊕,	,	gH}.

Definition 2.2. (Dominance of intervals). Let Z and W be in I(R).
(i) W is called dominated by Z if z ≤ w and z ≤ w, and then we express it by Z � W.

(ii) W is said to be strictly dominated by Z if either ‘z ≤ w and z < w’ or ‘z < w and z ≤ w’,
and then we express it by Z ≺ W.

(iii) If W is not dominated by Z, then we write Z � W. If W is not strictly dominated by Z, then
we write Z ⊀ W.

(iv) If W � Z and Z � W, then it is called that none of W and Z dominates the other or W and
Z are not comparable.

For any two elements Î = (I1,I2, . . . ,In)
> and Ĵ = (J1,J2, . . . ,Jn)

> in I(R)n,

Î� Ĵ ⇐⇒ I j � J j for all j = 1,2, . . . ,n.
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2.2. Concavity and differential calculus of IVFs. Let /0 6= Y ⊆ Rn. Let an IVF Φ : Y → I(R) be
presented by

Φ(y) =
[
φ(y),φ(y)

]
∀ y ∈ Y ,

where φ(y)≤ φ(y) for all y ∈Y and φ and φ are called lower and upper real-valued functions on Y .

Definition 2.3. (Concave IVF). If Y is convex, then an IVF Φ is said to be a concave IVF on Y if,
for any y1,y2 ∈ Y ,β1, β2 ∈ [0, 1], and β1 +β2 = 1,

β1�Φ(y1)⊕β2�Φ(y2)�Φ(β1y1 +β2y2).

Lemma 2.1. If Φ is a concave IVF on a convex set Y ⊆ Rn, then φ and φ are concave on Y and
vice-versa.

Proof. The proof is similar to the proof of [29, Proposition 6.1]. �

Example 2.1. Let Y be the Euclidean space Rn. Then, the IVF Φ : Y → I(R) which is defined by

Φ(y) = M̂
>� y	gH ‖y‖, where M̂ = (M1,M2, . . . ,Mn) ∈ I(R)n,

and for all y = (y1,y2, . . . ,yn) ∈ Y is a concave IVF on Y . The reason is as follows.
Without loss of generality, the first p components of y are assumed to be non-negative, and the rest

n− p be negative. Then, letting Mi = [mi,mi] for all i = 1,2, . . . ,n,

Φ(y) =
p⊕

i=1

[miyi,miyi]⊕
n⊕

j=p+1

[m jy j,m jy j]	gH ‖y‖.

It is evident that ∑
p
i=1 miyi +∑

n
j=p+1 m jy j and ∑

p
i=1 miyi +∑

n
j=p+1 m jy j, being linear, are concave

functions. Also,−‖y‖ is a concave function. Therefore, ∑
p
i=1 miyi+∑

n
j=p+1 m jy j−‖y‖ and ∑

p
i=1 miyi+

∑
n
j=p+1 m jy j−‖y‖ are concave functions. Hence, by Lemma 2.1, Φ is a concave IVF.

Definition 2.4. (gH-continuity [12]). An IVF Φ is said to be gH-continuous at u∈Y if lim‖d‖→0(Φ(u+
d)	gH Φ(u)) = 0. If at every u ∈ Y , Φ is gH-continuous, then Φ is called gH-continuous on Y .

Lemma 2.2. (See [14]). For a gH-continuous IVF Φ, its φ and φ are continuous and vice-versa.

Definition 2.5. (gH-derivative [4]). Let Y ⊆ Rn. The gH-derivative of an IVF Φ : Y → I(R) at
u ∈ Y is the limit

Φ
′(u) := lim

d→0
1
d �
{

Φ(u+d)	gH Φ(u)
}
.

Definition 2.6. (gH-Gáteaux derivative [13]). Let an IVF Φ be defined on a nonempty open subset
Y of Rn. Then, Φ is known to be gH-Gáteaux differentiable with gH-Gáteaux derivative ΦG (u) at
u ∈ Y if the following limit

ΦG (u)(h) := lim
β→0+

1
β
� (Φ(u+βh)	gH Φ(u))

is finite for all h ∈ Rn and ΦG (u) is a gH-continuous and linear IVF from Rn to I(R).

Definition 2.7. (gH-Fréchet derivative [13]). Let an IVF Φ be defined on a nonempty open subset Y
of Rn. Then, Φ is said to be gH-Fréchet differentiable at u ∈ Y if there exists a gH-continuous and
linear mapping G : Y → I(R) such that

lim
‖h‖→0

1
‖h‖ �

(
‖Φ(u+h)	gH Φ(u)	gH G(h)‖I(R)

)
= 0,

where G will be referred to as ΦF (u).
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Definition 2.8. (Efficient point [13]). Let Y ⊆ Rn and Φ : Rn→ I(R) be an IVF. A point u ∈ Y is
said to be an efficient point of the IVF Φ : Y → I(R) if Φ(y)⊀Φ(u) for all y ∈ Y .

Definition 2.9. (Weak efficient point [1]). Let Y ⊆Rn and Φ :Rn→ I(R) be an IVF. A point u ∈ Y
is said to be a weak efficient point of the IVF Φ : Y → I(R) if Φ(u)�Φ(y) for all y ∈ Y .

2.3. Few properties of the elements in I(R). Let Y = [y,y] and Ŷ = (Y1,Y2, . . . ,Yn) be elements
in I(R) and I(R)n, respectively. The following two functions ‖·‖I(R) : I(R)→ R+ and ‖·‖I(R)n :
I(R)n→ R+ are referred to as norm [19, 20] on I(R) and I(R)n, respectively:

‖Y‖I(R) = max{|y|, |y|}, and ‖Ŷ‖I(R)n =
n

∑
j=1
‖Y j‖I(R).

Lemma 2.3. For any W,Y,Z ∈ I(R) and ε ≥ 0, we have

ε � (W	gH Y)	gH Z =⇒ Z⊕ ε �W	gH Y.

Proof. See Appendix A. �

Lemma 2.4. For any X,Y,Z,W ∈ I(R), we have

(X⊕Y)	gH (Z⊕W)⊆ (X	gH Z)⊕ (Y	gH W).

Proof. See Appendix B. �

Lemma 2.5. For any W,Y,Z ∈ I(R),
0	gH {((−1�W)	gH (−1�Y))	gH (−1�Z)}= ((W	gH Y)	gH Z).

Proof. See Appendix C.
�

Lemma 2.6. For all X,Y, and Z of I(R),
(i) if 0� X	gH Y, then 0	gH Z� (X	gH Y)	gH Z,

(ii) if Z� X	gH Y, then Z	gH W� (X	gH Y)	gH W for all W ∈ I(R),
(iii) if X	gH Y� [L,L], then [−L,−L]� Y	gH X, where L ∈ R,
(iv) if [−γ,−γ]� X	gH Y, then Y	gH [γ,γ]� X, where γ ∈ R, and
(v) if Z� X⊕Y, then Z	gH Y� X.

Proof. See Appendix D.
�

Definition 2.10. (Sequence in I(R)n[11]). A function Φ̂ : N→ I(R)n is called a sequence in I(R)n,
where N is the set of all natural numbers.

Definition 2.11. (Closed set in I(R)n[1]). A nonempty subset U ⊆ I(R)n is known to be closed if for
every convergent sequence {M̂k} in U converging to M̂, M̂ must belong to U .

Definition 2.12. (Closure of a set in I(R)n). Let Y ⊆ I(R)n. The intersection of all closed sets
containing Y is called the closure of Y , abbreviated by cl(Y ).

Definition 2.13. (Convergent sequence in I(R)n[11]). Let {M̂k} be a sequence in I(R)n. If there
exists M̂ ∈ I(R)n for which for any ε > 0 there exists p ∈ N such that ‖M̂k	gH M̂‖I(R)n < ε for all
k ≥ p, then {M̂k} is said to be convergent and converges to M̂.

Remark 2.1. It is to note that if a sequence {M̂k} = (Mk1,Mk2, . . . ,Mkn)
> in I(R)n converges to

M̂ = (M1,M2, . . . ,Mn)
> ∈ I(R)n, then by the definition of norm on I(R)n, the sequence Mk j in I(R)

converges to M j ∈ I(R) for all j = 1,2, . . . ,n. Also, according to the definition of norm on I(R), the
sequences {mk j} and {mk j} in R converge to {m j} and {m j}, respectively, for all j.
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Definition 2.14. (Infimum and supremum of a subset of I(R) [17]).
Let U ⊆ I(R). We call an interval X ∈ I(R) a lower bound (respectively, an upper bound) of U if

U ∈U implies X� U (respectively, U� X).
A lower bound X of U is called infimum of U , denoted by infU , if for any lower bound Z of U ,
Z� X.
An upper bound X of U is called supremum of U , denoted by supU , if for any upper bound Z of
U , X� Z.

Remark 2.2. [17] Let S =
{
[aµ ,bµ ] ∈ I(R) : µ ∈ Λ and Λ being an index set

}
. Then, by Definition

2.14, it follows that infS =

[
inf

µ∈Λ
aµ , inf

µ∈Λ
bµ

]
andsupS =

[
sup
µ∈Λ

aµ , sup
µ∈Λ

bµ

]
.

3. gH-WEAK SUBDIFFERENTIAL CALCULUS FOR IVFS

In this section, we introduce the ideas of gH-weak subgradient and gH-weak subdifferential for
IVFs. Some properties of gH-weak subdifferential and inclusion for sum rule are provided. Its
relation with gH-Fréchet lower subdifferential is also discussed.

Definition 3.1. (gH-weak subdifferential). Let /0 6= Y ⊆ Rn and Φ be an IVF defined on Y . A pair
(Ĝw,c) ∈ I(R)n×R+ is said to be a gH-weak subgradient of Φ at u ∈ Y if, for every y ∈ Y ,

Ĝw>� (y−u)	gH c‖y−u‖ �Φ(y)	gH Φ(u). (3.1)

The set of all gH-weak subgradients of Φ at u ∈ Y , i.e.,

∂
w

Φ(u) =
{
(Ĝw,c) ∈ I(R)n×R+ : Ĝw>� (y−u)	gH c‖y−u‖ �Φ(y)	gH Φ(u) ∀ y ∈ Y

}
is said to be gH-weak subdifferential of Φ at u ∈ Y .

Example 3.1. Let an IVF Φ : [−1,1]→ I(R) be defined by Φ(y) =
[
y2, |y|

]
, where y ∈ [−1,1].

Let us compute the gH-weak subdifferential of Φ at 0 and 1, i.e., ∂ wΦ(0) and ∂ wΦ(1), respectively.
Note that

∂
w

Φ(0) =
{
(Gw

1 ,c) ∈ I(R)×R+ : Gw
1 � y	gH c|y| �

[
y2, |y|

]
∀ y ∈ [−1,1]

}
=

{(
[gw

1 ,g
w
1 ],c

)
∈ I(R)×R+ : [gw

1 ,g
w
1 ]� y	gH c|y| �

[
y2, |y|

]
∀ y ∈ [−1,1]

}
,

which yields the following two cases corresponding to y ∈ [0,1] and y ∈ [−1,0].

(i)

∂
w

Φ(0) =

{(
[gw

1 ,g
w
1 ],c

)
∈ I(R)×R+ : [gw

1 ,g
w
1 ]� y	gH c|y| �

[
y2, |y|

]
∀ y ∈ [0,1]

}
=

{(
[gw

1 ,g
w
1 ],c

)
∈ I(R)×R+ : gw

1 y− cy≤ y2 and gw
1 y− cy≤ y ∀ y ∈ [0,1]

}
=

{(
[gw

1 ,g
w
1 ],c

)
∈ I(R)×R+ : gw

1 − c≤ 0 and gw
1 − c≤ 1

}
.

(ii) Likewise,

∂
w

Φ(0) =
{(

[gw
1 ,g

w
1 ],c

)
∈ I(R)×R+ :−1≤ gw

1 + c and 0≤ gw
1 + c

}
.
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Hence, by combining Case (i) and Case (ii), we obtain

∂
w

Φ(0) =
{
(Gw

1 ,c) ∈ I(R)×R+ : [−1− c,−c]�Gw
1 � [c,1+ c]

}
.

Similarly,

∂
w

Φ(1) =
{
(Gw

2 ,c) ∈ I(R)×R+ : [1− c,2− c]�Gw
2

}
.

Remark 3.1. To understand the geometric interpretation of the gH-weak subdifferential of an IVF
Φ, let (Ĝw,c) ∈ ∂ wΦ(u). This means that (Ĝw,c) ∈ I(R)n×R+, for every c ≥ 0, is a gH-weak
subgradient of Φ at u∈Y if and only if there exists a concave and gH-continuous IVF H : Y → I(R),
which is defined by H(y) = Φ(u)⊕ Ĝw>� (y−u)	gH c‖y−u‖ ∀ y ∈ Y , that satisfies

(∀ y ∈ Y ) H(y)�Φ(y) and H(u) = Φ(u).

This condition shows that H must intersect Φ at least at the point (u,Φ(u)) from bottom. Hence, it
concludes that if Φ is gH-weak subdifferentiable at u and (Ĝw,c) ∈ ∂ wΦ(u), then the graph of IVF
H, that is,

Gr(H) = {(y,Y) ∈ Y × I(R) : Y = H(y)}
always lie below the epigraph of Φ, i.e.,

Epi(Φ) = {(y,Y) ∈ Y × I(R) : Φ(y)� Y},
such that

Epi(Φ)⊂ Epi(H) and cl(Epi(Φ))
⋂

Gr(H) is nonempty.

FIGURE 1. Geometrical representation of two possible gH-Dini Hadamard ε-
subgradients of Ψ of Example 3.1

For example, Let Y = [−1,2]. Consider an IVF Φ : Y → I(R) which is given by

Φ(y) =

{[
y2−1,(y−1)2] , if y ∈ [−1,1][
(y−1)2,y2−1

]
, if y ∈ (1,2].
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The gH-weak subdifferential of Φ at u = 1 is

∂
w

Φ(1) = {(Gw,c) ∈ I(R)×R+ : [−c,2− c]�Gw � [c,2+ c]} .
For instance, (Gw,c) = ([0.25,1.5],0.5) ∈ ∂ wΦ(1), geometrically indicates that the IVF

H(y) = Φ(1)⊕ [0.25,1.5]� (y−1)	gH 0.5|y−1|
intersects

Epi(Φ) = {(y,4) ∈ Y ×R : Φ(y)� 4}
at the point M(1,0) from below as shown in Figure 1. We also observe from the figure that

Epi(Φ)⊂ Epi(H), and cl(Epi(Φ))
⋂

Gr(H) is nonempty.

Theorem 3.1. (Convexity of gH-weak subdifferential). Let Y ⊂Rn. Let the gH-weak subdifferential
of Φ : Y → I(R) at u be nonempty. Then, ∂ wΦ(u) is convex.

Proof. Let (Ĝw
1 ,c1) and (Ĝw

2 ,c2) ∈ ∂ wΦ(u), where

Ĝw
1 = (Gw

11,G
w
12, . . . ,G

w
1n)
>

and
Ĝw

2 = (Gw
21,G

w
22, . . . ,G

w
2n)
>.

Let β ∈ [0,1]. From the definition of ∂ wΦ(u), we have

Ĝw
1
>
� (y−u)	gH c1‖y−u‖ �Φ(y)	gH Φ(u) and (3.2)

Ĝw
2
>
� (y−u)	gH c2‖y−u‖ �Φ(y)	gH Φ(u), (3.3)

for all y ∈ Y . Up to a rearrangement of terms, let the first m components of (y−u) be non-negative,
and the rest be negative. Then, from inequalities (3.2) and (3.3), we have

m⊕
i=1

(yi−ui)�Gw
1i

n⊕
j=m+1

(y j−u j)�Gw
1 j	gH c1‖y−u‖ �Φ(y)	gH Φ(u)

and
m⊕

i=1

(yi−ui)�Gw
2i

n⊕
j=m+1

(y j−u j)�Gw
2 j	gH c2‖y−u‖ �Φ(y)	gH Φ(u).

Thus,
m⊕

i=1

β � ((yi−ui)�Gw
1i)

n⊕
j=m+1

β � ((y j−u j)�Gw
1 j)	gH βc1‖y−u‖ � β � (Φ(y)	Φ(u)) (3.4)

and
m⊕

i=1

(1−β )� ((yi−ui)�Gw
2i)

n⊕
j=m+1

(1−β )� ((y j−u j)�Gw
2 j)	gH (1−β )c2‖y−u‖

� (1−β )� (Φ(y)	Φ(u)). (3.5)

By adding (3.4) and (3.5), we obtain
m⊕

i=1

(yi−ui)�{β �Gw
1i⊕ (1−β )�Gw

2i}
n⊕

j=m+1

(y j−u j)�{β �Gw
1 j⊕ (1−β )�Gw

2 j}

	gH (βc1⊕ (1−β )c2)‖y−u‖ �Φ(y)	gH Φ(u). (3.6)
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Therefore, we have

{β � Ĝw
1 ⊕ (1−β )� Ĝw

2 }
>� (y−u)	gH (βc1⊕ (1−β )c2)‖y−u‖ �Φ(y)	gH Φ(u),

i.e., (β�Ĝw
1 ⊕(1−β )�Ĝw

2 , βc1⊕(1−β )c2)∈ ∂ wΦ(u), which proves the convexity of ∂ wΦ(u). �

Theorem 3.2. (Closedness of gH-weak subdifferential). Let /0 6= Y ⊆ I(R)n. If for an IVF Ψ : Y →
I(R), the set ∂ wΨ(u) is nonempty at u ∈ Y , then ∂ wΨ(u) is closed.

Proof. Let {(Ĝw
k ,ck)} be an arbitrary sequence in ∂ wΨ(u) converging to (Ĝw,c)∈ I(R)n×R+, where

Ĝw
k = (Gw

k1,G
w
k2, . . . ,G

w
kn)
> and Ĝw = (Gw

1 ,G
w
2 , . . . ,G

w
n )
>. Since (Ĝw

k ,c)∈ ∂ wΨ(u) for all d ∈Y , we

obtain Ĝw
k
>
�d	gH ck‖d‖ �Ψ(u+d)	gH Ψ(u), which implies

n⊕
i=1

di�Gw
ki	gH ck‖d‖ �Ψ(u+d)	gH Ψ(u). (3.7)

Up to a rearrangement of terms, let the first p components of d be non-negative, and the rest be
negative. Then, from (3.7), we have

p⊕
i=1

di�Gw
ki

n⊕
j=p+1

d j�Gw
k j	gH ck‖d‖ �Ψ(u+d)	gH Ψ(u)

=⇒
p⊕

i=1

di� [gw
ki,g

w
ki]

n⊕
j=p+1

d j� [gw
k j,g

w
k j]	gH ck‖d‖ �Ψ(u+d)	gH Ψ(u).

Therefore,
p

∑
i=1

gw
kidi +

n

∑
j=p+1

gw
k jd j− ck‖d‖ ≤min

{
Ψ(u+d)−Ψ(u),Ψ(u+d)−Ψ(u)

}
(3.8)

and
p

∑
i=1

gw
kidi +

n

∑
j=p+1

gw
k jd j− ck‖d‖ ≤max

{
Ψ(u+d)−Ψ(u),Ψ(u+d)−Ψ(u)

}
. (3.9)

Since sequence Ĝw
k converges to Ĝw, and sequences {gw

ki} and {gw
ki} converge to {gw

i } and {gw
i },

respectively for all i. Thus, by (3.8) and (3.9), we have

p

∑
i=1

gw
kidi +

n

∑
j=p+1

gw
k jd j− ck‖d‖→

p

∑
i=1

gw
i di +

n

∑
j=p+1

gw
j d j− c‖d‖

≤min
{

Ψ(u+d)−Ψ(u),Ψ(u+d)−Ψ(u)
}

and
p

∑
i=1

gw
kidi +

n

∑
j=p+1

gw
k jd j− ck‖d‖→

p

∑
i=1

gw
i di +

n

∑
j=p+1

gw
j d j− c‖d‖

≤max
{

Ψ(u+d)−Ψ(u),Ψ(u+d)−Ψ(u)
}
.
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Hence, for any u ∈ Y ,[ p

∑
i=1

gw
i di +

n

∑
j=p+1

gw
j d j− c‖d‖,

p

∑
i=1

gw
i di +

n

∑
j=p+1

gw
j d j− c‖d‖

]
�Ψ(u+d)	gH Ψ(u)

=⇒
p⊕

i=1

[gw
i di,gw

i di]
n⊕

j=p+1

[gw
j d j,gw

j d j]	gH c‖d‖ �Ψ(u+d)	gH Ψ(u)

=⇒
p⊕

i=1

di�Gw
i

n⊕
j=p+1

d j�Gw
j 	gH c‖d‖ �Ψ(u+d)	gH Ψ(u)

=⇒ Ĝw>�d	gH c‖d‖ �Ψ(u+d)	gH Ψ(u).

Therefore, Ĝw ∈ ∂ wΨ(u), and hence ∂ wΨ(u) is closed. �

Definition 3.2. (gH-Fréchet lower subdifferential). Let Φ : Y → I(R)∪{−∞,+∞} be an IVF that is
finite at an u ∈ Y . Then, the gH-Fréchet lower subdifferential of Φ at u is defined by

∂
−
F Φ(u) =

{
Ĝ : 0� liminf

y→u
y6=u

1
‖y−u‖

�{Φ(y)	gH Φ(u)	gH Ĝ
>� (y−u)},

where Ĝ : Y → I(R) is a gH-continuous and linear IVF
}
.

One important fact is that gH-weak subdifferential is an immediate consequence of gH-Fréchet
lower subdifferential.

Theorem 3.3. Let /0 6=Y ⊆Rn. If Φ : Y → I(R) has gH-Fréchet lower subdifferential Ĝ at the point
u, then (Ĝ,ε) is a gH-weak subgradient of Φ at u for any ε ∈ R+.

Proof. Let Ĝ ∈ ∂
−
F Φ(u). Due to Definition 3.2, we can write

0� liminf
y→u
y6=u

1
‖y−u‖

�{Φ(y)	gH Φ(u)	gH Ĝ
>
� (y−u)}.

Then, for the ε > 0 in the hypothesis there exists δ > 0 such that

−ε‖y−u‖ �Φ(y)	gH Φ(u)	gH Ĝ
>
� (y−u) ∀ y ∈ Bδ (u),

Then, from Lemma 2.3, we have Ĝ
>
� (y− u)	gH ε‖y− u‖ � Φ(y)	gH Φ(u). By Definition 3.1,

(Ĝ,ε) is a gH-weak subdifferential of Φ at u. �

Lemma 3.1. For any y ∈ Rn and Ĉ = (C1,C2,C3, . . . ,Cn) ∈ I(R)n, −‖y‖‖Ĉ‖I(R)n � ‖y>� Ĉ‖I(R).

Proof. See Appendix E. �

To investigate the class of interval-valued functions for which weak subgradients always exist, we
need the following definition.

Definition 3.3. (gH-lower Lipschitz IVF). Let /0 6=Y ⊆Rn. An IVF Φ : Y → I(R) is called gH-lower
locally Lipschitz at u ∈ Y if ∃ L≥ 0 and a neighbourhood N (u) of u such that

−L‖y−u‖ �Φ(y)	gH Φ(u) ∀ y ∈N (u). (3.10)

If the inequality (3.10) satisfies for all y ∈ Y , then Φ is called gH-lower Lipschitz at u ∈ Y with
Lipschitz constant L.
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Example 3.2. Let Φ : [1,∞)→ I(R) be an IVF, and defined by Φ(y) = lny�C for all y ∈ [1,∞),
where 0 � C = [c,c]. Let δ > 0. We choose the neighbourhood of u, Nδ (u) = {y : |y− u| < δ}. If
0 < y−u < δ , then u < y and also then y

u > 1 and then

0 < ln
y
u
<

y
u
−1, since ln(1+ p)< p if p > 0

≤ y−u. (3.11)

Since c,c≥ 0, we have (lny− lnu)c≤ (y−u)c and (lny− lnu)c≤ (y−u)c. Then,

(lny− lnu)�C� (y−u)�C. (3.12)

If −δ < y−u < 0, then y < u and also then u
y > 1 and then

0 < ln
u
y
<

u
y
−1, since ln(1+ p)< p if p > 0

≤ u− y. (3.13)

Then, (lnu− lny)�C� (u− y)�C, which together with (3.12) yields that

|lny− lnu|�C� |y−u|�C
=⇒ lnu�C	gH lny�C� |y−u|�C
=⇒ −|y−u|�C� lny�C	gH lnu�C
=⇒ − c|y−u| �Φ(y)	gH Φ(u).

This shows that Φ is gH-lower locally Lipschitz on Nδ (u) with L = c. From arbitrariness of y,u in
[1,∞), we conclude that Φ is gH-lower Lipschitz on [1,∞).

Theorem 3.4. Let /0 6= Y ⊆ Rn. Let Φ : Y → I(R) be an IVF, where Φ(u) is finite for some u ∈ Y .
Then, the following three statements are equivalent:

(a) Φ is gH-weak subdifferentiable at u.
(b) Φ is gH-lower Lipschitz at u.
(c) Φ is gH-lower locally Lipschitz at u, and there exists a number p≥ 0 and an interval Q such

that

−p‖y‖⊕Q�Φ(y) ∀ y ∈ Y . (3.14)

Proof. (a) implies (b) : Suppose that Φ is gH-weak subdifferentiable at u. Then, there exists

(Ĝw,c) ∈ I(R)n×R+ such that, for any y ∈ Y ,

Ĝw>� (y−u)	gH c‖y−u‖ �Φ(y)	gH Φ(u). (3.15)

From Lemma 3.1, we have −‖Ĝw‖I(R)n‖y−u‖− c‖y−u‖ � Ĝw� (y−u)	gH c‖y−u‖. Hence, the
inequality (3.15) yields

−(‖Ĝw‖+ c)‖y−u‖ �Φ(y)	gH Φ(u) by Lemma 2.3 (ii) of [1].

By choosing L=(‖Ĝw‖+c), we obtain−L‖y−u‖�Φ(y)	gH Φ(u) for all y∈Y . So, Φ is gH-lower
Lipschitz at u.

(b) implies (c) : Suppose that (b) is satisfied. It needs to prove that the inequality (3.14) holds.
Then, there exists an L≥ 0 such that

−L‖y−u‖ �Φ(y)	gH Φ(u). (3.16)
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Note that −L‖y‖−L‖u‖ ≤ −L‖y−u‖. So, inequality (3.16) gives −L‖y‖−L‖u‖ �Φ(y)	gH Φ(u),
which gives Φ(u)	gH L‖u‖−L‖y‖ � Φ(y) by (iv) of Lemma 2.6. Taking Q = Φ(u)	gH L‖u‖ and
p = L, we obtain −p‖y‖⊕Q�Φ(y) for all y ∈ Y .

(c) implies (a) : Let N (u) be an ε-neighbourhood of u such that (3.10) holds. Then,

−L‖y−u‖ �Φ(y)	gH Φ(u), ∀ y ∈N (u) (3.17)

and

− p‖y‖⊕Q�Φ(y), ∀ y ∈ Rn. (3.18)

Assume to the contrary that Φ is not gH-weak subdifferentiable at u. Then, for any (Ĝw
n ,cn) ∈

I(R)n×R+, there exists yn such that

Φ(yn)	gH Φ(u)≺ Ĝw
n
>
� (yn−u)	gH cn‖yn−u‖.

If the sequence {Ĝw
n } is assumed to be converging to Ĝw, then

Φ(yn)	gH Φ(u)� Ĝw>� (yn−u)	gH cn‖yn−u‖

� ‖Ĝw‖‖yn−u‖− cn‖yn−u‖, by Theorem 3.1 of [11]. (3.19)

By putting y = yn in (3.18), we have

−p‖yn−u‖− p‖u‖⊕Q�−p‖yn‖⊕Q�Φ(yn),

which implies

(−p‖yn−u‖− p‖u‖⊕Q)	gH Φ(u)�Φ(yn)	gH Φ(u) by Note 2 of [1]. (3.20)

From (3.19), (3.20), and [1, Lemma 2.3 (ii)], we deduce that

(−p‖yn−u‖− p‖u‖⊕Q)	gH Φ(u)� ‖Ĝw‖‖yn−u‖− cn‖yn−u‖,

or, (cn− p−‖Ĝw‖)‖yn−u‖ �Φ(u)⊕ p‖u‖	gH Q by (iii) of Lemma 2.6. (3.21)

Assume, without loss of generality, that cn− p−‖Ĝw‖ 6= 0. Then, from (2.6), we obtain

‖yn−u‖ � 1

cn− p−‖Ĝw‖
�{Φ(u)⊕ p‖u‖	gH Q}.

As (Φ(u)⊕ p‖u‖	gH Q) is bounded below on N (u), we have yn→ u as cn→ ∞. Thus, yn ∈N (u)
for large n. Then, it follows from (3.17) that

−L‖yn−u‖ �Φ(yn)	gH Φ(u). (3.22)

In view of (3.19), we obtain

Φ(yn)	gH Φ(u)� ‖Ĝw‖‖yn−u‖− cn‖yn−u‖=−(cn−‖Ĝw‖)‖yn−u‖.

Since cn→+∞ and L≥ 0, we can pick cn sufficiently large so that cn−‖Ĝw‖ ≥ L. So,

Φ(yn)	gH Φ(u)�−L‖yn−u‖.

This inequality leads to a contradiction. So, the result follows. �

Theorem 3.5. Let /0 6=Y ⊆Rn. Let Ψ : Y → I(R) be gH-Fréchet differentiable at u with gH-Fréchet
derivative ΨF (u). Then, {(ΨF (u),c) : c≥ 0} ⊂ ∂ wΨ(u).
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Proof. Since Ψ is gH-Fréchet differentiable at u with gH-Fréchet derivative ΨF (u), we have

lim
y→u

1
‖y−u‖

�{Ψ(y)	gH Ψ(u)	gH ΨF (u)>� (y−u)}= 0

=⇒ liminf
y→u
y6=u

1
‖y−u‖

�{Ψ(y)	gH Ψ(u)	gH ΨF (u)>� (y−u)}= 0.

Therefore, by Definition 3.2, ΨF (u) ∈ ∂
−
F Ψ(u), one has

ΨF (u)>� (y−u)�Ψ(y)	gH Ψ(u) ∀ y ∈ Y

=⇒ΨF (u)>� (y−u)	gH c‖y−u‖ �Ψ(y)	gH Ψ(u), for any c≥ 0.

Hence, (ΨF (u),c) ∈ ∂ wΨ(u). �

Lemma 3.2. Let /0 6= Y ⊆Rn. Let Φ : Y → I(R) be gH-Fréchet differentiable at u with gH-Fréchet
derivative ΦF (u). Then, −1�ΦF (u) ∈ ∂

−
F (−1�Φ)(u).

Proof. Since Φ is gH-Fréchet differentiable at u with gH-Fréchet derivative ΦF (u), one sees that

lim
y→u

1
‖y−u‖

�{Φ(y)	gH Φ(u)	gH ΦF (u)>� (y−u)}= 0.

By applying Lemma 2.5, we have

lim
y→u
y6=u

1
‖y−u‖

�
{

0	gH {(−1�Φ)(y)	gH (−1�Φ)(u)	gH (−1�ΦF (u)>)� (y−u)}}
}
= 0

=⇒ lim
y→u
y6=u

1
‖y−u‖

�
{
(−1�Φ)(y)	gH (−1�Φ)(u)	gH (−1�ΦF (u))>� (y−u)

}
= 0

=⇒ liminf
y→u
y 6=u

1
‖y−u‖

�{(−1�Φ)(y)	gH (−1�Φ)(u)	gH (−1�ΦF (u))>� (y−u)}= 0.

Hence, −1�ΦF (u) ∈ ∂
−
F (−1�Φ)(u). �

Next, we focus on investigating the sum rule of two functions in terms of gH-weak subdifferential.
For two real-valued functions f1 and f2, the sum rule [15] for their weak subdifferential is ∂ w( f1 +
f2)(x) = ∂ w f1(x)+ ∂ w f2(x). However, this sum rule does not hold for interval-valued functions. In
the following, we provide such an example.

Consider the interval-valued functions Φ1 : [−1,1]→ I(R) and Φ2 : [−1,1]→ I(R), defined by

Φ1(y) =

{[
−y, 1

2y
]
, if y ∈ [0,1][

−1
2y,−y

]
, if y ∈ [−1,0]

and Φ2(y) = [y2,−y+3],

respectively. For these two functions, the gH-weak subdifferential at u = 0 are given by

∂
w

Φ1(0) = {(Gw
1 ,c1) ∈ I(R)×R+ :

[
−1,−1

2

]
�Gw

1 ⊕ c1, Gw
1 	gH c1 �

[
−1, 1

2

]
}

and
∂

w
Φ2(0) = {(Gw

2 ,c2) ∈ I(R)×R+ : [−1,0]�Gw
2 ⊕ c2, Gw

2 	gH c2 � [−1,0]}.
Thus, we have

∂
w

Φ1(0)⊕∂
w

Φ2(0)

= {(Hw,c) ∈ I(R)×R+ :
[
−2,−1

2

]
�Hw⊕ c, Hw	gH c�

[
−2, 1

2

]
, ∀ y ∈ [−1,1]}. (3.23)
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Now, let (Hw,c) ∈ ∂ w(Φ1⊕Φ2}(0), where

(Φ1⊕Φ2)(y) =

{[
y2− y,−1

2y+3
]

if y ∈ [0,1][
y2− 1

2y,−2y+3
]

if y ∈ [−1,0].

There are the following two cases corresponding to y ∈ [0,1] and y ∈ [−1,0].
(i) As y≥ 0, we have

Hw� y	gH c� y� (Φ1⊕Φ2)(y)	gH (Φ1⊕Φ2)(0)

=⇒ [hw− c,hw− c]� y�
[
y2− y,−1

2y
]

=⇒ hw− c≤−1 and hw− c≤−1
2 .

(ii) As −1≤ y≤ 0, we have

[(hw + c)y,(hw + c)y]�
[
y2− 1

2y,−2y+3
]
	gH [0,3]

=⇒ [(hw + c)y,(hw + c)y]�
[
y2− 1

2y,−2y
]

=⇒ −2− c≤ hw and− 1
2 − c≤ hw.

Therefore, from Case (i) and Case (ii), we have

∂
w(Φ1⊕Φ2)(0)

= {(Hw,c) ∈ I(R)×R+ :
[
−2,−1

2

]
� (Hw⊕ c),(Hw	gH c)�

[
−1,−1

2

]
}. (3.24)

Thus, (3.23) and (3.24) are not equal.

In the following theorem, we show that under some restriction on Φ1 and Φ2 one-sided inclusion
for the sum rule holds.

Theorem 3.6. Let /0 6=Y ⊆Rn. Let Φ1 : Y → I(R) be gH-weak subdifferential at u and Φ2 : Y →R
be gH-Fréchet differentiable at u. Then, ∂ w(Φ1 ⊕Φ2)(u) ⊂ ∂ wΦ1(u)⊕ ∂ wΦ2(u), provided that
w(Ĝw

1 ) ≤ w(Ĝw
2 ) for all Ĝw

1 ∈ ∂Φ2(y) and Ĝw
2 ∈ ∂ (Φ1⊕Φ2)(y), where w(A) is the width of the

interval A ∈ I(R).

Proof. If (Ĝw,c) ∈ ∂ w(Φ1⊕Φ2)(u), then

Ĝw>� (y−u)	gH c‖y−u‖ � (Φ1⊕Φ2)(y)	gH (Φ1⊕Φ2)(u). (3.25)

We know that Φ2 : Y → I(R) is gH-Fréchet differentiable at u with the gH-Fréchet derivative
Φ2F (u). Hence, Φ2F (u) ∈ ∂

−
F Φ2(u) implies −1�Φ2F (u) ∈ ∂

−
F (−1�Φ2)(u). We can then write

−1�Φ2F (u)� (y−u)� (−1�Φ2)(u)	gH (−1�Φ2)(u)

=⇒ −1�Φ2F (u)� (y−u)�−1� (Φ2(u)	gH Φ2(u))

by properties of gH-difference (iv) of [28]. (3.26)

In view of Lemma 2.4, (3.25) becomes

Ĝw>� (y−u)	gH c‖y−u‖ � (Φ1(y)	gH Φ1(u))⊕ (Φ2(y)	gH Φ2(u)).

Using (v) of Lemma 2.6, this inequality reduces to

Ĝw>� (y−u)	gH (Φ2(y)	gH Φ2(u))	gH c‖y−u‖ �Φ1(y)	gH Φ1(u).

Now, from the inequality (3.26), we see that

Ĝw>� (y−u)	gH Φ2F (u)� (y−u)	gH c‖y−u‖ �Φ1(y)	gH Φ1(u).
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Thus,
(Ĝw	gH Φ2F (u))>� (y−u)	gH c‖y−u‖ �Φ1(y)	gH Φ1(u).

Then, (Ĝw	gH Φ2F (u),c)∈ ∂ wΦ1(u) and (Φ2F (u),0)∈ ∂ wΦ2(u). Therefore, (Ĝw,c)∈ ∂ wΦ1(u)⊕
∂ wΦ2(u). Hence, the result follows. �

Theorem 3.7. Let Y be a nonempty set of Rn. Let Φ1 : Y → I(R) be gH-Fréchet differentiable at
u. Let Φ2 : Y → I(R) be an IVF. If u is a weak efficient point of Φ1⊕Φ2, then (−1�Φ1F (u),0) ∈
∂ wΦ2(u).

Proof. Since u is a weak efficient point of Φ1⊕Φ2, for any y ∈ Y ,

(Φ1⊕Φ2)(u)� (Φ1⊕Φ2)(y)

=⇒Φ1(u)⊕Φ2(u)�Φ1(y)⊕Φ2(y)

=⇒Φ1(u)	gH Φ1(y)�Φ2(y)	gH Φ2(u), using Lemma 2 of [1]

=⇒ (−1)�{Φ1(y)	gH Φ1(u)} �Φ2(y)	gH Φ2(u), by	gH property in (iv) of [28]

=⇒ (−1�Φ1)(y)	gH (−1 �Φ1)(u)�Φ2(y)	gH Φ2(u),

by	gH property in (iv) of [28]. (3.27)

By Lemma 3.2, we also obtain that

(−1)�Φ1F (u)� (y−u)� (−1�Φ1)(y)	gH (−1 �Φ1)(u) ∀ y ∈ Y . (3.28)

We see from (3.27) and (3.28) that

(−1)�Φ1F (u)� (y−u)�Φ2(y)	gH Φ2(u) by lemma 1 of [1],

which shows that ((−1)�Φ1F (u),0) ∈ ∂ wΦ2(u). �

Theorem 3.8. Let /0 6=Y ⊆Rn. Let Ψ be gH-Fréchet differentiable at u with the gH-Fréchet deriva-
tive ΨF (u). Then, Ψ has weak efficient solution at u if and only if, for any y∈Y , ΨF (u)>�(y−u)=
0.

Proof. If Ψ has a weak efficient point at u, then

Ψ(u)�Ψ(y)

or, 0�Ψ(y)	gH Ψ(u), by Lemma 2.1 of [13].

By gH-Fréchet differentiability of Ψ at u, we have

lim
‖h‖→0

‖(Ψ(u+h)	gH Ψ(u))	gH ΨF (u)>�h‖I(R)

‖h‖
= 0.

If we take h = λ (y−u), then

lim
λ→0

‖(Ψ(u+λ (y−u))	gH Ψ(u))	gH ΨF (u)>�{λ (y−u)}‖I(R)

‖λ (y−u)‖
= 0. (3.29)

Since u is a weak efficient point of Ψ, we have from (3.29) that

lim
λ→0

‖0	gH λ �{ΨF (u)>� (y−u)}‖I(R)

‖λ (y−u)‖
≤ 0 by (i) of Lemma 2.6

=⇒ lim
λ→0

‖λ �{ΨF (u)>� (y−u)}‖I(R)

‖λ (y−u)‖
≤ 0

=⇒ lim
λ→0

λ‖ΨF (u)>� (y−u)‖I(R)

λ‖(y−u)‖
≤ 0.
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Since the norm gives a non-negative value, we see that
1

‖y−u‖
�{ΨF (u)>� (y−u)}= 0.

Thus, we obtain

ΨF (u)>� (y−u) = 0 for any y ∈ Y .

To show the reverse part, we suppose that ΨF (u)>� (y−u) = 0 for all y. Then, we have ΨF (u) ∈
∂
−
F Ψ(u) and this clearly yields

0 = ΨF (u)>� (y−u)�Ψ(y)	gH Ψ(u)

=⇒Ψ(u)�Ψ(y) by (ii) of Lemma 2.1 in [13],

which means that u is weak efficient point of Ψ. �

Theorem 3.9. Let /0 6= Y ⊆ Rn. If Ψ is gH-Fréchet differentiable at u, then Ψ is gH-weak sub-
differentiable at u if and only if ΨF (u) is gH-weak subdifferentiable at 0 ∈ Y , and ∂ w(Ψ(u)) =
∂ w(ΨF (u)(0)).

Proof. By the gH-Fréchet differentiability of Ψ at u, we have

lim
‖h‖→0

1
‖h‖
�{(Ψ(u+h)	gH Ψ(u))	gH ΨF (u)>�h}= 0.

Inserting h= λ�(y−u), by gH-weak subdifferentiability of Ψ at u, we see that there exists (Ĝw,c)∈
∂ wΨ(u) such that, for any y ∈ Y ,

Ĝw>� (y−u)	gH c‖y−u‖ �Ψ(y)	gH Ψ(u).

Hence,

lim
λ→0

1
‖λ (y−u)‖

�{(Ψ(u+λ (y−u))	gH Ψ(u))	gH ΨF (u)>�λ (y−u)}= 0.

In view of the gH-weak subdifferentiability of Ψ at u, we see, for any y ∈ Y , that

lim
λ→0

1
‖λ (y−u)‖

�
{
(Ĝw>�λ (y−u)	gH λc‖y−u‖)	gH ΨF (u)>�λ (y−u)

}
� 0,

(by (ii) of Lemma 2.6)

=⇒ 1
‖(y−u)‖

�{(Ĝw>� (y−u)	gH c‖y−u‖)	gH ΨF (u)>� (y−u)} � 0.

Therefore, Ĝw>� (y−u)	gH c‖y−u‖	gH ΨF (u)>� (y−u)� 0 for all y ∈ Y . Letting z = y−u,
we obtain

Ĝw>� z	gH c‖z‖ �ΨF (u)>� z ∀ z ∈ Y . (3.30)

Note that the gH-Fréchet derivative ΨF (u) is also gH-Gáteaux derivative (see Theorem 5.2 of [13]).
Hence, it is a linear IVF as in Definition 4.1 of [13]. By this fact, we have ΨF (u)>� (0) = 0. Then,
inequality (3.30) implies that (Ĝw,c) ∈ ∂ w(ΨF (u)(0)).

Conversely, let (Ĝw,c) ∈ ∂ w(ΨF (u)(0)). Then, we can write

Ĝw>� y	gH c‖y‖ �ΨF (u)>� y ∀ y ∈ Y

=⇒ Ĝw>� (y−u)	gH c‖y−u‖ �ΨF (u)>� (y−u) ∀ y ∈ Y .
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Since Ψ has gH-Fréchet derivative ΨF (u) and it is also a gH-subgradient, it follows that

ΨF (y)>� (y−u)�Ψ(y)	gH Ψ(u) ∀ y ∈ Y .

Thus Ĝw>� (y−u)	gH c‖y−u‖ �Ψ(y)	gH Ψ(u). Hence the proof is complete. �

Theorem 3.10. Let /0 6= Y ⊆ Rn. Let Φ be gH-Fréchet differentiable at u. If u is a weak efficient
point of Φ, then

sup
{

Ĝw>� (y−u)	gH c‖y−u‖ : (Ĝw,c) ∈ ∂
w

Φ(u)
}
= 0.

Proof. First, we show that

ΦF (u)>� (y−u) = sup
{

Ĝw>� (y−u)	gH c‖y−u‖ : (Ĝw,c) ∈ ∂
w

Φ(u)
}

by which the desired equality can be easily proved. Using the gH-Fréchet differentiability of Φ and
taking the supremum on the inequality (3.30), we obtain

sup
(Ĝw,c)∈∂ wΦ(u)

{Ĝw>� (y−u)	gH c‖y−u‖} � sup
(Ĝw,c)∈∂ wΦ(u)

{ΦF (u)>� (y−u)}

= ΦF (u)>� (y−u).

Since (ΦF (u),0) ∈ ∂ wΦ(u), one has

ΦF (u)� (y−u) ∈
{

Ĝw>� (y−u)	gH c‖y−u‖ : (Ĝw,c) ∈ ∂
w

Φ(u)
}

and hence the result follows. �

4. OPTIMALITY FOR THE DIFFERENCE OF TWO IVFS

In this section, we consider the constrained IOP as below:

min
y∈Y
{Φ2(y)	gH Φ1(y)}, (4.1)

where /0 6= Y ⊆ Rn and Φ1,Φ2 : Y → I(R) are two IVFs. We are going to study weak efficiency
conditions for the IOP (4.1) under some additional assumptions.

Theorem 4.1. Let /0 6= Y ⊆ Rn. Let Φ1,Φ2 : Y → I(R) be gH-weak subdifferentiable at u, which is
a weak-efficient point of Φ2	gH Φ1. If Φ1(u) = Φ2(u), then ∂ wΦ1(u)⊂ ∂ wΦ2(u).

Proof. The gH-weak subdifferentiability of Φ1 at u implies that ∂ wΦ1(u) is nonempty. Hence, there
exists (Ûw,c) ∈ I(R)×R+ such that

Ûw>� (y−u)	gH c‖y−u‖ �Φ1(y)	gH Φ1(u) for all y ∈ Y . (4.2)

Since Φ2	gH Φ1 gets the weak efficiency value 0 at u for any y ∈ Y , we have

0� (Φ2	gH Φ1)(y)

=⇒ 0�Φ2(y)	gH Φ1(y)

=⇒Φ1(y)�Φ2(y) by Lemma 2.1(ii) of [13]

=⇒Φ1(y)	gH Φ1(u)�Φ2(y)	gH Φ2(u) by Note 2 of [1]. (4.3)

Consequently, inequality (4.3) implies that

Ûw>� (y−u)	gH c‖y−u‖ �Φ2(y)	gH Φ2(u).
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This means (Ûw,c) ∈ ∂ wΦ2(u). Hence, the result follows. �

Note 4.1. If we take an efficient solution of Φ2 	gH Φ1 instead of a weak efficient solution, the
additional condition Φ1(u) = Φ2(u) becomes essential for Theorem 4.1 to hold. For instance, let two
IVFs Φ1 :

[
−1

2 ,
1
2

]
→ I(R) and Φ2 :

[
−1

2 ,
1
2

]
→ I(R) be defined as

Φ1(y) = [2|y|, |y|+1] and Φ2(y) = [|y|,2y2 + |y|],

respectively. Now, according to Theorem 4.1, (Φ2	gH Φ1)(y) = [2y2−1,−|y|], and 0 is an efficient
point of (Φ2	gH Φ1) because (Φ2	gH Φ1)(y) and (Φ2	gH Φ1)(0) are not comparable for all y ∈[
−1

2 ,
1
2

]
. Note that

∂
w

Φ1(0) = {(Kw
1 ,c1) : [−2,−1]� (Kw

1 ⊕ c1),(Kw
1 	gH c1)� [1,2]}

and ∂
w

Φ2(0) = {(Kw
2 ,c2) : [−1,−1]� (Kw

2 ⊕ c2),(Kw
2 	gH c2)� [1,1]}.

Hence, ∂ wΦ1(0) 6⊂ ∂ wΦ2(0). So, Φ1(u) = Φ2(u) is an essential condition.

As the restriction Φ1(u) = Φ2(u) is a bit restrictive, in the next result, we give more flexible
condition for which the inclusion in Theorem 4.1 holds.

Theorem 4.2. Let /0 6= Y ⊆ Rn. Let Φ1,Φ2 have gH-weak subdifferential at u ∈ Y , and Φ2	gH Φ1
attains weak efficient solution at u. Then,

∂
w

Φ1(u)⊂ ∂
w

Φ2(u), (4.4)

provided that w(Φ1(y)) ≥ w(Φ2(y)) for all y ∈ Y or w(Φ1(y)) ≤ w(Φ2(y)) for all y ∈ Y , where
w(A) is the width of the interval A ∈ I(R).

Proof. The gH-weak subdifferentiability of Φ1 at u implies that ∂ wΦ1(u) is nonempty. Hence, there
exists (Ûw,c) ∈ I(R)×R+ such that

Ûw>� (y−u)	gH c‖y−u‖ �Φ1(y)	gH Φ1(u) for all y ∈ Y . (4.5)

Since u is a weak efficient point of (Φ2	gH Φ1), one has

(Φ2	gH Φ1)(u)� (Φ2	gH Φ1)(y) ∀ y ∈ Y . (4.6)

• Case 1. If w(Φ1(y))≥ w(Φ2(y)), then, for all y ∈ Y , we have from inequality (4.6) that

[φ 2(u)−φ 1(u),φ 2
(u)−φ

1
(u)]� [φ 2(y)−φ 1(y),φ 2

(y)−φ
1
(y)]

=⇒ φ 1(y)−φ 1(u)≤ φ 2(y)−φ 2(u), & φ
1
(u)−φ

1
(u)≤ φ

2
(y)−φ

2
(u) (4.7)

Now there arise two subcases.
• Subcase 1. If φ

1
(y)−φ

1
(u)≤ φ 1(y)−φ 1(u),

φ
1
(y)−φ

1
(u)≤min{φ

2
(y)−φ

2
(u),φ 2(y)−φ 2(u)} and

φ 1(y)−φ 1(u)≤max{φ
2
(y)−φ

2
(u),φ 2(y)−φ 2(u)}.

Clearly, we have [φ
1
(y)−φ

1
(u),φ 1(y)−φ 1(u)]� [min{φ

2
(y)−φ

2
(u),φ 2(y)−φ 2(u)},

max{φ
2
(y)−φ

2
(u),φ 2(y)−φ 2(u)}].

• Subcase 2. If φ 1(y)−φ 1(u)≤ φ
1
(y)−φ

1
(u),

φ 1(y)−φ 1(u)≤min{φ
2
(y)−φ

2
(u),φ 2(y)−φ 2(u)} and

φ
1
(y)−φ

1
(u)≤max{φ

2
(y)−φ

2
(u),φ 2(y)−φ 2(u)}.

Clearly we have [φ 1(y)−φ 1(u),φ 1
(y)−φ

1
(u)]� [min{φ

2
(y)−φ

2
(u),φ 2(y)−φ 2(u)},

max{φ
2
(y)−φ

2
(u),φ 2(y)−φ 2(u)}].
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Combining Subcase 1 and Subcase 2, we have

Φ1(y)	gH Φ1(u)�Φ2(y)	gH Φ2(u). (4.8)

• Case 2. If w(Φ2(u))≥ w(Φ1(u)), then from the inequality (4.6), for all y ∈ Y , we have

[φ
2
(u)−φ

1
(u),φ 2(u)−φ 1(u)]� [φ

2
(y)−φ

1
(y),φ 2(y)−φ 1(y)]

=⇒ φ
1
(y)−φ

1
(u)≤ φ

2
(y)−φ

2
(u) & φ 1(y)−φ 1(u)≤ φ 2(y)−φ 2(u). (4.9)

By a similar manner as in Case 1, we have Φ1(y)	gH Φ1(u)�Φ2(y)	gH Φ2(u).

Hence, in all cases, we have Φ1(y)	gH Φ1(u)�Φ2(y)	gH Φ2(u). In view of (4.5), we have

Ûw>� (y−u)	gH c‖y−u‖ �Φ2(y)	gH Φ2(u) for all y ∈ Y , by Lemma 2.3 (ii) of [1],

which implies (Ûw,c) ∈ ∂ wΦ2(u). Hence, the result follows. �

Note 4.2. If we take an efficient solution of Φ2 	gH Φ1 instead of a weak efficient solution, the
additional condition w(Φ1(y)) ≥ w(Φ2(y)) or w(Φ1(y)) ≤ w(Φ2(y)) for all y becomes essential for
Theorem 4.2 to hold. For instance, consider the IVFs Φ1 : [−1,1]→ I(R) and Φ2 : [−1,1]→ I(R)
which are defined by

Φ1(y) =

{
[y3,y], if 0≤ y≤ 1
[4y,y], if −1≤ y < 0

and Φ2(y) =

{
[y3,5y], if 0≤ y≤ 1
[3y,2y], if −1≤ y < 0,

respectively. Now, according to Theorem 4.2,

(Φ2	gH Φ1)(y) =

{
[0,4y], if 0≤ y≤ 1
[y,−y], if −1≤ y < 0

obtains an efficient solution at 0 because (Φ2	gH Φ1)(0) � (Φ2	gH Φ1)(y) for all y ∈ [0,1] and
(Φ2	gH Φ1)(0) is not comparable with the values (Φ2	gH Φ1)(y) for all y ∈ [−1,0]. It is not
difficult to check that

∂
w

Φ1(0) = {(Kw
1 ,c1) : [1,4]� (Kw

1 ⊕ c1),Kw
1 	gH c1 � [0,1]}

and ∂
w

Φ2(0) = {(Kw
2 ,c2) : [2,3]� Kw

2 ⊕ c2,Kw
2 	gH c2 � [0,5]}.

Here, we see that ∂ wΦ1(0) and ∂ wΦ2(0) are not comparable and at the same time, and we notice
that w(Φ2(y))≥ w(Φ1(y)) on [0,1] and w(Φ1(y))≥ w(Φ2(y)) on [−1,0].

Remark 4.1. In Theorem 4.2, inclusion (4.4) is a necessary but not sufficient condition for weak
efficient point of Φ2	gH Φ1. For instance, consider the IVFs Φ1 : [−1,1]→ I(R) and Φ2 : [−1,1]→
I(R) that are defined by

Φ1(y) =

{
[y3,y], if 0≤ y≤ 1
[3y,1.5y], if −1≤ y < 0

and Φ2(y) =

{
[y3 + y2,2y2 + y], if 0≤ y≤ 1
[3y,2y], if −1≤ y < 0.

We notice that w(Φ2(y))≥ w(Φ1(y)) on [0,1] and w(Φ2(y))≤ w(Φ1(y)) on [−1,0]. Note that

∂
w

Φ1(0) = {(Kw
1 ,c1) : [1.5,3]� Kw

1 ⊕ c1,Kw
1 	gH c1 � [0,1]}

and ∂
w

Φ2(0) = {(Kw
2 ,c2) : [2,3]� Kw

2 ⊕ c2,Kw
2 	gH c2 � [0,1]}.

Hence, ∂ wΦ1(0)⊂ ∂ wΦ2(0) but 0 is not a weak efficient point of Φ2	gH Φ1 on [−1,1].

Next, we study a relation between the augmented normal cone and gH-weak subdifferential. So,
let us define the augmented normal cone to Y as below.
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Definition 4.1. (Augmented normal cone). An augmented normal cone to Y at u is

N c
Y (u) =

{
(Ĝ,c) ∈ I(R)n×R+ : Ĝ

>� (y−u)	gH c‖y−u‖ � 0 ∀ y ∈ Y
}
.

Theorem 4.3. (Optimality condition via augmented normal cone). An IVF Ψ : Y → I(R) attains
weak efficient solution at u if and only if (0,0) ∈ ∂ wΨ(u)⊕N c

Y (u), where (0,0) denotes the zero of
I(R)×R+.

Proof. Since u is a weak efficient point of Ψ on Y ,

Ψ(u)�Ψ(y) ∀ y ∈ Y

=⇒ 0�Ψ(y)	gH Ψ(u) ∀ y ∈ Y by Lemma 2.1(ii) of [13]

=⇒ (0,0) ∈ ∂
w

Ψ(u).

Let δY : Y → I(R) be an indicator function, defined by δY (y) =

{
0, for y ∈ Y

∞, for y /∈ Y
. Since

(Ψ⊕δY )(y) =

{
Ψ(y) if y ∈ Y

∞ if y /∈ Y ,

(0,0) ∈ ∂ wΨ(u) = ∂ w(Ψ⊕ δY )(u). It needs to show that ∂ w(Ψ⊕ δY )(u) ⊂ ∂ wΨ(u)⊕N c
Y (u). To

prove this, let Ĝw ∈ ∂ w(Ψ1⊕δY )(u). Then,

Ĝw>� (y−u)	gH c‖y−u‖ � (Ψ⊕δY )(y)	gH (Ψ⊕δY )(u)

=⇒ Ĝw>� (y−u)	gH c‖y−u‖ � (Ψ(y)⊕δY (y))	gH (Ψ(u)⊕δY (u))

=⇒ Ĝw>� (y−u)	gH c‖y−u‖ �Ψ(y)	gH Ψ(u),

which implies Ĝw ∈ ∂ wΨ(u) ⊂ ∂ wΨ(u)⊕ ∂ wδY (u), where {(0,0)} ⊂ ∂ wδY (u). Hence, Ĝw ∈
∂ wΨ(u)⊕∂ wδY (u) = ∂ wΨ(u)⊕N c

Y (u).
To show the converse part, let (0,0) ∈ ∂ wΨ(u)⊕N c

Y (u) = ∂ w(Ψ(u)⊕ δY (u)). Now, for any
y ∈ Y , we have

0� (y−u)	gH 0‖y−u‖ � (Ψ(y)⊕δY (y))	gH (Ψ(u)⊕δY (u))

or, 0�Ψ(y)	gH Ψ(u)

or, Ψ(u)�Ψ(y) by Lemma 2.1(ii) of [13].

So, u is a weak efficient solution of Ψ. �

5. gH-DIRECTIONAL DERIVATIVE AND gH-WEAK SUBDIFFERENTIAL FOR IVF

In the section, we investigate a relation between gH-Directional derivative and gH-weak subd-
ifferential for IVFs based on supremum relation, which facilitates the analysis on the existence of
efficient solution for nonconvex IVFs. With the help of the proposed relation, we introduce W -gH-
weak subgradient method to obtain weak efficient solution of an unconstrained IOP in the coming
section.

Lemma 5.1. Let Y ⊆ Rn be starshaped at u ∈ Y . Let, at u, the IVF Φ : Y → I(R) has gH-
Directional derivative in every direction y−u for any y ∈ Y , and

ΦD(u;y−u)�Φ(y)	gH Φ(u) ∀ y ∈ Y . (5.1)
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Then, u is a weak efficient point of Φ over Y if and only if

0�ΦD(u;y−u) ∀ y ∈ Y . (5.2)

Proof. Let us assume that condition (5.2) is satisfied. Thus, by using (5.1), we have 0 � Φ(y)	gH
Φ(u) for all y ∈ Y , which implies that u is a weak efficient point of Φ over Y . It is given that for all
y ∈ Y , ΦD(u;y−u) exists. Then,

ΦD(u;y−u) = lim
β→0

1
β
� [Φ(u+β (y−u)	gH Φ(u))]. (5.3)

As u is a weak efficient point of Φ on Y , we have 0�ΦD(u;y−u). �

Theorem 5.1. Let all the suppositions of Lemma 5.1 be satisfied. In addition, let at u, the gH-
Directional derivative ΦD(u, ·) be gH-lower semicontinuous on K = cone(Y −u) and

−∞≺ inf{ΦD(u;h) : h ∈K ∩U }, (5.4)

where U = {v ∈ Rn : ‖v‖= 1}. Then, Φ is gH-weak subdifferentiable at u on Y , that is ∂ w
Y Φ(u) is

nonempty and

ΦD(u;h) = sup{Ĝw>�h	gH c‖h‖ : (Ĝw,c) ∈ ∂
w
Y Φ(u), c > 0},∀ h ∈K . (5.5)

Proof. For convenience, we suppose Ψ(h) = ΦD(u;h) ∀ h ∈K . Clearly, for α ≥ 0,

Ψ(αh) = ΦD(u;αh) = lim
β→0

1
β
� [Φ(u+(βα)h)	gH Φ(u)]

= α� lim
β→0

1
βα
� [Φ(u+(βα)h)	gH Φ(u)] = α�ΦD(u;h) = α�Ψ(h).

So, Ψ is a nonnegative homogeneous IVF and Ψ(0) = 0. By the hypothesis, Ψ is bounded below on
K ∩U . Due to this fact, for any given Ĝw ∈ I(R)n, the relation

Ĝw>�h	gH c‖h‖ �Ψ(h)	gH Ψ(0) ∀ h ∈K ∩U (5.6)

holds for sufficiently large c. Inequality (5.6) shows that (Ĝw,c) ∈ ∂ w
Y −uΨ(0), which means Ψ is

gH-weak subdifferentiable on Y −u at 0. So, ∂ w
Y −uΨ(0) is nonempty. Now it remains to show that

∂
w
Y Φ(ȳ) = ∂

w
Y −uΨ(0). (5.7)

Let (Ĝw,c) ∈ ∂ w
Y −uΨ(0). Thus, from (5.1) and (5.6), it implies that (3.1) is fulfilled, i.e., (Ĝw,c) ∈

∂ w
Y Φ(u). To prove the reverse inclusion of equality (5.7), let us take (Ĝw,c) ∈ ∂ w

Y Φ(u). Then, for
any fixed y ∈ Y , we have

Ψ(y−u) = ΦD(u;y−u)

= lim
β→0+

1
β
� [Φ(u+β (y−u))	gH Φ(u)]

= lim
β→0+

1
β
�
[

min
{

φ(u+β (y−u))−φ(u),φ(u+β (y−u))−φ(u)
}
,

max
{

φ(u+β (y−u))−φ(u),φ(u+β (y−u))−φ(u)
}]

. (5.8)

Let the first m number of components of (y−u) be nonnegative and the rest n−m number of compo-
nents of (y−u) be negative. Then, by the definition of weak subgradient on φ and φ , we have c1 > 0
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and c2 > 0 such that
m

∑
i=1

β (yi−ui)gi +
n

∑
j=m+1

β (y j−u j)g j−λc1‖y−u‖ ≤ φ(u+β (y−u))−φ(u) (5.9)

and
m

∑
i=1

β (yi−ui)gi +
n

∑
j=m+1

β (y j−u j)g j−λc2‖y−u‖ ≤ φ(u+β (y−u))−φ(u). (5.10)

With the help of (5.9) and (5.10), (5.8) breaks into two cases.
• Case 1.

lim
β→0+

1
β
� [φ(u+β (y−u))−φ(u),φ(u+β (y−u))−φ(u)] = Ψ(y−u)

=⇒ lim
β→0+

1
β
�
[ m

∑
i=1

β (yi−ui)gi +
n

∑
j=m+1

β (y j−u j)g j−βc1‖y−u‖,

m

∑
i=1

β (yi−ui)gi +
n

∑
j=m+1

β (y j−u j)g j−βc2‖y−u‖
]
�Ψ(y−u)

=⇒
m⊕

i=1

[gi,gi]� (yi−ui)
n⊕

j=m+1

[g j,g j]� (y j−u j)	gH max{c1,c2}‖y−u‖

� Ψ(y−u). (5.11)

• Case 2.

lim
β→0+

1
β
� [φ(u+β (y−u))−φ(u),φ(u+β (y−u))−φ(u)] = Ψ(y−u)

=⇒
m⊕

i=1

[gi,gi]� (yi−ui)
n⊕

j=m+1

[g j,g j]� (y j−u j)	gH max{c1,c2}‖y−u‖

� Ψ(y−u). (5.12)

Combining (5.11) and (5.12), we obtain
m⊕

i=1

(yi−ui)
>�Gw

i

n⊕
j=m+1

(y j−u j)
>�Gw

j 	gH c‖y−u‖ �Ψ(y−u), where c = max{c1,c2},

which implies Ĝw> � (y− u)	gH c‖y− u‖ � Ψ(y− u). This leads to (5.6); that is, (Ĝw,c) ∈
∂ w
Y −uΨ(0).

Now we prove that

Ψ(h) = sup{Ĝw>�h	gH c‖h‖ : (Ĝw,c) ∈ ∂
w
Y −uΨ(0), c≥ 0} ∀ h ∈K . (5.13)

Supposing h = 0, equality in (5.13) is obvious. Hence we take care of the case h 6= 0. Let h ∈K be
a point on the boundary of the unit sphere, i.e., ‖h‖= 1; that is, h ∈K ∩U . Let ε ≥ 0 be arbitrary.
It suffices now to prove that

(Ψ(h)	gH ε⊕ c)�hT z	gH c‖z‖ �Ψ(z) ∀ z ∈K ∩U (5.14)

is valid for sufficiently large numbers c. Now, we proceed by the contrary that there exist two se-
quences {cn} and {zn} with cn→ ∞ and zn ∈K ∩U such that

Ψ(zn)� (Ψ(h)	gH ε⊕ cn)�hT zn	gH cn‖zn‖ for all n = 1,2, . . .

= (Ψ(h)	gH ε)�hT zn⊕ cn� (hT zn−1) for all n = 1,2, . . . . (5.15)
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Since K ∩U is closed and bounded, {zn} has a convergent subsequence. Without loss of generality,
we presume that zn converges to z ∈K ∩U . Let z 6= h and ‖h‖ = 1. Then h>z ≤ h>h = ‖h‖2 = 1
follows. Thus, letting cn approaches to ∞ in (5.15), we have Ψ(z) = −∞, which contradicts (5.4).
Thus, z = h which ensures that ‖h‖2 = 1. By gH-lower semicontinuity of gH-Directional derivative
ΦD(u;h), we have

Ψ(h)� liminf
n→∞

Ψ(zn)� (Ψ(h)	gH ε)‖h‖2 = Ψ(h)	gH ε, (5.16)

which leads to a contradiction. Note that the inequality (5.14) is true for some c ≥ 0. Denote Ĝw =

(Ψ(h)	gH ε⊕ c)�h>. The inequality (5.14) then gives (Ĝw,c) ∈ ∂ w
Y −uΨ(0). It is obvious that

(Ψ(h)	gH ε⊕ c)�h>h	gH c‖h‖ � sup{Ĝw>�h	gH c‖h‖ : (Ĝw,c) ∈ ∂
w
Y −uΨ(0), c≥ 0}.

As for ‖h‖= 1, we have

Ψ(h)	gH ε � sup{Ĝw>�h	gH c‖h‖ : (Ĝw,c) ∈ ∂
w
Y −uΨ(0), c≥ 0}.

Since this inequality holds for every ε > 0, we deduce that

Ψ(h)� sup{Ĝw>�h	gH c‖h‖ : (Ĝw,c) ∈ ∂
w
Y −uΨ(0), c≥ 0}. (5.17)

In the other words, Ĝw>�h	gH c‖h‖ �Ψ(h) for all (Ĝw,c) ∈ ∂ w
Y −uΨ(0), which yields

Ψ(h) = sup{Ĝw>�h	gH c‖h‖ : (Ĝw,c) ∈ ∂
w
Y −uΨ(0), c≥ 0}. (5.18)

Thus, (5.13) is true. Then, (5.6) is followed by (5.7) and (5.14), which completes the proof of the
theorem. �

6. W -gH-WEAK SUBGRADIENT METHOD

In this section, we illustrate a W -gH-weak subgradient method to obtain a weak efficient solution
of the following unconstrained IOP:

min
y∈Rn

Φ(y), (6.1)

where Φ :Rn→ I(R) is a nonsmooth nonconvex gH-Lipschitz continuous IVF. In order to derive the
method, we define the weak efficient direction of an IVF.

Definition 6.1. (Weak efficient-direction). A direction d ∈ Rn is said to be a weak efficient-direction
of an IVF Φ : Rn→ I(R) at u ∈ Rn if there exists a δ > 0 such that

(i) Φ(u+λd)�Φ(u) for all λ ∈ (0,δ ), and
(ii) there also exists a point y′ = u +αd with α ∈ (0,δ ) and a positive real number δ ′ ≤ α

such that Φ(y′)�Φ(y′+λd) for all λ ∈ (−δ ′,δ ′). The point y′ is known as a weak efficient
solution of Φ in the direction d.

In the proposed method, similar to the existing result for gH-differentiable IVF [14, Theorem 5.4],
we use the weak efficient direction −W (Ĝw), where (Ĝw,c) ∈ ∂ wΦ(u) at any point u ∈ Rn and the
mapping W : I(R)n→ Rn is defined by

W (B1,B2, . . . ,Bn) = (w1b1 +w2b1,w1b2 +w2b2, . . . ,w1bn +w2bn)
>
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for two given numbers w1,w2 ∈ [0,1] with w1+w2 = 1 and B j = [b j,b j]∈ I(R). To identify the weak
efficient solution, we employ the W -map. Applying W -map, the weak efficient solution of IOP (6.1)
can be found by solving the following problem:

min
y∈Rn

w1φ(y)+w2φ(y). (6.2)

The reason is as follows:
Clearly, (w1gw +w2gw,c) ∈ ∂ w(w1φ(y) +w2φ(y)) for any y ∈ Rn, where (gw,c) ∈ ∂ wφ(y) and

(gw,c) ∈ ∂ wφ(y). It can be noted that w1gw +w2gw ∈ [gw,gw], which implies (w1gw +w2gw,c) ∈
∂ wΦ(y). To be certain, we will prove a theorem to show that (w1gw +w2gw,c) ∈ ∂ wΦ(y) is correct.

Since Φ is gH-Lipschitz continuous IVF with Lipschitz constant L, Φ is gH-lower Lipschitz at any
u ∈ Rn as well. Then, the gH-weak subdifferential set of Φ, ∂ wΦ(u) is nonempty. Along with this,
we also assume that L be a positive real number with

∂
w
L Φ(u) = {(Ĝw,c) ∈ ∂

w
Φ(u) : c≤ L, j ∈ N} 6= /0,

is clearly found to be compact set and ‖Ĝw‖ ≤ l +L for every (Ĝw,c) ∈ ∂ w
L Φ(u). This compactness

of ∂ w
L Φ(u) will be used to produce an algorithm for the computation of weak efficient direction using

the computation of gH-weak subgradients at any given point. To compute an approximate gH-weak
subgradients, we will use the relation between gH-Direction derivative and gH-weak subdifferential
(see Theorem 5.1) and consider all assumptions that given in Lemma 5.1 and Theorem 5.1.

To describe the algorithm for computing gH-weak subgradient, we first consider the following set
and sequence for using the relation (5.5):

Q = {ϑ = (ϑ1,ϑ2, . . . ,ϑn) ∈ Rn : |ϑ j|= 1, j = 1,2, . . . ,n}. For ϑ ∈ Q, consider the sequence of n
vectors ϑ j = ϑ j(µ), j = 1,2, . . . ,n with µ ∈ (0,1], where ϑ j = (µϑ1,µ

2ϑ2, . . . ,µ
jϑ j,0, . . . ,0).

From the compactness of gH-weak subdifferential set ∂ w
L Φ(u) and the relation (5.5), there exists a

gH-weak subgradients ( ̂̄Gw
, c̄) such that

ΦD(u;ϑ
j(µ)) = ̂̄Gw>�ϑ

j(µ)	gH c̄‖ϑ j(µ)‖.

Then, the set Gc = {Ĝw ∈ I(R)n : (Ĝw, c̄)∈ ∂ w
L Φ(u)} is nonempty. Suppose that there is a set A ⊂ Gc

such that

ΦD(u;ϑ
j(µ)) = sup{ ̂̄Gw>�ϑ

j(µ)	gH c̄‖ϑ j(µ)‖ : Ĝw ∈ Gc}.

Next, we reconstruct a few following auxiliary sets similar to existing construction for weak subgra-
dients (see [9] Remark 3.1): For any ϑ ∈ Q and µ > 0, R0(ϑ) = A ,

R j(ϑ) = {M̂w = (Mw
1 ,M

w
2 , . . . ,M

w
n ) ∈A : ϑ j�Mw

j = sup{ϑ j�Gw
j : Ĝw

= (Gw
1 ,G

w
2 , . . . ,G

w
n ) ∈R j−1,

and
R(u,ϑ j(µ)) = {M̂w ∈A : ϑ

j(µ)�M̂

= sup{ϑ j(µ)� Ĝw : Ĝw ∈A }for all j = 1,2, . . . ,n.

By using this construction, we have that, for every ϑ j(µ), j = 1,2, . . . ,n, there is an element ̂̄Gw ∈
R(u,ϑ j(µ)) such that

ΦD(u;ϑ
j(µ)) = ̂̄Gw>�ϑ

j(µ)	gH c̄‖ϑ j(µ)‖. (6.3)

In the sequel, like to the existing definition in p. 1527 of [9], we are ready to define a vec-
tor Ĝw(ϑ ,µ,λ ) ∈ I(R)n and a set U (ϑ ,µ) as follows: For any given ϑ ∈ Q, λ > 0 and µ > 0



GENERALIZED HUKUHARA WEAK SUBDIFFERENTIAL AND ITS APPLICATION 357

, consider the following points: y0 = u, y j = y0 + λϑ j(µ), j = 1,2, . . . ,n. Then, clearly y j =

y j−1 +(0, . . . ,0,λ µ jϑ j,0, . . .) for every j = 1,2, . . . ,n. Let Ĝw = Ĝw(ϑ ,µ,λ ) ∈ I(R)n be a vector
with n coordinates:

Ĝw
j (ϑ ,µ,λ ) =

1
λ µ jϑ j

�{Φ(y j)	gH Φ(y j−1)}+
c̄

ϑ j
, j = 1,2, . . . ,n.

For any fixed ϑ ∈ Q and µ > 0, we define the set:

U (ϑ ,µ) = {(M̂w, c̄) ∈ I(R)n×R+ : ∃(λk→+0,k→+∞), M̂w = lim
k→∞

Ĝw(ϑ ,µ,λk)}.

We claim that (Ĝw
j , c̄) is an approximate gH-weak subgradient of Φ at u, which need to satisfy the

relation (6.3). To show (Ĝw
j , c̄) certainly satisfies the relation (6.3), it is sufficient to prove Theorem

6.1. This theorem will also show that (W (Ĝw
j ), c̄) is also an approximate gH-weak subgradient

of Φ at u. So, it indicates that −W (Ĝw
j ) is an appropriate choice for weak efficient direction in the

proposed W -gH-weak subgradient method. Therefore, this method easily reduces to the conventional
weak subgradient method of optimization problems in [9].

For establishing Theorem 6.1, we need the following two lemmas.

Lemma 6.1. For any ϑ ∈ Q, Rn(ϑ) is singleton set.

Proof. The proof is analogous to the proof of Proposition 3.1 for real-valued functions of real vari-
ables (see p. 1525 of [9]). �

Lemma 6.2. There exist µ0 > 0 and M̂w ∈R j(ϑ) such that

ΦD(u,ϑ j(µ)) = ΦD(u,ϑ j−1(µ))⊕µ
j
ϑ j� M̂w	gH c̄µ

j

for all µ ∈ (0,µ0] and for every j = 1,2, . . . ,n.

Proof. The proof is analogous to the proof of Corollary 3.4 for real-valued functions of real-variables
(see p. 1527 of [9]). �

In order to show that (Ĝw
j , c̄) is an approximate gH-weak subgradient of Φ at u, we establish a

relationship between the sets U (ϑ ,µ) and ∂ w
L Φ(u) via the following theorem.

Theorem 6.1. There exists µ0 > 0 such that U (ϑ ,µ)⊆ ∂ w
L Φ(u) for all µ ∈ (0,µ0].

Proof. Let Ĝw
j (ϑ ,µ,λ ) = [gw

j (ϑ ,µ,λ ),gw
j (ϑ ,µ,λ )] = 1

λ µ jϑ j
�{Φ(y j)	gH Φ(y j−1)}⊕ c̄

ϑ j
. It implies

that

Ĝw
j (ϑ ,µ,λ )⊆ 1

λ µ jϑ j
�{{Φ(y j)	gH Φ(u)}	gH {Φ(y j−1)	gH Φ(u)}}.

Since ΦD(u,ϑ j(µ)) = lim
λ→+0

1
λ
�{Φ(y j)	gH Φ(u)}, we have

Ĝw
j (ϑ ,µ,λ )

⊆ 1
λ µ jϑ j

�{λ �ΦD(u,ϑ j(µ))	gH λ �ΦD(u,ϑ j−1(µ))⊕o(λ ,ϑ j(µ))−o(λ ,ϑ j−1(µ))}+ c̄
ϑ j

,

where λ−1o(λ ,ϑ i)→ 0,λ →+0, i = j−1, j. Due to nonemptiness of R j(ϑ) for all j = 1,2, . . . ,n,
we let M = (M1,M2, . . . ,Mn) = ([m1,m1], [m2,m2], . . . , [mn,mn]) ∈ Rn(ϑ). By Lemma 6.1, M is
unique element of Rn(ϑ). From the definition R j(ϑ) for all j = 1,2, . . . ,n, it is clear that Rn(ϑ)⊆
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R j(ϑ) for all j = 1,2, . . . ,n. Then, from this inclusion and Lemma 6.2, we have that there exist
µ0 > 0 such that

Ĝw
j (ϑ ,µ,λ )⊆ 1

λ µ jϑ j
�{λ � (µ j

ϑ j�M̂w
j 	gH c̄µ

j)+o(λ ,ϑ j(µ))−o(λ ,ϑ j−1(µ))}+ c̄
ϑ j

= M̂w
j 	gH

c̄
ϑ j
⊕ o(λ ,ϑ j(µ))−o(λ ,ϑ j−1(µ))

λ µ jϑ j ⊕ c̄
ϑ j

= M̂w
j ⊕

o(λ ,ϑ j(µ))−o(λ ,ϑ j−1(µ))

λ µ jϑ j

for all µ ∈ (0,µ0]. Then, for any µ ∈ (0,µ0], we have

lim
λ→+0

Ĝw
j (ϑ ,µ,λ )	gH M̂w

j ⊆ {0} =⇒ lim
λ→+0

Ĝw
j (ϑ ,µ,λ ) = M̂w

j .

Consequently, lim
λ→+0

Ĝw(ϑ ,µ,λ ) = M̂w ∈ Gc. On the other hand,

W (Ĝw
j (ϑ ,µ,λ )) = w1gw

j (ϑ ,µ,λ )+w2gw
j (ϑ ,µ,λ )

=
(w1φ(y j)+w2φ(y j))− (w1φ(y j−1)+w2φ(y j−1))

λ µ jϑ j
+

(w1 +w2)c̄
ϑ j

= w1

{
(φ(y j)−φ(y j−1))

λ µ jϑ j
+

c̄
ϑ j

}
+w2

{
(φ(y j)−φ(y j−1))

λ µ jϑ j
+

c̄
ϑ j

}

=
w1λ{φ

D
(λ ,ϑ j(µ))−φ

D
(λ ,ϑ j−1(µ))}+o(λ ,ϑ j(µ))−o(λ ,ϑ j−1(µ))

λ µ jϑ j
+

c̄
ϑ j

+
w2λ{φD(λ ,ϑ j(µ))−φD(λ ,ϑ j−1(µ))}+o(λ ,ϑ j(µ))−o(λ ,ϑ j−1(µ))

λ µ jϑ j
+

c̄
ϑ j

=
w1λ{m jµ

jϑ j− c̄µ j}+o(λ ,ϑ j(µ))−o(λ ,ϑ j−1(µ))

λ µ jϑ j
+

c̄
ϑ j

+
w2λ{m jµ

jϑ j− c̄µ j}+o(λ ,ϑ j(µ))−o(λ ,ϑ j−1(µ))

λ µ jϑ j
+

c̄
ϑ j

=
λ{(w1m j +w2m j)µ

jϑ j− c̄µ j}+o(λ ,ϑ j(µ))−o(λ ,ϑ j−1(µ))

λ µ jϑ j
+

c̄
ϑ j

.

Similarly, lim
λ→+0

w1gw
j (ϑ ,µ,λ )+w2gw

j (ϑ ,µ,λ )= (w1m j+w2m j). Since w1gw
j (ϑ ,µ,λ )+w2gw

j (ϑ ,µ,

λ ) ∈ Ĝw
j (ϑ ,µ,λ ), is closed and bounded interval, then each point of Ĝw

j (ϑ ,µ,λ ) is a limit point of

Ĝw
j (ϑ ,µ,λ ) and lim

λ→+0
w1gw

j (ϑ ,µ,λ )+w2gw
j (ϑ ,µ,λ ) = (w1m j +w2m j) ∈ M̂w

j . Therefore, lim
λ→+0

w1

gw(ϑ ,µ,λ )+w2gw(ϑ ,µ,λ ) = (w1m+w2m) ∈ M̂w ∈ Gc. �

In the Algorithm 1 below, we describe a step-by-step procedure for computing gH-Weak subgra-
dient (Ĝw,c) approximately of the given IVF Φ at the point u ∈ Rn based on the above assumptions,
lemmas and theorems.

From Algorithm 1, we obtain gH-weak subgradients of the objective IVF Φ at every iteration.
Algorithm 2 is initialized by choosing a point. We take the function value at this initial point and
name this value UB. Algorithm 2 uses one of gH-weak subgradients obtained from Algorithm 1
for computing weak efficient direction at every iterative step and attempts to find a weak efficient
solution by sequentially moving along the weak efficient direction for the diminishing stepsize. This
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Algorithm 1 Approximate estimating of the gH-weak subgradient (Ĝw,c) ∈ ∂ w
L Φ(u).

1: Let ϑ ∈Q = {ϑ = (ϑ1,ϑ2, . . . ,ϑn) ∈Rn : |ϑ j|= 1, j = 1,2, . . . ,n} and λ > 0,µ ∈ (0,1],u ∈Rn.
2: Set ϑ j(µ) = (ϑ1µ,ϑ2µ2, . . . ,ϑ jµ

j,0, . . . ,0), j = 1,2, . . . ,n.
3: Let y0 = u.
4: Select a number c > 0.
5: j← 1.
6: while j ≤ n do
7: y j = y0 +λϑ j(µ)

8: Ĝw
j =

1
λ µ jϑ j

�{Φ(y j)	gH Φ(y j−1)}+ c
ϑ j

.
9: j = j+1

10: end while

algorithm will not stop until the function value at any point of the sequence {yk}∞
k=1 is not less than

UB. In the below, we present a step-by-step procedure via Algorithm 2 for finding weak efficient
points for a given IOP (6.1) with the help of the above process.

Algorithm 2 W -gH-weak subgradient method

Require: Given an initial solution y0 ∈Rn, w1,w2 ∈ [0,1] such that w1+w2 = 1, let the current upper
bound be UB = Φ(y0), and weak efficient solution be ye f f = y0.

1: Define the initial iteration and let k← 1.
2: while k ≤ n do
3: From Algorithm 1, choose a (Ĝw

k ,c) ∈ ∂ w
L Φ(yk) such that W (Ĝw

k ) 6= 0 and an αk such that

αk > 0, lim
k→∞

αk = 0 and
∞

∑
k=1

αk = ∞.

4: Calculate

yk+1 = yk−αkW (Ĝw
k ).

5: if Φ(yk+1)≺ UB then
6: UB = Φ(yk+1)
7: ye f f = yk+1.
8: end if
9: Set k = k+1

10: end while
11: return : the weak efficient solution

In the numerical example below, we apply the proposed Algorithm 1 to calculate a gH-weak sub-
gradient of the objective function to the IOP.

Example 6.1. Consider the following IOP:

min
(y1,y2)∈R2

Φ(y1,y2) = [2,6]�|y1−2|⊕ [5,7]�|y2−3|⊕ [5,12]. (6.4)

We solve this IOP (6.4) by the method of gH-weak subgradient method. For this, we first start
Algorithm 1 with initial point u = [2.1,3.1] and perform two iterations with the parameters ϑ =

(1,1),λ = 0.1,µ = 0.5,c = 1. Thereafter, we obtain pair of two gH-weak subgradients (Ĝw,c) =
((Gw

1 ,G
w
2 ),c) = (([3,7], [6,8]),1) ∈ ∂ wΦ((2.1,3.1)) in two successive iterations.

Geometrically, (Ĝw,c) represents that there exists a concave and gH-continuous IVF H(y1,y2) =
[3,7]� (y1− 2)⊕ [6,8]⊕ (y2− 3)− (|y1− 2|+ |y2− 3|)⊕Φ(2.1,3.1) = [3,7]� (y1− 2)⊕ [6,8]�
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(a) The IVFs Φ and H (b) Weak efficient point of the IOP (6.4) in Example
6.1

FIGURE 2. Visualization of the IVF Φ with its supporting below conic surface H in
Example 6.1

(y2− 3)− (|y1− 2|+ |y2− 3|)⊕ [5.7,13.3], is a conic surface that coincides with some section of
φ(y1,y2) = 2|y1−2|+5|y2−3|+5 and also intersects φ at least the point (2,3) from bottom.

Taking a gH-weak subgradient Ĝw
1 in first iteration of Algorithm 1, we start Algorithm 2 with

diminishing step length αk =
1
k at k-th iteration, we compute an unique weak efficient point (2,3)

(shown in Figure 2) of IOP (6.4) after four iterations for seven different combinations of w1 and w2
with different initial points, depicted in Table 1.

TABLE 1. Result of Algorithm 2 to find efficient solutions of IOP (6.4)

w1 w2 Initial point Weak efficient solution
0.1 0.9 (3.95,4.95) (2,3)
0.3 0.7 (3.85,4.85) (2,3)
0.4 0.6 (3.80,4.80) (2,3)
0.5 0.5 (3.75,4.75) (2,3)
0.6 0.4 (3.70,4.70) (2,3)
0.9 0.1 (3.55,4.55) (2,3)
0.7 0.3 (3.65,4.65) (2,3)

6.1. Convergence analysis of W -gH-weak subgradient algorithm. W -gH-weak subgradient al-
gorithm generates the sequence of points {yk}∞

k=1 ⊆ Rn , given by

yk+1 = yk−µkW (Ĝw
k ), where (Ĝw

k ,ck) ∈ ∂
w

Φ(yk).

Towards the convergence of W -gH-weak subgradient method, we need the following lemma.

Lemma 6.3. Let {yk} be the sequence generated by W -gH-weak subgradient method. Then, for all
k ≥ 0, we have

‖yk+1− y∗‖2 ≤ ‖yk− y∗‖2−2µk{W (Φ(yk))−W (Φ(y∗))− ck‖y∗− yk‖}+µ
2
k ‖W (Ĝw

k )‖
2.

Proof. From Definition 3.1, we have for every (Ĝw
k ,ck) that

Ĝw
k
>
� (y∗− yk)	gH ck‖y∗− yk‖ �Φ(y∗)	gH Φ(yk)
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=⇒{Φ(yk)	gH Φ(y∗)}	gH ck‖y∗− yk‖ � Ĝw>� (yk− y∗)

=⇒Φ(yk)	gH Φ(y∗)� Ĝw>� (yk− y∗)⊕ ck‖y∗− yk‖

=⇒W ({Φ(yk)	gH Φ(y∗)})�W (Ĝw>� (yk− y∗)⊕ ck‖y∗− yk‖). (6.5)

We note that

Φ(yk)	gH Φ(y∗) = [min{φ(yk)−φ(y∗),φ(yk)−φ(y∗)},max{φ(yk)−φ(y∗),φ(yk)−φ(y∗)}].

We now consider the following two cases.

• Case 1. If φ(yk)−φ(y∗)< φ(yk)−φ(y∗), then

W (Φ(yk)	gH Φ(y∗)) =w1(φ(yk)−φ(y∗))+w2(φ(yk)−φ(y∗))

=(w1φ(yk)+w2φ(yk))− (w1φ(y∗)+w2φ(y∗))

=W (Φ(yk))	gH W (Φ(y∗)).

• Case 2. If φ(yk)−φ(y∗)< φ(yk)−φ(y∗), then

W (Φ(yk)	gH Φ(y∗)) =w1(φ(yk)−φ(y∗))+w2(φ(yk)−φ(y∗))

=(w1φ(yk)+w2φ(yk))− (w1φ(y∗)+w2φ(y∗))

=W (Φ(yk))	gH W (Φ(y∗)).

Accumulating the above two cases, we have from (6.5) that

W (Φ(yk))	gH W (Φ(y∗))�W (Ĝw>� (yk− y∗)⊕ ck‖y∗− yk‖)

=⇒W (Φ(yk))	gH W (Φ(y∗))�W (Ĝw)>(yk− y∗)⊕ ck‖y∗− yk‖. (6.6)

Using (6.6), we obtain

‖yk+1− y∗‖2 = ‖yk−µkW (Ĝw)− y∗‖2

= ‖yk− y∗‖2−2µkW (Ĝw)>(yk− y∗)+µ
2
k ‖W (Ĝw)‖2

≤ ‖yk− y∗‖2−2µk{W (Φ(yk))−W (Φ(y∗)}− ck‖y∗− yk‖}+µ
2
k ‖W (Ĝw

k )‖
2.

�

Theorem 6.2. (Convergence analysis of W -gH-weak subgradient method for the constant stepsize).
For the sequence {yk} generated by W -gH-weak subgradient method with constant stepsize µ , we
have

(i) if Φ(y∗) =−∞, then

liminf
k→∞

Φ(yk) =−∞, and (6.7)

(ii) if −∞≺Φ(y∗), then

liminf
k→∞

Φ(yk)�Φ(y∗)⊕µ
(l +L)2

2
⊕ liminf

k→∞
ckdY , (6.8)

where dY is the diameter of Y , denoted by dY = diam(Y ) = max
y1,y2∈Y

‖y1− y2‖.
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Proof. The statements (6.7) and (6.8) can be proven simultaneously. If possible, let there exist an
ε > 0 such that

Φ(y∗)⊕µ
(l +L)2

2
⊕ liminf

k→∞
ckdY ⊕ ε ≺ liminf

k→∞
Φ(yk),

and let k0 be sufficiently large such that for all k ≥ k0. It follows that

µ
(l +L)2

2
⊕ ε ≺ (Φ(yk)	gH Φ(y∗))	gH ckdY

=⇒ µ
(l +L)2

2
⊕ ε ≺W ((Φ(yk)	gH Φ(y∗))	gH ckdY )

=⇒ µ
(l +L)2

2
⊕ ε ≺W (Φ(yk))	gH W (Φ(y∗))	gH ckdY by Lemma 6.3.

Since ‖yk− y∗‖ ≤ dY , we have, from Lemma 6.3, that

‖yk+1− y∗‖2

≤ ‖yk− y∗‖2−2µ{W (Φ(yk))−W (Φ(y∗))− ck‖y∗− yk‖}+µ
2‖W (Ĝw

k )‖
2

≤ ‖yk− y∗‖2−2µ{W (Φ(yk))−W (Φ(y∗))− ckdY ‖}+µ
2‖W (Ĝw

k )‖
2

≤ ‖yk− y∗‖2−2µ

[
µ
(l +L)2

2
⊕ ε

]
+µ

2‖Ĝw
k ‖

2

≤ ‖yk− y∗‖2−µ
2(l +L)2−2µε +µ

2(l +L)2

= ‖yk− y∗‖−2µε

≤ ‖yk−1− y∗‖−4µε

≤ ·· · ≤ ‖yk0− y∗‖2−2(k+1− k0)µε,

which may not hold for k large enough, so it is a contradiction. �

Theorem 6.3. (Convergence analysis of W -gH-weak subgradient method for the diminishing step-
size). Let the stepsize µk be such that lim

k→∞
µk = 0 and ∑

∞
k=0 µk =∞. Then, for sequence {yk} generated

by the W -gH-weak subgradient method with the diminishing stepsize µk,

liminf
k→∞

Φ(yk)�Φ(y∗)⊕ liminf
k→∞

ckdY .

Proof. On contrary, if possible let there exist an ε > 0 such that

Φ(y∗)⊕ liminf
k→∞

ckdY ⊕ ε ≺ liminf
k→∞

Φ(yk).

Letting k0 be sufficiently large so that for all k ≥ k0, we have ε ≺ (Φ(yk)	gH Φ(y∗))	gH ckdY . By
using Lemma 6.3 and following similar steps used in the proof of Theorem 6.2, we obtain

‖yk+1− y∗‖2 ≤ ‖yk− y∗‖2−2µkε +µk(µk‖W (Ĝw
k )‖

2).

Since µk → 0 and {Ĝw
k } is bounded, then k0 is large enough so that µk‖Ĝw

k ‖2 < ε for all k ≥ k0.
Consequently, µk‖W (Ĝw

k )‖2 < ε for all k ≥ k0. This implies that

‖yk+1− y∗‖2 ≤ ‖yk− y∗‖2−2µkε +µkε

= ‖yk− y∗‖2−µkε ≤ ‖yk−1− y∗‖2− (µk−1 +µk)ε

≤ ·· · ≤ ‖yk0− y∗‖2− ε

k

∑
j=k0

µ j.
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Since ∑
∞
k=0 µk = ∞, this relation may not hold for k sufficient large, so it leads to a contradiction. �

7. CONCLUSION

In this paper, the concepts of gH-weak subdifferentials and gH-weak subgradients (Definition 3.1)
for IVFs with illustrative examples were provided. The gH-weak subdifferential set of an IVF was
shown to be convex (Theorem 3.1) and closed (Theorem 3.2). We further introduced a necessary
and sufficient condition (Theorem 3.4) for the set of gH-weak subgradients to be non-empty. We
derived the necessary optimality condition (Theorem 3.10) involving gH-Fréchet differential and gH-
weak subdifferential for IVFs. We derived a necessary optimality criterion for the difference of two
IVFs (Theorem 4.1 and Theorem 4.3). We provided a necessary and sufficient condition for a weak
efficient solution in terms of two notions of augmented normal cone and gH-weak subdifferential.
Towards the end of the paper, we proposed the W -gH-weak subgradient method and its algorithmic
implementations (Algorithm 1 and Algorithm 2) to obtain efficient solutions of an unconstrained IOP
with the nonconvex and nonsmooth objective IVF. The convergence of the proposed method using
the constant and diminishing stepsize was explained (Theorem 6.2 and Theorem 6.3).

Continuing the present study, in the forthcoming work, we attempt to solve the following three
problems.

• Introducing a gH-weak subgradient algorithm with the dynamic stepsize, which characterizes
efficient solutions for nonsmooth nonconvex interval optimization problems.
• In the future, we take up the practical optimization problems to be solved by gH-weak sub-

gradient algorithm.
• Analogous to the notion of weak-stability for conventional optimization problems [26], in the

future, one may attempt to extend the notion for the following IOP (P):

min Φ(y)

subject to g j(y)≤ 0, j = 1,2, . . . , p

y ∈ Y ,

where Φ : Y → I(R)∪ {−∞,+∞} is an IVF and g j : Y → R is a real-valued constraint,
j = 1,2, . . . , p, and the feasible set C is

C = {y ∈ Rn : y ∈ Y , g j(y)≤ 0, j = 1,2, . . . , p}.

To establish an interrelation between strong duality and weak stability for (P), one may define
the augmented Lagrange interval-valued function for (P) as follows. Let J be an arbitrary
index set, for which we define

R(J)
λ

:= {e ∈ R(J) : |e j| ≤ 1, j ∈ J(λ )}

and Λ :=
{
(λ ,k) ∈ R(J) : ∃ e ∈ R(J)

λ
,ke−λ ∈ R(J)

+

}
,

where

R(J) := {λ = (λ j) j∈J : λ j = 0 for all j ∈ J but only finitely many λ j 6= 0},
J(λ ) := { j ∈ J : λ j 6= 0}, is a finite subset of J

and RJ
+ := {λ = (λ j) j∈J ∈ R(J) : λ j ≥ 0, j ∈ J}.

For each j ∈ J, the augmented Lagrange interval-valued function for (P) can be defined by

L(y,Λ,k) = Φ(y)	gH 〈λ ,(g j(y)) j〉⊕β ((g j(y)),λ ,k),
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where β (u,λ ,k) : RJ×R(J)×R+→ R is such that

β (y,λ ,k) =

sup
e∈R(J)

λ

{
〈ke,u〉 : ke−λ ∈ R(J)

+

}
if J(λ ) 6= /0,

0 if J(λ ) = /0.

The dual of (P) can be found as

max inf L(x,λ ,k)
subject to (λ ,k) ∈ Λ.

We will make an effort to reduce the duality gap by the weak-stability property of the follow-
ing perturbation function Ψ : Y ×Rn→ I(R)∪{+∞} associated to the IOP (P):

Ψ(y,u) =

{
Φ(y) if y ∈ Y ⊂ Rn and g j(y)≤ u j, ∀ j = 1,2,3, . . . , p
+∞ otherwise,

where u = (u1,u2, . . . ,un) is called the perturbation vector.
• One may also try to apply the gH-weak subdifferential in the context of zero duality gap in

IOPs and interval-valued differential equations. The method for eliminating the duality gap
will be immediately applicable in the following areas:
• two-person zero-sum game [22],
• optimal solutions of control problems with first order differential equations [23],
• Hamilton-Jacobi field theory [23],
• difference of convex programming [10].

• The newly defined augmented normal cone and gH-weak subdifferential together lead to the
thought of introducing supporting cones for a set of intervals in the future. This new concept
may be used later to describe the conic gap, which may be a crucial property to capturing the
geometry of a nonconvex set of intervals.

APPENDIX A. PROOF OF LEMMA 2.3

Proof. Let W = [w,w], Y = [y,y] and Z = [z,z]. From the gH-difference, we have the following four
possible cases:

(i) Give ε � (W	gH Y)	gH Z = [w− y− z,w− y− z] . Since w− y≥ z+ ε and w− y≥ z+ ε ,
we have z+ε ≤ z+ε ≤ w−y. This implies z+ε ≤min{w−y,w−y}. Also, z+ε ≤ w−y≤
max{w− y,w− y}. Clearly we have [z+ ε,z+ ε] � [min{w− y,w− y},max{w− y,w− y}]
and hence Z⊕ ε �W	gH Y.

(ii) (W	gH Y)	gH Z = [w− y− z,w− y− z]. Thus, the proof is straightforward and identical to
Case (i).

(iii) (W	gH Y)	gH Z = [w− y− z,w− y− z]. Since w− y ≥ z + ε,w− y ≥ z + ε , we have
z + ε ≤ z + ε ≤ w− y. This implies z + ε ≤ min{w− y,w− y}. Also, z + ε ≤ w− y ≤
max{w− y,w− y}. Clearly we have [z+ ε,z+ ε] � [min{w− y,w− y},max{w− y,w− y}]
and hence Z⊕ ε �W	gH Y.

(iv) (W	gH Y)	gH Z = [w− y− z,w− y− z]. Thus, the proof is identical to Case (iii).
�

APPENDIX B. PROOF OF LEMMA 2.4

Proof. Let X = [x,x],Y = [y,y], Z = [z,z] and W = [w,w]. Then,

(X⊕Y)	gH (Z⊕W)



GENERALIZED HUKUHARA WEAK SUBDIFFERENTIAL AND ITS APPLICATION 365

= [min{x+ y− z−w,x+ y− z−w},max{x+ y− z−w,x+ y− z−w}]
= [min{x− z+ y−w,x− z+ y−w},max{x− z+ y−w,x− z+ y−w}]. (B.1)

We have

min{x− z+ y−w,x− z+ y−w} ≥min{x− z,x− z}+min{y−w,y−w} (B.2)

and max{x− z+ y−w,x− z+ y−w} ≤max{x− z,x− z}+max{y−w,y−w}. (B.3)

By (B.2) and (B.3), from (B.1), we write

(X⊕Y)	gH (Z⊕W)

= [min{x− z+ y−w,x− z+ y−w},max{x− z+ y−w,x− z+ y−w}]
⊆ [min{x− z,x− z}+min{y−w,y−w},max{x− z,x− z}+max{y−w,y−w}]
= [min{x− z,x− z},max{x− z,x− z}]+ [min{y−w,y−w},max{y−w,y−w}]
= (X	gH Z)⊕ (Y	gH W).

�

APPENDIX C. PROOF OF LEMMA 2.5

Proof. Let W = [w,w],Y = [y,y], and Z = [z,z]. Then,

−1�W = [−w,−w],−1�Y = [−y,−y],−1�Z = [−z,−z].

From Definition of gH-difference of two intervals, we have: either

−1�W	gH−1�Y = [y−w,y−w]

or

−1�W	gH−1�Y = [y−w,y−w].

Then, one of the following holds true

(a) ((−1�W)	gH (−1�Y))	gH (−1�Z) = [y−w+ z,y−w+ z],
(b) ((−1�W)	gH (−1�Y))	gH (−1�Z) = [y−w+ z,y−w+ z],
(c) ((−1�W)	gH (−1�Y))	gH (−1�Z) = [y−w+ z,y−w+ z],
(d) ((−1�W)	gH (−1�Y))	gH (−1�Z) = [y−w+ z,y−w+ z].

From this, we have

(a) 0	gH {((−1�W)	gH (−1�Y))	gH (−1�Z)}= [w− y− z,w− y− z],
(b) 0	gH {((−1�W)	gH (−1�Y))	gH (−1�Z)}= [w− y− z,w− y− z],
(c) 0	gH {((−1�W)	gH (−1�Y))	gH (−1�Z)}= [w− y− z,w− y− z],
(d) 0	gH {((−1�W)	gH (−1�Y))	gH (−1�Z)}= [w− y− z,w− y− z].

On the other hand, we have

(a) (W	gH Y)	gH Z = [w− y− z,w− y− z],
(b) (W	gH Y)	gH Z = [w− y− z,w− y− z],
(c) (W	gH Y)	gH Z = [w− y− z,w− y− z],
(d) (W	gH Y)	gH Z = [w− y− z,w− y− z].

Hence, the desired result follows. �
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APPENDIX D. PROOF OF LEMMA 2.6

Proof. Let X = [x,x],Y = [y,y] and Z = [z,z].
(i) Let us consider the following four representations:

(a) (X	gH Y)	gH Z = [x− y− z,x− y− z],
(b) (X	gH Y)	gH Z = [x− y− z,x− y− z],
(c) (X	gH Y)	gH Z = [x− y− z,x− y− z],
(d) (X	gH Y)	gH Z = [x− y− z,x− y− z].

• Case 1. Give that 0� X	gH Y. Then we have

0≤ x− y and 0≤ x− y

=⇒ 0− z≤ x− y− z and 0− z≤ x− y− z

=⇒ [0− z,0− z]� [x− y− z,x− y− z]. (D.1)

So, from (D.1), we have 0	gH Z� (X	gH Y)	gH Z .
• Case 2. Similarly, we can arrive at this conclusion (D.1). So, from (D.1), we have 0	gH Z �

(X	gH Y)	gH Z.
• Case 3. This case can be proved by using the same steps as Case 1.
• Case 4. This case can be proved by using the same steps as Case 2.

(ii) Let W = [w,w]. By the definition of gH-difference, there may be the following four cases.
(a) (X	gH Y)	gH W = [x− y−w,x− y−w],
(b) (X	gH Y)	gH W = [x− y−w,x− y−w],
(c) (X	gH Y)	gH W = [x− y−w,x− y−w],
(d) (X	gH Y)	gH W = [x− y−w,x− y−w].

The following two cases are needed to consider for the representation of these above four
cases.

• Case 1. Since Z� X	gH Y, we have

z≤ x− y and z≤ x− y

=⇒ z−w≤ x− y−w and z−w≤ x− y−w

=⇒ either [z−w,z−w]� [x− y−w,x− y−w] (D.2)

or [z−w,z−w]� [x− y−w,z− y−w]. (D.3)

From (D.2) and (D.3), we have Z	gH W� (X	gH Y)	gH W.
• Case 2. Similarly, at the last step, we have

either [z−w,z−w]� [x− y−w,x− y−w] (D.4)

or [z−w,z−w]� [x− y−w,x− y−w]. (D.5)

From (D.4) and (D.5), we have Z	gH W� (X	gH Y)	gH W.
(iii) Give X	gH Y� [L,L]. From the formula of gH-difference of intervals,

x− y≤ L and x− y≤ L

=⇒ −L≤ y− x,−L≤ y− x

=⇒ either [−L,−L]� [y− x,y− x] or [−L,−L]� [y− x,y− x].

Hence, [−L,−L]� Y	gH X.
(iv) Give [−γ,−γ]� X	gH Y. From the formula of gH-difference of intervals,

− γ ≤ x− y and − γ ≤ x− y

=⇒ y− γ ≤ x and y− γ ≤ x



GENERALIZED HUKUHARA WEAK SUBDIFFERENTIAL AND ITS APPLICATION 367

=⇒ [y− γ,y− γ]� [x,x].

Hence, Y	gH [γ,γ]� X.
(v) Give Z� X⊕Y. Then,

z, z̄� [x,x]⊕ [y,y] =⇒ z≤ x+ y,z≤ x+ y

=⇒ z− y≤ x,z− y≤ x

=⇒ [z− y,z− y]� [x,x].

Hence, Z	gH Y� X.

�

APPENDIX E. PROOF OF LEMMA 3.1

Proof. Let y>� Ĉ = D and D = [d,d]. Note that

‖D‖I(R) = max{|d|, |d|}. (E.1)

On the other hand,

‖D‖I(R) = ‖y1�C1⊕ y2�C2⊕·· ·⊕ yn�Cn‖I(R)

≤ ‖y1�C1‖I(R)+‖y2�C2‖I(R)+ · · ·+ yn�Cn‖I(R)

= |y1|‖C1‖I(R)⊕|y2|‖C2‖I(R)+ · · ·+ |yn|‖Cn‖I(R)

≤ ‖y‖
n

∑
i=1
‖Ci‖I(R)

= ‖y‖‖Ĉ‖I(R)n. (E.2)

Then, taking into account (E.1) and (E.2), we obtain

|d| ≤ ‖y‖|Ĉ‖I(R)n and |d| ≤ ‖y‖‖Ĉ‖I(R)n

=⇒ −‖y‖‖Ĉ‖I(R)n ≤ d and −‖y‖‖Ĉ‖I(R)n ≤ d

=⇒ −‖y‖‖Ĉ‖I(R)n ≤ |d| and −‖y‖‖Ĉ‖I(R)n ≤ |d|

=⇒ −‖y‖‖Ĉ‖I(R)n ≤max{|d|, |d|}

=⇒ −‖y‖‖Ĉ‖I(R)n ≤ ‖D‖I(R).

Thus, we arrived at the desired result. �
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