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Abstract. The classical synthetic aperture radar (SAR) imaging techniques based on matched filters are limited
by data bandwidth, resulting in limited imaging performance with side lobes and speckles present. To address
the high-resolution SAR imaging problem, sparse reconstruction has been extensively investigated. However, the
state-of-the-art sparse recovery methods seldom consider the complex-valued reflectivity of the scene and only
recover an approximated real-valued scene instead. Furthermore, iterative schemes associated with the sparse
recovery methods demand a high computational cost, which limits the practical applications of these methods. In
this paper, we establish a sphere-constrained magnitude-sparsity SAR imaging model, aiming at enhancing the
SAR imaging quality with high efficiency. We propose a non-convex non-smooth optimization method, which
can be accelerated by stochastic average gradient acceleration to be scalable with large-scale problems. Numerical
experiments are conducted with point-target and extended-target simulations. On the one hand, the point-target
simulation showcases the superiority of our proposed method over the classical methods in terms of resolution.
On the other hand, the extended-target simulation with random phases is considered to be in line with the practical
scenario, and the results demonstrate that our method outperforms the classical SAR imaging methods and sparse
recovery without phase prior in terms of PSNR. Meanwhile, owing to the stochastic acceleration, our method is
faster than the existing sparse recovery methods by orders of magnitude.
Keywords. Non-convex optimization, Sparse recovery; Synthetic aperture radar; Stochastic proximal algorithm.

1. Introduction

Synthetic aperture radar (SAR) imaging is an advanced imaging technique, and it can be taken by
radar mounted to a moving platform, and can provide higher spatial resolution images compared to
conventional stationary beam scanning radars [1]. The traditional imaging techniques based on matched
filters are simple to use and stable in performance. However, they are limited by the data bandwidth
resulting in limited imaging performance with side lobes and speckles present. Since the SAR imaging
problem can be formulated as an ill-posed inverse problem, the advent of the compressed sensing (CS)
theory [2, 3] has brought a new regime in image recovery. The core of the CS-based methods is to
design reconstruction algorithms to recover the underlying image which can be sparsely represented
under a certain transformation. In SAR or inverse SAR (ISAR) imaging (ISAR can be regarded as
a specific mode of SAR), sparse image reconstruction has been extensively investigated in the last
decade [4, 5, 6, 7, 8, 9, 10, 11, 12]. However, these methods are computationally demanding due to the
iterative scheme, and high memory burden, which limit its practical application. To tackle this problem,
though some efforts have been devoted to a fast approximation of SAR observation [13] and proximal
splitting algorithms [14], to name a few, fast scalable sparse imaging methods require further study to
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meet the practical applications. In addition, the scattering response of a target scene is complex-valued
with random phase due to the back-scattering of electromagnetic waves on the heterogeneous materials
of the scene. However, the complex-valued scattering is barely considered in sparse SAR imaging.
Instead, most sparse SAR recovery methods only recover the real-valued magnitude for simplicity. This
is in general an approximation of the scattering but lacks modeling accuracy. To our knowledge, the
sparse SAR recovery methods accounting for the phase were only addressed in [10, 11], but the proposed
methods were not scalable to large-scale problems.

To properly address the sparse SAR imaging problem, we take the phase information, which is
interpreted as the sphere constraint, into account in this article. To this intent, we design a novel
sphere-constrained magnitude-sparsity non-convex optimization model and propose a stochastic sPhere-
constrained Sparse Imaging (sPSI) method, aiming at enhancing the SAR imaging quality with high
efficiency. On the one hand, our proposed non-convex model improves the sparse SAR imaging model
with higher accuracy. On the other hand, the stochastic acceleration inspired by stochastic average gradient
acceleration (SAGA) [15] and stochastic proximal alternating linearized minimization (sPALM) [16] is
able to tackle large-scale problems in practice with orders of magnitude of the improvement in terms of
computational cost.

Notation. Before moving to the problem setup, we introduce the notation which will be used hereafter.
Matrices and vectors are denoted in boldface uppercase letters and lowercase letters such as X and x,
respectively. The individual entry of a matrix and a vector is denoted in the normal font such as Xi, j

and xi, respectively. The notation diag(·) has different definitions according to the type of the argument.
Precisely, diag(x) creates a diagonal matrix with the vector x on the main diagonal, while diag(X) gets the
main diagonal of the matrix X. For any matrix X, | |X| |p denotes the p-norm of the matrix. Specifically,
| |X| |F is called the Frobenius norm of the matrix. In addition, � denotes the Hadamard piecewise product
and ∗ denotes convolution.

2. SAR imaging problem

In this section, we start with the general SAR imaging model, then present our novel sparse SAR
imaging problem with the sphere constraint.

Figure 1. Illustration of SAR geometry
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2.1. SAR observation model. The illustration for a typical stripmap-mode SAR is shown in Figure 1.
The radar platform travels at velocity v in the azimuth direction and transmits pulses during the observation
time. Given a scene of interest, a baseband pulse u(τ) modulated by a carrier frequency fc yields the
transmitted signal

s(τ) = u(τ) exp { j2π fcτ}, (2.1)

where τ is defined as fast range time, u(τ) is the envelope of the linear frequency modulation (LFM),
which is the most popular choice in SAR, denoted by

u(τ) = rect(τ/Tp) exp
{

jπγτ2}, (2.2)

where rect(·) is a rectangular function parameterized by pulse duration Tp and chirp rate γ. In the regime
of SAR imaging, a sequence of pulses illuminates the object and the back-scattered signals are delayed
with respect to the range of the target. Due to the motion of the radar platform, the range of the target
varies in terms of slow azimuth time. Thus, given the slow time t and the fast time τ, the demodulated
received signal is the superposition of all the back-scattered signals from the whole illuminated scene
scaled by the reflectivity function, which can be written as

y(τ, t) =
∫ ∫

σ(x, y)u
(
τ −

2Rx,y(t)
c

)
exp

{
−

j4π fcRx,y(t)
c

}
dxdy, (2.3)

where σ(x, y) represents the reflectivity coefficient of the target located at (x, y), c is the velocity of the
electromagnetic wave, Rx,y(t) denotes the range of the target located at (x, y) at slow time t.

2.2. Sphere-constrained sparse SAR imaging. Since the reflectivity is complex-valued, we utilize the
exponential form where the amplitude and the phase are decoupled such that

σ(x, y) = A(x, y) exp { jφ(x, y)} = A(x, y)P(x, y).

If we discretize the fast time and slow time, we can rewrite SAR observation model (2.3) in a linear
forward model such that

y = H (a � p) + n, (2.4)

where y ∈ CM×1, a ∈ RN×1, p ∈ CN×1, and n ∈ CM×1 stacked in a vector form denote the complex-
valued echo data, amplitude and phase of reflectivity of the target scene to be recovered and contaminated
Gaussian additive noise, respectively. In addition, H ∈ CM×N is the sensing matrix of SAR observation
incorporated with the down-sampling effect with M < N if in the CS regime. As an example, the H
matrix is generated such that

H =



h(τ1, t1, 1) h(τ1, t1, 2) · · · h(τ1, t1, N)
h(τ1, t2, 1) h(τ1, t2, 2) · · · h(τ1, t2, N)

...
...

. . .
...

h(τ1, tNt , 1) h(τ1, tNt , 2) · · · h(τ1, tNt , N)
h(τ2, t1, 1) h(τ2, t1, 2) · · · h(τ2, t1, N)

...
...

. . .
...

h(τmτ , tnt , 1) h(τmτ , tnt , 2) · · · h(τmτ , tnt , N)
...

...
. . .

...

h(τMτ , tNt , 1) h(τMτ , tNt , 2) · · · h(τMτ , tNt , N)



(2.5)
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where the entry of H is expressed by

h(τmτ , tnt , i) = u
(
τmτ −

2Ri(tnt )
c

)
exp

{
−

j4π fcRi(tnt )
c

}
,

∀τmτ = τ1, τ2, · · · , τMτ

∀tnt = t1, t2, · · · , tNt

(2.6)

with Mτ and Nt being the number of samplings in fast time and slow time, respectively, yielding the total
number of rows M = MτNt . The number of columns N denotes the total number of pixels of the target
scene after discretization.

If we consider the CS case, namely M < N , then inverse problem (2.4) is ill-posed, and a direct
inversion is impossible. In general SAR imaging, due to the limitations of signal bandwidth and synthetic
aperture, the imaging performance is limited with side lobes and speckles present. Since we consider
complex-valued reflectivity in this paper and the phase exhibits randomness, we leverage the sparse
reconstruction technique where the magnitude of the reflectivity is supposed to be sparse to achieve a
super-resolved solution. In the case that the scene is not sparse in the direct space, the scene can be sparse
in a transformed space such that

a = Ψα, (2.7)

where α is the sparse representation associated with the dictionary Ψ. Moreover, the synthesis operator
Ψ and the corresponding analysis operator ΨT (or Ψ∗ in complex-valued case) satisfy ΨΨT = Id( or
ΨΨ∗ = Id). For instance, the (bi-)orthogonal wavelet space is a good sparse representation for most
natural scenes; the analysis operator and the synthesis operator are wavelet transform and inverse wavelet
transform, respectively. Furthermore, the exponential form p, which contains the phase information is
interpreted as a unit sphere centered at the origin in the complex plane, yielding the unit-norm constraint

|p| = 1. (2.8)

Equipped with these magnitude and sphere constraints, problem (2.4) can be transformed to solve an
optimization in the synthesis sparsity formulation such that

min
α,p

1
2
| |y −H(Ψα � p)| |2 + λ | |α | |1 + ιRN

+
(Ψα) + ιBN (p), (2.9)

where the first term denotes the data fidelity, the `1-norm represents the sparsity promoting regularization
adjusted by the parameter λ, ι(·) represents the indicator function, defined as

ιS(x) =

{
0, if x ∈ S,
+∞, otherwise,

(2.10)

and specifically, ιRN
+
(Ψα) expresses the non-negativity constraint imposed on the amplitude of the

reflectivity, where RN
+ denotes the non-negativity subset of N-dimensional real numbers. while ιBN (p)

denotes the sphere constraint, where the set BN is a complex Stiefel manifold such that BN = {X ∈
CN |X∗X = IN }.

3. Stochastic Proximal Alternating Linear Minimization Recovery

In this section, we focus on the solution of the proposed sphere-constrained sparse SAR imaging
problem, which is based on the alternating minimization scheme to achieve a high-resolution result with
reduced side lobes. Then, to alleviate the high computational cost of the iterative method, a stochastic
acceleration technique is incorporated with the proposed imaging method to be scalable with large-scale
problems in practice.
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3.1. Sphere-constrained sparse imaging method. The minimization problem (2.9) is difficult to solve
due to its non-convexity and non-smoothness. The general idea is to alternatingly estimate α and p. Then,
due to the non-smoothness of the regularizers, we employ a proximal alternating linear minimization
(PALM) framework [17], which involves solving two subproblems via the iteration scheme

αk+1 = arg min
α
{
1
2
‖y −H(Ψα � pk)‖2 + λ | |a| |1 + ιRN

+
(Ψα)}, (3.1)

pk+1 = arg min
p
{
1
2
‖y −H(Ψαk+1 � p)‖2 + ιBN (p)}, (3.2)

where each subproblem is convex but non-smooth. With the help of proximal operators, analytic solutions
can be easily found for both subproblems. Thus, the solution of subproblem (3.1) can be achieved by a
forward gradient step followed by a backward proximal operation step such that

αk+1/2 = αk − µk∇α f (αk, pk), (3.3)

αk+1 = Sµλ

(
ΨT max(Ψαk+1/2, 0)

)
(3.4)

where f (α, p) = 1
2 ‖y − H(Ψα � p)‖2 for the sake of simplicity of writing, ∇α f (α, p) being the partial

derivative of f (α, p) respective to α and µk = 1/| |H diag(pk)| |2 being the gradient step size estimated
on-the-fly. The non-negativity constraint is realized by a projection on the non-negativity orthant and the
magnitude-sparsity constraint is realized by a proximal operator S which denotes the well-known soft-
thresholding in case of `1-norm. Similarly, subproblem (3.2) can also be solved via a forward-backward
scheme such that

pk+1 = PBN (pk − ηk∇p f (αk+1, pk)), (3.5)

where ∇p f (α, p) denotes the partial derivative of f (α, p) respective to p and the gradient step size
ηk = 1/| |H diag(αk)| |2. As explained in the previous section, the sphere constraint is interpreted as a unit
norm condition, which is evaluated by a projection onto a complex Stiefel manifold [18] such that

PBN (diag(p)) =
N∑
i=1

uivTi , (3.6)

where u and v are complex unitary vectors from the singular value decomposition of diag(p), namely
diag(p) = UΣV∗. In summary, our sPhere-constrained Sparse Imaging (PSI) method is presented in
Algorithm 1.

Algorithm 1: sPhere-constrained Sparse Imaging (PSI)
Input: Sensing matrix H, Observation y;
Output: Reconstructed RCS (a, p);
Initialize α0 ∈ RN×1, p0 ∈ CN×1;
for 0 ≤ k ≤ K − 1 do

αk+1/2 = αk − µk∇α f (αk, pk)

αk+1 = Sµλ
(
ΨT max(Ψαk+1/2, 0)

)
pk+1 = PBN (pk − ηk∇p f (αk+1, pk))

end
a = ΨαK , p = pK
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3.2. Acceleration by stochastic average gradient. Due to the large number of samplings in both fast
time and slow time and the large number of pixels to recover, it is computationally demanding to
calculate the gradient of the loss function, rendering the proposed deterministic optimization algorithm
PSI ineffective, which limits the application of iterative-based methods in practical SAR imaging.

To tackle this issue, a randomized version of PSI is proposed. Given a mini-batch Bk ⊂ {1, 2, · · · , M}
with cardinality b, the full estimated gradients ∇α f (αk, pk) and ∇p f (αk+1, pk), respectively, are replaced
by random estimates ∇̃α(αk, pk) and ∇̃α(αk+1, pk) by selecting only a few gradient samples ∇α fj(αk, pk)

and ∇p fj(αk+1, pk) for j ∈ Bk . Many forms of random estimators can be found in the literature, such
as stochastic gradient descent (SGD). However, the standard SGD requires decreasing steps, which is
intractable in practice, to ensure the variance of the update direction trending to zero. Thus, to be able to
use constant step sizes, we leverage the concept of stochastic gradient descent with variance reduction and
employ the stochastic average gradient acceleration (SAGA) [15] for the gradient estimator ∇̃α(αk, pk)

such that
∇̃α(α

k, pk) =
1
b
Σj∈Bk

(∇α fi(αk, pk) − gk, j) +
1
M
Σ
M
i=1gk,i, (3.7)

where

gk+1,i =

{
∇α fi(αk, pk) if i ∈ Bk ,
gk,i otherwise.

(3.8)

A similar expression can also be derived for the gradient estimator ∇̃p(α
k+1, pk). When M is large and

b � M (b = 1 in the extreme case), the computation of SAGAgradient estimator is of orders of magnitude
less expensive than computing the full gradient. Built upon the SAGA estimator, our stochastic average
gradient acceleration PSI (sPSI) algorithm is presented in Algorithm 2.

In practice, the global Lipschitz constants of the partial gradients of f are usually difficult to estimate.
Thus, adaptive step size choice based on estimating local Lipschitz constants is leveraged for sPSI. In
general, we find that it is sufficient to estimate on-the-fly in every iteration the Lipschitz constants of the
stochastic gradients for the randomly sub-sampled mini-batch. Let estimated Lipschitz constants of the
stochastic estimates be Lα(pk) and Lp(α

k) for the k-th iteration such that

Lα(pk) = | |HBk
diag(pk)| |22, (3.9)

Lp(α
k) = | |HBk

diag(αk)| |22, (3.10)

where HBk
denotes the sub-matrix with the random selection of Bk rows of H, then the adaptive step

sizes can be set as γ1,k = 1/3Lα(pk) and γ2,k = 1/3Lp(α
k) to guarantee the convergence, where more

detailed proof can be found in [16]. We also remark that since the non-convex problem is sensitive to
the initialization, we can initialize (α, p) with the result of any classical SAR imaging methods to avoid
trapping into local minima.

Algorithm 2: Stochastic Average Gradient Accelerated PSI (sPSI)
Input: Sensing matrix H, Observation y;
Output: Reconstructed RCS (a, p);
Initialize α0 ∈ RN×1, p0 ∈ CN×1;
for 0 ≤ k ≤ K − 1 do

αk+1/2 = αk − γ1,k ∇̃α(α
k, pk)

αk+1 = Sµλ
(
ΨT max(Ψαk+1/2, 0)

)
pk+1 = PBN (pk − γ2,k ∇̃p(α

k+1, pk))

end
a = ΨαK, p = pK
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4. Experiments

In this section, we consider two numerical simulations: 1) point targets simulation to analyze the super-
resolution performance of sPSI compared with classical methods and 2) extended targets simulation to
show the efficiency of sPSI in terms of imaging quality and computational cost.

4.1. Point targets experiment. In this experiment, we showcase the super-resolution ability of sPSI
by conducting a point-targets simulation. The simulated scene composed of four point targets is of size
100×100, which represents a physical field of view 464m× 562m. The main parameters of the simulation
are reported in Table 1.

We compare sPSI with the classical back projection (BP) method, where the sampling rate satisfies
the Nyquist sampling theorem. Both sPSI and BP use the whole data and the imaging results are shown
in Figure 2. Note that the point targets are placed adjacently in range and azimuth directions such that
the BP method can only separate them by limit. Therefore, in Figure 2(a1), the four points targets are
overlapped due to the side lobes so that they are not easy to visually recognize. We can clearly see
the main lobes of the targets placed in range and azimuth directions approach significantly causing the
ambiguity in Figure 2(b1) and (c1), respectively. Constrained by the Nyquist-sampling theorem, this
is the resolution limit of conventional imaging methods subject to the given radar parameters. On the
contrary, our proposed sPSI can obtain higher resolution beyond Nyquist theorem shown in Figure 2(a2).
This is owing to the fact that sPSI tries to search for the sparsest solution that fits the observation,
yielding the side lobes are greatly suppressed and the main lobe is largely sharpened. More precisely, in
this simulation, sPSI shows the side lobes below 60 dB in both range and azimuth directions shown in
Figure 2(b2) and (c2), respectively, while between 10 dB and 20 dB for the BP method. In addition, by
using the sPSI method, the width of the main lobes is only across a few pixels so the width of the main
lobe can almost be ignored, while the width of the main lobe at 3 dB for BP is important. Thus, this
simulation demonstrates the super-resolution capability and side lobes suppression of our proposed sPSI,
compared to the conventional SAR imaging method.

Range 988648 m
Squint angle 0°

Center frequency 5.3 GHz
Bandwidth 3.0111 MHz
Pulse width 41.75 µs

The pulse-repetition frequency 1257 Hz
Sampling frequency in range 3.2317 MHz
Field of view of the scene (464 m, 562 m)

Number of (Range, Azimuth) samples (100, 100)
Table 1. The parameter settings for point targets simulation.

4.2. Extended targets experiment. In this section, we conducted a numerical experiment on a general
extended target case. The simulated target scene composed of two ellipses represents a field of view
100 m× 100 m. To simulate the real SAR imaging scenario, we add random phases to the targets,
yielding the ground-truth amplitude and the phase shown in Figure 3(g1) and (g2), respectively. The
airborne radar was working under stripmap SAR mode and the detailed parameters for the simulation
are shown in Table 2. We compare sPSI with 1) the classical BP method, 2) the conventional sparse
method (Lasso) without consideration of phase constraint and 3) non-accelerated PSI. Under the given
sampling frequency, the target scene was discretized to a (64, 64) grid and the full data is of size 300×300,
corresponding to 300 samples for both azimuth and range directions.
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Figure 2. Imaging results obtained by different methods for point targets: (a1) BP
result,(a2) sPSI results under 100% sampling rates, (b1) and (c1) range profile and
azimuth profile of the imaging result by BP, respectively, (b2) and (c2)range profile and
azimuth profile of the imaging result by sPSI, respectively.

To explore the performance of the methods in the CS regime, we conducted the performance analysis in
terms of the sampling rate (SR), which is defined by the number of observation samples over the number
of pixels of the scene. The SR ranges from 25%, 50%, and 100% for all of the CS-based sparse recovery
methods (Lasso, PSI, sPSI) and the stopping criterion (relative error of solution) is all set to 10−5. The
BP method, however, takes the full data due to its imaging principle. We state that all of the experiments
were conducted on the same workstation (Intel Xeon E5-2620 v4, 8 Cores, 2.1GHz, 64GB RAM) only
using a single core.

Range 10 km
Height 200 m

Squint angle 0°
Center frequency 5.3 GHz

Bandwidth 70 MHz
Pulse width 0.8 µs

The pulse-repetition frequency 350 Hz
Sampling frequency in range 140 MHz
Field of view of the scene (100 m, 100 m)

Number of (Range, Azimuth) samples (300, 300)
Table 2. The parameter settings for extended targets simulation.

The imaging results are reported in Figure 3. We can observe that Lasso is worse than BP with more
speckle noise present due to the random phase unconsidered, while both PSI and sPSI, sharing comparable
super-resolved results, outperform BP. In terms of SR, more details are recovered for both PSI and sPSI
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Figure 3. Imaging results obtained by different methods with varying sampling rates:
(g1) magnitude map of the ground truth, (g2) phase map of the ground truth, (a) BP result
(full data), (b1)-(b3) Lasso results under 25%, 50%, and 100% sampling rates from top
to bottom, (c1)-(c3) PSI results under 25%, 50%, and 100% sampling rates from top to
bottom, (d1)-(d3) sPSI results under 25%, 50%, and 100% sampling rates from top to
bottom.

Metrics SR BP Lasso PSI sPSI

PSNR
(dB)

25% 12.67 17.36 17.97
50% 16.09 12.41 18.20 19.11
100% 13.63 19.41 20.30

Time
(s)

25% 1523 15440 123
50% 1360 4718 31461 164
100% 9145 58649 182

Table 3. Quantitative evaluation for different methods. Note that BP uses the full
sampling data due to its imaging principle.

from the visual judgment. The detailed quantitative evaluation is reported in Table 3. We can see that the
imaging results obtained through PSI are superior to BP by 1.27 dB to 3.32 dB as SR increases, while
the Lasso method has limitations regardless of SR. The sPSI method reports similar but slightly better
results than PSI as both solve the same optimization problem but sPSI employs the stochastic acceleration
for a more efficient execution. As for the execution time, we can clearly see that Lasso and PSI are very
computationally expensive which is obvious for optimization-based methods. However, sPSI benefiting
from the stochastic acceleration is faster than PSI by at least two orders of magnitude.
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5. Conclusions

In this paper, to address an unexplored sphere-constrained sparse SAR imaging problem, we proposed
a stochastic sphere-constrained sparse imaging method, dubbed sPSI, to achieve better imaging quality
with high efficiency. We conducted two types of numerical simulations to analyze the performance:
1) the point-target simulation showcased the capability of the high resolution of our proposed method
compared to the classical methods. 2) the extended target with random phase is simulated to be in line
with the practical scenario, and then the results demonstrated that in terms of PSNR sPSI outperforms
the classical SAR imaging methods and the state-of-the-art sparse recovery method without phase con-
sideration. Meanwhile, the stochastic average acceleration technique leveraged in sPSI can reduce the
high computational cost of iterative-based optimization methods by orders of magnitude. Future work
will focus on the study of adaptive hyperparameters tuning strategy and its application in real SAR data.
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