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Abstract. The purpose of this paper is to investigate a Bregman projection algorithm for solving the
split variational inequality problem governed by pseudomonotone and not necessarily Lipschitz contin-
uous operators in real Hilbert spaces. The proposed algorithm is motivated by the ideas of the Halpern
method, the CQ method, and Tseng’s extragradient method. The step size sequences are determined
by employing Armijo line search techniques. The strong convergence theorem is established without the
prior knowledge of the operator norm and the Lipschitz continuous assumption on the operators involved.
Some numerical experiments with graphical illustrations are presented to demonstrate the effectiveness
and the performance of our proposed algorithm in comparison with some existing ones.
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1. INTRODUCTION

Let H be a real Hilbert space endowed with inner product 〈·, ·〉 and induced norm ‖ ·‖. Let C
be a nonempty, convex, and closed subset of space H, and let F : H→ H be a mapping. Recall
that the variational inequality problem is formulated as finding a vector x ∈C such that

〈Fx,y− x〉 ≥ 0, ∀x ∈C.

The solution set of the variational inequality problem is denoted by S(C,F). The notion of the
variational inequality problem was first introduced by Stampacchia [1]. This problem has been
intensively and widely studied since it provides a fundamental framework for solving several
problems in engineering, mechanics, finance, data sciences, and economics, and so on; see, e.g.,
[2–5].

Recall that the split feasibility problem is to find a vector x∗ ∈ C such that Ax∗ ∈ Q, where
C and Q are nonempty, convex, and closed sets in real Hilbert spaces H1 and H2, respectively,
and A is a bounded and linear operator from H1 to H2. The split feasibility problem was first
introduced by Censor and Elfying [6]. It is known that this model plays a key role in the inverse
problems arising in intensity-modulated radiation therapy and treatment planning; see [7].
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As an important generalization of the variational inequality problem and the split feasibility
problem, Censor et al. [8] introduced a split variational inequality problem (shortly, SVI). Let
H1 and H2 be two real Hilbert spaces, and let A : H1 → H2 be a bounded and linear operator.
Let C and Q be two nonempty, convex, and closed sets in H1 and H2, respectively. Given two
operators F1 : H1 → H1 and F2 : H2 → H2, the SVI is to find a solution x∗ of the variational
inequality problem in space H1 so that the image y = A(x∗), under a given bounded and linear
operator A, is a solution to another variational inequality problem in space H2. More specifically,
the SVI can be formulated as finding an element x∗ ∈C that solves

〈F1(x∗),x− x∗〉 ≥ 0, ∀x ∈C, (1.1)

such that y∗ = A(x∗) ∈ Q solves

〈F2(y∗),y− y∗〉 ≥ 0, ∀y ∈ Q. (1.2)

Throughout the paper, we use Γ to denote the solution set of the SVI above, that is, Γ := {x∗ ∈
S(C,F1)|Ax∗ ∈ S(Q,F2))}. The SVI, which can be viewed as a combination of the variational
inequality problem and the split feasibility problem, provides a unified model for treating a wide
range of mathematical problems, including linear inverse problems, split zero problems, split
minimization problems, and variational inclusion problems; see, e.g., [8–10].

We next recall some known algorithms for solving variational inequality problems. One of
the efficient methods is the extragradient method proposed by Korpelevich [11]. Notice that the
extragradient method may be costly computed, since it requires two orthogonal projections onto
a given feasible set per iteration. To obtain better implementable and more efficient algorithms
for solving variational inequality problems, one important task is to minimize the number of
projections onto the feasible set involved per iteration. Motivated by this research trend, Censor
et al. [12] proposed the so-called subgradient extragradient method, which replaces the second
projection onto the feasible set in the extragradient method with the one onto a specific con-
structible half-space. Another method proposed by Tseng [13], is called Tseng’s extragradient
method, wherein only one projection is required at each iteration. The saving of one projection
step allows this method to be more potentially efficient.

Notice that S(C,F1) and S(Q,F2) are the solution sets of (1.1) and (1.2), respectively. It is
obvious that the SVI can be transformed into a fixed point problem, that is, x∗ ∈ Γ is equivalent
to x∗=PC(I−F1)(x∗+τA∗(PQ(I−F2)−I)Ax∗), τ > 0. Censor et al. [8] were inspired to extend
the well-established CQ algorithm proposed by Byrne [7] to solve the SVI. Starting with an
arbitrary initial x1 ∈ H1, the sequence {xn}∞

n=2 is generated by

xn+1 = PC(I−λF1)(xn + τA∗(PQ(I−λF2)− I)Axn), (1.3)

where PC and PQ are metric (nearest point) projections onto sets C and Q, respectively, F1 :
H1 → H1 and F2 : H2 → H2 are inverse-strongly monotone mapping with constants η1 and
η2, respectively, λ ∈ [0,2min{η1,η2}], A : H1→ H2 is a bounded and linear operator with its
adjoint operator A∗ : H2→H1, and τ ∈ (0,1/L) with L being the spectral radius of the operator
A∗A. They proved that the generated sequence {xn} converges weakly to a solution of the SVI
provided that Γ 6= /0. The convergence theorem requires to calculate the spectral norm of the
operator A. The implementation of this method depends on the knowledge of the bounded linear
operator norm.
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It also should be noted that strong convergence results are much more desirable than weak
convergence results in infinite dimensional Hilbert spaces. Some methods, such as the Halpern
method, the viscosity approximation method, and the hybrid projection method, can be em-
ployed to guarantee the strong convergence result. For solving the SVI, Thuy et al. [10] modi-
fied Algorithm (1.3) by using the ideas of Tseng’s extragradient method and the hybrid steepest
descent method, that is, for all x1,x2 ∈ H1,

wn = xn +αn(xn− xn−1), where αn =

{
min{ θn

‖xn−xn−1‖ ,θ}, if xn 6= xn−1,

0, otherwise,
yn = βnwn +(1−βn)PC(I− γF1)wn,
un = PQ(I− γF2)A(yn),

zn = yn−λnA∗(A(yn)−un), where λn =

{
ρn‖A(yn)−un‖2

‖A∗(A(yn)−un)‖2 , if ‖A∗(A(yn)−un)‖ 6= 0,
0, otherwise,

xn+1 = zn−δnG(zn),
(1.4)

where {βn} ⊂ (0,1),{ρn} ⊂ (0,1),{δn} ⊂ (0,1), limn→∞ δn = 0, ∑
∞
n=1 δn = ∞, limn→∞

αn
δn

= 0,
γ ∈ (0,2min{η1,η2}], F1 : H1→ H1 and F2 : H2→ H2 are two inverse-strongly monotone with
constants η1 and η2, G : H1 → H1 is a strongly monotone and Lipschitz continuous operator,
and A : H1→ H2 is a linear and bounded operator with its adjoint operator A∗ : H2→ H1. They
proved that {xn} converges strongly to a point x̃ ∈ Γ such that x̃ = PΓ(I−G)x̃ in a real Hilbert
space. The main feature of the algorithm is that the step sizes do not depend on the norm of the
operator A. However, the weakness of (1.3) and (1.4) is that the convergence requires operators
involved to be inverse-strongly monotone, which is a restrictive assumption.

In order to relax the monotonicity of the operators involved, authors proposed various mod-
ified projection-based methods for solving the SVI. Since the SVI can be transformed into an
equivalent constrained variational inequality in a product space, Censor et al. [8] employed the
subgradient extragradient method to solve the SVI. The convergence of their method requires
that their operators F1 and F2 are monotone and Lipschitz continuous. He et al. [14] proposed
a relaxed projection algorithm for solving the SVI. Their method is consisted of a prediction
step with two projections and a correction step. In a dimensional Euclidean space, the global
convergence was established under the condition that F1 and F2 are monotone and Lipschitz
continuous. Izuchukwu et al. [9] proposed a modified projection and contraction method for
solving the SVI with the monotone and Lipschitz continuous assumption. To relax the mono-
tonicity of the operators involved to pseudomonotonicity, Huy et al. [15] proposed a modified
subgradient extragradient method of the Halpern type for solving the SVI. Their method re-
quires two projections onto feasible sets and two projections onto half-spaces at each iteration
and proved the strong convergence result under a mild assumption.

The step-size sequences play an essential role in the computational efficiency of algorithms.
The update of step sizes often depends on the prior information of either the Lipschitz constant
or the norm of the operators involved. This usually slows down the convergence rate of algo-
rithms. However, the coefficient or the norm of given operators may not be known or may be
difficult to estimate in many practical cases, which often affects the implementation and the con-
vergence of algorithms. To overcome this drawback, the construction of self-adaptive step sizes
has aroused numerous interest among researchers; see [10, 17]. Recently, some self-adaptive
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step-size techniques were employed to generate non-increasing sequences of step-sizes; see,
e.g., [15–19]. In our work, the step sizes will be selected self-adaptively by using Armijo line-
search techniques without requiring the knowledge of the Lipschitz constants and the operator
norm.

It is worth noting that the methods mentioned above are based on norm distances and metric
projections. In recent years, Bregman projection algorithms for solving optimization problems
have become an important and interesting topic, due to the fact that the Bregman distance is a
useful substitute for the norm distance. It is known that the Bregman distance can be regarded
as an elegant and effective technique for solving problems arising in the nonlinear analysis and
optimization theory. On the other hand, the applications of the Bregman distance associated
with various choices of functions gives us an alternative way in selecting different projections.
From the numerical point of view, the Bregman projection method is implementable. Then it
seems to be more flexible to use the Bregman distance instead of the usual norm distance. Due
to the wide applications of Bregman distances, methods for solving variational inequality prob-
lems with Bregman projections can be found in [20–24]. For instance, Gibali [23] proposed a
nice extension of the subgradient extragradient method by using Bregman distance techniques;
Sunthrayuth et al. [24] modified and improved Tseng’s extragradient algorithm with the Breg-
man projection; Jolaoso et al. [22] proposed two relaxed inertial Halpern-type algorithms of
Bregman distances; and Hieu and Reich [21] proposed two Bregman extragradient-like meth-
ods.

Motivated by the results above and the ongoing research interest in this direction, our interest
in this paper is to develop Tseng’s extragradient algorithm in the sense of the Bregman diver-
gence for solving the SVI. The strong convergence analysis is investigated when the involved
operators are pseudomonotone, uniformly continuous, and not necessarily Lipschitz continu-
ous. Numerical examples are presented to demonstrate the efficiency of the proposed method
in comparison with some existing ones. Our proposed method has key features as follows.

(i) The proposed method is independent on the norm of the bounded and linear operator
nor on the Lipschitz constants of the involved operators, unlike the ones in [17–19].

(ii) The strong convergence result requires the underlying operators to be pseudomonotone,
which is much more weaker than the monotonicity. This allows our method to be applied
to a wider class of nonlinear operators in comparison with the methods in [8, 9, 14].

(iii) The algorithm based on norm distances for solving the SVI is extended to the more
general framework of Bregman distances in Hilbert spaces; see [18].

(iv) Our method converges strongly to a solution of the SVI, which is an important factor to
consider in an infinite dimensional space.

The rest of the paper is organized as follows. In Section 2, we recall some essential definitions
and technical lemmas. Section 3 states the algorithm and analyzes its strong convergence. In
Section 4, numerical implementations and comparisons are present to support our theoretical
findings. Finally, the paper is concluded with a brief summary in Section 5.

2. PRELIMINARIES

Throughout this paper, we denote by H a real Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖. Let N and R denote the set of all positive integers and the set of all real numbers,
respectively. For a sequence {xn} ⊂ H, the strong convergence and the weak convergence of
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{xn} to x∈H are denoted by xn→ x and xn ⇀ x, as n→∞, respectively. The weak limit set of the
sequence {xn} is denoted by ωw(xn) = {x∈H|xnk ⇀ x as k→∞, for some subsequence {xnk} of
{xn}}. We now recall some definitions and lemmas.

An operator F : H→ H is said to be

(i) η-inverse strongly monotone if there exists a constant η > 0 such that 〈Fx−Fy,x−y〉 ≥
η‖Fx−Fy‖2 for all x,y ∈ H;

(ii) monotone if 〈Fx−Fy,x− y〉 ≥ 0 for all x,y ∈ H;
(iii) pseudomonotone if 〈Fx,y− x〉 ≥ 0 ⇒ 〈Fy,y− x〉 ≥ 0 for all x,y ∈ H;
(iv) L-Lipschitz continuous if there exists a constant L > 0 such that ‖Fx−Fy‖ ≤ L‖x− y‖

for all x,y ∈ H.

Let H1 and H2 be two Hilbert spaces, and let A : H1→ H2 be a bounded and linear operator.
An operator A∗ : H2 → H1 is called the adjoint operator of A if 〈A(x),y〉 = 〈x,A∗(y)〉 for all
x ∈ H1 and y ∈ H2.

Let f : H → R be a convex and differentiable function with a nonempty domain dom f =
{x ∈ H| f (x) < ∞}. The subdifferential set of f at x is defined by ∂ f (x) = {u ∈ H| f (y) ≥
f (x)+ 〈u,y− x〉,∀y ∈ H}. When f is differentiable, then the element in ∂ f (x) is the gradient
of f at x, denoted by ∇ f (x). The interior of the domain of f is denoted by int(dom f ). We say
that f is Gâteaux differentiable at x ∈ int(dom f ) if the limit

lim
t→0

f (x+ ty)− f (x)
t

= 〈∇ f (x),y〉 (2.1)

exists for every y ∈ H. Moreover, f is said to be Gâteaux diferentiable if it is Gâteaux diferen-
tiable at every x ∈ int(dom f ). We say that f is uniformly Fréchet differentiable on a subset C
of a real Hilbert space H, if limit (2.1) is attained uniformly for any y ∈ H with ‖y‖ = 1 and
x ∈C. Furthermore, ∇ f is uniformly continuous on a bounded subset C of a real Hilbert space
H, if f is uniformly Fréchet differentiable and bounded on C; see [25].

The Bregman distance D f : dom f × int(dom f )→ [0,∞) corresponding to a strictly convex
and differentiable function f with its gradient ∇ f is defined by [26]

D f (x,y) = f (x)− f (y)−〈∇ f (y),x− y〉, ∀x ∈ dom f , y ∈ int(dom f ).

The Bregman distance is not a usual metric (see [23, 27] for examples). However, it can be
characterized by the following properties (see [28])

(i) (The two point identity) for any x,y ∈ int(dom f ),

D f (x,y)+D f (y,x) = 〈∇ f (x)−∇ f (y),x− y〉;

(ii) (The three point identity) for any x ∈ dom f and y,z ∈ int(dom f ),

D f (x,y) = D f (x,z)−D f (y,z)+ 〈∇ f (z)−∇ f (y),x− y〉.

We recall that a function f : H→ R is said to be strongly convex with a constant σ > 0 if

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)− σ

2
t(1− t)‖x− y‖2, ∀x,y ∈ dom f , ∀t ∈ [0,1].

The Bregman distance D f corresponding to the σ -strongly convex function f can be charac-
terized by the inequality of D f (x,y)≥ σ

2 ‖x− y‖2, ∀x ∈ dom f , y ∈ int(dom f ); see [22].
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The Bregman projection associated with f of x ∈ int(dom f ) onto a nonempty, convex and
closed set C ⊂ int(dom f ) [26] is the unique point in C, Π

f
C, defined by

Π
f
C(x) := argmin{D f (y,x) : y ∈C}.

The Fenchel conjugate function of f is the convex function f ∗ : H→ (−∞,+∞] defined by

f ∗(x∗) := sup
x∈H
{〈x∗,x〉− f (x)}.

A function f : H→ R is called Legendre [23, 29] if it satisfies
(i) int(dom f ) 6= /0 and the subdifferential ∂ f is single-valued on its domain;

(ii) int(dom f ∗) 6= /0 and ∂ f ∗ is single-valued on its domain.
Let Vf : dom f ∗×dom f → [0,+∞) associated with a Legendre function f be defined by

Vf (η ,x) := f (x)−〈η ,x〉+ f ∗(η), ∀η ∈ dom f ∗, x ∈ dom f .

Some properties of the function Vf can be summarized as follows (see [30])
(i) Vf (x,y) = D f (x,∇ f ∗(y)), ∀x ∈ dom f , y ∈ int(dom f );

(ii) Vf (x,η)+ 〈ζ ,∇ f ∗(η)− x〉 ≤Vf (x,η +ζ ), ∀η ,ζ ∈ dom f ∗, x ∈ dom f ;
(iii) Vf is nonnegative and convex in the second variable.

Since Vf is convex in the second variable, then, for N ∈ N,

D f

(
x,∇ f ∗

(
N

∑
i=1

λi∇ f (yi)

))
≤

N

∑
i=1

λiD f (x,yi), ∀x ∈ dom f ,

where {yi}N
i=1 ⊂ H and {λi}N

i=1 ⊂ [0,1] with ∑
N
i=1 λi = 1.

Lemma 2.1. [31] The Bregman projection Π
f
C(x) has the following properties, for each x ∈ H,

(i) 〈∇ f (Π f
C(x))−∇ f (x),y−Π

f
C(x)〉 ≥ 0, ∀y ∈C;

(ii) D f (y,Π
f
C(x))+D f (Π

f
C(x),x)≤ D f (y,x), ∀y ∈C.

Lemma 2.2. [24] Let f : H → R be strongly convex, Fréchet differentiable, and bounded on
bounded subsets of H. Let {xn} and {yn} be two sequences in H. If limn→∞ Dg(xn,yn) = 0, then
limn→∞ ‖xn− yn‖= 0.

Lemma 2.3. [32] Let H1 and H2 be two real Hilbert spaces. Suppose that f : H1 → H2 is
uniformly continuous on a bounded subset C of H1. Then f (C) := { f (x)|x ∈C} is bounded.

Lemma 2.4. [22, 33] For all x ∈ H and µ ≥ ν > 0, the following inequalities hold∥∥∥∥∥x−Π
f
C∇ f ∗(∇ f (x)−µF(x))

µ

∥∥∥∥∥≤
∥∥∥∥∥x−Π

f
C∇ f ∗(∇ f (x)−νF(x))

ν

∥∥∥∥∥ .
Lemma 2.5. [34] Let C be a nonempty, convex, and closed subset of a real Hilbert space H,
and let F : C→H be a pseudomonotone and continuous operator. Then x̃ ∈ S(C,F) if and only
if 〈Fz,z− x̃〉 ≥ 0, ∀z ∈C.

Lemma 2.6. [35] Let {an} be a nonnegative real sequence with an+1 ≤ λnβn +(1−λn)an for
all n ≥ 1, where {λn} is a sequence in (0,1) with the condition ∑

∞
n=1 λn = ∞, and {βn} is a

sequence with the condition limsupn→∞ βn ≤ 0. Then limn→∞ an = 0.
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Lemma 2.7. [36] Let {an} be a nonnegative real sequence such that there exists a subsequence
{ni} of {n} such that ani < ani+1, ∀i∈N. Then there exists an increasing sequence {ϕ(m)}⊂N
such that limm→∞ ϕ(m) = ∞ and the following properties are satisfied by all (sufficiently large)
numbers m ∈ N: aϕ(m) ≤ aϕ(m)+1 and am ≤ aϕ(m)+1. In fact, ϕ(m) = max{ j ≤ m|a j ≤ a j+1}.

3. THE ALGORITHM AND CONVERGENCE ANALYSIS

In this section, we propose a Bregman projection algorithm for solving the SVI. In order to
establish the strong convergence of the algorithm, we make the following standard assumptions.

Assumption 3.1. (A1) C is a nonempty, convex, and closed subset of a real Hilbert space H1;
Q is a nonempty, convex, and closed subset of a real Hilbert space H2.

(A2) The function f : H1 → R is σ -strongly convex, Legendre, which is bounded and uni-
formly Fréchet differentiable on bounded subsets of H1.

(A3) The function g : H2 → R is ς -strongly convex, Legendre, which is bounded and uni-
formly Fréchet differentiable on bounded subsets of H2.

(A4) The operator F1 : H1→ H1 is pseudomonotone and uniformly continuous, which satis-
fies whenever {pn} ⊂ H1, pn ⇀ p as n→ ∞, one has ‖F1(p)‖6 liminfn→∞ ‖F1(pn)‖.

(A5) The operator F2 : H2→ H2 is pseudomonotone and uniformly continuous, which satis-
fies whenever {qn} ⊂ H2,qn ⇀ q as n→ ∞, one has ‖F2(q)‖6 liminfn→∞ ‖F2(qn)‖.

(A6) The operator A : H1 → H2 is a bounded linear operator with ‖A‖ 6= 0 and an adjoint
A∗ : H2→ H1.

(A7) The real sequence {λn} ⊂ (0,1) satisfies that ∑
∞
n=1 λn = ∞ and limn→∞ λn = 0.

(A8) The solution set Γ := {x ∈ S(C,F1)|Ax ∈ S(Q,F2)} is nonempty.

The algorithm is of the following form

Algorithm 1

Step 1: Let x1 ∈ H1 be arbitrary. Take κ, ι ,χ,ρ,γ ∈ (0,1), µ ∈ (0,ς), υ ∈ (0,σ), ϖ ∈ (0,∞),
η ∈ (1,∞), α ∈ (0,χ/η) and {λn} is a real sequence given by (A7). Set n = 1.
Step 2: Compute

un =Π
g
Q∇g∗(∇g(A(xn))−µnF2(A(xn))),

where µn = κιkn with kn being the smallest nonnegative integer k satisfying

κι
k‖F2(un)−F2(A(xn))‖ ≤ µ‖un−A(xn)‖. (3.1)

Step 3: Compute
tn =∇g∗(∇g(un)−µn(F2(un)−F2(A(xn)))).

Step 4: Compute
yn = ∇ f ∗(∇ f (xn)+αnA∗(∇g(tn)−∇g(A(xn)))),

where αn is defined by αn = ϖη ln with ln being the smallest integer l satisfying

αD f (yn,xn)≤ αnDg(A(yn),A(xn)). (3.2)

Step 5: Compute
vn =Π

f
C∇ f ∗(∇ f (yn)−υnF1(yn)),
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where υn = ργmn with mn being the smallest nonnegative integer m satisfying

ργ
m‖F1(vn)−F1(yn)‖ ≤ υ‖vn− yn‖. (3.3)

If un = A(xn) and vn = yn, then stop. Otherwise, go to Step 6.
Step 6: Compute

sn =∇ f ∗(∇ f (vn)−υn(F1(vn)−F1(yn))).

Step 7: Compute
xn+1 = ∇ f ∗(λn∇ f (x1)+(1−λn)∇ f (sn)).

Set n := n+1 and return back to Step 2.

Remark 3.1. (i) The choice of step-size sequences {µn} and {νn} are determined by adopt-
ing linesearch techniques without assuming that F1 and F2 are Lipschitz continuous.

(ii) The nonmonotonic step-size sequence {αn} is given by utilizing a self-adaptive step
size technique with known parameters α,ϖ , and η , avoiding the use of the operator
norm ‖A‖.

Before investigating the convergence of our algorithm, we require some lemmas. The fol-
lowing one is concerned with the well-definedness of step size sequences {µn} and {υn}.

Lemma 3.1. (3.1) and (3.3), the Armijo-line search rules, are well-defined.

Proof. The proof is similar to that of [22, Lemma 3.3]. �

Lemma 3.2. The self-adaptive step size rule (3.2) is well-defined.

Proof. If Dg(A(yn),A(xn))= 0, then D f (yn,xn)= 0. In this case, ln = 0. If Dg(A(yn),A(xn)) 6= 0,
we assume that the contrary of (3.2) holds for any integer l, that is, ϖη lDg(A(yn),A(xn)) <
αD f (yn,xn). In this case, it follows that A(yn) 6= A(xn). Since A is linear, we obtain that
yn 6= xn. It further implies that D f (yn,xn)> 0. By considering that A is bounded and η > 1, one
finds that liml→+∞ ϖη lDg(A(yn),A(xn)) = +∞. From above, we obtain that

+∞ = lim
l→+∞

ϖη
lDg(A(yn),A(xn))< lim

l→+∞
αD f (yn,xn) = αD f (yn,xn).

Thus we obtain a contradiction. The proof is completed. �

We precede the proof of the following lemma, which is crucial to the convergence theorem.

Lemma 3.3. Let Assumption 3.1 (A1)-(A8) be satisfied. Let {xn} be the sequence generated by
Algorithm 1. Then, for any x ∈ Γ,

D f (x,xn+1)≤λnD f (x,x1)+(1−λn)D f (x,sn)

≤λnD f (x,x1)+(1−λn)
[
D f (x,xn)− (1−α)D f (yn,xn)

−
(

1− υ

σ

)
D f (vn,yn)−

(
1− υ

σ

)
D f (sn,vn)

]
, ∀n ∈ N.

(3.4)

Proof. Let x ∈ Γ. Then x ∈ S(C,F1) and A(x) ∈ S(Q,F2). By considering the definition of {un},
one has that un ∈ Q. This together with A(x) ∈ S(Q,F2) implies that 〈F2(A(x)),un−A(x)〉 ≥ 0.
The pseudomonotonicity of F2 gives that

〈F2(un),un−A(x)〉 ≥ 0. (3.5)
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Denote zn = A(xn). By the definition of {un} and Lemma 2.1 (i), one finds that

〈∇g(un)−∇g(∇g∗(∇g(zn)−µnF2(zn))),A(x)−un〉 ≥ 0. (3.6)

By combining (3.5) with (3.6), one sees that

〈∇g(zn)−∇g(un),A(x)−un〉 ≤µn〈F2(zn)−F2(un),A(x)−un〉. (3.7)

By using the three point identity of the Bregman distance and (3.7), one finds that

Dg(A(x), tn)

= Dg(A(x),A(xn))−Dg(un,A(xn))+ 〈∇g(A(xn))−∇g(un),A(x)−un〉−Dg(tn,un)

+µn〈F2(un)−F2(A(xn)),A(x)− tn〉
≤ Dg(A(x),A(xn))−Dg(un,A(xn))−Dg(tn,un)+µn〈F2(A(xn))−F2(un), tn−un〉.

(3.8)

In view of (3.1), one obtains that

µn〈F2(A(xn))−F2(un), tn−un〉 ≤ µn‖F2(A(xn))−F2(un)‖‖tn−un‖

≤ µ

2
(‖A(xn)−un‖2 +‖tn−un‖2).

(3.9)

By substituting (3.9) into (3.8) and using the relation Dg(x,y) ≥ ς

2‖x− y‖2 (∀x ∈ dom(g),y ∈
int(dom(g))), one concludes that

Dg(A(x), tn)≤Dg(A(x),A(xn))−Dg(un,A(xn))−Dg(tn,un)+
µ

2
(‖A(xn)−un‖2 +‖tn−un‖2)

≤Dg(A(x),A(xn))−
(

1− µ

ς

)
Dg(un,A(xn))−

(
1− µ

ς

)
Dg(tn,un).

(3.10)
Therefore, (3.10) implies that

Dg(A(x), tn)≤ Dg(A(x),A(xn)). (3.11)

By the definition of {vn} and Lemma 2.1 (i), one has that

〈∇ f (vn)−∇ f (∇ f ∗(∇ f (yn)−υnF1(yn))),x− vn〉 ≥ 0. (3.12)

Since x ∈ S(C,F1) and vn ∈C, one find that 〈F1(x),vn− x〉 ≥ 0. The pseudomonotonicity of F1
yields that 〈F1(vn),vn− x〉 ≥ 0, which together with (3.12) yields that

υn〈F1(vn)−F1(yn),x− vn〉 ≤ 〈∇ f (vn)−∇ f (yn),x− vn〉. (3.13)

Using the three point identity of the Bregman distance and the definition of {sn} yields that

D f (x,sn) =D f (x,vn)−D f (sn,vn)+ 〈∇ f (vn)−∇ f (sn),x− sn〉
=D f (x,vn)−D f (sn,vn)+υn〈(F1(vn)−F1(yn)),x− sn〉.

(3.14)

Again, by using the three point identity of the Bregman distance, one sees that

D f (x,vn) = D f (x,yn)−D f (vn,yn)+ 〈∇ f (yn)−∇ f (vn),x− vn〉. (3.15)

It follows from (3.13), (3.14), and (3.15) that

D f (x,sn)≤D f (x,yn)−D f (vn,yn)+υn〈F1(yn)−F2(vn),x− vn〉−D f (sn,vn)

+υn〈(F1(vn)−F1(yn)),x− sn〉
=D f (x,yn)−D f (vn,yn)−D f (sn,vn)+υn〈F1(yn)−F2(vn),sn− vn〉.

(3.16)
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The relation D f (x,y)≥ σ

2 ‖x− y‖2 (∀x ∈ dom f ,y ∈ int(dom f )) and (3.3) yield that

υn〈F1(yn)−F2(vn),sn− vn〉 ≤ υ‖yn− vn‖‖sn− vn‖

≤ υ

2
(‖yn− vn‖2 +‖sn− vn‖2)

≤ υ

σ
(D f (vn,yn)+D f (sn,vn)).

(3.17)

After combining (3.16) with (3.17), one concludes that

D f (x,sn)≤D f (x,yn)−
(

1− υ

σ

)
D f (vn,yn)−

(
1− υ

σ

)
D f (sn,vn). (3.18)

By using the three point identity of the Bregman distance, one infers that

〈A∗(∇g(tn)−∇g(A(xn))),x− xn〉=〈∇g(tn)−∇g(A(xn)),A(x)−A(xn)〉
=Dg(A(x),A(xn))−Dg(A(x), tn)+Dg(A(xn), tn),

(3.19)

and
〈A∗(∇g(tn)−∇g(A(xn))),xn− yn〉
= 〈∇g(tn)−∇g(A(xn)),A(xn)−A(yn)〉
=−[(Dg(A(yn),A(xn))−Dg(A(yn), tn)+Dg(A(xn), tn))].

(3.20)

By combining (3.19) with (3.20), one obtains that

〈A∗(∇g(tn)−∇g(A(xn))),x− yn〉
= Dg(A(x),A(xn))−Dg(A(x), tn)+Dg(A(xn), tn)

− [(Dg(A(yn),A(xn))−Dg(A(yn), tn)+Dg(A(xn), tn))]

≥ Dg(A(x),A(xn))−Dg(A(x), tn)+Dg(A(yn), tn))−Dg(A(yn),A(xn))

≥ Dg(A(x),A(xn))−Dg(A(x), tn)−Dg(A(yn),A(xn)).

(3.21)

By recalling that α ∈ (0,χ/η) and invoking (3.2), one finds that

αnDg(A(yn),A(xn))≤
χ

α
αnη

−1Dg(A(yn),A(xn))≤ χD f (yn,xn). (3.22)

By using the three point identity of the Bregman distance, (3.11), (3.21), and (3.22), one sees
that
D f (x,yn) =D f (x,xn)−D f (yn,xn)−αn〈A∗(∇g(tn)−∇g(A(xn))),x− yn〉

≤D f (x,xn)−D f (yn,xn)−αn[Dg(A(x),A(xn))−Dg(A(x), tn)]+αnDg(A(yn),A(xn))

≤D f (x,xn)− (1−χ)D f (yn,xn)−αn[Dg(A(x),A(xn))−Dg(A(x), tn)]

≤D f (x,xn)− (1−χ)D f (yn,xn).
(3.23)

Combining (3.18) with (3.23) shows that

D f (x,xn+1)≤λnD f (x,x1)+(1−λn)D f (x,sn)

≤λnD f (x,x1)+(1−λn)
[
D f (x,xn)− (1−χ)D f (yn,xn)

−
(

1− υ

σ

)
D f (vn,yn)−

(
1− υ

σ

)
D f (sn,vn)

]
.

This completes the proof of this lemma. �

Now, we are in a position to prove the strong convergence theorem of Algorithm 1.
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Theorem 3.1. Let Assumption 3.1 (A1)-(A8) be satisfied. Then the sequence {xn} generated
by Algorithm 1 converges strongly to x̂ = Π

f
Γ
(x1).

Proof. By using (3.4) in Lemma 3.3, and invoking that α ∈ (0,1) and υ ∈ (0,σ), we obtain that

D f (x,xn+1)≤λnD f (x,x1)+(1−λn)D f (x,xn)≤max{D f (x,x1),D f (x,xn))}
≤max{D f (x,x1),D f (x,xn−1))} ≤ ·· · ≤ D f (x,x1).

Hence, by induction we obtain that D f (x,xn)≤D f (x,x1) for all n ∈N. Therefore, we conclude
that {D f (x,xn)} is a bounded sequence, which implies that {xn} is bounded too. By using (3.23)
in Lemma 3.3, one finds that {yn} is also bounded. Let x̂ = Π

f
Γ
(x1). By replacing x by x̂ in (3.4),

one obtains that

(1−λn)[(1−χ)D f (yn,xn)+
(

1− υ

σ

)
D f (vn,yn)+

(
1− υ

σ

)
D f (sn,vn)]

≤λnD f (x̂,x1)+(1−λn)[D f (x̂,xn)−D f (x̂,xn+1)]−λnD f (x̂,xn+1)

≤λnD f (x̂,x1)+(1−λn)[D f (x̂,xn)−D f (x̂,xn+1)].

(3.24)

Now, one considers the following two possible cases to prove limn→∞ D f (x̂,xn) = 0.
Case 1. There exists N ∈ N such that D f (x̂,xn+1)≤ D f (x̂,xn) for all n≥ N, which gives that
{D f (x̂,xn)} is convergent and

lim
n→∞

(D f (x̂,xn)−D f (x̂,xn+1)) = 0. (3.25)

By putting together (3.24), (3.25), and the condition of χ ∈ (0,1), one concludes that

lim
n→∞

D f (yn,xn) = lim
n→∞

D f (vn,yn) = lim
n→∞

D f (sn,vn) = 0. (3.26)

It follows that

lim
n→∞
‖∇ f (yn)−∇ f (xn)‖= 0. (3.27)

Based on (3.23), it holds that

αn[Dg(A(x),A(xn))−Dg(A(x), tn)]≤D f (x,xn)−D f (x,yn)− (1−χ)D f (yn,xn). (3.28)

By using the three point identity of the Bregman distance, we find that

D f (x,yn)−D f (x,xn) =−D f (yn,xn)+ 〈∇ f (xn)−∇ f (yn),x− yn〉. (3.29)

We consider two possible cases in proving that

lim
n→∞

(Dg(A(x),A(xn))−Dg(A(x), tn)) = 0. (3.30)

(i) First, we consider the case that Dg(A(yn),A(xn)) 6= 0. In this case, we see that A(yn) 6=
A(xn). By invoking that A is a linear operator, we further find that yn 6= xn. Thus D f (yn,xn) 6= 0.
Moreover, (3.2) yields that 0 < 1

αn
≤ Dg(A(yn),A(xn))

αD f (yn,xn)
, when Dg(A(yn),A(xn)) 6= 0. By recalling

Assumption 3.1 (A2), we obtain that ∇ f is Lipschitz continuous with 1
σ

, the constant. This
together with the relation D f (x,y)≥ σ

2 ‖x−y‖2 (∀x ∈ dom f ,y∈ int(dom f )), (3.11), (3.28), and
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(3.29), yields that

0≤Dg(A(x),A(xn))−Dg(A(x), tn)

≤
Dg(A(yn),A(xn))

αD f (yn,xn)

[
D f (x,xn)−D f (x,yn)− (1−χ)D f (yn,xn)

]
=

Dg(A(yn),A(xn))

αD f (yn,xn)
[D f (yn,xn)−〈∇ f (xn)−∇ f (yn),x− yn〉]−

1−χ

α
Dg(A(yn),A(xn))

≤
Dg(A(yn),A(xn))

α
+

Dg(A(yn),A(xn))

αD f (yn,xn)
‖∇ f (xn)−∇ f (yn)‖‖x− yn‖−

1−χ

α
Dg(A(yn),A(xn))

≤
Dg(A(yn),A(xn))

α
+

2Dg(A(yn),A(xn))

ασ2 ‖x− yn‖−
1−χ

α
Dg(A(yn),A(xn)).

(3.31)
It follows from (3.26) that limn→∞ ‖yn−xn‖= 0. Since A is linear, we find that limn→∞ ‖A(yn)−
A(xn)‖= 0. Thus we further obtain that limn→∞ Dg(A(yn),A(xn)) = 0. This together with (3.11)
in Lemma 3.3, (3.31), and the boundedness of {yn} yields that (3.30) holds.

(ii) Second, we consider another case that Dg(A(yn),A(xn)) = 0. In this case, (3.2) yields
that αn = ϖ . Moreover, we obtain that A(yn) = A(xn). Since A is linear, we further obtain that
D f (yn,xn) = 0. By using (3.28) and (3.29), we have

Dg(A(x),A(xn))−Dg(A(x), tn)

≤ 1
ϖ
[D f (yn,xn)−〈∇ f (xn)−∇ f (yn),x− yn〉− (1−χ)D f (yn,xn)]

≤ 1
ϖ
[D f (yn,xn)+‖∇ f (xn)−∇ f (yn)‖‖x− yn‖− (1−χ)D f (yn,xn)].

(3.32)

By using (3.11), (3.26), (3.27), (3.32), and the boundedness of {yn}, we prove (3.30). In view
of µ < ς , we find from (3.10) and (3.30) that limn→∞ Dg(un,A(xn)) = 0, which together with
(3.26) indicates that

lim
n→∞
‖yn− xn‖= lim

n→∞
‖vn− yn‖= lim

n→∞
‖sn− vn‖= lim

n→∞
‖un−A(xn)‖= 0. (3.33)

The boundedness of {xn} yields that {sn} is bounded, which together with Assumption 3.1 (A2)
implies that {D f (sn,x1)} is bounded. Furthermore, we obtain that

D f (sn,xn+1)≤ λnD f (sn,x1)+(1−λn)D f (sn,sn) = λnD f (sn,x1). (3.34)

Due to the facts that limn→∞ λn = 0 and {sn} is bounded, we have that limn→∞ D f (sn,xn+1) =

0. By using the relation D f (x,y) ≥ σ

2 ‖x− y‖2 (∀x ∈ dom f ,y ∈ int(dom f )), we obtain that
limn→∞ ‖sn−xn+1‖= 0, which together with (3.33) yields limn→∞ ‖xn−xn+1‖= 0. Since {xn}
is bounded, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x̃ as k→∞, which together
with (3.33) yields that {yn} is bounded and ynk ⇀ x̃ as k→∞. Assumption 3.1 (A6) implies that
A is sequential weakly continuous. Thus we obtain that A(xnk)⇀ A(x̃) as k→ ∞.

Now, we show that x̃ ∈ S(C,F1). According to (3.12), we find that

〈F1(ynk),x− ynk〉 ≥ −
1
υn
〈∇ f (vnk)−∇ f (ynk),x− vnk〉−〈F1(ynk),ynk− vnk〉. (3.35)

We consider two possible cases in proving that

liminf
k→∞

〈F1(ynk),z− ynk〉 ≥ 0, ∀z ∈C. (3.36)
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(i) Suppose that liminfk→∞ υnk > 0. Since F1 is uniformly continuous and {yn} is bounded,
we see that Lemma 2.3 indicates that {F1(ynk)} is bounded. Note that Assumption 3.1 (A2)
implies that ∇ f is uniformly continuous. Thus it follows from (3.33) that

lim
k→∞
‖∇ f (vnk)−∇ f (ynk)‖= 0. (3.37)

By taking the limit inferior as k→ ∞ in (3.35), we prove (3.36).
(ii) Suppose that liminfk→∞ υnk = 0. Denote pnk = Π

f
C∇ f ∗(∇ f (ynk)− υnkγ−1F1(ynk)), for

all k ≥ 1. Since γ ∈ (0,1), we have υnkγ−1 > υnk . According to Lemma 2.4, we obtain that
γ−1‖ynk − pnk‖ ≤ ‖ynk − vnk‖, which together with (3.33) yields that limk→∞ ‖ynk − pnk‖ = 0.
Since F1 is uniformly continuous, we find that limk→∞ ‖F1(ynk)−F1(pnk)‖= 0. By using (3.3),

we obtain that υnkγ−1‖F1(pnk)−F1(ynk)‖> υ‖pnk− ynk‖. Thus limk→∞

‖pnk−ynk‖
υnk γ−1 = 0. Thus

lim
k→∞

‖∇ f (pnk)−∇ f (ynk)‖
υnkγ−1 = 0. (3.38)

The definition of {pnk} and Lemma 2.1 (i) indicate that

〈∇ f (pnk)−∇ f (∇ f ∗(∇ f (ynk)−υnkγ
−1F1(ynk))),z− pnk〉 ≥ 0, ∀z ∈C, (3.39)

which in turn implies that

〈F1(ynk),z− ynk〉+ 〈F1(ynk),ynk− pnk〉+
〈

∇ f (pnk)−∇ f (ynk)

υnkγ−1 ,z− pnk

〉
≥ 0, ∀z ∈C. (3.40)

Taking the limit inferior as k→ ∞ in (3.40), we obtain (3.36) by (3.38). Let {χk} be a strictly
decreasing sequence of positive numbers such that χk→ 0 as k→ ∞. For each k ≥ 1, it follows
from (3.36) that the smallest positive integer, denoted by φ(k), such that

〈F1(yni),z− yni〉+χk ≥ 0, ∀z ∈C, ∀i≥ φ(k) (3.41)

exists. For each k ≥ 1, suppose that F1(ynφ(k)) 6= 0 (otherwise, ynφ(k) ∈ S(C,F1)). By setting

qk =
F1(yn

φ(k)
)

‖F1(yn
φ(k)

)‖2 , we see that 〈F1(ynφ(k)),qnφ(k)〉 = 1, which together with (3.41) yields that

〈F1(ynφ(k)),z− ynφ(k) +χkqk〉 ≥ 0 for all z ∈C. Since F1 is pseudomonotone, then

〈F1(z+χkqk),z− ynφ(k) +χkqk〉 ≥ 0, ∀z ∈C. (3.42)

In view of (3.42), we obtain that

〈F1(z),z− ynφ(k)〉
=〈F1(z)−F1(z+χkqk),z− ynφ(k)〉+ 〈F1(z+χkqk),z+χkqk− ynφ(k)〉−〈F1(z+χkqk),χkqk〉
≥〈F1(z)−F1(z+χkqk),z− ynφ(k)〉−〈F1(z+χkqk),χkqk〉.

(3.43)
Now we demonstrate that limk→∞ χkqk = 0. By considering that ynφ(k) ⇀ x̃ as k→ ∞, it follows
from Assumption 3.1 (A4) that ‖F1(x̃)‖ ≤ liminfk→∞ ‖F1(ynφ(k))‖. We assume that F1(x̃) 6= 0
(otherwise, x̃ ∈ S(C,F1)). Since χk→ 0 as k→ ∞, we find that

0≤ limsup
k→∞

‖χkqk‖= limsup
k→∞

χk

‖F1(ynφ(k))‖
≤ limsupk→∞ χk

liminfk→∞ ‖F1(ynφ(k))‖
= 0.
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Thus limk→∞ ‖χkqk‖ = 0, which together with (3.42) and Assumption 3.1 (A4) implies that
liminfk→∞〈F1(z),z− ynφ(k)〉 ≥ 0 for all z ∈C. It follows that

〈F1(z),z− x̃〉= lim
k→∞
〈F1(z),z− ynφ(k)〉= liminf

k→∞
〈F1(z),z− ynφ(k)〉 ≥ 0, ∀z ∈C.

By using Lemma 2.5, we prove that x̃ ∈ S(C,F1).
By following the similar proof used in obtaining x̃ ∈ S(C,F1), we seet that Ax̃ ∈ S(Q,F2).

Since x̂ = Π
f
Γ
(x1), Lemma 2.1 (i) indicates that

limsup
n→∞

〈∇ f (x1)−∇ f (x̂),xn+1− x̂〉= 〈∇ f (x1)−∇ f (x̂), x̃− x̂〉 ≤ 0. (3.44)

By combining (3.16) with (3.23), we observe that D f (x̂,sn) ≤ D f (x̂,xn), which together with
the property of Vf (·, ·) yields that

D f (x̂,xn+1) =Vf (x̂,λn∇ f (x1)+(1−λn)∇ f (sn))

≤Vf (x̂,λn∇ f (x1)+(1−λn)∇ f (sn)−λn(∇ f (x1)−∇ f (x̂)))

+ 〈λn(∇ f (x1)−∇ f (x̂)),∇ f ∗(λn∇ f (x1)+(1−λn)∇ f (sn))− x̂〉
=Vf (x̂,λn∇ f (x̂)+(1−λn)∇ f (sn))+ 〈λn(∇ f (x1)−∇ f (x̂)),xn+1− x̂〉
=D f (x̂,∇ f ∗(λn∇ f (x̂)+(1−λn)∇ f (sn)))+ 〈λn(∇ f (x1)−∇ f (x̂)),xn+1− x̂〉
≤(1−λn)D f (x̂,sn)+λn〈∇ f (x1)−∇ f (x̂),xn+1− x̂〉
≤(1−λn)D f (x̂,xn)+λn〈∇ f (x1)−∇ f (x̂),xn+1− x̂〉.

(3.45)
Using Lemma 2.6, (3.44), and (3.45), we obtain that limn→∞ D f (x̂,xn) = 0, which together with
the relation D f (x,y)≥ σ

2 ‖x−y‖2 (∀x ∈ dom f ,y ∈ int(dom f )) yields that limn→∞ ‖x̂−xn‖= 0.
Then limn→∞ xn = x̂.

Case 2. There exists a subsequence {D f (x̂,xnm)} of {D f (x̂,xn)} such that D f (x̂,xnm) ≤
D f (x̂,xnm+1) for all m ∈ N. By applying Lemma 2.7, we see that there exists an increasing
sequence {ϕ(m)} ⊂ N such that lim

m→∞
ϕ(m) = ∞ and the following inequalities hold, for any

m ∈ N, D f (x̂,xϕ(m)) ≤ D f (x̂,xϕ(m)+1) and D f (x̂,xm) ≤ D f (x̂,xϕ(m)+1). In view of (3.24), we
obtain that

(1−λϕ(m))[(1−χ)D f (yϕ(m),xϕ(m))+
(

1− υ

σ

)
D f (vϕ(m),yϕ(m))+

(
1− υ

σ

)
D f (sϕ(m),vϕ(m))]

≤ λϕ(m)D f (x̂,x1)+(1−λϕ(m))[D f (x̂,xϕ(m))−D f (x̂,xϕ(m)+1)].
(3.46)

It follows from (3.45) that

D f (x̂,xϕ(m)+1)≤(1−λϕ(m))D f (x̂,xϕ(m))+λϕ(m)〈∇ f (x1)−∇ f (x̂),xϕ(m)+1− x̂〉. (3.47)

According to (3.46), Assumption 3.1 (A7), α ∈ (0,1), and υ ∈ (0,σ), we find that

lim
m→∞

D f (yϕ(m),xϕ(m)) = lim
m→∞

D f (vϕ(m),yϕ(m)) = lim
m→∞

D f (sϕ(m),vϕ(m)) = 0.

By repeating the same arguments as in the proof of Case 1, we conclude that

limsup
m→∞

〈∇ f (x1)−∇ f (x̂),xϕ(m)− x̂〉 ≤ 0. (3.48)

By (3.47), we arrive at

D f (x̂,xϕ(m)+1)≤(1−λϕ(m))D f (x̂,xϕ(m)+1)+λϕ(m)〈∇ f (x1)−∇ f (x̂),xϕ(m)+1− x̂〉.
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It follows that

D f (x̂,xm)≤ D f (x̂,xϕ(m)+1)≤ 〈∇ f (x1)−∇ f (x̂),xϕ(m)+1− x̂〉. (3.49)

In view of (3.48) and (3.49), we conclude that limsupm→∞ D f (x̂,xm) = 0, which together with
the relation D f (x,y)≥ σ

2 ‖x−y‖2 (∀x∈ dom f ,y∈ int(dom f )) yields that limm→∞ ‖x̂−xm‖= 0.
Then limm→∞ xm = x̂. From Case 1 and Case 2, we conclude that {xn} converges strongly to
x̂ = Π

f
Γ
(x1), which completes the proof. �

Remark 3.2. By setting f (x)= 1
2‖x‖

2 for all x∈H1 and g(y)= 1
2‖y‖

2 for all y∈H2, we obtain a
special case of Algorithm 1. Given parameters χ ∈ (0,1), ϖ ∈ (0,∞), η ∈ (1,∞), α ∈ (0,χ/η),
and x1 ∈ H1, the iterative sequence {xn} is generated by the following:

un = PQ(A(xn)−µnF2(A(xn))),where µn is defined by (3.1),
tn = un−µn(F2(un)−F2(A(xn))),
yn = xn +αnA∗(tn−A(xn)),where αn is defined by αn = ϖη ln with
ln being the smallest integer l satisfying α‖yn− xn‖ ≤ αn‖A(yn)−A(xn)‖,
vn = PC(yn−υnF1(yn)),
sn = vn−υn(F1(vn)−F1(yn)),where υn is defined by (3.3),
xn+1 = λnx1 +(1−λn)sn.

Remark 3.3. By setting F1(x) = 0 for all x ∈ H1 in (1.1) and F2(y) = 0 for all y ∈ H2 in (1.2),
we see that the SVI is reduced to a split feasibility problem. By setting g(y) = 1

2‖y‖
2 for all

y ∈H2, then Bregman projection Π
g
Q is reduced to the metric projection PQ. In this situation, by

picking λn = 0 for all n≥ 1, Algorithm 1 is reduced to the method proposed in [37, Algorithm
3.1].

4. NUMERICAL EXAMPLES

In this section, we present two test examples to illustrate the advantage and the efficiency of
our proposed algorithm in comparison with the methods proposed in [15, 19]. In the following
experiments, we define Errn := 1

2(‖xn−PC(xn−F1(xn)‖2+‖A(xn)−PQ(A(xn)−F2(A(xn)))‖2)
for all n ∈ N. We use the stopping criterion Errn < ε for the iterative process, where ε is the
predetermined error. If Errn = 0, then xn ∈ Γ. All codes are written in Python 3.9 on a PC
Desktop Intel(R) Core(TM) i5-11300H @ 3.10 GHz(8 CPUs), 3.1 GHz, RAM 16 384 MB.

We first consider an example in finite dimensional spaces.

Example 4.1. Let H1 = R4 and H2 = R2. Let A(x) = (x1 + x3 + x4,x2 + x3 − x4)
T for all

x = (x1,x2,x3,x4)
T ∈ R4. Hence, A is a bounded linear operator from R4 into R2. Let B(y) =

(y1,y2,y1 + y2,y1 − y2)
T for all y = (y1,y2)

T ∈ R2. Since 〈A(x),y〉 = 〈x,B(y)〉 for all x =
(x1,x2,x3,x4)

T ∈ R4 and y = (y1,y2)
T ∈ R2. Thus B = A∗ is an adjoint operator of A. Further-

more, we find that ‖A‖= ‖A∗‖=
√

3. Let C = {(x1,x2,x3,x4)
T ∈ R4|x1− x2− x3 +2x4 ≥−1}

and Q = {(x1,x2)
T ∈ R2|2x1 − 3x2 ≥ −4}. Define an operator F1 : R4 → R4 by F1(x) =

(sin‖x‖+ 2)p0 for all x ∈ R4, where p0 = (1,−1,−1,2)T ∈ R4. Define another operator
F2 : R2→R2 by F2(y) = (sin‖y‖+3)q0, ∀y∈R2, where q0 = (2,−3)T ∈R2. It is noted that F1
satisfies the condition (A4) in Assumption 3.1 on R4. Moreover, F2 satisfies the condition (A5)
in Assumption 3.1 on R2; see [18]. It is not difficult to check that F1 is

√
7-Lipschitz continuous

and F2 is
√

13-Lipschitz continuous. Let f (x) = 1
2‖x‖

2,∀x ∈ R4 and g(y) = 1
2‖y‖

2,∀y ∈ R2. It
is clear that f and g are strongly convex with modulus 1.
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In this experiment, we give a numerical comparison of Algorithm 1 with Method-MPC of
Ogwo et al. [19, Algorithm 1] and Method-MHSE of Huy et al. [15, Algorithm 1]. We test
these methods by using the following parameters:

(i) For Algorithm 1, parameters κ, ι ,ϖ ,χ,ρ,γ,µ , and υ are generated randomly in (0,1).
η ∈ (1,∞) is generated randomly in (1,10). α is generated randomly in (0,χ/η). We
define λn := 1

n+1 for all n ∈ N.
(ii) For Method-MPC, we select α := 4 and a := 10−4 and define δn := 1

n+1 and τn := 1
(n+1)2

for all n ∈ N. We randomly choose λ in (0,1/L2), µ in (0,1/L1), γ1 in (0,2), and γ2 in
(0,2).

(iii) For Method-MHSE, we randomly generate µ0,λ0,µ , and λ in (0,1). For each n ∈ N,
we randomly choose δn in (0.1,0.2). We define αn := 1

n+1 ,∀n ∈ N.
For comparing Algorithm 1 with Method-MPC and Method-MHSE, we choose the same

initials with the entries being randomly generated in the range of (0,1). For all algorithms, we
take Errn < ε = 5×104 as a common stopping criterion, which serves as the role of checking
whether the algorithms converge to the solution of the SVI or not. The corresponding numerical
results are reported in Figures 1, 2, and Table 1.

FIGURE 1. Numerical results for Algorithm 1, Method-MPC, and Method-MHSE.

TABLE 1. Comparison of the number of termination iterations and the
execution time between Algorithm 1, Method-MPC and Method-MHSE.

Method Algorithm 1 Method-MPC Method-MHSE

Iterations 15250 153994 41628
CPU Time 4.5494 45.7233 15.0631

From the changing processes of the values of {Errn} in Figure 1, we observe that our algo-
rithm has a faster convergence speed than Method-MPC and Method-MHSE in terms of both
the number of iterations and the execution time in second elapses. This is due to the fact that
our proposed algorithm uses Armijo-type stepsize criterions which finds appropriate step sizes
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per iteration and thus decreases the CPU time and the number of iterations of Algorithm 1. Fur-
thermore, it can also be seen from Figure 1 that our proposed algorithm achieves a more stable
and higher precision with the number of iterations. Besides, the convergence of {Errn} to 0
implies that the iterative sequences converge to the solution of the SVI. The numerical results
summarized in Table 1 illustrate that Algorithm 1 requires fewer iterations and less execution
time than Method-MPC and Method-MHSE to achieve the same error accuracy.

FIGURE 2. The behavior of elements of x of Example 4.1.

Figure 2 plots the changing processes of elements of x. Furthermore, the convergent point
x = (0.1284,1.5612,−0.4358,−0.0014)T is the solution of the SVI.

Example 4.2. Let H1 = H2 = `2(R) whose elements are square summable sequences, that is,

`2(R) = {x = (x1,x2, · · · ,xi, · · ·)|
∞

∑
i=1
|xi|2 < ∞}.

The inner product 〈·, ·〉 : `2(R)× `2(R)→ R and the norm ‖ · ‖ : `2(R)→ R are respectively
defined by

〈x,y〉=
∞

∑
i=1

xiyi, ∀x = (x1,x2, · · · ,xi, · · ·), y = (y1,y2, · · · ,yi, · · ·) ∈ `2(R),

and
‖x‖=

√
〈x,x〉, ∀x = (x1,x2, · · · ,xi, · · ·) ∈ `2(R).

We define C = {x ∈ `2(R)|‖x− y‖ ≤ a}, where y = (1, 1
2 , · · · ,

1
i , · · ·) and a = 3. Define Q =

{x ∈ `2(R)|〈z,x〉 ≤ b}, where z = (1,2, · · · , i, · · ·) and b = 4. Therefore, C and Q are nonempty,
convex, and closed subsets of `2(R). Based on [38], the explicit formulas for projections onto
PC and PQ are defined by

PC(x) =

{
x−y
‖x−y‖a+ y, if ‖x− y‖> a,
x, otherwise,

and PQ(x) =

{
b−〈z,x〉
‖z‖2 z+ x, if 〈z,x〉> b,

x, otherwise.

Let A(x) = (0,x1,
x2
2 ,

x3
3 , · · ·) for all x= (x1,x2,x3, · · ·)∈ `2(R). Note that A is a bounded and lin-

ear operator on `2(R) with an adjoint operator A∗y = (y2,
y3
2 ,

y4
3 , · · ·) for all y = (y1,y2,y3, · · ·) ∈
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`2(R); see [19]. Define an operator F1 : `2(R) → `2(R) by F1(x) =
(

1
‖x‖+θ

‖x‖
)

x for all
x ∈ `2(R), where θ > 0. Define another operator F2 : `2(R)→ `2(R) by F2(x1,x2,x3, · · ·) =
(x1e−x2

1 ,0,0, · · ·) for all x ∈ `2(R). It is noted that F1 and F2 satisfy the conditions (A4) and (A5)
in Assumption 3.1, respectively; see [19]. We define f (x) = g(x) = 1

2‖x‖
2 for all x ∈ `2(R).

Hence, f and g are strongly convex with modulus 1. It is clear that ∇ f (x) = ∇g(x) = x and
∇ f ∗(x) = ∇g∗(x) = x for all x ∈ `2(R). Thus the corresponding Bregman distance is given by
D f (x,y) = Dg(x,y) = 1

2‖x− y‖2 for all x,y ∈ `2(R). In this experiment, we choose different
starting points as follows

Case I: x1 = (0.5260,0.8047,0.7059,0.8023,0.6221,0.1461,0.5222,0.3694,0, · · · ,0, · · ·);
Case II: x1 = (0.1711,0.6004,0.2114,0.7504,0, · · · ,0, · · ·).
We take Errn < ε = 10−4 as the stopping criterion for the iterative process. It is noted that
‖xn−xn+1‖ can be used to measure the error of the n-th iteration step of Algorithm 1. Numerical
behaviors of our algorithm with different starting points are shown in Figures 3-6.

FIGURE 3. Numerical results for Case I of Example 4.2.

FIGURE 4. Behavior of entries of x with the number of iterations for Case I.
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FIGURE 5. Numerical results for Case II of Example 4.2.

FIGURE 6. Behavior of entries of x with the number of iterations for Case II.

In Figures 3 and 5, the left figure plots the changing process of the value of {Errn} with the
number of iterations and the right figure plots the changing process of the value of {‖xn+1−xn‖}
with the number of iterations. From above, we observe that the convergence of {Errn} and
{‖xn+1− xn‖} to 0 implies that the iterative sequence converge to the solution of the SVI. Our
proposed algorithm is efficient to implement for solving the SVI.

The numerical performance of x shown in Figure 4 implies that the convergence point in Case
I is (0.0098,0.0150,0.0131,0.0149,0.0116,0.0027,0.0097,0.0068,0, · · · ,0, · · ·).

The numerical performance of x shown in Figure 6 implies that the convergence point in Case
II is (0.0003,0.0043,0.0045,0.0077,0, · · · ,0, · · ·).

Remark 4.1. We have the following observations for Examples 4.1 and 4.2.
(i) The nonmonotonic step-size criterions utilized in our algorithm make it more efficient

and more implementable than the method presented in [15] that uses a non-increasing step size
criterion and the method presented in [19] that uses a fixed step-size criterion.

(ii) The observations have no significant relationship with the selection of initial points.
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5. CONCLUSION

In this paper, the proposed algorithm for solving SVIs was motivated by the Halpern method,
Tseng’s extragradient method and the CQ algorithm. We employed different nonmonotonic
step size criterions that allows the algorithm to work adaptively without the prior knowledge
of the operator norm and operators’ Lipschitz constants. The operators involved in the SVI are
pseudomonotone and not necessarily Lipschitz continuous. The strong convergence theorem
of the suggested method was established under mild conditions. Two numerical experiments
were performed to verify theoretical results. Numerical results show the competitive advantage
and the computational efficiency of the suggested algorithm over other methods. The obtained
result improves and extends some related works in the literature.
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