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Abstract. Elastic net model is widely used in high-dimensional statistics for parameter regression and
variable selection, which has been proved that the performance is often better than the lasso. However,
it can only deals with data containing Gaussian noise, so it is not suitable for modern complex high-
dimensional data. Fortunately, an adaptive and robust minimization model, which combines the `p-norm
data fidelity and elastic net regularization, has been proposed to deal with different types of noises and
inherit the advantages of the elastic net in prediction accuracy. The double non-smoothness in objective
function makes it challenging to minimize the model. After investigation, we find that the optimization
algorithm is currently limited to the first-order alternating direction method of multipliers (ADMM),
which is relatively lower in the recovered solutions’ accuracy and relatively slower in the calculation
speed. Therefore, we are committed to developing a fast and effective algorithm based on second-order
information. Specifically, we propose a preconditioned proximal point algorithm (abbreviated as P-PPA)
to solve the considered model by adding a proximal term. In theory, we analyze the consistency between
the solution of the surrogate model and the original model. In addition, a key subproblem in P-PPA
is solved by superlinear or even quadratically convergent semismooth Newton methods from the dual
perspective. Finally, a large number of numerical experiments on high-dimensional simulated and real
examples fully verify that our proposed algorithm is superior to ADMM in terms of calculation accuracy
and speed.

Keywords. Alternating direction method of multipliers; High-dimensional sparse linear regression;
`p `1-`2 minimization; Preconditioned proximal point algorithm; Semismooth Newton method.

1. INTRODUCTION

Let x∗ ∈ Rn be a compressible sparse signal under a suitable basis (e.g. Fourier or wavelet
basis). The main idea of compressive sensing (CS) is to firstly encode x∗ via a sensing matrix
A, i.e, Ax∗ = b with b ∈ Rm and m� n, and then decode x∗ from the undersampled data b by
finding the sparest solution of an underdetermined linear system Ax = b. However, during the
encoding and decoding process, undersampled data b may be inevitably corrupted by various
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types of noise. In this case, recovering x∗ is usually described as finding a solution of the
`1-norm regularized least square; see, e.g., [5, 12, 13],

min
x∈Rn

1
2
‖Ax−b‖2

2 +λ‖x‖1, (1.1)

where ‖ · ‖1 is a `1-norm function, and λ > 0 is a weighting parameter to balance both terms
for minimization. A deterministic result shows that it is possible to recover the original signal
precisely by `1-norm minimization when the number of nonzeros in x∗ is less than (1+1/ζ )/2;
see [13, 14], where ζ is the so-called mutual coherence of matrix A.

In the field of statistics, although the `1-norm regularization (a.k.s. lasso penalty) has shown
its success in many situations for sparse linear regression, it also has some limitations. For
example, in the high-dimension case, i.e., n� m, lasso can select at most m variables before
saturation. And the well-posedness of lasso needs that the bound on the `1-norm of the coeffi-
cients is smaller than a certain value. In addition, lasso tends to select only one variable from a
group of highly correlated variables. As a result, Zou and Hastie [37] proposed a novel penalty,
called elastic net, which can simultaneously does automatic variable selection and continuous
shrinkage, and it also can select groups of correlated variables. If the elastic net is used to re-
place the `1-norm in (1.1), we can obtain the following `1-`2-norm regularized minimization
problem:

min
x∈Rn

1
2
‖Ax−b‖2

2 +λ

(
‖x‖1 +

β

2
‖x‖2

2

)
, (1.2)

where β ≥ 0 is a tuning parameter. This model has been extensively used in many fields, such
as neuroimaging [4], genome-wide association studies of rheumatoid arthritis [6], uncovering
consistent networks of functional disconnection in Alzheimer’s disease [31], and estimating
global bank network connectedness [9].

The appearance of the ‖Ax− b‖2
2 makes (1.2) strongly convex. In addition, the ‖x‖2

2 makes
it less sensitive to the contained noise than (1.1). Nevertheless, the quality of the resolutions
of (1.2) also relies on the knowing of the standard deviation of the noise. To resolve this issue,
Belloni et al. [3] recommended a square-root-loss ‖Ax− b‖2, which was proved to be not
knowing the standard deviation and having the minimax optimal rate of convergence under
some suitable conditions [1, 8]. On the other hand, observations in the era of modern big data
are inevitably affected by various noises, such as heavy-tailed noise, Gaussian noise, uniformly
distributed noise, and so on. When encountering heavy-tailed or heterogeneous noises, the
data fidelity of ‖Ax− b‖1 is robust [2, 22, 32, 33]. In the case of uniformly distributed and
quantization error, the data fidelity of ‖Ax−b‖∞ is more suitable [34, 36]. Recently, based on
`p (p = 1,2,∞) norm data fidelity and elastic net regularization, Ding et al. [10] proposed a
flexible and robust reconstruction model:

min
x∈Rn
‖Ax−b‖p +λ

(
‖x‖1 +

β

2
‖x‖2

2

)
, (1.3)

where ‖ · ‖p is an `p-norm function whose proximal mapping is assumed to be strongly semis-
mooth. Obviously, p = 1,2,∞ meets the requirements of model [21, Remark 2]. Model (1.3)
has a lot of nice features. For instance, it not only has the ability to produce sparse resolutions,
but also can cope with different types of noise if p is chosen dynamically, such as, p = 2 for
Gaussian noise, p = 1 for log-normal noise and heavy-tailed noise, and p = ∞ for uniformly
distributed noise. Despite all these advantages, comparing with (1.2), it is more difficult to find
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a solution to (1.3) with higher accuracy because of the variability of the `p-norm data fidelity
term. Ding et al. [10] used the popular alternating direction method of multipliers (ADMM),
which is easy to implement, but it is not enough to derive higher precision solutions quickly.
Then naturally there is a question: can one propose a fast and effective algorithm to implement
it?

The main contribution of this paper is to propose a fast and effective algorithm based on
second-order information, which can fully exploit the structures of the `p-norm. Specifically,
we propose a preconditioned proximal point algorithm (P-PPA) which is inspired by the proxi-
mal majorization-minimization algorithm (PMM) of Tang et al. [30] for a square-root regression
problem. Similarly, for the need of efficient calculation, we focus on the same model but add
a proximal term σ

2 ‖x− x̃‖2 + τ

2‖Ax−Ax̃‖2, where σ > 0, τ > 0, and x̃ are known quantities in
advance. In P-PPA, we employ a semismooth Newton method (SSN) to solve the key subprob-
lem from the perspective of duality so that a superlinearly convergence is achieved. Finally, we
implement the proposed algorithm by using a large number of simulation and real data which
shows that the SSN based P-PPA performs better than ADMM in sense of recovery qualities
and calculation speed.

The remaining parts of this paper are organized as follows. In Section 2, we summarize some
basic definitions for subsequent algorithm design and numerical implementations. In Section 3,
we propose an SSN based the P-PPA algorithm to improve the performance of the algorithm.
Besides, the convergence result for the proposed algorithm is also included in each section.
Then, in Section 4, we present some numerical experiments as well as some performance com-
parisons. Finally, we conclude this paper in Section 5.

2. PRELIMINARIES

Let Rn denote the n-dimensional Euclidean space, 〈·, ·〉 denote the standard inner product.
Let f : Rn→ (−∞,+∞] be a proper, closed, and convex function. We use dom( f ) to denote the
domain of f , that is, dom( f ) = {x∈Rn | f (x)<∞}. A vector z is said to be a subgradient of f at
point x if f (y)≥ f (x)+〈z,y−x〉 for all y∈Rn. The set of all subgradients of f at x is called the
subdifferential of f at x and is denoted by ∂ f (x). Obviously, ∂ f (x) is a convex and closed set
while it is not empty. The Fenchel conjugate of f is defined as f ∗(z) := supx∈Rn{〈x,z〉− f (x)}.
The Moreau envelope function of f with parameter t > 0, denoted by Φt f (x), is defined as
[24, 35]

Φt f (x) := min
y∈Rn
{ f (y)+

1
2t
‖y− x‖2

2}. (2.1)

The proximal mapping of f with t > 0 is defined by

Proxt f (x) := argmin
y∈Rn

{ f (y)+
1
2t
‖y− x‖2

2}. (2.2)

From [15, 17], we know that Φt f (x) is continuously differentiable and convex with gradient in
the form of

∇Φt f (x) = t−1(x−Proxt f (x)), ∀x ∈ Rn. (2.3)

The following Moreau’s identity [28, Theorem 35.1] is essential in the subsequent analysis:

Proxt f (x)+ tProx f ∗/t(x/t) = x. (2.4)
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Next, we state some basic concepts and definitions, which are required at the subsequent
arithmetic developments and numerical implementations.

Definition 2.1. (Semismoothness [23, 25]). Let Ψ : O ⊆Rn→Rm be a locally Lipschitz contin-
uous function and K : O ⇒ Rm×n be a nonempty, compact valued, and upper-semicontinuous
set-valued mapping on the open set O . Ψ is said to be semismooth at ν ∈ O with respect to
the set-valued mapping K if Ψ is directionally differentiable at ν and for any Γ ∈K (ν +∆ν)
with ∆ν → 0 such that

Ψ(ν +∆ν)−Ψ(ν)−Γ∆ν = o(‖∆ν‖2).

Ψ is said to be γ-order (γ > 0) (strongly, if γ = 1 ) semismooth at ν with respect to K if Ψ is
semismooth at ν and for any Γ ∈K (ν +∆ν) such that

Ψ(ν +∆ν)−Ψ(ν)−Γ∆ν = O(‖∆ν‖1+γ

2 ).

Ψ is called a semismooth (γ-order semismooth, strongly semismooth) function on O with re-
spect to K if it is semismooth (γ-order semismooth, strongly semismooth) at every ν ∈O with
respect to K .

We now quickly review some preliminary results on the P-PPA. For more results, one may
refer to the popular papers of Rockafellar [26, 27]. The P-PPA is a generalization of the
PPA which was first studied by Li et al. [20]. Consider a closed proper convex function
f : Rn→ (−∞,+∞]. Give a self-adjoint positive definite matrices sequence {Mk}, a nonnega-
tive summable sequence {ρk}, and two positive numbers 0 < ξmin ≤ ξ∞ <+∞, such that

(1+ρk)Mk �Mk+1, Mk � ξminIn,∀k ≥ 0, limsup
k→∞

λmax (Mk) = ξ∞,

where λmax(·) denotes the largest eigenvalue of a matrix. Starting from x0 ∈ Rn, the P-PPA
generates an approximated sequence

{
xk} via the following scheme

xk+1 ≈ x̄k+1 = argmin
x∈Rn

{
f (x)+

1
σk

∥∥∥x− xk
∥∥∥2

Mk

}
, (2.5)

where {σk} is a positive numbers sequence such that 0 < σk ↑ σ∞ ≤+∞. Clearly, if Mk ≡I ,
i.e., an identity matrix, the P-PPA may reduce to the classical PPA of Rockafellar [26, 27]. It
should be noted that there are two general criteria for the approximation between xk+1 and x̄k+1,
that is,

(A)
∥∥xk+1− x̄k+1

∥∥
Mk
≤ εk with 0≤ εk and ∑

∞
k=0 εk <+∞,

(B)
∥∥xk+1− x̄k+1

∥∥
Mk
≤ δk

∥∥xk+1− xk
∥∥

Mk
with 0≤ δk < 1 and ∑

∞
k=0 δk <+∞.

Under criteria conditions (A) and (B), the convergence properties of (2.5) can be obtained
theoretically. For more details, one may refer to [20]. Here, to make this paper completeness,
we only list the convergence theorem without proof.

Theorem 2.1. ([20, Theorem 1]) Suppose that Ω := {x | 0 ∈ ∂ f (x)} 6= /0. Let
{

xk} be the
sequence generated by P-PPA (2.5) under criterion (A). Then

{
xk} is bounded and satisfies

distMk+1

(
xk+1,Ω

)
≤ (1+ρk)distMk

(
xk,Ω

)
+(1+ρk)εk, ∀k ≥ 0.

In addition,
{

xk} converges to a point x∞ such that 0 ∈ ∂ f (x∞).



A FAST AND EFFECTIVE ALGORITHM 437

In addition, it was also proved that P-PPA (2.5) has asymptotic suplinear rate when criterion
(A) and (B) are used. This is described as follows:

Assumption 2.1. The operator ∂ f satisfies error bound condition, that is, for any γ > 0, there
exists a κ > 0 such that

dist
(
x,(∂ f )−1(0)

)
≤ κ dist(0,∂ f (x)), ∀x ∈

{
x | dist

(
x,(∂ f )−1(0)

)
≤ γ
}
.

Theorem 2.2. ([20, Theorem 2]) Suppose that Ω 6= /0 and Assumption 2.1 holds. Let t be a
positive number satisfying t > ∑

∞
k=0 εk (1+ρk) and x0 be an initial point such that

distM0

(
x0,Ω

)
≤

t−∑
∞
k=0 εk (1+ρk)

∏
∞
k=0 (1+ρk)

.

Let
{

xk} be a sequence generated by P-PPA (2.5) under criteria (A) or (B). Then

distMk+1

(
xk+1,Ω

)
≤ θk distMk

(
xk,Ω

)
,

where

θk := (1+ρk)(1−δk)
−1

δk +
(1+δk)κλmax (Mk)√

σ2
k +κ2λ 2

max (Mk)


and

limsup
k→∞

θk = θ∞ :=
κλ∞√

σ2
∞ +κ2ξ 2

∞

< 1 with θ∞ = 0 if σ∞→ ∞.

Based on the perspective of numerical calculation, we summarize some existing results to
implement the algorithm P-PPA and the subalgorithm SSN. We let Π

B(r)
p
(·) be the orthogonal

projection onto the `p-norm ball with radius r > 0. It is known that, for `p-norm ball with
p = 1, 2, and ∞, the proximal mapping for `p-norm function is easily implemented. Here, for
convenience, we summarize these results in the following lemma.

Lemma 2.1. For any given z ∈ Rn, it holds that:
(i) If f (x) = µ‖x‖1 with µ > 0, then f ∗(z) = δ

B(µ)
∞

(z) with B(µ)
∞ (z) := {z | ‖z‖∞ ≤ µ} and

Prox f (z) = z−Π
B(µ)

∞

(z) with (Π
B(µ)

∞

(z))i =

{
zi, if |zi| ≤ µ,
sign(zi)µ, if |zi|> µ.

(ii) If f (x) = µ‖x‖2 with µ > 0, then f ∗(z) = δ
B(µ)

2
(z) with B(µ)

2 (z) := {z | ‖z‖2 ≤ µ} and

Prox f (z) = z−Π
B(µ)

2
(z) with Π

B(µ)
2
(z) =

{
z, if ‖z‖2 ≤ µ,
µ

z
‖z‖2

, if ‖z‖2 > µ.

(iii) [21] If f (x) = µ‖x‖∞ with µ > 0, then f ∗(z) = δ
B(µ)

1
(z) with B(µ)

1 (z) := {z | ‖z‖1 ≤ µ} and

Prox f (z) = z−Π
B(µ)

1
(z), with Π

B(µ)
1
(z) =

{
z, if ‖z‖1 ≤ µ,
µPzΠ∆n (Pzz/µ) , if ‖z‖1 > µ.

where Pz = Diag(sign(z)) ∈Rn×n and Π∆n(·) denotes the projection onto the simplex ∆n = {z ∈
Rn | eT

n z = 1,z≥ 0}.
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The following lemma summarizes the compact forms of the generalized Jacobian of proxi-
mal mappings for `p-norm functions. The results are fundamental to construct the generalized
Hessian Ĥ used in the Step 1 of Algorithm SSN.

Lemma 2.2. For any given ϑ ∈ Rn, one has the following assertions.
(a) The Clarke subdifferential of Proxµ‖·‖1(·) at ϑ is given by

∂ Proxµ‖·‖1(ϑ) =

Diag(θ) | θ ∈ Rn,θi ∈


{1}, if |ϑi|> µ,
[0,1], if |ϑi|= µ, i = 1, . . . ,n
{0}, if |ϑi|< µ,

 .

In the numerical experiment, we choose the following element in ∂ Proxµ‖·‖1(ϑ):

Θ̂ = Diag(θ) with θi =

{
1, if |ϑi|> µ,
0, if |ϑi| ≤ µ, i = 1, . . . ,n.

(b) The Clarke subdifferential of Proxµ‖·‖2(·) at ϑ is given by

∂ Proxµ‖·‖2(ϑ) =


{(1− µ

‖ϑ‖2
)In +µ

ϑϑ>

‖ϑ‖3
2
}, if ‖ϑ‖2 > µ,

{κ ϑϑ>

µ2 | 0≤ κ ≤ 1}, if ‖ϑ‖2 = µ,

{0n}, if ‖ϑ‖2 < µ.

In the numerical experiment, we choose the following element in ∂ Proxµ‖·‖2(ϑ):

Θ̂ =

{
{(1− µ

‖ϑ‖2
)In +µ

ϑϑ>

‖ϑ‖3
2
}, if ‖ϑ‖2 > µ,

{0n}, if ‖ϑ‖2 ≤ µ.

(c) [21] The Clarke subdifferential of Proxµ‖·‖∞
(·) at ϑ is given by

∂ Proxµ‖·‖∞
(ϑ) = In−H,H ∈ ∂Π

B(µ)
1
(ϑ) where H =

{
Pϑ H̃Pϑ , if ‖ϑ‖1 > µ,
In, if ‖ϑ‖1 ≤ µ,

where H̃ =Diag(r)− 1
nnz(r)rr> ∈ ∂Π∆n(ϑ) with r∈Rn being defined as ri = 1 if (Π∆n (Pϑ ϑ/µ))i 6=

0, and ri = 0 otherwise. In the numerical experiment, we choose the following element in
∂ Proxµ‖·‖∞

(ϑ):

Θ̂ =

{
{In−Pϑ H̃Pϑ}, if ‖ϑ‖1 > µ,
{0n}, if ‖ϑ‖1 ≤ µ.

3. SSN BASED P-PPA METHOD

3.1. P-PPA method and some properties. For convenience, we denote the objective function
of (1.3) as f (x), i.e.,

f (x) := ‖Ax−b‖p +λ

(
‖x‖1 +

β

2
‖x‖2

2

)
.

We let x̃ ∈ Rn be a given point and consider the following minimization problem

min
x∈Rn

{
f̃ (x;σ ,τ, x̃) := f (x)+

σ

2
‖x− x̃‖2

2 +
τ

2
‖Ax−Ax̃‖2

2

}
, (3.1)

where σ > 0 and τ > 0 are given positive scalars and can be determined dynamically. It should
be noted that the last term in (3.1) is actually a precondition, which is used to derive a dual
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problem with favorable structures. From an initial point x0, the algorithm described below
generates a sequence {xk} by using a nonincreasing sequence {σk,τk} such that

xk+1 ≈ argmin
x∈Rn

f̃ (x;σk,τk,xk), (3.2)

where the criteria of the approximate equality is from Rockafellar [27]. Let M k := σkI +
τkA>A with I be an identity operator. Then, it is trivial to deduce that (3.2) takes the following
rule:

xk+1 ≈Pk(xk) with Pk := (M k + ck
∂ f k)−1M k, (3.3)

where ∂ f k is a subdifferentiable of f at xk and {ck} is a sequence of positive numbers. If τk ≡ 0,
the updating scheme (3.3) reduces the traditional PPA considered by Rockafellar [26]. Because
M k + ck∂ f k is a strongly monotone operator, it is known from [29, Proposition 12.54] that
Pk is single-valued and is globally Lipschitz continuous. From (3.3), we see that the iterative
framework (3.2) actually fills into the framework of the P-PPA analyzed by Li et al. [20], and
then some theoretical properties can be followed directly.

We now establish some relations between problems (3.1) and (1.3) under some certain con-
ditions. The first proposition listed below shows that f̃ (x;σ ,τ, x̃) converges to f (x) when the
positive numbers σ and τ are sufficiently small. The second proposition shows that the optimal
solution x∗ of problem (1.3) is actually the minimizer of f̃ (x;σ ,τ, x̃) in the case of x̃ ≡ x∗. A
similar proof of both propositions can be found in [30, Theorem 15] and [11, Theorem 3.1,
Lemma 3.2]. Here, we report the proof for the completeness of this paper.

Proposition 3.1. The optimal objective value of problem (3.1) converges to the optimal objec-
tive value of problem (1.3) if σ ,τ ↓ 0, that is,

lim
σ ,τ↓0

f̂ (σ ,τ) = min
x∈Rn

f (x),

where
f̂ (σ ,τ) := min

x∈Rn
f̃ (x;σ ,τ, x̃).

Proof. Firstly, it holds that f̂ (σ ,τ)≥minx∈Rn f (x). For any σ > 0,τ > 0, and x ∈ Rn, we have
that

f̂ (σ ,τ)≤ ‖Ax−b‖p +λ (‖x‖1 +
β

2
‖x‖2

2)+
σ

2
‖x− x̃‖2

2 +
τ

2
‖Ax−Ax̃‖2

2.

Taking limits on both hand-sides of this inequality as σ ,τ → 0, we obtain that

lim
σ ,τ↓0

f̂ (σ ,τ)≤ ‖Ax−b‖p +λ (‖x‖1 +
β

2
‖x‖2

2),

which means
lim

σ ,τ↓0
f̂ (σ ,τ)≤ min

x∈Rn
f (x).

Therefore, the desired result follows directly. �

Proposition 3.2. A vector x∗ is an optimal solution to(1.3) if and only if there exist σ ≥ 0 and
τ ≥ 0 such that

x∗ ∈ argmin
x∈Rn

f̃ (x;σ ,τ,x∗),

i.e, the optimal solution to (1.3) is actually the one of (3.1) if and only if x̃≡ x∗.
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Proof. Noting that f (·) is locally Lipschitz continuous near x∗ and convex at x∗, one has that
0∈ ∂ f (x∗) is equivalent to x∗ being an optimal solution to f . It is not difficult to see that function
f̃ (x;σ ,τ,x∗) is convex. Thus 0∈ ∂ f̃ (x∗;σ ,τ,x∗) is equivalent to x∗ ∈ argminx∈Rn{ f̃ (x;σ ,τ,x∗)}.
Combining with ∂ f (x∗) = ∂ f̃ (x∗;σ ,τ,x∗), we can easily obtain the conclusion of this theo-
rem. �

3.2. The dual problem and semismooth equations. Despite some nice theoretical properties,
finding a solution to (3.1) with higher accuracy is not a trivial task. Because the first-order
method, such as ADMM, is only suitable for deriving lower to medium quality solutions. To
address this issue, in this subsection, we turn to using a second-order method, named SSN, to
find a solution of (3.1) rapidly from a perspective of dual. For our purpose, we now give the
Lagrangian dual formulation of problem (3.1). Let y := Ax−b. Then (3.1) takes the following
equivalent form

min
x∈Rn,y∈Rm

‖y‖p +λ

(
‖x‖1 +

β

2 ‖x‖
2
2

)
+ σ

2 ‖x− x̃‖2
2 +

τ

2‖y+b−Ax̃‖2
2

s.t. Ax− y = b.
(3.4)

The Lagrangian function associated with problem (3.4) is given by

L (x,y;u) = ‖y‖p +λ

(
‖x‖1 +

β

2
‖x‖2

2

)
+

σ

2
‖x− x̃‖2

2 +
τ

2
‖y+b−Ax̃‖2

2 + 〈u,Ax− y−b〉,

where u ∈ Rm is a multiplier associated with the constraint. From some basic theories of opti-
mization, we know that the Lagrangian dual function, denoted as D(u) here, is defined as the
minimum value of the Lagrangian function over (x,y), that is,

D(u) = inf
x∈Rn,y∈Rm

L (x,y;u)

= inf
x∈Rn

{
λ
(
‖x‖1 +

β

2
‖x‖2

2
)
+ 〈u,Ax〉+ σ

2
‖x− x̃‖2

2

}
+ inf

y∈Rm

{
‖y‖p +

τ

2
‖y+b−Ax̃‖2

2−〈u,y〉
}
−〈u,b〉

=λΦγ−1λ‖·‖1

(
γ
−1(σ x̃−A>u)

)
− γ

2
‖γ−1(σ x̃−A>u)‖2

2 +
σ

2
‖x̃‖2

2

+Φτ−1‖·‖p

(
τ
−1u−b+Ax̃

)
− τ

2
‖τ−1u−b+Ax̃‖2

2 +
τ

2
‖b−Ax̃‖2

2−〈u,b〉,

where γ := λβ +σ and Φ(·) is a Moreau envelop function defined in (2.1). From this deduce
process, we know that the preconditioned term ‖Ax−Ax̃‖2

2 in (3.1) is essential to make D(u)
allow favorable structures in sense of using Moreau envelop functions.

We now focus on both inf-operations involved in D(u). By the first-order optimality con-
ditions of the x- and y-subproblems, we know that its minimizers can be expressed explicitly
as

x = arg min
x∈Rn

{
λ‖x‖1 +

λβ

2
‖x‖2

2 + 〈u,Ax〉+ σ

2
‖x− x̃‖2

2

}
= Proxγ−1λ‖·‖1

(
γ
−1(σ x̃−A>u)

)
,

(3.5)

and

y = arg min
y∈Rm

{
‖y‖p +

τ

2
‖y+b−Ax̃‖2

2−〈u,y〉
}
= Proxτ−1‖·‖p

(
τ
−1u−b+Ax̃

)
, (3.6)

where the symbol ‘Prox(·)’ denotes the proximal mapping defined in (2.2). Equality (3.5)
clarifies the relations between primal variable x and dual variable u, which means that if u is
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known, then x can be obtained in a compact form. In the previous section, we have shown that
the proximal mapping operation of `p-norm with p = 1, 2, and ∞ are easily performed so that
the x and y can be easily derived.

The Lagrangian dual problem of (3.4) is to maximize the dual function D(u), which can be
equivalently formulated as the following optimization problem

min
u∈Rm

{
Θ(u) := 〈u,b〉−X (u)−Y (u)

}
, (3.7)

where
X (u) := λΦγ−1λ‖·‖1

(
γ
−1(σ x̃−A>u)

)
− γ

2
‖γ−1(σ x̃−A>u)‖2

2 +
σ

2
‖x̃‖2

2,

and
Y (u) := Φτ−1‖·‖p

(
τ
−1u−b+Ax̃

)
− τ

2
‖τ−1u−b+Ax̃‖2

2 +
τ

2
‖b−Ax̃‖2

2.

Noting that Θ(u) is convex and continuously differentiable, one sees that its gradient takes the
following compact form by using (2.3), that is,

∇Θ(u) = b−AProxγ−1λ‖·‖1

(
γ
−1(σ x̃−A>u)

)
+Proxτ−1‖·‖p

(
τ
−1u−b+Ax̃

)
.

Therefore, the optimal solution of problem (3.7) can be obtained by solving the following non-
linear system of equations ∇Θ(u) = 0. It is known in optimization literature that the proximal
mapping Prox‖·‖p(·) in the case of p = 1, 2, and ∞ is strongly semismooth [21], so does ∇Θ(u).
Therefore, we can utilize the efficient SSN to obtain high-precision solutions.

3.3. SSN method for solving (3.7). In this subsection, we focus on employing an efficient SSN
(Semismooth Newton) method to find an approximated solution ū of problem (3.7), and then
derive the corresponding approximated solution x̄ of problem (3.1) and the optimal solution x∗

of problem (1.3) theoretically by Proposition 3.2. From (3.7), we know that Θ(u) is (but not
second-order) continuously differentiable, which indicates that the Hessian matrix ∇2Θ(u) is
unavailable. Instead, we use the generalized Hessian, or the generalized Jacobian of ∇Θ(u),
that is,

∂̃
2
Θ(u) := γ

−1A∂Proxγ−1λ‖·‖1

(
γ
−1(σ x̃−A>u)

)
A>+ τ

−1
∂Proxτ−1‖·‖p

(
τ
−1u−b+Ax̃

)
,

where ‘∂̃ 2’ is named as generalized Hessian of Θ(·), and ∂ (·) is the generalized (a.k.s. Clarke)
Jacobian [7]. Choose

U ∈ ∂Proxγ−1λ‖·‖1

(
γ
−1(σ x̃−A>u)

)
and V ∈ ∂Proxτ−1‖·‖p

(
τ
−1u−b+Ax̃

)
,

and then set H := γ−1AUA>+ τ−1V . Thus we have H ∈ ∂̃ 2Θ(u).
It is known in optimization literature that, starting from u0, the SSN method generates a

sequence {ui} such that

ui+1 = ui +αi∆ui, where H ∆ui +∇Θ(ui) = 0,

where αi is a steplength and ∆ui is a search direction. Theoretically, under the condition that H
is nonsingular at ū, {ui} converges to ū at least local superlinerly. However, this nonsingular
assumption may violate which means that the SSN method can not be employed any more.
Specially, some additional conditions should be included to ensure the positive definiteness of
H , e.g., [11, Assumptions 3.2 and 3.3]. However, these conditions seem to be somewhat strong
although they are satisfied in some special cases.
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To address this issue, we modify H by adding a small term, that is,

Ĥ := H +ν
−1I ,

where ν > 0 is a small undetermined scalar, which can be chosen dynamically and make that
Ĥ be positive definite.

3.4. Iterative framework of the SSN based P-PPA method. In view of the analysis above,
we are in a position to state the iterative framework of SSN based P-PPA method.

Algorithm: P-PPA
Step 0: Give λ > 0 and β > 0. Chose σ0 > 0, τ0 > 0, x0 ∈ Rn, and set k := 0. Do the
following two steps iteratively:
Step 1: Find a solution xk+1 such that

xk+1 ≈ argmin
x∈Rn

{ f̃ (x;σk,τk,xk)}

via the following steps:
(i) Set σ := σk, τ := τk, and γ := λβ +σ . Choose ν > 0. Applying SSN to find a

solution uk+1 such that

uk+1 ≈ argmin
u∈Rm

Θ(u) .

(ii) Set xk+1 := Proxγ−1λ‖·‖1

(
γ−1(σxk−A>uk+1)

)
.

Step 2: Update σk+1 = ρσk and τk+1 = ρτk with ρ ∈ (0,1). Let k := k+1 and go to Step
1.

From the steps of Algorithm P-PPA, we observe that main computational burden lies in Step
1(i) to find an inexact optimizer uk+1 of function Θ(u). Since ∇Θ(u) is clearly strongly semis-
mooth, we will employ an efficient SSN method for its solution. The full steps of the SSN
method are the following. For more details on the SSN as well as its different applications, one
may refer to the papers of Li et al. [19], Tang et al. [30], Ding et al. [11] and the references
therein..

Algorithm: SSN
Step 0: Given σ > 0, τ > 0, xk ∈Rn, choose µ ∈ (0,1/2), η̄ ∈ (0,1), ρ ∈ (0,1], δ ∈ (0,1),
and u0 ∈ Rm. Let i := 0. Do the following steps iteratively:
Step 1: Select U i ∈ ∂Proxγ−1λ‖·‖1

(
γ−1(σxk −A>ui)

)
and V i ∈ ∂Proxτ−1‖·‖p

(
τ−1ui−

b+Axk), and set Ĥ i := γ−1AU iA>+ τ−1V i +ν−1I . Employ a numerical method to find
an approximate solution ∆ui to the linear system

Ĥ i
∆u+∇Θ(ui) = 0

such that
‖Ĥ i

∆ui +∇Θ(ui)‖2 ≤min{η̄ ,‖∇Θ(ui)‖1+ρ

2 }.
Step 2: Find αi := δ ti , where ti is the first nonnegative integer t such that

Θ(ui +δ
t
∆ui)≤Θ(ui)+µδ

t〈∇Θ(ui),∆ui〉.
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Step 3: Set ui+1 := ui +αi∆ui.

We see from the steps of the SSN method that, starting from u0, SSN generates a sequence
{ui}, which converges to a minimizer ū of function Θ(u) theoretically, i.e., ∇Θ(ū) = 0. How-
ever, to make the algorithm more practical and with convergence guarantee, it is suitable to use
the following stopping criterion, that is,∥∥∇Θ

(
ui+1)+ν

−1 (ui+1−ui)∥∥
2 ≤

δi

ν

∥∥ui+1−ui∥∥ ,
where {δi} is sum-able sequence such that δi ∈ [0,1) and ∑

∞
i δi < ∞. For more details on this

stopping criterion, one may refer to Rockafellar [26, 27] and Li et al. [20]. In this case, it is
from Theorem 2.2 that {xk} converges globally to problem (1.3). The convergence result is
omitted here to avoid repetition.

At the end of this section, we report the local convergence rate of Algorithm SSN. Noting
that ∇Θ(u) is strongly semismooth, one sees that {ui} converges to ū superlinearly and even
quadratically.

Theorem 3.1. The sequence {ui} generated by the SSN method converges to the unique solution
ū of the strongly semismooth equation ∇Θ(u) = 0 with

‖ui+1− ū‖2 = O(‖ui− ū‖1+ς

2 ),

where ς ∈ (0,1]

Proof. See [19, Theorem 3.5]. �

4. NUMERICAL EXPERIMENTS

In this section, we test the effectiveness and accuracy of P-PPA on sparse linear regression
problems with `p-norm data fidelity and elastic net regularization using both simulated and real
data. All the computations were performed with Microsoft Windows 11 and MATLAB R2022b,
and run on a PC with an Intel Core i7-10710U CPU at 1.10 GHz and 16 GB of memory.

4.1. Experiment setup.

4.1.1. Data generation. First, we describe the data generation part in detail. In order to fully il-
lustrate the effectiveness of the P-PPA algorithm, we consider two different coefficient matrices
A ∈ Rm×n: random Gaussian matrix and random partial DCT matrix. Specifically,

(1): Random Gaussian matrix: Each entry of random Gaussian matrix follows the standard
normal distribution, i.e., zero-mean with standard deviation of one.

(2): Random partial DCT matrix: We randomly select rows from the full DCT matrix to
form partial DCT matrix.

All the testing matrices are normalized to have unit (spectral) norms. The true sparse signal
x∗ is a strict K-sparse signal with an active set (indices of nonzero components) denoted by
A ∗, and its dynamic range R is defined by R = R1/R2 with R1 = max

{
|x∗i | : i ∈ A ∗} and

R2 = min
{
|x∗i | : i ∈A ∗}. To fully demonstrate the robustness and applicability of model (1.3),

we consider three types of noise in this study. In practice, different values of p correspond to
different types of noise, as detailed below:
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(1): p = 1 : Log-normal noise.
(2): p = 2 : Gaussian noise.
(3): p = ∞ : Uniformly distributed noise.

Then, the observed data b is generated by b = Ax∗+κ ∗ ε , where ε denotes the type of noise,
and κ is the noise level. Throughout the experiment, we uniformly set κ = 1e− 3, ρ = 0.9,
µ = 0.01, and δ = 0.8. The values of other parameters will be adaptively determined in each
experiment.

4.1.2. Evaluation metrics. To evaluate the numerical performance of the considered algorithms
from multiple perspectives, we consider three evaluation metrics:

(1): RLNE := ‖x̂−x∗‖2
‖x∗‖2

, where x̂ is the estimated sparse signal. RLNE describes the recov-
ery quality.

(2): ResErr := ‖Ax−b‖2
1+‖b‖2

. ResErr demonstrates the computational accuracy.

(3): RelErr := ‖xk+1−xk‖2
1+‖xk‖2+‖xk+1‖2

. RelErr captures the descending trend of the algorithm’s
iteration sequence.

In the entire numerical experiment, we utilize RelErr ≤ 1e−5 or iterate steps exceeding 7000
as the termination condition. These metrics provide a comprehensive assessment of the al-
gorithm’s performance in terms of recovery quality, computational accuracy, and convergence
speed, enabling a thorough evaluation of its effectiveness and reliability.

4.2. The behavior of P-PPA. In this subsection, to demonstrate the numerical performance
of the P-PPA algorithm, we conducted separate tests on the recovery effect of two coefficient
matrices under three types of noise for a fixed sparse signal. We fixed the size of the coefficient
matrix A at 500×1000. We pre-generated a fixed true sparse signal x∗ containing 10 non-zero
elements, that is, x∗i ≡ 0 except for x∗125 = −1.0000, x∗224 = −1.0270, x∗392 = 1.6313, x∗533 =
3.1623, x∗716 = 3.0626, x∗786 = 1.3702, x∗820 =−3.0201, x∗833 =−1.3848, x∗956 =−2.6705, x∗961 =
1.4610. Box plots in Figures 1-2 illustrate the estimation performance of the P-PPA algorithm
regarding the positions of non-zero elements based on 10 independent experiments. From the
figures, it is evident that the P-PPA algorithm consistently and accurately identifies the positions
of non-zero elements across all 10 independent experiments, and it can almost perfectly estimate
the values of non-zero elements. This result sufficiently indicates that the P-PPA algorithm can
successfully accomplish variable selection and parameter estimation.

4.3. Numerical comparison. Considering the similar numerical performance of semi-proximal
ADMM and directly extended ADMM for model (1.3) in [10], we specifically compare the nu-
merical results of directly extended ADMM (referred to as dADMM) with P-PPA algorithm.
The comparison is conducted in terms of computational accuracy and efficiency by both simu-
lated and real data.

4.3.1. Simulated examples. In the simulation experiments, we test two different coefficient ma-
trices with three sizes: 200×500, 500×800, and 800×1100. For each size, we also consider
three pairs of (λ ,β ). The dynamic range R of the true sparse signal x∗ is fixed at 1000. We
compare P-PPA and dADMM in terms of six aspects: number of outer iterations (Iter), CPU
time (Time) in seconds, objective function value (Obj) of (1.3), RLNE, ResErr, and RelErr. The
specific numerical results can be found in Table 1-2.
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FIGURE 1. Estimation performance of P-PPA algorithm with random Gaussian ma-
trix under different noises (Left to rigth: log-normal noise, Gaussian noise, uniformly
distributed noise).

FIGURE 2. Estimation performance of P-PPA algorithm with random partial DCT ma-
trix under different noises (Left to rigth: log-normal noise, Gaussian noise, uniformly
distributed noise).

From the results in the tables, it can be observed that in the current high-dimensional scenario,
P-PPA consistently requires significantly fewer iterations and less computation time compared
to dADMM. This phenomenon clearly demonstrates that P-PPA possesses faster computational
speed. We also find that both algorithms experience a substantial increase in number of itera-
tions and computation time when dealing with uniformly noisy interference. This is attributed
to the fact that the proximal mapping of the `∞-norm function and its subdifferential involve a
complex task of projecting onto the simplex, which undoubtedly requires a significant amount of
time for computation, especially in the SSN algorithm of P-PPA. Otherwise, if both algorithms
reach the termination condition within the maximum iteration steps, the optimal objective func-
tion values are nearly equal. However, for cases where dADMM reaches the maximum iteration
steps, the optimal objective function value of P-PPA is consistently lower than that of dADMM.

For the two indicators of RLNE and ResErr, which characterize the recovery quality and
computational accuracy of the algorithms, the corresponding values of these two indicators for
P-PPA are almost at the magnitude of −4. This clearly demonstrates that P-PPA algorithm
exhibits high computational precision. However, in the case of uniform distribution, the corre-
sponding values of these two indicators for dADMM are only at the magnitude of −1, which
indicates poorer recovery performance of dADMM under uniform noise interference. Further-
more, the values of RelErr for P-PPA is consistently lower than that of dADMM, and in most
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TABLE 1. The performance of P-PPA and dADMM with random Gaussian matrix.

Log-normal noise
P-PPA dADMM

Dim λ β Iter Time Obj RLNE ResErr RelErr Iter Time Obj RLNE ResErr RelErr

200×500
0.3 0.02 3 0.0682 2.39e+02 6.49e-04 6.44e-04 0.00e+00 323 0.3358 2.39e+02 7.03e-04 2.63e-04 9.87e-06
0.2 0.02 3 0.0402 1.60e+02 7.94e-04 7.07e-04 0.00e+00 367 0.1648 1.60e+02 4.61e-04 1.52e-04 9.99e-06
0.2 0.03 3 0.0405 1.90e+02 9.65e-04 7.48e-04 0.00e+00 385 0.1678 1.90e+02 6.47e-04 1.21e-04 9.92e-06

500×800
0.4 0.06 4 0.3907 5.55e+02 9.38e-04 8.20e-04 0.00e+00 351 0.7937 5.55e+02 9.60e-04 4.14e-04 9.68e-06
0.3 0.05 4 0.3493 3.72e+02 8.90e-04 7.86e-04 0.00e+00 405 0.4617 3.72e+02 4.98e-04 3.04e-04 9.63e-06
0.35 0.055 5 0.3921 4.60e+02 8.97e-04 6.53e-04 0.00e+00 405 0.4030 4.60e+02 4.78e-04 3.50e-04 9.96e-06

800×1100
0.5 0.05 4 0.9609 5.98e+02 9.68e-04 1.32e-03 0.00e+00 303 2.1072 5.98e+02 6.84e-04 9.89e-04 9.83e-06
0.3 0.06 3 0.6599 4.02e+02 1.10e-03 1.24e-03 0.00e+00 456 3.4826 4.01e+02 1.14e-03 8.22e-04 9.94e-06
0.1 0.08 3 0.7989 1.64e+02 1.25e-03 1.28e-03 0.00e+00 455 3.4434 1.62e+02 2.25e-03 2.34e-04 9.97e-06

Gaussian noise

200×500
0.04 0.01 15 0.3115 2.59e+01 1.88e-04 1.69e-04 0.00e+00 835 0.8726 2.59e+01 2.68e-04 6.98e-05 9.65e-06
0.06 0.001 30 0.6463 3.07e+01 2.07e-04 2.49e-04 2.71e-07 688 0.6726 3.07e+01 1.81e-04 1.16e-04 9.64e-06
0.05 0.001 16 0.367 2.56e+01 2.15e-04 2.17e-04 0.00e+00 704 0.6811 2.56e+01 2.41e-04 7.21e-05 9.67e-06

500×800
0.02 0.05 10 0.632 2.48e+01 3.21e-04 2.81e-04 0.00e+00 833 2.0274 2.48e+01 4.60e-04 8.06e-05 9.77e-06
0.02 0.06 11 0.7959 2.77e+01 3.56e-04 2.84e-04 0.00e+00 889 2.2063 2.77e+01 5.00e-04 6.89e-05 9.56e-06
0.02 0.07 12 0.8641 3.07e+01 5.40e-04 2.72e-04 0.00e+00 945 2.3762 3.07e+01 5.39e-04 6.42e-05 9.92e-06

800×1100
0.05 0.005 12 2.5118 2.81e+01 2.85e-04 4.53e-04 3.87e-08 510 3.8881 2.81e+01 1.34e-04 3.36e-04 8.68e-06
0.04 0.01 12 2.9009 2.53e+01 2.47e-04 4.28e-04 3.97e-06 503 3.8336 2.53e+01 2.07e-04 3.16e-04 9.22e-06
0.02 0.04 14 4.3229 2.11e+01 3.01e-04 3.11e-04 2.12e-07 623 4.7185 2.11e+01 3.72e-04 1.67e-04 9.80e-06

Uniformly distributed noise

200×500
0.001 0.03 25 0.7280 9.48e-01 1.71e-04 1.31e-04 0.00e+00 7000 5.1968 1.48e+00 5.26e-01 9.53e-03 4.21e-05
0.001 0.04 24 0.8543 1.10e+00 2.43e-04 1.16e-04 0.00e+00 7000 5.1693 1.58e+00 5.31e-01 1.69e-02 4.23e-05
0.001 0.02 24 1.0687 9.23e-01 1.50e-02 9.37e-03 0.00e+00 7000 6.3822 1.38e+00 5.21e-01 2.54e-03 4.18e-05

500×800
0.001 0.03 29 11.8960 9.40e-01 1.16e-04 1.63e-04 0.00e+00 7000 24.1811 1.99e+00 4.42e-01 2.21e-01 5.22e-05
0.001 0.02 29 12.1170 7.91e-01 1.56e-04 1.74e-04 0.00e+00 7000 22.2927 1.89e+00 4.32e-01 2.14e-01 5.27e-05
0.001 0.06 34 9.8568 1.39e+00 2.28e-04 1.94e-04 0.00e+00 7000 22.3105 2.27e+00 4.69e-01 2.43e-01 4.83e-05

800×1100
0.001 0.1 34 33.1954 1.90e+00 1.93e-04 2.30e-04 0.00e+00 7000 53.3976 2.58e+00 5.33e-01 3.69e-01 4.82e-05
0.001 0.09 33 31.9735 1.76e+00 2.09e-04 2.33e-04 0.00e+00 7000 53.1046 2.51e+00 5.25e-01 3.61e-01 4.93e-05
0.001 0.05 33 38.5035 1.20e+00 2.27e-04 2.75e-04 0.00e+00 7000 53.3089 2.24e+00 4.92e-01 3.32e-01 5.43e-05

cases, it even approaches to 0. This indicates that the iteration sequence of P-PPA has reached
a stable stage where further descent is no longer observed.

Overall, P-PPA consistently achieves satisfactory and accurate recovery within the maximum
iteration steps, while dADMM fails to do so in most cases, especially under uniform distri-
bution (i.e., p = ∞). The extensive numerical experiments fully demonstrate the applicability,
effectiveness and precision of the P-PPA algorithm in high-dimensional sparse linear regression
problems.

4.3.2. Real examples. In this section, we perform numerical comparisons using the instances
”mpg”, ”housing”, and ”bodyfat” from the LIBSVM dataset, which are commonly used for
regression. These datasets can be obtained from https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets. To accommodate the high-dimensional setting of this paper, we fol-
low the approach in [16, 18] to expand the original features by using polynomial basis functions.
For example, the suffix ”7” in ”mpg7” indicates the use of a 7th-degree polynomial to generate
the basis functions. This naming convention is also employed in ”housing4” and ”bodyfat4”.
It should be noted that the termination condition is modified to ”RelErr ≤ 1e− 4” in the real
examples, while other parameters remain consistent with the simulated examples. The compu-
tational results of P-PPA and dADMM under different noise interferences are given in Table 3.
Since the true sparse coefficients are not known in advance for the real examples, the calculation
results of RLNE are not provided in Table 3.

From the computational results of the real examples, it can be observed that P-PPA always ef-
ficiently solves all instances to achieve the desired accuracy, and sometimes the values of RelErr

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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TABLE 2. The performance of P-PPA and dADMM with random partial DCT matrix.

Log-normal noise
P-PPA dADMM

Dim λ β Iter Time Obj RLNE ResErr RelErr Iter Time Obj RLNE ResErr RelErr

200×500
0.25 0.05 5 0.0639 3.10e+02 8.97e-02 1.87e-04 0.00e+00 630 0.1649 3.10e+02 9.12e-02 9.26e-06 9.93e-06
0.35 0.045 9 0.1163 4.10e+02 5.29e-02 4.76e-03 0.00e+00 513 0.1254 4.10e+02 4.51e-02 1.10e-05 9.95e-06
0.35 0.05 8 0.1024 4.33e+02 9.61e-02 1.31e-02 0.00e+00 509 0.1323 4.33e+02 9.04e-02 7.33e-06 9.80e-06

500×800
0.085 0.15 4 0.3494 2.43e+02 8.54e-02 9.82e-06 0.00e+00 566 0.5221 2.43e+02 8.73e-02 2.64e-06 9.96e-06
0.09 0.15 4 0.36 2.57e+02 8.54e-02 5.36e-06 0.00e+00 540 0.4681 2.57e+02 8.72e-02 2.58e-06 9.98e-06
0.1 0.15 4 0.3263 2.86e+02 8.54e-02 1.85e-06 0.00e+00 496 0.4081 2.86e+02 8.70e-02 3.31e-06 9.94e-06

800×1100
0.1 0.3 4 0.6224 4.57e+02 1.79e-01 1.50e-06 0.00e+00 293 0.7837 4.57e+02 1.79e-01 2.80e-06 9.87e-06
0.09 0.3 4 0.57 4.11e+02 1.79e-01 2.20e-06 0.00e+00 318 0.859 4.11e+02 1.80e-01 2.69e-06 9.98e-06
0.08 0.3 4 0.5812 3.66e+02 1.79e-01 7.32e-07 0.00e+00 350 0.9904 3.66e+02 1.80e-01 1.86e-06 9.90e-06

Gaussian noise

200×500
0.06 0.01 13 0.2072 3.88e+01 1.29e-04 1.11e-04 0.00e+00 675 0.4561 3.88e+01 1.15e-04 4.72e-05 9.74e-06
0.1 0.001 16 0.2915 5.12e+01 1.35e-04 1.73e-04 9.87e-09 444 0.3286 5.12e+01 9.12e-05 5.55e-05 9.64e-06
0.09 0.005 16 0.2634 5.15e+01 1.37e-04 1.67e-04 6.05e-07 475 0.3431 5.15e+01 1.03e-04 5.28e-05 9.20e-06

500×800
0.02 0.08 12 0.5906 3.37e+01 2.89e-04 1.19e-04 0.00e+00 820 0.7894 3.37e+01 1.31e-04 2.15e-05 9.33e-06
0.02 0.09 13 0.6118 3.67e+01 3.02e-04 1.15e-04 0.00e+00 887 0.8195 3.67e+01 1.22e-04 1.87e-05 9.93e-06
0.025 0.07 13 0.5984 3.84e+01 1.98e-04 1.11e-04 0.00e+00 619 0.6281 3.84e+01 1.34e-04 3.46e-05 9.56e-06

800×1100
0.02 0.08 12 2.0702 3.23e+01 2.42e-04 1.34e-04 0.00e+00 531 2.5491 3.23e+01 2.21e-04 3.87e-05 9.64e-06
0.01 0.07 11 2.5686 1.48e+01 2.51e-04 1.45e-04 0.00e+00 960 4.5532 1.48e+01 2.22e-04 2.21e-05 9.28e-06
0.02 0.07 12 2.1154 2.95e+01 2.60e-04 1.38e-04 0.00e+00 516 2.5243 2.95e+01 2.17e-04 3.62e-05 9.61e-06

Uniformly distributed noise

200×500
0.002 0.04 29 1.0794 2.19e+00 3.96e-04 1.13e-04 0.00e+00 7000 4.2859 2.63e+00 4.79e-01 6.68e-07 2.85e-05
0.003 0.04 30 1.1406 3.29e+00 3.35e-04 9.06e-05 0.00e+00 7000 4.7184 3.71e+00 3.85e-01 6.78e-07 3.18e-05
0.001 0.04 28 1.0192 1.10e+00 5.09e-04 7.77e-05 0.00e+00 7000 4.1154 1.47e+00 6.08e-01 1.52e-07 2.25e-05

500×800
0.005 0.04 39 12.7576 5.44e+00 1.81e-04 1.81e-04 0.00e+00 7000 19.2919 6.55e+00 3.20e-01 3.03e-01 4.81e-05
0.001 0.1 35 14.1634 1.98e+00 2.11e-04 1.22e-04 0.00e+00 7000 20.9787 3.14e+00 3.68e-01 2.03e-01 5.16e-05
0.01 0.001 43 19.3941 5.33e+00 2.13e-02 2.08e-02 0.00e+00 7000 19.8943 6.48e+00 2.05e-01 2.01e-01 6.47e-05

800×1100
0.01 0.005 41 45.6143 5.62e+00 5.67e-05 1.33e-04 0.00e+00 7000 54.9824 7.28e+00 3.64e-01 3.61e-01 5.91e-05
0.005 0.01 36 44.4422 3.16e+00 6.57e-05 1.32e-04 0.00e+00 7000 58.7052 4.79e+00 2.90e-01 2.84e-01 6.09e-05
0.01 0.01 41 43.3003 6.32e+00 8.68e-05 1.47e-04 0.00e+00 7000 58.7794 7.77e+00 4.03e-01 3.99e-01 5.61e-05

TABLE 3. The performance of P-PPA and dADMM with real data.

Log-normal noise
P-PPA dADMM

Data name M,N Iter Time ResErr RelErr Iter Time ResErr RelErr
mpg7 392,3432 19 3.8149 9.97e-02 0.00e+00 7000 1028.4981 2.34e-01 1.71e-02

housing4 506,2380 67 15.2100 2.63e-02 0.00e+00 629 36.4358 1.20e-01 9.10e-05
bodyfat4 252,3060 5 0.3657 4.15e-03 0.00e+00 338 37.7413 2.97e-03 9.93e-05

Gaussian noise
mpg7 392,3432 25 49.0618 7.93e-02 4.92e-05 1913 218.1492 9.87e-02 9.96e-05

housing4 506,2380 26 39.3100 7.81e-02 5.08e-05 4689 327.9067 9.72e-01 9.68e-05
bodyfat4 252,3060 6 4.1721 2.68e-03 4.40e-07 558 42.5721 7.91e-01 9.74e-05

Uniformly distributed noise
mpg7 392,3432 65 34.3475 4.32e-01 5.68e-05 7000 1035.6185 5.14e-01 2.00e-02

housing4 506,2380 48 29.0035 3.25e-01 3.97e-05 7000 495.0260 7.80e-01 1.05e-02
bodyfat4 252,3060 57 35.5436 7.32e-03 0.00e+00 103 11.3445 4.32e-03 7.55e-05

are even close to 0. In contrast, dADMM only satisfies the termination condition in a few cases.
More specifically, P-PPA consistently requires fewer iteration steps and less computation time
than dADMM to achieve higher computational accuracy. Based on the above analysis, it can be
concluded that the P-PPA algorithm possesses better robustness, accuracy, and computational
efficiency than dADMM.
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5. CONCLUSIONS

This paper focuses on the high-dimensional sparse linear regression problem with `p-norm
data fidelity and elastic net regularization. Based on the second-order information, an efficient
and stable P-PPA algorithm is proposed, where the subproblem is solved by superlinear or even
quadratically convergent semismooth Newton method from the dual perspective. This key step
significantly reduces the computational cost of the proposed algorithm. The global convergence
of the algorithm is theoretically analyzed. Numerical experiments based on extensive simulated
and real examples fully demonstrate the numerical advantages of the proposed P-PPA algorithm
over the first-order ADMM in terms of robustness and computational efficiency. In conclusion,
the P-PPA algorithm proposed in this paper is highly suitable for high-dimensional sparse linear
regression problems.
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