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Abstract. In this paper, we propose a parameterized three-operator splitting algorithm to solve non-
convex minimization problems with the sum of three non-convex functions, where two of them have Lip-
schitz continuous gradients. We establish the convergence of the proposed algorithm under the Kurdyka-
Łojasiewicz assumption by constructing a suitable energy function with a non-increasing property. As
applications, we employ the proposed algorithm to solve low-rank matrix recovery and image inpaint-
ing problems. Numerical results demonstrate the efficiency and effectiveness of the proposed algorithm
compared to other algorithms.
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1. INTRODUCTION

In this paper, we consider the following non-convex minimization problem:

min
x∈H

F(x)+G(x)+H(x), (1.1)

where H represents a real Hilbert space, G : H → (−∞,+∞] is a proper lower semi-continuous
function, and F : H → R and H : H → R are Fréchet differentiable with Lipschitz continuous
gradient ∇F and ∇G, respectively. This problem covers various applications in sparse signal
recovery [1, 2, 3, 4, 5] and low-rank matrix recovery [6, 7, 8, 9, 10]. When H = 0, problem
(1.1) reduces to the following non-convex minimization problem of the sum of two non-convex
functions,

min
x∈H

F(x)+G(x). (1.2)

For problem (1.2), the forward-backward splitting algorithm [11] and the forward-backward-
forward splitting algorithm [12] are two classic algorithms. By using new analysis tools and
assuming that the objective function satisfies certain regularization conditions and the algorithm
parameters meet some requirements, authors explored the theoretical convergence of these two
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algorithms for solving the completely non-convex problem (1.2). Attouch et al. [13] proved
that the iterative sequence generated by the forward-backward splitting algorithm converges to
a critical point of (1.2) by imposing the Kurdyka-Łojasiewicz inequality [14]. Bot and Csetnek
[16] proposed a forward-backward-forward splitting algorithm to solve (1.2), which combined
with a Bregman distance. The proposed algorithm generalized the original forward-backward-
forward splitting algorithm by Tseng [12] from the convex to the non-convex setting. Bot et
al. [16] proposed an iterative algorithm with a combination of the forward-backward splitting
algorithm and inertial techniques. They demonstrated that it can converge to a critical point of
the objective function under certain assumptions. Themelis et al. [17] constructed a forward-
backward splitting algorithm that converges to a stationary point of (1.2), which is based on the
forward-backward Envelope.

On the other hand, when F and G are convex functions, and F has no differentiability condi-
tions, the Douglas-Rachford splitting algorithm [18] is a simple and effective method for solving
(1.2). However, for the non-convex problem (1.2), it is necessary to add the assumption that G
is differentiable. The earliest work on this was proposed by Li and Pong [19]. They first studied
the sequence generated by the Douglas-Rachford splitting algorithm to a stationary point of the
non-convex minimization problem (1.2). In [20], Li et al. established the convergence of the
Peaceman-Rachford splitting algorithm with the additional assumption that F is strongly con-
vex. Further, Li and Wu [21] proposed a generalized splitting algorithm, which extended the
Douglas-Rachford splitting algorithm [19] and the Peaceman-Rachford splitting algorithm [20].
Based on the Douglas-Rachford envelope, Themelis and Patrinos [22] developed a unified con-
vergence analysis of the Douglas-Rachford splitting algorithm with over-relaxation parameter
ranges in (0,2]. Furthermore, Themelis et al. [23] proposed line-search algorithms to improve
the Douglas-Rachford splitting algorithm by means of quasi-Newton directions. Recently, Bian
and Zhang [24] extended the so-called parameterized Douglas-Rachford splitting algorithm in
Wang and Wang [25] for solving the non-convex minimization problem (1.2). They constructed
a suitable energy function to obtain the theoretical convergence, which has a close relationship
with the one in [19].

To solve (1.1), although we can use minimization algorithms to solve the sum of two non-
convex functions, we have to calculate the gradient of F+H or the proximity operator of F+G,
and the resulting algorithm obviously does not fully utilize the separable structure of problem
(1.1). To overcome this drawback, Bian and Zhang [26] employed a there-operator splitting
algorithm proposed by Davis and Yin [27] to solve problem (1.1), which is defined by


yt+1 = arg min

y∈H
{F(y)+

1
2γ
‖y− xt‖2},

zt+1 ∈ arg min
z∈H
{G(z)+

1
2γ
‖z− (2yt+1− γ∇H(yt+1)− xt)‖2},

xt+1 = xt +(zt+1− yt+1).

(1.3)

Since functions F , G, and H are non-convex, the convergence of (1.3) can not be derived from
the original three-operator splitting algorithm. To tackle this difficulty, Bian and Zhang con-
structed a non-increasing energy function and established the global convergence of (1.3) under
certain conditions on the iterative parameters. Inspired by the parameterized Douglas-Rachford
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splitting algorithm, Zhang and Chen [28] proposed a parameterized three-operator splitting al-
gorithm for solving problem (1.1) in the convex setting. They proved the convergence of the
proposed algorithm under mild assumptions. The numerical results in [28] confirmed that the
advantage of the parameterized algorithm over the original non-parameterized algorithm.

The parameterized three-operator splitting algorithm of Zhang and Chen [28] is a general-
ization of the Davis-Yin three-operator splitting algorithm [27]. It is an interesting topic to in-
vestigate whether the parameterized three-operator splitting algorithm can be extended to solve
non-convex minimization problems. The difficulty lies in how to construct a suitable energy
function with a non-increasing property. Based on the parameterized method, we propose a pa-
rameterized three-operator splitting algorithm to solve non-convex minimization problem (1.1).
Compared with the three-operator splitting algorithm, our proposed splitting method employs a
parameterization technique that provides more flexibility for the iterative parameters, allowing
the algorithm to be better adapted to different non-convex problems. We construct a monotone
non-increasing energy function with the Kurdyka-Łojasiewicz (KL) property to prove the con-
vergence of the algorithm. Our assumptions are weaker than the original three-operator splitting
algorithm in the non-convex case. We do not need to assume that the function is coercive to
prove that the sequence is bounded. Finally, we apply the parameterized splitting algorithm to
low-rank matrix recovery and low-rank image inpainting problems, and show through numeri-
cal experiments that our proposed algorithm outperforms the three-operator splitting algorithm
in several aspects.

This paper is organized as follows. In Section 2, we provide basic definitions and lemmas
required for our analysis. In Section 3, we present the parameterized three-operator partitioning
algorithm and establish its convergence analysis in the non-convex case. In Section 4, we report
numerical experiments and results. Finally, we provide some conclusions in Section 5.

2. PRELIMINARIES

In this section, R is defined as the set of real numbers and N is defined as the set of non-
negative integers. Rn and H are n-dimensional Euclidean space and real Hilbert space, respec-
tively. The extended real line as R̄= R∪{∞}, and a function f : H → R̄ is called an extended
real-valued function. The inner product is defined as 〈·, ·〉, and ‖ · ‖ =

√
〈·, ·〉 is the norm. The

symbols → and ⇀ indicate strong convergence and weak convergence, respectively. We say
that the function f is proper if for any x ∈ dom f , f (x) > −∞, and there exists x ∈ dom f such
that f (x)<+∞.

For any a,b,c,d ∈H , there are the following fundamental equalities:{
2〈a−b,b− c〉= ‖a− c‖2−‖a−b‖2−‖b− c‖2; (2.1a)

‖2a−b− c‖2−‖a− c−d‖2 = ‖a− c‖2−‖b− c‖2 +2‖a−b‖2 +2〈d,b−a〉. (2.1b)

Definition 2.1. ([29]) Let f be an extended real-valued function.
(i) If epi f = {(x,ξ ) ∈H ×R| f (x)≤ ξ} is a closed set, then f is said to be a closed function;
(ii) If, for any x ∈ dom f , liminfy→x f (y)≥ f (x), then f is said to be lower semi-continuous.

In fact, let f be an extended real-valued function. Then f is closed function if and only if f
is a lower semi-continuous function.

Definition 2.2. ([13]) Let f : H → R̄ be a proper lower semi-continuous function.
(i) For a given x ∈ dom f , the set of all vectors u that satisfy the following conditions is defined
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as the Fréchet sub-differential of f at point x:

liminf
y→x,y6=x

f (y)− f (x)−〈u,y− x〉
‖y− x‖

≥ 0,

which is written as ∂̂ f (x). When x 6= 0, we define ∂̂ f (x) as the empty set.
(ii) The limit sub-differential of f at point x is defined as:

∂ f (x) = {u ∈ Rn : ∃xk→ x, f (xk)→ f (x),uk ∈ ∂̂ f (xk)→ u}. (2.2)

Lemma 2.1. ([29]) Let f : H → R̄ be a proper lower semi-continuous function. If f is convex,
then ∂ f is monotone, i.e., 〈x− y,u− v〉 ≥ 0 for all x,y ∈H ,u ∈ ∂ f (x),v ∈ ∂ f (y).

Definition 2.3. ([30]) Let f : H → R̄ be a gradient Lipschitz continuous function, that is, there
exists a constant L > 0 such that ‖∇ f (y1)−∇ f (y2)‖ ≤ L‖y1− y2‖ for all yi ∈ Rn, i = 1,2.
For any x,y ∈H , we have f (y)≤ f (x)+ 〈∇ f (x),y− x〉+ L

2‖x− y‖2, where L is the Lipschitz
constant of ∇ f .

Definition 2.4. ([29]) Let f : H → R̄ be a proper lower semi-continuous function. The proxi-
mal mapping of f with index γ > 0 is defined as follows:

proxγ f (x) = arg min
u∈dom f

{ f (u)+
1
2γ
‖u− x‖2}.

Definition 2.5. ([29]) For a non-empty closed set C, its indicator function is defined as follows:

IC(x) =

{
0, x ∈C
+∞, x /∈C

Definition 2.6. ([13]) (Φη function class) Define Φη as a set of concave continuous function
ϕ : [0,η)→ R+ with the following conditions:
(i) ϕ(0) = 0;
(ii) ϕ is continuously different in (0,η), and continuous at 0;
(iii) ϕ ′(s)> 0 for all s ∈ (0,η).

Definition 2.7. ([13]) (Kurdyka-Łojasiewicz (KL) property) Let f : H → R̄ be a proper lower
semi-continuous function.
(i) f is said to have the KL property at a given point u∈ dom∂ f

de f
= {u|∂ f (u) 6= /0} if there exists

η ∈ (0,+∞], a domain U of u and the function ϕ ∈ Φη , such that, for all u ∈U ∩ [ f (u) < f <
f (u)+η ], the following inequality holds: ϕ ′( f (u)− f (u)) ·dist(0,∂ f (u))≥ 1, where dist(x,S)
is the distance from point x to the set S.
(ii) f is said to be a KL function if f satisfies the KL property everywhere on dom∂ f .

3. MAIN ALGORITHM AND CONVERGENCE ANALYSIS

In this section, we present the main algorithm for solving non-convex minimization problem
(1.1) and provide a proof of its convergence. The proposed algorithm utilizes the three-operator
splitting algorithm and its generalization of parameterized method.
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Algorithm 1 Parameterized Three-Operator splitting algorithm.

1: Choose parameters:γ > 0,α ∈ (3
2 ,2];

2: Initialization: x0 ∈ Rn;
3: General step: for any t = 0,1, · · · , execute the following:

yt+1 = arg min
y∈H
{F(y)+

1
2γ
‖y− xt‖2}, (3.1a)

zt+1 ∈ arg min
z∈H
{G(z)+

1
2γ
‖z− (αyt+1− γ∇H(yt+1)− xt)‖2}, (3.1b)

xt+1 = xt +(zt+1− yt+1). (3.1c)

3.1. Parameterized three-operator splitting algorithm. First, we present Algorithm 1 which
outlines the parameterized three-operator splitting algorithm.

Based on the first-order optimality conditions of (3.1a) and (3.1b), we obtain:
0 = ∇F(yt+1)+

1
γ
(yt+1− xt), (3.2a)

0 ∈ ∂G(zt+1)+
1
γ
(zt+1−αyt+1 + γ∇H(yt+1)− xt), . (3.2b)

We now give some assumptions for the function in problem (1.1).
Assumption 3.1.
(A1) The function F has Lipschitz continuous gradient with constant L;
(A2) The function G is a proper lower semi-continuous function with a nonempty mapping
proxγG(x) for any x and γ > 0;
(A3) The function H has Lipschitz continuous gradient with constant β .

Remark 3.1. (i) When H is zero, Algorithm 1 reduces to the parameterized Douglas-Rachford
algorithm [24]. In [24], the assumptions on functions F and G are the same as ours. Moreover,
when α = 2, Algorithm 1 becomes the standard Douglas-Rachford Splitting algorithm. For
more details on this algorithm, we refer to [19].

(ii) There exists a constant l such that F(·)+ l
2‖ · ‖

2
2 is a convex function. In particular, l can

be taken as L, where L is the gradient Lipschitz constant of the function F .

3.2. Convergence analysis. To establish convergence, we use the following energy function
associated with Assumption 1 as follows:

θγ(x,y,z) = F(y)+G(z)+H(y)+
1
2γ
‖x−αy+ z+ γ∇H(y)‖2− 1

γ
‖y− z‖2

− 1
2γ
‖x− (α−1)y+ γ∇H(y)‖2 +

2−α

2γ
‖y‖2.

(3.3)



456 L. MIAO, Y.C. TANG, C. WANG

Lemma 3.1. (Sufficient decrease on the energy function) Suppose that functions F,G, and H
satisfy Assumption 3.1. Let 3

2 < α ≤ 2, and let {(xt ,yt ,zt)} be a sequence generated by Algo-
rithm 1. Then, for all t ≥ 1, θγ(xt+1,yt+1,zt+1)−θγ(xt ,yt ,zt)≤−Λ(γ)‖yt+1− yt‖2, where

Λ(γ) =−2−α

2γ
−β +

1
2
(
1
γ
− l)− 4−α +βγ

2γ
[(2γl−1)+(1+ γL)2].

Furthermore, if there exist parameters γ > 0 such that Λ(γ)≥ 0, then the sequence θγ(xt ,yt ,zt)
is non-increasing.

Proof. Given that F(·)+ 1
2γ
‖xt−·‖2 is (1

γ
− l)-strongly convex, and yt+1 is a minimizer of (3.1a),

we have

F(yt+1)+
1
2γ
‖yt+1− xt‖2 ≤ F(yt)+

1
2γ
‖yt− xt‖2− 1

2
(
1
γ
− l)‖yt+1− yt‖2. (3.4)

Since zt+1 minimizes of (3.1b), we obtain

G(zt+1)+
1
2γ
‖zt+1−αyt+1 + γ∇H(yt+1)+ xt‖2 ≤ G(zt)+

1
2γ
‖zt−αyt+1 + γ∇H(yt+1)+ xt‖2

(3.5)
By adding inequality (3.4) to inequality (3.5), we arrive at

F(yt+1)+G(zt+1)+
1
2γ
‖yt+1− xt‖2 +

1
2γ
‖zt+1−αyt+1 + γ∇H(yt+1)+ xt‖2

≤ F(yt)+G(zt)+
1
2γ
‖yt− xt‖2 +

1
2γ
‖zt−αyt+1 + γ∇H(yt+1)+ xt‖2− 1

2
(
1
γ
− l)‖yt+1− yt‖2

(3.6)
Observing the last term on the left-hand side of the inequality above, we have

‖αyt+1− zt+1− γ∇H(yt+1)− xt‖2

= ‖αyt+1− xt+1− zt+1− γ∇H(yt+1)‖2 +‖xt+1− xt‖2

+2〈αyt+1− xt+1− zt+1− γ∇H(yt+1),xt+1− xt〉

= ‖αyt+1− xt+1− zt+1− γ∇H(yt+1)‖2 +‖xt+1− xt‖2 +2〈yt+1− zt+1,xt+1− xt〉

+2〈(α−1)yt+1− xt+1− γ∇H(yt+1),xt+1− xt〉

= ‖αyt+1− xt+1− zt+1− γ∇H(yt+1)‖2 +‖xt+1− xt‖2−2‖xt+1− xt‖2

−‖(α−1)yt+1− xt+1− γ∇H(yt+1)‖2−‖xt+1− xt‖2 +‖(α−1)yt+1− xt− γ∇H(yt+1)‖2

= ‖αyt+1− xt+1− zt+1− γ∇H(yt+1)‖2−2‖xt+1− xt‖2−‖(α−1)yt+1− xt+1− γ∇H(yt+1)‖2

+‖(α−1)yt+1− xt− γ∇H(yt+1)‖2,
(3.7)
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where the third equality makes use of (3.1c) and (2.1a). Substituting(3.7) into (3.6), we obtain

F(yt+1)+G(zt+1)+
1
2γ
‖αyt+1− xt+1− zt+1− γ∇H(yt+1)‖2

− 1
2γ
‖(α−1)yt+1− xt+1− γ∇H(yt+1)‖2− 1

γ
‖yt+1− zt+1‖2

≤ F(yt)+G(zt)+
1
2γ
‖yt− xt‖2 +

1
2γ
‖yt+1− zt‖2 +

1
γ
〈(α−1)yt+1− xt ,yt+1− zt〉

+ 〈∇H(yt+1),zt− yt+1〉− 1
2γ
‖yt+1− zt + zt− xt‖2− 1

2
(
1
γ
− l)‖yt+1− yt‖2

= F(yt)+G(zt)+
1
2γ
‖yt− xt‖2 +

1
γ
〈(α−1)yt+1− xt ,yt+1− zt〉+ 〈∇H(yt+1),zt− yt+1〉

+ 〈∇H(yt),zt− yt〉−〈∇H(yt),zt− yt〉− 1
2γ
‖zt− xt‖2− 1

γ
〈yt+1− zt ,zt− xt〉

− 1
2
(
1
γ
− l)‖yt+1− yt‖2

= F(yt)+G(zt)+
1
2γ
‖αyt− zt− xt− γ∇H(yt)‖2− 1

2γ
‖(α−1)yt− xt− γ∇H(yt)‖2

+
1
γ
〈yt− zt ,(2−α)yt〉− 1

γ
‖yt− zt‖2 +

1
γ
〈(α−1)yt+1− xt ,yt+1− zt〉

+ 〈∇H(yt+1),zt− yt+1〉−〈∇H(yt),zt− yt〉− 1
γ
〈yt+1− zt ,zt− xt〉− 1

2
(
1
γ
− l)‖yt+1− yt‖2

(3.8)
where the third equality is obtained by utilizing formula (2.1b) with a = yt ,b = zt ,c = 0, and
d = γ∇H(yt). Now, we consider the term 〈∇H(yt+1),zt− yt+1〉−〈∇H(yt),zt− yt〉 in (3.8)

〈∇H(yt+1),zt− yt+1〉−〈∇H(yt),zt− yt〉

≤ 〈∇H(yt+1)−∇H(yt),zt− yt+1〉+H(yt+1)−H(yt)+
β

2
‖yt+1− yt‖2

≤ H(yt+1)−H(yt)+β‖yt+1− yt‖2 +
β

2
‖yt+1− zt‖2,

(3.9)

where the first inequality is derived from the descent lemma, and the last inequality holds due
to the Lipschitz continuous of ∇H and the Cauchy-Schwarz inequality.

Next, we analyze the following inner product terms to further understand the behaviour of
the algorithm

1
γ
〈yt− zt ,(2−α)yt〉+ 1

γ
〈(α−1)yt+1− xt ,yt+1− zt〉− 1

γ
〈yt+1− zt ,zt− xt〉

=
2−α

2γ
‖yt− zt‖2 +

2−α

2γ
‖yt‖2− 2−α

2γ
‖zt‖2 +

α−1
2γ
‖yt+1− zt‖2 +

α−1
2γ
‖yt+1‖2

− α−1
2γ
‖zt‖2 +

1
2γ
‖yt+1− zt‖2 +

1
2γ
‖zt‖2− 1

2γ
‖yt+1‖2

≤ 2−α

γ
‖yt− yt+1‖2 +

4−α

2γ
‖yt+1− zt‖2 +

2−α

2γ
(‖yt‖2−‖yt+1‖2).

(3.10)
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Then, we focus on ‖yt+1− zt‖2. Since F(·) + l
2‖ · ‖

2 is a convex function, we know that
∇(F(·)+ l

2‖ · ‖
2) is monotone. Hence, we have

〈∇(F(yt+1)+
l
2
‖yt+1‖2)−∇(F(yt)+

l
2
‖yt‖2),yt+1− yt〉 ≥ 0.

By taking advantage of (3.2a), we can simplify the expression and obtain

〈(1
γ
(xt− yt+1)+ lyt+1)− (

1
γ
(xt−1− yt)+ lyt ,yt+1− yt)〉 ≥ 0.

Therefore, we obtain

〈yt+1− yt ,xt− xt−1〉 ≥ (1− γl)‖yt+1− yt‖2. (3.11)

By the first-order optimality condition of (3.1a) and the Lipschitz continuity of ∇F , we can
conclude that

‖∇F(yt+1)−∇F(yt)‖2 = ‖1
γ
(xt− yt+1)− 1

γ
(xt−1− yt)‖ ≤ L‖yt+1− yt‖.

By applying the triangle inequality, we obtain

‖xt− xt−1‖−‖yt+1− yt‖ ≤ ‖(xt− yt+1)− (xt−1− yt)‖ ≤ γL‖yt+1− yt‖.

Thus, we can establish the relationship between ‖yt+1− yt‖ and ‖xt− xt−1‖ as follows:

‖xt− xt−1‖ ≤ (1+ γL)‖yt+1− yt‖. (3.12)

By combining equations (3.11) and (3.12), we deduce that

‖yt+1− zt‖2 = ‖yt+1− yt‖2 +‖xt− xt−1‖2−2〈yt+1− yt ,xt− xt−1〉

≤ (2γl−1)‖yt+1− yt‖2 +‖xt− xt−1‖2

≤ [(2γl−1)+(1+ γL)2]‖yt+1− yt‖2.

(3.13)

By substituting equations (3.9), (3.10), and (3.13) into equation (3.7), we see that

F(yt+1)+G(zt+1)+H(yt+1)+
1
2γ
‖αyt+1− xt+1− zt+1− γ∇H(yt+1)‖2

− 1
2γ
‖(α−1)yt+1− xt+1− γ∇H(yt+1)‖2− 1

γ
‖yt+1− zt+1‖2 +

2−α

2γ
‖yt+1‖2

≤ F(yt)+G(zt)+H(yt)+
1
2γ
‖αyt− xt− zt− γ∇H(yt)‖2

− 1
2γ
‖(α−1)yt− xt− γ∇H(yt)‖2− 1

γ
‖yt− zt‖2 +

2−α

2γ
‖yt‖2

+
[2−α

γ
+β − 1

2
(
1
γ
− l)

]
‖yt+1− yt‖2 +

4−α +βγ

2γ
‖yt+1− zt‖2

≤ F(yt)+G(zt)+H(yt)+
1
2γ
‖αyt− xt− zt− γ∇H(yt)‖2

− 1
2γ
‖(α−1)yt− xt− γ∇H(yt)‖2− 1

γ
‖yt− zt‖2 +

2−α

2γ
‖yt‖2

+
[2−α

γ
+β − 1

2
(
1
γ
− l)+

4−α +βγ

2γ
[(2γl−1)+(1+ γL)2]

]
‖yt+1− yt‖2.



A PARAMETERIZED THREE-OPERATOR SPLITTING ALGORITHM 459

Thus we can confirm that the merit function satisfies the following condition

θγ(xt+1,yt+1,zt+1)−θγ(xt ,yt ,zt)≤−Λ(γ)‖yt+1− yt‖2, (3.14)

where Λ(γ) = −2−α

γ
− β + 1

2(
1
γ
− l)− 4−α+βγ

2γ
[(2γl − 1) + (1 + γL)2]. If 3

2 ≤ α ≤ 2, then
limγ→0 γΛ(γ) = 2α−3

2 ≥ 0 is satisfied, which means that the merit function θγ(xt ,yt ,zt) is non-
increasing. �

Based on the proof presented above, we see that the energy function is non-increasing. Un-
der specific assumptions, we are able to prove that the sequence generated by Algorithm 1 is
bounded.

Theorem 3.1. (Boundedness of the sequence). Assuming that Assumption 3.1 is satisfied and
the parameter γ in Algorithm 1 is such that Λ(γ)> 0. Suppose that 3

2 < α ≤ 2 and the function
F,G, and H are both bounded below. Then, the sequence {(xt ,yt ,zt)} generated by Algorithm
1 is bounded.

Proof. It is obvious that merit function (3.3) is equivalent to the following form:

θγ(xt ,yt ,zt) = F(yt)+G(zt)+H(yt)+
1
2γ
‖αyt− xt− zt− γ∇H(yt)‖2

− 1
2γ
‖(α−1)yt− xt− γ∇H(yt)‖2− 1

γ
‖yt− zt‖2 +

2−α

2γ
‖yt‖2

= F(yt)+G(zt)+H(yt)+
1
2γ

(‖xt− yt‖2−‖xt− zt‖2)

〈∇H(yt),zt− yt〉+ 2−α

2γ
‖yt‖2 +

2−α

2γ
〈yt ,zt− yt〉.

(3.15)

Since F and H are proper functions, we can conclude by applying the descent lemma that there
exist ξ ∗ >−∞ and ζ ∗ >−∞ such that

ξ
∗ ≤ F(x− 1

L
∇F(x))≤ F(x)+ 〈∇F(x),(x− 1

L
∇F(x))− x〉+ L

2
‖(x− 1

L
∇F(x))− x‖2

= F(x)− 1
2L
‖∇F(x)‖2.

(3.16)

Similarly,

ζ
∗ ≤ H(x− 1

β
∇H(x))≤ H(x)− 1

2β
‖∇F(x)‖2. (3.17)

By using the Cauchy-Schwarz inequality and (3.1c), we obtain

〈∇H(x),zt− yt〉 ≥ − 1
4β
‖∇H(x)‖2−β‖zt− yt‖2

≥− 1
4β
‖∇H(x)‖2−β‖xt− xt−1‖2

≥− 1
4β
‖∇H(x)‖2−2β‖xt− yt‖2−2β‖yt− xt−1‖2.

(3.18)
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Based on equations (3.15)∼(3.18) and Theorem 3.1, it can be concluded that

θγ(x1,y1,z1)

≥ F(yt)+G(zt)+H(yt)+
1
2γ

(‖xt− yt‖2−‖xt− zt‖2)

+ 〈∇H(yt),zt− yt〉− 2−α

2γ
‖zt− yt‖2 +

2−α

2γ
‖zt‖2

≥ F(yt)+G(zt)+H(yt)+
1
2γ

(‖xt− yt‖2−‖xt− zt‖2)+ 〈∇H(yt),zt− yt〉

− 2−α

γ
(‖zt− xt‖2 +‖xt− yt‖2)+

2−α

2γ
‖zt‖2

≥ F(yt)+G(zt)+H(yt)+
2α−3

2γ
‖xt− yt‖2− 5−2α

2γ
‖xt−1− yt‖2

− 1
4β
‖∇H(yt)‖2−2β‖xt− yt‖2−2β‖yt− xt−1‖2 +

2−α

2γ
‖zt‖2

= µF(yt)+(1−µ)F(yt)+G(zt)+νH(yt)+(1−ν)H(yt)− 1−ν

2β
‖∇H(yt‖2

+
1−2ν

4β
‖∇H(yt‖2 +[

1−µ

2L
− (

5−2α

2γ
+2β )γ2]‖∇F(yt)‖2− 1−µ

2L
‖∇F(yt)‖2

+(
2α−3

2γ
−2β )‖yt− xt‖2 +

2−α

2γ
‖zt‖2

≥ µF(yt)+(1−µ)ξ ∗+G(zt)+νH(yt)+(1−ν)ζ ∗+
1−2ν

4β
‖∇H(yt)‖2

+[
1−µ

2L
− (

5−2α

2γ
+2β )γ2]‖∇F(yt)‖2 +(

2α−3
2γ

−2β )‖yt− xt‖2 +
2−α

2γ
‖zt‖2.

(3.19)
We can choose the parameter γ > 0 to be small enough and select µ and ν from the range of
(0,1) such that

1−2ν

4β
,
1−µ

2L
− (

5−2α

2γ
+2β )γ2,

2α−3
2γ

−2β > 0.

Based on equation (3.19), we can readily determine that {zt}, {∇F(yt)}, and {xt − yt} are
bounded. Additionally, using equations (3.2b) and (3.1c), we can conclude that {zt−yt} is also
bounded, which implies that {yt} is bounded. Finally, since {xt − yt} is bounded, we can infer
that {xt} is also bounded. �

Remark 3.2. It can be observed from the proof of the boundedness of the sequence produced
by Algorithm 1 that there is no requirement to assume the coercivity of functions such as F ,
G, or H. This indicates that our algorithm has less stringent assumptions in comparison to the
non-convex three-operator splitting algorithm studied by Bian and Zhang [26].

Next, we prove the convergence of the subsequence generated by Algorithm 1.

Theorem 3.2. (Subsequential convergence) Assuming that 3
2 < α ≤ 2 and that Assumption 3.1

is fulfilled. Let γ be a parameter in Algorithm 1 such that Λ(γ) > 0. Moreover, if a cluster of
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the point sequence {(xt ,yt ,zt)} exist, then the following assertions hold
(i)

lim
t→∞
‖yt+1− yt‖= lim

t→∞
‖xt+1− xt‖= lim

t→∞
‖zt+1− yt+1‖; (3.20)

(ii) any cluster point (x∗,y∗,z∗) of sequence {(xt ,yt ,zt)} generated by Algorithm 1 satisfies:

0 ∈ ∇F(z∗)+∂G(z∗)+∇H(z∗)+
2−α

γ
z∗.

Proof. (i) Summing inequality (3.14) from t = 1 to N−1, we see that

θγ(xN ,yN ,zN)−θγ(x1,y1,z1)≤−Λ(γ)
N

∑
t=1
‖yt+1− yt‖2

Let (x∗,y∗,z∗) be a cluster point of the sequence {(xt ,yt ,zt)} such that there exists a subsequence
(xt j ,yt j ,zt j) such that lim j→∞(xt j ,yt j ,zt j) = (x∗,y∗,z∗). Since θγ is lower semi-continuous and F
and G are proper functions. Let N = t j. As j→ ∞, we obtain

−∞ < θγ(x∗,y∗,z∗)−θγ(x1,y1,z1)≤−Λ(γ)
∞

∑
t=1
‖yt+1− yt‖2,

which implies that limt→∞ ‖yt+1−yt‖2 = 0. Combining (3.1c) and (3.14), we can conclude that
limt→∞ ‖zt+1− yt+1‖= limt→∞ ‖xt+1− xt‖= 0.

(ii) Suppose that {(xt j ,yt j ,zt j)} is a convergent subsequence such that

lim
j→∞

(xt j ,yt j ,zt j) = lim
j→∞

(xt j−1,yt j−1,zt j−1) = (x∗,y∗,z∗). (3.21)

It follows from (3.1b) that

G(zt)+
1
2γ
‖zt−αyt− γ∇H(yt)− xt‖2 ≤ G(z∗)+

1
2γ
‖z∗−αyt− γ∇H(yt)− xt‖2.

Replacing zt with zt j and using (3.21), we have limsup j→∞ G(zt j)≤ G(z∗).
On the other hand, we conclude from the lower semi-continuous of G that liminf j→∞ G(zt j)≥

G(z∗). Hence, lim j→∞ G(zt j) = G(z∗).
Finally, according to (2.2), we obtain

0 ∈ ∇F(z∗)+∂G(z∗)+∇H(z∗)+
2−α

γ
z∗,

which ends the proof. �

To prove the global convergence of the sequence generated by Algorithm 1, we need to first
verify the following lemma.

Lemma 3.2. Let Assumption 3.1 be satisfied, and let H be a twice continuous differentiable
function with a bounded Hessian matrix, i.e., there exists a constant M such that ∇2H ≤M. Let
{(xt ,yt ,zt)}t≥0 be the sequence generated by Algorithm 1. Then, there exists a τ such that, for
any t ≥ 1, dist(0,∂θγ(xt ,yt ,zt))≤ τ‖yt+1− yt‖.
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Proof. From (3.1c), it is easy to see

∇xθγ(xt ,zt ,zt) =
1
γ
(xt−αyt + zt + γ∇H(yt)− 1

γ
(xt− (α−1)yt + γ∇H(yt)

=
1
γ
(zt− yt) =

1
γ
(xt− xt−1).

(3.22)

In view of (3.1c) and (3.2a), as well as the boundedness of ∇2H(y), we obtain

∂yθ(γ)(xt ,zt ,zt) =
α−1

γ
(yt− zt)+

1
γ
(xt−1− xt)−∇

2H(yt)(yt− zt)

≤ α

γ
(xt−1− xt)+M(xt− xt−1).

(3.23)

By using (3.2b) and (3.1c), we obtain

∇zθγ(xt ,zt ,zt) = ∂G(zt)+
1
γ
(xt−αyt + γ∇H(yt))+

2
γ
(yt− zt)

3 −1
γ
(zt−αyt + γ∇H(yt)+ xt−1)+

1
γ
(xt−αyt + γ∇H(yt))+

2
γ
(yt− zt)

=
1
γ
(xt−1− xt).

(3.24)
Finally, it follows from (3.22), (3.23), and (3.24) that there exists a constant τ such that

dist(0,∂θγ(xt ,zt ,zt))≤ τ‖yt+1− yt‖2, ∀t ≥ 1.

�

Based on the lemmas above, it is not difficult to draw the following conclusions. Since the
proof is similar to that in [26], we omit it here.

Theorem 3.3. (Global convergence) Assume that Assumption 3.1 is satisfied and the parameter
γ in Algorithm 1 is such that Λ(γ)> 0. Suppose that 3

2 < α ≤ 2 and the energy function θγ is a
KL function. If the sequence {(xt ,yt ,zt)} generated by Algorithm 1 has a cluster point, then the
entire sequence {(xt ,yt ,zt)} converges to a stationary point of (1.1).

4. NUMERICAL EXPERIMENTS

In this section, to verify the effectiveness of our proposed algorithm, we apply the param-
eterized three-operator splitting algorithm to solve the classical low-rank matrix recovery and
low-rank image inpainting problems. We compare the numerical results with the three-operator
splitting algorithm in non-convex settings. We programmed all the algorithms in MATLAB
R2022A software and performed numerical experiments on a laptop computer equipped with a
2.80 GHz Intel Core processor and 16 GB of RAM.

4.1. Low-rank matrix recovery. Low-rank matrix restoration has gained widespread use in
image processing applications in recent years, including denoising, deblurring, and more [31,
32, 33, 34]. Let rank(X) be the rank of the matrix X . The problem can be expressed as

min
X∈Rm×n

rank(X),

s.t. Xi j = Mi j, (i, j) ∈Ω,
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where X is an m× n matrix, M is a noisy and incomplete version of X , and Ω is the set of
observed entries. This problem is known to be NP-hard. Researchers have proposed various
methods to solve it, such as convex relaxation, nuclear norm minimization, and non-convex
optimization. Another way to formulate the problem is to express it as follows:

min
X∈Rm×n

1
2
‖PΩ(X)−PΩ(M)‖2

2 +IC (r)(X)+
λ

2
‖X‖2

2, (4.1)

where λ is the regularization parameter, P is the orthogonal projector onto the span of ma-
trices vanishing outside Ω, and IC (r) is the indicator function of the set of matrices with
rank at most r. This formulation is equivalent to (1.1) with F(X) = 1

2‖PΩ(X)−PΩ(M)‖2
2,

G(X) = IC (r)(X)− 2−α

2γ
‖X‖2, and H(X) = λ

2 ‖X‖
2
2. Moreover, the conditions of convergence

of Algorithm 1 are satisfied as F and H are both gradient Lipschitz continuous with Lipschitz
constants of L = 1 and β = λ , respectively, while G is a proper lower semi-continuous function.
As a result, we can easily apply our proposed algorithm to solve (4.1) and obtain the following
algorithm: 

U t+1 = argmin
U
{1

2
‖PΩ(U)−PΩ(M)‖2

2 +
1
2γ
‖U−X t‖2},

V t+1 = argmin
V
{IC (r)(V )− 2−α

2γ
‖V‖2− 2−α

2γ
‖V‖2

+
1
2γ
‖V − (αU t+1− γ∇H(U t+1)−X t)‖2},

X t+1 = X t +(V t+1−U t+1).

Obviously, when α = 2, the above algorithm degenerates to the original three-operator split-
ting algorithm. The solution of the above algorithm sub-problem can be obtained analytically
through a closed-form expression.

U t+1 =


1

1+ γ
(X t

i, j + γMi, j), (i, j) ∈Ω,

X t
i, j, (i, j) ∈Ω,

V t+1 = PC (r)(
(α− γλ )U t+1−X t

α−1
,r),

X t+1 = X t +(V t+1−U t+1).

To ensure that Λ(γ)> 0 and (3.20) are satisfied, we set l = 0 and choose 0< γ < γ0 =
2α−3

4 . In
practical computations, the value of γ may become very small. Therefore, we adopt a heuristic
used in Li and Pong [19] for both the three-operator splitting algorithm and our algorithm.
We initialize γ = k ∗ γ0 and update it as max{γ0− ε,k1 ∗ γ} whenever γ > γ0. Here, k1 < 1
ensures that γ decreases monotonically, and the sequence satisfies either ‖U t−U t−1‖> 1000/t
or ‖U‖∞ > 1e10. As the number of iterations increases, γ eventually becomes smaller than
γ0, thus ensuring the algorithm’s convergence according to Section 3.2. It is also necessary to
choose k1 for this. We set k = 60 for both algorithms and consider three different values of
α = 1.9,1.8, and 1.6 for our algorithm.

We address the problem of recovering a rank-r n×n matrix M by using only a small subset
of its entries. Specifically, we randomly generate two n× r matrices ML and MR independently,
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with i.i.d. Gaussian entries. We then define M = MLMT
R , where T denotes the matrix transpose.

Next, we randomly select a set Ω of m entries uniformly at random from all possible entries,
and the sampling ratio is denoted as p = m

n2 . Our objective is to recover a matrix of the lowest
rank that agrees with M on the entries in Ω. In all experiments, we set the stop criterion to

Tol :=
‖X t+1−X t‖F

‖X t‖F
< 1×10−7

and the relative error (Err) is defined as

Err =
‖Xopt−M‖F

‖M‖F
,

where ‖ · ‖F represents the Frobenius norm.
Next, we provide the specific parameter selection used to ensure convergence with the lowest

relative error. We set λ to 1.5×10−6. The following are the results of our experiments where
we reconstructed matrices of rank 2 or 5 across various sizes (n = 800,1000,2000,3000) with
sampling ratios of p = 0.05 or p = 0.08. All results are averaged over five runs.

TABLE 1. Numerical Comparison of p = 0.05.

Rank n
α = 2 α = 1.9 α = 1.8 α = 1.6

Time/Iter./Err Time/Iter./Err Time/Iter./Err Time/Iter./Err

2

800 41/4112/1.7377 35/3257/1.5913 26/2374/1.4454 5/487/1.1528
1000 66/4148/1.7518 56/3294/1.5991 41/2411/1.4464 9/512/1.1427
2000 293/2979/1.0201 237/2378/0.9418 173/1747/0.8642 26/299/0.6970
3000 688/2702/0.8874 558/2161/0.8215 410/1590/0.7538 58/220/0.5784

5

800 66/6168/3.3291 56/4871/3.0506 43/3537/2.7697 9/726/2.1981
1000 131/7034/3.1843 115/5845/2.9035 97/4620/2.6207 40/2032/2.0470
2000 341/3552/1.3224 281/2844/1.2173 201/2109/1.1134 48/508/0.9064
3000 701/2960/1.0373 548/2352/0.9570 392/1714/0.8778 62/259/0.7103

Note that Err is counted in units of 10−4. For example, Err = 1 corresponds to
Err = 1×10−4.

TABLE 2. Numerical Comparison of p = 0.08.

Rank n
α = 2 α = 1.9 α = 1.8 α = 1.6

Time/Iter./Err Time/Iter./Err Time/Iter./Err Time/Iter./Err

2

800 24/2582/0.7799 22/2095/0.7166 17/1574/0.6539 3/ 268/0.4652
1000 40/2308/0.6887 35/1853/0.6347 25/1360/0.5801 3/207/0.3020
2000 117/1469/0.5428 83/1057/0.4981 47/577/0.4255 16/154/0.2304
3000 324/1308/0.4975 231/897/0.4501 103/453/0.3004 45/186/0.2217

5

800 36/3311/1.1901 32/2689/1.0902 24/2043/0.9902 8/633/0.7856
1000 50/2983/0.9033 43/2446/0.8294 33/1883/0.7555 10/591/0.5992
2000 208/1967/0.6210 156/1537/0.5735 110/1062/0.5214 23/210/0.2264
3000 338/1568/0.5510 258/1152/0.5071 148/662/0.4453 78/191/0.2233

Note that Err is counted in units of 10−4. For example, Err = 1 corresponds to
Err = 1×10−4.
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From Tables 1 and 2, we see that the performance of Algorithm 1 is influenced by both α

and p. Generally, a smaller value of α results in better convergence speed and relative error of
Algorithm 1. On the other hand, an increase in p leads to lower convergence speed and relative
error of Algorithm 1.

Additionally, we discover that Algorithm 1 requires more time and number of iterations when
working with large-scale and high-rank matrices. This is because the complexity of the matrix
recovery problem increases with the size and rank of the matrix.

Overall, our experimental data results demonstrate that Algorithm 1 can achieve a lower
relative error and higher convergence speed than the original three-operator splitting algorithm.
This confirms that our proposed algorithm is not only effective but also stable for low-rank
matrix recovery.

4.2. Low-rank image inpainting. In this subsection, we demonstrate the effectiveness of our
algorithm on images of “building” with a size of 517×493.

First, we perform singular value decomposition (SVD) [10, 35, 36] on the image, resulting in
a low-rank image Ir. We then select a set Ω of m entries uniformly at random from all possible
entries, with a sampling ratio of p = m

493×517 .
The main objective is to use the three-operator splitting algorithm and our proposed algorithm

to recover an image of the lowest rank that matches the entries in Ω.
For all experiments, we set the stopping criterion as the relative error between the recovered

image and the original low-rank image being less than 10−5, that is,

Tol :=
‖Xopt− Ir‖F

‖Ir‖F
< 1×10−5,

and the peak-signal-to-noise ratio (PSNR) is used to evaluate the quality of the restored images,
defined by

PSNR = 10log10(
2552

MSE
)

and

MSE =
1

mn

m

∑
i=1

n

∑
j=1

[I1(i, j)−Xopt(i, j)]2,

where m and n are the number of rows and columns of the image and Ir is the real image, and
Xopt is the recovered image.

We carefully selected the optimal parameters for our experiments, taking into account the
matrix rank size r and sampling rate p. The following are the results of our experiments, where
we reconstructed images with 30, 10, and 5 ranks at varying sampling rates (p = 0.8,0.5,0.3).
All results represent the average of five runs.
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TABLE 3. Numerical results of different sampling rates p and the rank r of the
image in terms of CPU time, number of iterations (Iter), and PSNR values.

p r
α = 2 α = 1.6

Time/Iter/PSNR Time/Iter/PSNR

0.8
30 14.7/866/105.86 8.9/519/105.87
10 3.0/378/106.02 1.8/226/106.07
5 2.4/288/106.08 1.4/172/106.27

0.5
30 101.4/4579/105.85 47.8/2754/105.85
10 8.3/1056/105.88 5.2/632/105.89
5 4.5/668/105.90 2.7/400/106.00

0.3
30 890.5/42743/105.85 546.6/25652/105.85
10 25.4/2904/105.88 14.8/1740/105.88
5 9.9/1338/105.91 6.0/802/105.98

(a) original image I (b) r=30

(c) r=10 (d) r=5

FIGURE 4.1. From left to right, these images are the original image and the
images of different rank r obtained by the SVD on the original image with r = 30,
r = 10, and r = 5, respectively.
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Then, we use SVD to obtain an image with r = 30 and sample the image with different
sampling rates: p = 0.8, p = 0.5 and p = 0.3. The images shown from left to right are the
sampled image and the recovered results for α = 2 and α = 1.6, respectively.

(a) p = 0.8 (b) α = 2 (c) α = 1.6

(d) p = 0.5 (e) α = 2 (f) α = 1.6

(g) p = 0.3 (h) α = 2 (i) α = 1.6

FIGURE 4.2. First column: Low-rank images with randomly sampling and a
rank of 30; Second column: Restored images with α = 2; Third column: Re-
stored images with α = 1.6.
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Next, we use SVD to obtain an image with r = 10 and sample the image with different
sampling rates: p = 0.8, p = 0.5 and p = 0.3. The images shown from left to right are the
sampled image and the recovered results for α = 2 and α = 1.6, respectively.

(a) p = 0.8 (b) α = 2 (c) α = 1.6

(d) p = 0.5 (e) α = 2 (f) α = 1.6

(g) p = 0.3 (h) α = 2 (i) α = 1.6

FIGURE 4.3. First column: Low-rank images with randomly sampling and a
rank of 10; Second column: Restored images with α = 2; Third column: Re-
stored images with α = 1.6.

Finally, we use SVD to obtain an image with r = 5 and sample the image with different
sampling rates: p = 0.8, p = 0.5 and p = 0.3. The images shown from left to right are the
recovery results for α = 2 and α = 1.6, respectively.
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(a) p = 0.8 (b) α = 2 (c) α = 1.6

(d) p = 0.5 (e) α = 2 (f) α = 1.6

(g) p = 0.3 (h) α = 2 (i) α = 1.6

FIGURE 4.4. First column: Low-rank images with randomly sampling and a
rank of 5; Second column: Restored images with α = 2; Third column: Restored
images with α = 1.6.

Our experimental results demonstrate that our proposed algorithm performs better than the
three-operator splitting algorithm in recovering low-rank images. Specifically, our algorithm
requires approximately 40% less time and iteration numbers compared to the three-operator
splitting algorithm. Furthermore, when both algorithms meet the same stopping criteria, our al-
gorithm achieves slightly higher PSNR values than the three-operator splitting algorithm. These
findings suggest that our algorithm is not only more efficient and accurate in recovering low-
rank images, but it also has better performance and practicality.
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5. CONCLUSIONS

In this paper, we proposed a parameterized three-operator splitting algorithm to solve (1.1).
We proved that the sequences generated by the proposed algorithm converge to a critical point
of the objective function, assuming that the objective function satisfies the Kurdyka-Łojasiewicz
property. As applications, we employed the proposed algorithm to solve the classical problems
of low-rank matrix recovery and image inpainting. Moreover, we compared our results with
those of the three-operator splitting algorithm and showed that the proposed algorithm exhibits
better performance and efficiency.

Acknowledgments
This work was supported by the National Natural Science Foundations of China (12061045 and
62101418), Research project at Guangzhou University (RC2023061), Guangzhou Education
Scientific Research Project (202315829) and the Jiangxi Provincial Natural Science Foundation
(20224ACB211004).

REFERENCES

[1] S. Huang, T. Tran, Sparse signal recovery via generalized entropy functions minimization, IEEE Trans. Signal
Process. 67 (2017), 1322–1337.

[2] E. Esser, Y. F. Lou, J. Xin, A method for finding structured sparse solutions to nonnegative least squares
problems with applications, SIAM J. Imag. Sci. 6 (2013), 2010–2046

[3] P. Yin, Y. Lou, Q. He, J. Xin, Minimization of l1−2 for compressed sensing, SIAM J. Sci. Comput. 37 (2015),
A536–A563.

[4] Y. Lou, T. Zeng, S. Osher, J. Xin, A weighted difference of anisotropic and isotropic total variation model for
image processing, SIAM J. Imag. Sci. 8 (2015), 1798–1823.

[5] Y. F. Lou, P. H. Yin, Q. He, J. Xin. Computing sparse representation in a highly coherent dictionary based on
difference of l1 and l2, J. Sci. Comput. 64 (2015), 178–196.

[6] H. Zhang, L. Z. Cheng, W. Zhu, A lower bound guaranteeing exact matrix completion via singular value
thresholding algorithm, Appl. Comput. Harmon. Anal. 31 (2011), 454–459.

[7] T. Huang, M. Li, X. Qin, W. Zhu, A CNN-based policy for optimizing continuous action control by learning
state sequences, Neurocomputing, 468 (2022), 286-295.

[8] R. Cabral, F. De la Torre, J. Costeira, A. Bernardino, Unifying nuclear norm and bilinear factorization ap-
proaches for low-rank matrix decomposition, In: IEEE Int. Conf. Comput. Vis. pp. 2488–2495, IEEE, 2013.

[9] R. Meka, P. Jain, I. Dhillon, Guaranteed rank minimization via singular value projection, arXiv:0909.5457,
2009.

[10] J. F. Cai, E. Candès, Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim.
20 (2010), 1956–1982.

[11] P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model.
Simul. 4 (2005), 1168–1200.

[12] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control
Optim. 38 (2000), 431–446.

[13] H. Attouch, J. Bolte, B. F. Svaiter,Convergence of descent methods for semi-algebraic and tame problems:
Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Program.
Ser. A 137 (2013), 91–129.

[14] H. Attouch, J. Bolte, P. Redont, A. Soubeyran. Proximal alternating minimization and projection methods
for nonconvex problems. An approach based on the Kurdyka-Łojasiewicz inequality, Math. Oper. Res. 35
(2013), 438–457.

[15] R. I. Bot, E. R. Csetnek, An inertial tseng’s type proximal algorithm for nonsmooth and nonconvex optimiza-
tion problems, J. Optim. Theory Appl., 171 (2016), 600–616.



A PARAMETERIZED THREE-OPERATOR SPLITTING ALGORITHM 471
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