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SAVIN TREANŢĂ1,2,3, JEN-CHIH YAO4,∗

1Department of Applied Mathematics,
National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania

2Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
3Fundamental Sciences Applied in Engineering - Research Center (SFAI),

National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
4Research Center for Interneural Computing,

China Medical University Hospital, China Medical University, Taichuug, Taiwan

Abstract. In this paper, we state that generalized convexity, invex sets, and the Fréchet differentiability
assumption associated with curvilinear integral type functionals represent some necessary and sufficient
mathematical tools for establishing various connections between the solutions of some robust (weak) vec-
tor commanded variational inequalities and (weak, proper) robust efficient solutions of the corresponding
multi-objective variational control problem. In addition, the physical motivation of the problem under
investigation is formulated in the illustrative application given at the end of this paper.
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1. INTRODUCTION

Over times, in order to investigate the multi-objective (vector) problems in optimization the-
ory, it was needed to introduce the notions of efficient solutions, namely: proper efficient so-
lutions, introduced by Geoffrion [9], improper solutions, studied by Klinger [17], weak mini-
mum, analyzed in some multi-ojective optimization problems with constraints (see Kazmi [15]),
formulating conditions of efficiency for (weakly, properly) approximating efficient points in a
generalized optimization problem (see Ghaznavi-ghosoni and Khorram [10]).

The generalization of convexity was necessary in order to study concrete problems in ap-
plied sciences, or engineering. In this regard, Hanson [12] introduced invexity and, over times,
many other extensions have been formulated (see Ahmad [1], Antczak [2], Arana-Jiménez et
al. [5], and Mishra et al. [22]), namely: univexity, preinvexity, pseudoinvexity, approximate
convexity, quasiinvexity, etc. Moreover, these extended concepts have been considered in the
multi-dimensional optimization problems (Treanţă [28–30]).

Since variational inequalities are useful to model and investigate concrete problems in nat-
ural phenomena, mechanics, engineering, physics, Giannessi [11] analyzed vector variational
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inequalities. Also, since scalar and vector-type variational inequalities can offer the existence of
solutions in scalar and multi-objective optimization problems, a lot of papers investigated these
connections (see [3, 4, 6, 13, 18, 20, 25]). Kim [16] established some results on multi-objective
continuous-time variational program and vector variational inequality. Obviously, (robust) op-
timal control problems can be seen as continuous-time variational problems. In this direction,
Treanţă [26, 27] and Jha et al. [14] have studied efficiency conditions, well-posedness results,
saddle-point criterion, and modified objective function technique in commanded variational
problems with special objective functionals. Very recently, Zeng et al. [31] investigated exis-
tence, convergence and optimal control associated with a class of double phase mixed boundary
value problems. For more details concerning multivalued boundary problems and distributed
optimal control problems, the reader is welcome to consult Liu et al. [19], Migórski et al. [21],
Papageorgiou et al. [23, 24], Colombo and Mingione [7], Farkas and Winkert [8] and the refer-
ences therein.

In the present paper, we introduce a class of robust (weak) vector variational control inequali-
ties and formulate the corresponding multi-objective variational control problem given by curvi-
linear integral type functionals. Under generalized convexity and differentiability hypotheses,
we establish several connections between the two multi-dimensional commanded variational
problems. Compared with the above-mentioned papers in the literature, the main novelty el-
ement in our mathematical framework is the presence of uncertain parameters in the vector
variational control inequalities under study. The extended concept of invex set represents an-
other important element in proving the main results. Also, the curvilinear integral functionals
(mechanical work) are new ingredients in such a mathematical context. Moreover, an illustra-
tive example is presented to justify the outstanding applicability of the paper.

In the following, the paper includes some preliminaries and problem formulation. In Section
3, we state several characterization theorems of the solutions in the robust variational problems
under study. Finally, Section 4 states the conclusions of the current paper.

2. PRELIMINARIES

Let A be a compact set in Rb, and A 3 u = (uξ ), ξ = 1,b, as a multiple variable of evolution.
Let A ⊃ C : u = u(ς),ς ∈ [t0, t1] be a piece-wise differentiable curve joining the following two
multiple variables of evolution u1 = (u1

1, . . . ,u
b
1), u2 = (u1

2, . . . ,u
b
2) in A. Consider Φ is the space

of piece-wise differentiable state functions x : A→ Ra, and Ψ is the space of control functions
y : A→ Rk (piece-wise continuous functions). Also, we define on Φ×Ψ the scalar product

〈(x,y),(π,v)〉=
∫
C
[x(u) ·π(u)+ y(u) · v(u)

]
duξ

=
∫
C

[ a

∑
i=1

xi(u)π i(u)+
k

∑
j=1

y j(u)v j(u)
]
du1

+ · · ·+
[ a

∑
i=1

xi(u)π i(u)+
k

∑
j=1

y j(u)v j(u)
]
dub, ∀(x,y),(π,v) ∈ Φ×Ψ

together with the norm induced by it. Now, let us consider the vector-valued functions γξ =

(γ l
ξ
) : A×Ra×Rk×W →Rn, ξ = 1,b, l = 1,n, of C1-class, and introduce the vector functional
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(curvilinear integrals)

P : Φ×Ψ×W → Rn,

P(x,y;ω) =
∫
C

γξ (u,x(u),y(u),ω)duξ

=

(∫
C

γ
1
ξ
(u,x(u),y(u),ω1)duξ , · · · ,

∫
C

γ
n
ξ
(u,x(u),y(u),ωn)duξ

)
,

where Rn ⊃W =W1×W2×·· ·×Wn are convex compact sets containing the uncertain parame-
ters ω = (ωl), l = 1,n. Further, let Dρ , ρ ∈ {1, . . . ,b}, denote the operator associated with the

total derivative, and we assume that the 1-form densities γξ =
(

γ1
ξ
, . . . ,γn

ξ

)
: A×Ra×Rk×W →

Rn, ξ = 1,b, satisfy Dργ l
ξ
= Dξ γ l

ρ , ξ ,ρ = 1,b, ξ 6= ρ, l = 1,n. Also, we assume the following

rules: ζ = η⇔ ζ l = η l, ζ ≤ η⇔ ζ l ≤ η l, ζ < η⇔ ζ l < η l, ζ � η⇔ ζ ≤ η , ζ 6= η , l = 1,n,
for any ζ =

(
ζ 1, · · · ,ζ n) and η =

(
η1, · · · ,ηn) in Rn.

Next, we introduce the following vector commanded variational problem with partial differ-
ential equation constraints and data uncertainty in the objective (cost) functional

(V P) min
(x,y;ω)

{
P(x,y;ω) =

∫
C

γξ (u,x(u),y(u),ω)duξ

}
subject to (x,y) ∈ Sol,

where

P(x,y;ω) =
∫
C

γξ (u,x(u),y(u),ω)duξ =
(
P1(x,y;ω1), · · · ,Pn(x,y;ωn)

)
and Sol = {(x,y) ∈Φ×Ψ | xi

ρ(u) := ∂xi

∂uρ (u) = H i
ρ (u,x(u),y(u)) , F (u,x(u),y(u))≤ 0,x|u=u1,u2

= given, ω ∈W}. In the definition of Sol, we have considered that the C1-class functions Hρ =

(H i
ρ) : A×Ra×Rk→ Ra, i = 1,a, ρ = 1,b, define the following partial differential equations

of evolution xi
ρ(u) = H i

ρ (u,x(u),y(u)) , i = 1,a and ρ = 1,b and verify the closeness relations
Dξ H i

ρ = DρH i
ξ
, ρ,ξ = 1,b, ρ 6= ξ , i = 1,a. Also, we assume that F = (Fr) : A×Ra×Rk→

Rq, r = 1,q, are functions of C1-class.
The associated robust counterpart of the multi-dimensional multi-objective optimization prob-

lem (V P) is defined as:

(RV P) min
(x,y)

∫
C

max
ω∈W

γξ (u,x(u),y(u),ω)duξ subject to (x,y) ∈ Sol,

where ∫
C

max
ω∈W

γξ (u,x(u),y(u),ω)duξ

=

(∫
C

max
ω1∈W1

γ
1
ξ
(u,x(u),y(u),ω1)duξ , · · · ,

∫
C

max
ωn∈Wn

γ
n
ξ
(u,x(u),y(u),ωn)duξ

)
=

(
max

ω1∈W1
P1(x,y;ω1), ..., max

ωn∈Wn
Pn(x,y;ωn)

)
.

The set of all feasible solutions Sol in (RV P) is called the robust feasible solution set to
the problem (V P). By the robust solution associated to (V P), we mean a robust feasible point
(solution) that simultaneously minimizes all objective functions Pl(x,y;ωl), l = 1,n. In this
regard, we consider the following types of solutions for the study of (V P).
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Definition 2.1. A point (x0,y0)∈ Sol is a robust efficient solution in (V P) if there exists no other
(x,y) ∈ Sol such that max

ω∈W
P(x,y;ω) � max

ω∈W
P(x0,y0;ω), or, equivalently, max

ωl∈Wl
Pl(x,y;ωl)−

max
ωl∈Wl

Pl(x0,y0;ωl)≤ 0, ∀l = 1,n, with ”<” for at least one l, where we used the notation

max
ω∈W

P(x,y;ω) :=
∫
C

max
ω∈W

γξ (u,x(u),y(u),ω)duξ .

Definition 2.2. The pair (x0,y0) ∈ Sol is a proper robust efficient solution of (V P) if (x0,y0) ∈
Sol is a robust efficient solution in (V P) and, for all l = 1,n, there exists a positive real number
M satisfying

max
ωl∈Wl

Pl(x0,y0;ωl)− max
ωl∈Wl

Pl(x,y;ωl)≤M
(

max
ωs∈Ws

Ps(x,y;ωs)− max
ωs∈Ws

Ps(x0,y0;ωs)

)
,

for some s ∈ {1, · · · ,n} such that maxωs∈Ws Ps(x,y;ωs) > maxωs∈Ws Ps(x0,y0;ωs), whenever
(x,y) ∈ Sol and maxωl∈Wl Pl(x,y;ωl)< maxωl∈Wl Pl(x0,y0;ωl).

Definition 2.3. A point (x0,y0) ∈ Sol is a weak robust efficient solution in (V P) if there ex-
ists no other (x,y) ∈ Sol satisfying max

ω∈W
P(x,y;ω) < max

ω∈W
P(x0,y0;ω), or max

ωl∈Wl
Pl(x,y;ωl)−

max
ωl∈Wl

Pl(x0,y0;ωl)< 0, ∀l = 1,n.

Next, we define a vector uncertain functional

K : Φ×Ψ×W → Rn, K (x,y;ω) =
∫
C

κξ

(
u,x(u),xρ(u),y(u),ω

)
duξ

and introduce the concepts of invexity and pseudoinvexity for K.

Definition 2.4. The functional K is invex at
(
x0,y0) ∈ Φ×Ψ with respect to ϕ and χ if there

exist
ϕ : A×Ra×Rk×Ra×Rk→ Ra,

ϕ = ϕ
(
u,x(u),y(u),x0(u),y0(u)

)
=
(
ϕ

i (u,x(u),y(u),x0(u),y0(u)
))

, i = 1,a,

of C1-class with ϕ
(
u,x0(u),y0(u),x0(u),y0(u)

)
= 0, ∀u ∈ A, ϕ|u=u1,u2 = 0, and

χ : A×Ra×Rk×Ra×Rk→ Rk,

χ = χ
(
u,x(u),y(u),x0(u),y0(u)

)
=
(
χ

j (u,x(u),y(u),x0(u),y0(u)
))

, j = 1,k,

of C0-class with χ
(
u,x0(u),y0(u),x0(u),y0(u)

)
= 0, ∀u ∈ A, χ|u=u1,u2 = 0, satisfying

K (x,y;ω)−K
(
x0,y0;ω

)
≥
∫
C

[
∂κξ

∂x

(
u,x0(u),x0

ρ(u),y
0(u),ω

)
ϕ +

∂κξ

∂σρ

(
u,x0(u),x0

ρ(u),y
0(u),ω

)
Dρϕ

]
duξ

+
∫
C

[
∂κξ

∂y

(
u,x0(u),x0

ρ(u),y
0(u),ω

)
χ

]
duξ ,

for any (x,y) ∈ Φ×Ψ.

Definition 2.5. If we replace ≥ with >, for (x,y) 6=
(
x0,y0), we obtain strictly invexity at(

x0,y0) ∈ Φ×Ψ with respect to ϕ and χ of K.
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Definition 2.6. The functional K is pseudoinvex at
(
x0,y0) ∈ Φ×Ψ with respect to ϕ and χ if

there exist
ϕ : A×Ra×Rk×Ra×Rk→ Ra,

ϕ = ϕ
(
u,x(u),y(u),x0(u),y0(u)

)
=
(
ϕ

i (u,x(u),y(u),x0(u),y0(u)
))

, i = 1,a,

of C1-class with ϕ
(
u,x0(u),y0(u),x0(u),y0(u)

)
= 0, ∀u ∈ A, ϕ|u=u1,u2 = 0, and

χ : A×Ra×Rk×Ra×Rk→ Rk,

χ = χ
(
u,x(u),y(u),x0(u),y0(u)

)
=
(
χ

j (u,x(u),y(u),x0(u),y0(u)
))

, j = 1,k,

of C0-class with χ
(
u,x0(u),y0(u),x0(u),y0(u)

)
= 0, ∀u ∈ A, χ|u=u1,u2 = 0, satisfying

K (x,y;ω)−K
(
x0,y0;ω

)
< 0

⇒
∫
C

[
∂κξ

∂x

(
u,x0(u),x0

ρ(u),y
0(u),ω

)
ϕ +

∂κξ

∂σρ

(
u,x0(u),x0

ρ(u),y
0(u),ω

)
Dρϕ

]
duξ

+
∫
C

[
∂κξ

∂y

(
u,x0(u),x0

ρ(u),y
0(u),ω

)
χ

]
duξ < 0,

or, ∫
C

[
∂κξ

∂x

(
u,x0(u),x0

ρ(u),y
0(u),ω

)
ϕ +

∂κξ

∂σρ

(
u,x0(u),x0

ρ(u),y
0(u),ω

)
Dρϕ

]
duξ

+
∫
C

[
∂κξ

∂y

(
u,x0(u),x0

ρ(u),y
0(u),ω

)
χ

]
duξ ≥ 0⇒ K (x,y;ω)−K

(
x0,y0;ω

)
≥ 0,

for any (x,y) ∈ Φ×Ψ.

The next definition is very important in our investigation. It represents a key element in
proving the main results derived in the current paper.

Definition 2.7. The subset /0 6= X×U ⊂ Φ×Ψ is named invex with respect to ϕ and χ if
(x0,y0)+θ

(
ϕ
(
u,x,y,x0,y0) ,χ (u,x,y,x0,y0)) ∈ X×U, for all (x,y), (x0,y0) ∈ X×U and θ ∈

[0,1].

Now, for obtaining some existence results for problem (V P), we define the following robust
(weak) vector variational control inequalities:

I. For max
ω∈W

P(x,y;ω) = P(x,y;ω), find (x0,y0) ∈ Sol such that there exists no (x,y) ∈ Sol

satisfying

(V I)
(∫

C

[
∂γ1

ξ

∂x

(
u,x0(u),y0(u),ω1

)
ϕ +

∂γ1
ξ

∂y

(
u,x0(u),y0(u),ω1

)
χ

]
duξ , · · · ,

∫
C

[
∂γn

ξ

∂x

(
u,x0(u),y0(u),ωn

)
ϕϕ +

∂γn
ξ

∂y

(
u,x0(u),y0(u),ωn

)
χ

]
duξ

)
≤ 0;

II. For max
ω∈W

P(x,y;ω) = P(x,y;ω), find (x0,y0) ∈ Sol such that there exists no (x,y) ∈ Sol

satisfying

(WV I)
(∫

C

[
∂γ1

ξ

∂x

(
u,x0(u),y0(u),ω1

)
ϕ +

∂γ1
ξ

∂y

(
u,x0(u),y0(u),ω1

)
χ

]
duξ , · · · ,
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C

[
∂γn

ξ

∂x

(
u,x0(u),y0(u),ωn

)
ϕ +

∂γn
ξ

∂y

(
u,x0(u),y0(u),ωn

)
χ

]
duξ )

)
< 0.

3. MAIN RESULTS

In the following, we establish some connections between (V P), (V I), and (WV I). In this
regard, we start with the next result.

Theorem 3.1. Consider Sol ⊂ Φ×Ψ an invex set (related to ϕ and χ). Suppose that (x0,y0) ∈
Sol is a proper robust efficient solution in (V P), and each integral

∫
C γ l

ξ
(u,x(u),y(u),ω l)duξ ,

l = 1,n, is Fréchet differentiable at (x0,y0) ∈ Sol. Then the pair (x0,y0) solves (V I).

Proof. By reductio ad absurdum, we consider that (x0,y0) ∈ Sol is a proper robust efficient
solution to (V P) and it does not satisfy (V I). Then, for all l = 1,n, there exists (x,y) ∈ Sol
satisfying ∫

C

[
∂γ l

ξ

∂x

(
u,x0(u),y0(u),ω l

)
ϕ +

∂γ l
ξ

∂y

(
u,x0(u),y0(u),ω l

)
χ

]
duξ < 0 (3.1)

and, for s 6= l,∫
C

[
∂γs

ξ

∂x

(
u,x0(u),y0(u),ωs

)
ϕ +

∂γs
ξ

∂y

(
u,x0(u),y0(u),ωs

)
χ

]
duξ ≤ 0. (3.2)

Since Sol ⊂ Φ×Ψ is an invex set (by hypothesis), we consider

(z,w) = (x0,y0)+θa
(
ϕ
(
u,x,y,x0,y0) ,χ (u,x,y,x0,y0)) ∈ Sol, ∀a,

for some sequence {θa} of positive real numbers, satisfying θa→ 0 as a→ ∞. Further, since
each curvilinear integral

∫
C γ l

ξ
(u,x(u),y(u),ω l)duξ , l = 1,n, is Fréchet differentiable at (x0,y0)∈

Sol, we have

Pl(z,w;ω l)−Pl(x0,y0;ω l)

=
∫
C

θa

[
∂γ l

ξ

∂x

(
u,x0(u),y0(u),ω l

)
ϕ +

∂γ l
ξ

∂y

(
u,x0(u),y0(u),ω l

)
χ

]
duξ

+ ‖ θa
(
ϕ
(
u,x,y,x0,y0) ,χ (u,x,y,x0,y0)) ‖ ·Gl(z,w),

(3.3)

where Gl : V(x0,y0)→R is a continuous function defined on V(x0,y0) (a neighborhood of (x0,y0)),
with lima→∞ Gl(z,w) = 0. Now, by dividing (3.3) with θa and considering the limit, it results

lim
a→∞

1
θa

[
Pl(z,w;ω l)−Pl(x0,y0;ω l)

]
=
∫
C

[
∂γ l

ξ

∂x

(
u,x0(u),y0(u),ω l

)
ϕ +

∂γ l
ξ

∂y

(
u,x0(u),y0(u),ω l

)
χ

]
duξ .

(3.4)

By (3.1) and (3.4), we obtain Pl(z,w;ω l)−Pl(x0,y0;ω l)< 0, for some a≥ N (see N as a natu-
ral number). Let (x0,y0) ∈ Sol be a proper robust efficient solution in (V P). Now, we consider
the following nonempty set B =

{
s ∈ {1, · · · ,n} | Ps(x0,y0;ωs)−Ps(z,w;ωs)≤ 0, ∀a≥ N

}
.
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For s ∈ B,taking into account the Fréchet differentiability of
∫
C γs

ξ
(u,x(u),y(u),ωs)duξ at

(x0,y0) ∈ Sol, we obtain

Ps(z,w;ωs)−Ps(x0,y0;ωs)

=
∫
C

θa

[
∂γs

ξ

∂x

(
u,x0(u),y0(u),ωs

)
ϕ +

∂γs
ξ

∂y

(
u,x0(u),y0(u),ωs

)
χ

]
duξ

+ ‖ θa
(
ϕ
(
u,x,y,x0,y0) ,χ (u,x,y,x0,y0)) ‖ ·Gs(z,w),

(3.5)

where Gs : V(x0,y0)→ R is a continuous function on V(x0,y0), with lima→∞ Gs(z,w) = 0. Also, by
dividing (3.5) with θa, and computing the limit, we conclude that

lim
a→∞

1
θa

[
Ps(z,w;ωs)−Ps(x0,y0;ωs)

]
=
∫
C

[
∂γs

ξ

∂x

(
u,x0(u),y0(u),ωs

)
ϕϕ +

∂γs
ξ

∂y

(
u,x0(u),y0(u),ωs

)
χ

]
duξ .

For a≥ N, by considering the set B, we obtain∫
C

[
∂γs

ξ

∂x

(
u,x0(u),y0(u),ωs

)
ϕ +

∂γs
ξ

∂y

(
u,x0(u),y0(u),ωs

)
χ

]
duξ ≥ 0. (3.6)

Further, it follows from (3.2) and (3.6) that∫
C

[
∂γs

ξ

∂x

(
u,x0(u),y0(u),ωs

)
ϕ +

∂γs
ξ

∂y

(
u,x0(u),y0(u),ωs

)
χ

]
duξ = 0

for some a≥ N, and s 6= l, s ∈B.

Now, for s 6= l, s∈B, we find that
1

θa [P
l(x0,y0;ω l)−Pl(z,w;ω l)]

1
θa [P

s(z,w;ωs)−Ps(x0,y0;ωs)]
→∞ as a→∞, which contradicts

the proper efficiency of (x0,y0) in (V P). The proof is now complete. �

From the vector variational commanded inequality (V I), a charaterization result of robust
efficient solutions in (V P) can be formulated below.

Theorem 3.2. Let (x0,y0)∈ Sol be a solution to (V I), and let each curvilinear integral
∫
C γ l

ξ
(u,x(u),

y(u),ω l)duξ , l = 1,n, be Fréchet differentiable and invex at (x0,y0)∈ Sol with respect to ϕ and
χ . Then the pair (x0,y0) is a robust efficient solution in (V P).

Proof. By means of contradiction, we consider that (x0,y0) ∈ Sol is a solution to (V I), but it is
not a robust efficient solution in (V P). Thus, for all l = 1,n, there exists (x,y) ∈ Sol satisfying

Pl(x,y;ω l)−Pl(x0,y0;ω l)≤ 0, (3.7)

with < for at least one l. Since the curvilinear integrals
∫
C γ l

ξ
(u,x(u),y(u),ω l)duξ , l = 1,n, are

Fréchet differentiable and invex at (x0,y0) ∈ Sol with respect to ϕ and χ , we have

Pl(x,y;ω l)−Pl(x0,y0;ω l)

≥
∫
C

[
∂γ l

ξ

∂x

(
u,x0(u),y0(u),ω l

)
ϕ +

∂γ l
ξ

∂y

(
u,x0(u),y0(u),ω l

)
χ

]
duξ ,

(3.8)
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for any (x,y) ∈ Sol and l = 1,n. Combining (3.7) and (3.8), for all l = 1,n, we find that there
exists (x,y) ∈ Sol satisfying∫

C

[
∂γ l

ξ

∂x

(
u,x0(u),y0(u),ω l

)
ϕ +

∂γ l
ξ

∂y

(
u,x0(u),y0(u),ω l

)
χ

]
duξ ≤ 0,

with < for at least one l, which contradicts that (x0,y0) ∈ Sol is solution in (V I). �

Further, a sufficient condition for a pair (x0,y0) ∈ Sol to be a solution of (WV I) is stated in
the following result.

Theorem 3.3. Consider Sol ⊂ Φ×Ψ an invex set. Suppose that (x0,y0) ∈ Sol is a weak robust
efficient solution of (V P), and each curvilinear integral

∫
C γ l

ξ
(u,x(u),y(u),ω l)duξ , l = 1,n, is

Fréchet differentiable at (x0,y0) ∈ Sol. Then (x0,y0) solves (WV I).

Proof. Since (x0,y0)∈ Sol is a weak robust efficient solution in (V P), it follows that there exists
no other (x,y) ∈ Sol satisfying P(x,y;ω)< P(x0,y0;ω), or

Pl(x,y;ω l)−Pl(x0,y0;ω l)< 0, ∀l = 1,n. (3.9)

Further, since (by hypothesis) Sol ⊂ Φ×Ψ is an invex set, for θ ∈ [0,1], we obtain (z,w) =
(x0,y0)+ θ

(
ϕ
(
u,x,y,x0,y0) ,χ (u,x,y,x0,y0)) ∈ Sol. Thus, by using (3.9), we see that there

exists no other feasible solution (x,y)∈ Sol such that P(z,w;ω)<P(x0,y0;ω l), or, equivalently,

Pl(z,w;ω l)−Pl(x0,y0;ω l)< 0, ∀l = 1,n. (3.10)

Also, since the curvilinear integrals
∫
C γ l

ξ
(u,x(u),y(u),ω l)duξ , l = 1,n, are Fréchet differen-

tiable at (x0,y0) ∈ Sol and, we conclude by (3.10) that there exists no other (x,y) ∈ Sol such
that ∫

C

[
∂γ l

ξ

∂x

(
u,x0(u),y0(u),ω l

)
ϕ +

∂γ l
ξ

∂y

(
u,x0(u),y0(u),ω l

)
χ

]
duξ < 0,

for any l = 1,n. �

Taking into account the weak vector variational commanded inequality (WV I), we see that
the following theorem provides a charaterization of weak robust efficient solutions in (V P).

Theorem 3.4. Consider (x0,y0) ∈ Sol a solution in (WV I), and suppose that each curvilin-
ear integral

∫
C γ l

ξ
(u,x(u),y(u),ω l)duξ , l = 1,n, is Fréchet differentiable and pseudoinvex at

(x0,y0) ∈ Sol with respect to ϕ and χ . Then (x0,y0) is a weak robust efficient solution in (V P).

Proof. By means of contradiction, we consider that (x0,y0) ∈ Sol is a solution of (WV I) but it
is not a weak robust efficient solution of (V P). In consequence, there exists (x,y) ∈ Sol such
that, for all l = 1,n, Pl(x,y;ω l)−Pl(x0,y0;ω l) < 0. By hypothesis, each curvilinear integral∫
C

γ
l
ξ
(u,x(u),y(u),ω l)duξ , l = 1,n, is Fréchet differentiable and pseudoinvex at (x0,y0) ∈ Sol

with respect to ϕ and χ . Therefore, we obtain∫
C

[
∂γ l

ξ

∂x

(
u,x0(u),y0(u),ω l

)
ϕ +

∂γ l
ξ

∂y

(
u,x0(u),y0(u),ω l

)
χ

]
duξ < 0,

for any (x,y)∈ Sol and l = 1,n, which contradicts that (x0,y0)∈ Sol is a solution of (WV I). �
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The next result formulates a sufficient condition for a weak robust efficient solution (x0,y0)∈
Sol in (V P) to be a robust efficient solution (x0,y0) ∈ Sol in (V P).

Theorem 3.5. Suppose that (x0,y0) ∈ Sol is a weak robust efficient solution in (V P), and each

curvilinear integral
∫
C

γ
l
ξ
(u,x(u),y(u),ω l)duξ , l = 1,n, is Fréchet differentiable and strictly

invex at (x0,y0) ∈ Sol with respect to ϕ and χ and Sol is an invex set with respect to ϕ and χ .
Then (x0,y0) is robust efficient solution in (V P).

Proof. By contradiction, we assume that (x0,y0) ∈ Sol is a weak robust efficient solution in
(V P), but (x0,y0) ∈ Sol is not a robust efficient solution in (V P). Thus, there exists (x,y) ∈ Sol
with P(x,y;ω)� P(x0,y0;ω), or

Pl(x,y;ω l)−Pl(x0,y0;ω l)≤ 0, ∀l = 1,n, (3.11)

with < for at least one l. Since each curvilinear integral
∫
C γ l

ξ
(u,x(u),y(u),ω l)duξ , l = 1,n, is

Fréchet differentiable and strictly invex at (x0,y0) ∈ Sol with respect to ϕ and χ , we obtain

Pl(x,y;ω l)−Pl(x0,y0;ω l)

>
∫
C

[
∂γ l

ξ

∂x

(
u,x0(u),y0(u),ω l

)
ϕ +

∂γ l
ξ

∂y

(
u,x0(u),y0(u),ω l

)
χ

]
duξ ,

for any (x,y) 6= (x0,y0) ∈ Sol and l = 1,n, which together with (3.11) yields that there exists
(x,y) ∈ Sol satisfying∫

C

[
∂γ l

ξ

∂x

(
u,x0(u),y0(u),ω l

)
ϕ +

∂γ l
ξ

∂y

(
u,x0(u),y0(u),ω l

)
χ

]
duξ < 0,

for all l = 1,n. Consequently, (x0,y0) ∈ Sol is not a solution in (WV I). In accordance with
Theorem 3.3, it follows that (x0,y0) ∈ Sol is not a weak robust efficient solution in (V P). �

In the next example, we formulate a concrete problem that can be solved exclusively by using
the theoretical results derived in this paper.

Example 3.1. Let us extremize the mechanical work accomplished by the variable force

V̄
(

ω1e−y(u)+
1
2
, ω2ex(u)

)
to move the application point along a piecewise differentiable curve C, contained in [0,1]2 =
[0,1]× [0,1] and linking u1 = (0,0) and u2 = (1,1), with (ω1,ω2) ∈ [1,2]× [1

2 ,1], such that the
following controlled dynamic system

∂x
∂u1 (u) =

∂x
∂u2 (u) = y(u),

1− ex(u)+x2(u) ≤ 0,

ey(u)−2+ ey2(u) ≤ 0,
x|u=u1,u2 = 0

is satisfied with respect to ϕ = e(x
0)2(u)−ex2(u), ∀u∈ [0,1]2\{u1,u2} and ϕ = 0 for u∈ {u1,u2},

and χ = e(y
0)2(u)− ey2(u), ∀u ∈ [0,1]2 \{u1,u2} and χ = 0 for u ∈ {u1,u2}.
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In order to solve the above practical problem, we consider b = n = q = 2, a = k = 1, A =
[0,1]2 = [0,1]× [0,1], and W = W1×W2 = [1,2]× [1

2 ,1]. Also, we assume that x,y : A→ R+

are piecewise differentiable functions with ∂x
∂u1 (u) = ∂x

∂u2 (u) = y(u), 1− ex(u)+x2(u) ≤ 0, ey(u)−
2+ ey2(u) ≤ 0, x|u=u1,u2 = 0, and ϕ,χ : A×R4 → R are given by ϕ = e(x

0)2(u)− ex2(u), ∀u ∈
A\{u1,u2} and ϕ = 0 for u∈ {u1,u2}, and χ = e(y

0)2(u)−ey2(u), ∀u∈ A\{u1,u2} and χ = 0 for
u ∈ {u1,u2}. Define the following robust Lagrange type densities γξ = (γ1

ξ
,γ2

ξ
) : A×R2×W →

R2, where ξ = 1,2 as below

γ
1
ξ
(u,x(u),y(u),ω1) = ω1e−y(u)+

1
2
, γ

2
ξ
(u,x(u),y(u),ω2) = ω2ex(u).

Now, we consider the following vector variational control problem with partial differential
equation constraints and uncertain data

(V P1) min
(x,y;ω)

∫
C

γξ (u,x(u),y(u),ω)duξ ,

with∫
C

γξ (u,x(u),y(u),ω)duξ =

(∫
C

γ
1
ξ
(u,x(u),y(u),ω1)duξ ,

∫
C

γ
2
ξ
(u,x(u),y(u),ω2)duξ

)
=
(
P1(x,y;ω1),P2(x,y;ω2)

)
and subject to the above mentioned constraints. The corresponding robust counterpart is given
by

(RV P1) min
(x,y)

∫
C

max
ω∈W

γξ (u,x(u),y(u),ω)duξ ,

with ∫
C

max
ω∈W

γξ (u,x(u),y(u),ω)duξ

=

(∫
C

max
ω1∈W1

γ
1
ξ
(u,x(u),y(u),ω1)duξ ,

∫
C

max
ω2∈W2

γ
2
ξ
(u,x(u),y(u),ω2)duξ

)
=

(
max

ω1∈W1
P1(x,y;ω1), max

ω2∈W2
P2(x,y;ω2)

)
and subject to the above constraints. Obviously,

P(x,y;ω) =
∫
C

γξ (u,x(u),y(u),ω)duξ

=

(∫
C

γ
1
ξ
(u,x(u),y(u),ω1)duξ ,

∫
C

γ
2
ξ
(u,x(u),y(u),ω2)duξ

)
is Fréchet differentiable at (x0,y0) = (0,0). Moreover, it can be verified that each curvilinear
integral

∫
C γ l

ξ
(u,x(u),y(u),ωl)duξ , l = 1,2, is invex at (x0,y0) = (0,0) with respect to ϕ and

χ .
Further, we can easily see that (x0,y0) = (0,0) is a solution for (V I). Indeed, we have(∫

C

[
∂γ1

ξ

∂x

(
u,x0(u),y0(u),ω1

)
ϕ +

∂γ1
ξ

∂y

(
u,x0(u),y0(u),ω1

)
χ

]
duξ ,
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∫
C

[
∂γ2

ξ

∂x

(
u,x0(u),y0(u),ω2

)
ϕ +

∂γ2
ξ

∂y

(
u,x0(u),y0(u),ω2

)
χ

]
duξ

)
=
(∫

C
2e−y(u)

(
ey2(u)−1

)
duξ ,

∫
C

ex(u)
(

1− ex2(u)
)

duξ

)
� (0,0),

for all piecewise differentiable functions x,y : A→R+. Therefore, by Theorem 3.2, we get that
(x0,y0) is a robust efficient solution of (V P1).

Now, by direct computation, we find

P1(x,y;ω1)−P1(x0,y0;ω1) =
∫
C

γ
1
ξ
(u,x(u),y(u),ω1)duξ −

∫
C

γ
1
ξ

(
u,x0(u),y0(u),ω1

)
duξ

=
∫
C

(
ω1e−y(u)+

1
2

)
duξ −

∫
C

(
ω1 +

1
2

)
duξ

=
∫
C

ω1

(
e−y(u)−1

)
duξ < 0,

for all piecewise differentiable functions y : A→ R+ \{0} and ω1 ∈ [1,2].
On the other hand, we have

P2(x,y;ω2)−P2(x0,y0;ω2)

=
∫
C

γ
2
ξ
(u,x(u),y(u),ω2)duξ −

∫
C

γ
2
ξ

(
u,x0(u),y0(u),ω2

)
duξ

=
∫
C

ω2

(
ex(u)−1

)
duξ > 0,

for all piecewise differentiable functions x : A→ R+ \{0} and ω2 ∈ [1
2 ,1]. Since, for (x0,y0) =

(0,0), there exists M = 1 satisfying∫
C

γ
1
ξ

(
u,x0(u),y0,ω1(u)

)
duξ −

∫
C

γ
1
ξ
(u,x(u),y(u),ω1)duξ

≤M
(∫

C
γ

2
ξ
(u,x(u),y(u),ω2)duξ −

∫
C

γ
2
ξ

(
u,x0(u),y0(u),ω2

)
duξ

)
,

we conclude that (x0,y0) = (0,0) is a proper robust efficient solution of (V P1).

4. CONCLUSIONS

In this paper, we formulated and proved various connections between the solutions of some
robust (weak) vector commanded variational inequalities and (weak, proper) robust efficient
solutions associated with the corresponding class of multi-objective variational control prob-
lems defined by curvilinear integral type functionals. A very important role in establishing the
principal theoretical results was the notion of invex set with respect to some functions. More-
over, the generalized convexity and Fréchet type differentiability hypotheses of the considered
functionals played a crucial role. Finally, the applicability and effectiveness of the proposed
methods were illustrated by an example from physics.
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