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Abstract. In the theory of Banach spaces, the normalized duality mapping assumes a pivotal role.
The analytic depiction of this mapping holds paramount significance in the associated analysis. Given
that Bochner spaces serve as foundational underpinnings in stochastic variational analysis and stochas-
tic optimizations, delving into the analytic representations of the normalized duality mapping becomes
imperative, especially in uniformly convex and uniformly smooth Bochner spaces. The study of the
analytic representations of normalized duality mapping contributes to our understanding of various geo-
metric properties inherent in Bochner spaces. Leveraging the analytic representation of the normalized
duality mapping, we establish and substantiate certain non-convex properties linked to this mapping in
uniformly convex and uniformly smooth Bochner spaces.
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1. INTRODUCTION

Let X be a real Banach space with X∗ as its topological dual. We denote the norm in X
by ‖ · ‖X and the norm in X∗ by ‖ · ‖X∗ . The duality pairing between X and X∗ is denoted by
〈·, ·〉. We denote the origin in X by θX , often dropping the subscript for simplicity. The concept
of the duality pairing in a Banach space in geometric form was introduced by Beurling and
Livingston [3] in 1962, marking a pioneering contribution to the field. On the other hand, by
the Hahn-Banach theorem, there exists at least one ϕ ∈ X∗ such that 〈ϕ,x〉= ‖ϕ‖X∗‖x‖X . The
nomalized duality mapping, which, in general, is a set-valued map JX : X→ 2X∗\{ /0}, is defined
by

JX x = {ϕ ∈ X∗ : 〈ϕ,x〉= ‖x‖2
X = ‖ϕ‖2

X∗} for every x ∈ X . (1.1)

The normalized duality map boasts numerous advantageous properties (see, e.g., [3, 12–14, 16,
17, 21, 24]) several of which we compile for convenient reference in the subsequent section.
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There is an intimate connection between the geometric attributes of a Banach space X and the
analytic characteristics of its associated normalized duality mapping JX . This mapping holds
substantial importance in both projection theory and approximation theory in Banach spaces.

For example, in [1, 2], the authors utilized the normalized duality mapping JX to formulate
generalized projections and generalized metric projections in uniformly convex and uniformly
smooth Banach spaces. In [16], Li employed the normalized duality mapping JX to extend
these concepts from uniformly convex and uniformly smooth Banach spaces to reflexive Ba-
nach spaces. Furthermore, Khan, Li, and Reich [14] extended these projection techniques to
general Banach spaces by leveraging the normalized duality mapping. The normalized duality
mapping has served as a primary tool in various studies, as evidenced in [1, 2, 5, 11, 20, 21],
where it was employed to investigate fixed-point approximation problems and assess the con-
tinuity of metric and generalized metric projections within uniformly convex and uniformly
smooth Banach spaces. In Hilbert spaces, the metric projection operator adheres to the basic
variational principle, which can be considered as the fundamental theorem of projection theory
in Hilbert spaces; see [7, Chapter 3]. To extend such a crucial principle to projections in Banach
spaces, the normalized duality mapping JX assumes a pivotal role in establishing basic varia-
tional principles for both projection and generalized projections in Banach spaces, as detailed
in [1, 2, 6, 10, 14, 16].

This research focuses on Bochner spaces which are commonly regarded as specialized Ba-
nach spaces, and their definitions and basic properties can be found in [9, 19, 23]. Numerous
authors explored the geometric characteristics of Bochner spaces (see, e.g., [4, 5, 15]), as well
as the interconnections between the geometric properties of Bochner spaces and the underly-
ing Banach spaces defining them (see, e.g., [8, 15, 18, 22]). Conversely, Banach spaces can be
viewed as specific instances of Bochner spaces concerning certain measure spaces.

Given the pivotal role of the normalized duality mapping in Banach space, particularly its util-
ity in projection theory, approximation theory, and variational inequalities in Bochner spaces,
this paper seeks to investigate the properties of the normalized duality mapping in uniformly
convex and uniformly smooth Bochner spaces.

The contents of this paper are organized as follows: In Section 2, we provide a review of
the properties of the normalized duality mapping in uniformly convex and uniformly smooth
Bochner spaces alongside some non-convex properties established in [13]. Additionally, we re-
visit the definitions and fundamental properties of Bochner spaces, encompassing simple func-
tions in Bochner spaces. Section 3 delves into the analytical representations of the normalized
duality mapping in uniformly convex and uniformly smooth Bochner spaces. Section 4 ex-
plores various properties and analytical representations of the normalized duality mapping in
multiple Bochner spaces. In Section 5, we leverage the normalized duality mapping to examine
the geometric properties of both Bochner spaces and multiple Bochner spaces. We employ the
representations of the normalized duality mapping in uniformly convex and uniformly smooth
Bochner spaces to establish some non-convex properties related to the normalized duality map-
ping.

2. PRELIMINARIES

2.1. The normalized duality map and Projections in Banach spaces. We begin with recall-
ing that, in a uniformly convex and uniformly smooth Banach space X , the normalized duality
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mapping JX : X → X∗ is single-valued, one-to-one and onto, homogeneous, continuous and
uniformly continuous on bounded sets; see [7].

Let X be a uniformly convex and uniformly smooth Banach space, and let C 6= /0 be a closed,
and convex subset of X . The metric projection PC : X →C is a single-valued map given by

‖x−PCx‖X ≤ ‖x− z‖X for all z ∈C.

It is known that PC : X →C is a continuous map that enjoys the following variational character-
ization:

u = PC(x) ⇐⇒ 〈JX(x−u),u− z〉 ≥ 0 for all z ∈C. (2.1)

The generalized projection πC : X∗ → C is a single-valued map that satisfies V (ψ,πCψ) =
infy∈C V (ψ,y) for any ψ ∈ X∗, where V : X∗×X →R is a Lyapunov function by the following
formula:

V (ψ,x) = ‖ψ‖2
X∗−2〈ψ,x〉+‖x‖2

X for any ψ ∈ X∗, x ∈ X .

The generalized projection πC : X∗→C enjoys the following variational characterization: For
any ψ ∈ X∗ and y ∈C,

y = πC(ψ) ⇐⇒ 〈ψ− JX y,y− z〉 ≥ 0 for all z ∈C. (2.2)

The generalized metric projection ΠC : X →C is defined by

ΠCx := πC(JX x) for any x ∈ X ,

πC(ϕ) := ΠC(JX∗ϕ) for any ϕ ∈ X∗.

The generalized metric projection ΠC : X →C satisfies the following variational characteriza-
tion: For any x ∈ X and y ∈C,

y = ΠC(x) ⇐⇒ 〈JX x− JX y,y− z〉 ≥ 0 for all z ∈C. (2.3)

In general ΠC 6= PC. However, the notions (2.1), (2.2), and (2.3) coincide in a Hilbert space.
By the variational characterizations given above, the problems involved with PC, πC, and ΠC
can be converted to variational inequalities, which are easier to solve, in many cases.

We recall that concepts of the generalized projection and the generalized metric projection
were introduced by Alber [1] on uniformly convex and uniformly smooth Banach spaces, which
have been extended to general Banach spaces; see [14, 17] and the references therein.

2.2. Bochner spaces. In this subsection, we recall the definitions and basic properties of Bochner
spaces; see, e.g., [4, 5, 7, 9, 10, 18–24] for more details.

Let (S,A ,µ) be a measure space, which, without any loss generality, is assumed to be posi-
tive and complete. Let X be a real uniformly convex and uniformly smooth Banach space with
X∗ as its topological dual. For any A ∈ A , and for any x ∈ X , 1A⊗ x denotes the X-valued
simple function on S with values in X defined, for any s ∈ S, by

(1A⊗ x)(s) = 1A(s)⊗ x =

{
x if s ∈ A,
θ if s /∈ A.

where 1A denotes the charateristic function of A on X .
For a given integer n, let {A1,A2, . . . ,An} be a finite collection of mutually disjoint sets in

A with 0 < µ(Ai) < ∞ for all i = 1,2, . . . ,n. Let {x1,x2, . . . ,xn} ⊂ X , and let {a1,a2, . . . ,an}
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be real numbers. Then, ∑
n
i=1 ai(1Ai ⊗ xi) is called a µ−simple function from S to X ; see [19,

Definition 1.1.13].

Remark 2.1. Since the coefficients {a1,a2, . . . ,an} can be included in the points {x1,x2, . . . ,xn},
it follows that a µ-simple function can have the form ∑

n
i=1(1Ai⊗ xi).

For any positive number p with 1 ≤ p ≤ ∞, let Lp(S;X) be the Lebesgue-Bochner function
space, called the Bochner space, which is the Banach space of µ-equivalent classes of strongly
measurable functions f : S→ X with norm ( f takes values in Banach space X as the limit of
integrals of simple functions):

‖ f‖Lp(S;X):=
(∫

S
‖ f (s)‖p

X dµ(s)
) 1

p

< ∞, for 1≤ p < ∞,

‖ f‖L∞(S;X):= ess sup‖ f (·)‖X < ∞.

In particular, for X =R, Lp(S;R) is denoted by Lp(S). Next, we list some properties of Bochner
integrals and Bochner spaces

(B1)
∫

S(a f +bg)dµ = a
∫

S f dµ +b
∫

S gdµ for every f ,g ∈ Lp(S,X) and a,b ∈R;
(B2) ‖

∫
S f dµ‖X ≤

∫
S ‖ f‖X dµ for every f ,g ∈ Lp(S,X);

(B3) for p,q ∈ (1,∞) with p−1 +q−1 = 1, (Lp(S;X))∗ = Lq(S;X∗).

The investigation of geometric properties of Bochner spaces has been a subject of exami-
nation by various researchers, encompassing aspects such as convexity and smoothness; see,
e.g., [5, 7, 9, 16, 18, 22]. Here, we give a compilation of related properties below.

Theorem 2.1. [17] Let (S,A ,µ) be a measure space, and let X be a Banach space. For any p
with 1 < p < ∞, we have

Lp(S;X) is uniformly convex ⇐⇒ X is uniformly convex,

Lp(S;X) is uniformly smooth ⇐⇒ X is uniformly smooth,

L2(S;X) is a Hilbert space ⇐⇒ X is a Hilbert space.

We next recall an embedding map of X into Lp(S;X), studied in [17], which is used shortly.
For any A,B ∈A with 0 < µ(A), µ(B)< ∞, for any p,q with 1 < p,q < ∞ and p−1+q−1 = 1,
the function 1A⊗ x holds the following properties:

(a) {1A⊗ x : A ∈A with 0 < µ(A)< ∞ and x ∈ X} ⊆ Lp(S;X);
(b) {1B⊗ϕ : B ∈B with 0 < µ(A)< ∞ and ϕ ∈ X∗} ⊆ (Lp(S;X))∗ = Lq(S;X∗).

Proposition 2.1. [17] Let (S,A ,µ) be a measure space, and let X be a Banach space. For any
arbitrary A ∈A with 0 < µ(A)< ∞, for any x,y ∈ X and for any 1 < p < ∞, we have

(a) µ(A)−
1
p (1A⊗ x) ∈ Lp(S;X);

(b)
∥∥∥µ(A)−

1
p (1A⊗ x)

∥∥∥
Lp(S;X)

= ‖x‖X ;

(c)
∥∥∥µ(A)−

1
p (1A⊗ x)±µ(A)−

1
p (1A⊗ y)

∥∥∥
Lp(S;X)

= ‖x± y‖X ;

(d) the mapping x→ µ(A)−
1
p (1A⊗ x) (isometric) embeds X into Lp(S;X).
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3. ANALYTIC REPRESENTATIONS OF NORMALIZED DUALITY MAP IN BOCHNER SPACES

Let (S,A ,µ) be a measure space, and let X be a uniformly convex and uniformly smooth
Banach space. For national simplicity, we denote the normalized duality mapping in X , X∗,
Lp(S;X), and Lq(S;X∗) by JX , JX∗ , Jp, and J∗q , respectively. We note that these are all single-
valued, one-to-one and onto, and continuous maps.

We recall the following forms of the normalized duality map in two specific cases:

(a) Let X = `p with 1 < p < ∞. For any x = (t1, t2, . . .) ∈ `p with x 6= θ , we have

(JX x)n =
|xn|p−1sign(xn)

‖x‖p−2
`p

=
|xn|p−2xn

‖x‖p−2
`p

for n = 1,2, . . . .

(b) Let X = Lp(S) with 1 < p < ∞. For any f ∈ Lp(S) with f 6= θ , we have

(JX f )(s) =
| f (s)|p−1sign( f (s))

‖ f‖p−2
Lp(S)

=
| f (s)|p−2 f (s)

‖ f (s)‖p−2
Lp(S)

for all s ∈ S.

The subsequent proposition establishes the relationships between JX and Jp, offering an ana-
lytical representation for Jp in the process.

Proposition 3.1. Let (S,A ,µ) be a measure space, let X be a uniformly convex and uniformly
smooth Banach space, and let A ∈A . Then, for any x ∈ X , with x 6= 0, we have

JX((1A⊗ x)(s)) = (1A⊗ JX x)(s) for every s ∈ S.

Proof. For any s ∈ S, we have

JX((1A⊗ x)(s)) =
{

JX x for all s ∈ A,
θ for all s /∈ A,

= (1A⊗ JX x)(s),

which completes the proof. �

By the arguments used in the proof above, we can also establish the following result.

Proposition 3.2. Let (S,A ,µ) be a measure space, and let X be a uniformly convex and uni-
formly smooth Banach space. Let {A1,A2, . . . ,An} be an arbitrary finite collection of mutually
disjoint subsets in A , and let {x1,x2, . . . ,xn} ⊂ X . Then,

JX

(( n

∑
i=1

1Ai⊗ xi

)
(s)
)
=

n

∑
i=1

(1Ai⊗ JX xi)(s) for every s ∈ S.

Proposition 3.3. Let (S,A ,µ) be a measure space, and let X be a uniformly convex and uni-
formly smooth Banach space. Let p,q ∈ (0,∞) with 1

p +
1
q = 1. Then, for any f ∈ Lp(S;X), with

f 6= θ ,

(a) Jp f ∈ Lq(S;X∗);

(b) (Jp f )(s) = ‖ f (s)‖p−2
X JX ( f (s))

‖ f‖p−2
Lp(S;X)

for all s ∈ S.
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Proof. Part (a) is evident as Jp f ∈ (Lp(S;X))∗ = Lq(S;X∗). To prove part (b), we calculate

‖Jp f‖Lq(S;X∗) =

∫
S

∥∥∥∥∥∥‖ f (s)‖p−2
X JX( f (s))

‖ f‖p−2
Lp(S;X)

∥∥∥∥∥∥
q

X∗

dµ(s)


1
q

=

∫
S

‖ f (s)‖q(p−2)
X

‖ f‖q(p−2)
Lp(S;X)

‖JX( f (s))‖q
X∗ dµ(s)

 1
q

=

∫
S

‖ f (s)‖q(p−2)
X

‖ f‖q(p−2)
Lp(S;X)

‖ f (s)‖q
X dµ(s)

 1
q

=

∫
S

‖ f (s)‖q(p−2)+q
X

‖ f‖q(p−2)
Lp(S;X)

dµ(s)

 1
q

=
(
‖ f‖q(p−2)

Lp(S;X)

)− 1
q
(∫

S
‖ f (s)‖p

X dµ(s)
) 1

q

= ‖ f‖Lp(S;X).

Once again, we have

〈Jp f , f 〉=
∫

S

〈
‖ f (s)‖p−2

X JX( f (s))

‖ f‖p−2
Lp(S;X)

, f (s)

〉
dµ(s)

=
∫

S

‖ f (s)‖p−2
X 〈JX( f (s)), f (s)〉
‖ f‖p−2

Lp(S;X)

dµ(s)

=
∫

S

‖ f (s)‖p−2
X ‖ f (s)‖2

X

‖ f‖p−2
Lp(S;X)

dµ(s)

= ‖ f‖2
Lp(S;X).

Thus 〈Jp f , f 〉p = ‖ f‖2
Lp(S;X) = ‖Jp f‖2

Lq(S;X), which proves the desired claim. �

Proposition 3.4. Let (S,A ,µ) be a measure space, and let X be a uniformly convex and uni-
formly smooth Banach space. Let p,q ∈ (0,∞) with 1

p +
1
q = 1, and let A ∈A with 0 < µ(A)<

∞. Then, for any x ∈ X with x 6= θ ,

Jp(1A⊗ x)(s) = µ(A)
1
p−

1
q (1A⊗ JX x)(s) for all s ∈ S.

Proof. We begin by calculating

‖1A⊗ x‖Lp(S;X) =

(∫
S
‖(1A⊗ x)(s)‖p

X dµ(s)
) 1

p

=

(∫
A
‖x‖p

X dµ(s)
) 1

p

= ‖x‖X µ(A)
1
p .
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Using part (b) of Proposition 3.3, we have

Jp(1A⊗ x)(s) =
‖(1A⊗ x)(s)‖p−2

X JX((1A⊗ x)(s))

‖1A⊗ x‖p−2
Lp(S;X)

=


‖x‖p−2

X JX x(
‖x‖X µ(A)

1
p
)p−2 for all s ∈ A,

θ for all s /∈ A,

=

{ JX x

µ(A)
1
p (p−2)

for all s ∈ A,

θ for all s /∈ A,

= µ(A)
1
p−

1
q (1A⊗ JX)(s) for all s ∈ S,

and the proof is complete. �

The above result can be extended to all µ-simple functions.

Proposition 3.5. Let (S,A ,µ) be a measure space, and let X be a uniformly convex and uni-
formly smooth Banach space. Let p,q ∈ (0,∞) with 1

p +
1
q = 1. Then, Jp maps every µ-simple

function in Lp(S;X) to a µ−simple function in Lq(S;X∗) with respect to the same partition in
S. Moreover, for any given µ-simple function ∑

n
i=1(1Ai⊗ xi) in Lp(S;X), we have

Jp

( n

∑
i=1

(1Ai⊗ xi)
)

s) =
‖∑

n
i=1(1Ai⊗ xi)(s)‖p−2

X(
∑

n
j=1 ‖x j‖p

X µ(A j)
) 1

q−
1
p

n

∑
i=1

(1Ai⊗ JX xi)(s) for all s ∈ S.

Proof. For a given µ-simple function ∑
n
i=1(1Ai⊗ xi) in Lp(S;X), we calculate

∥∥∥∥∥ n

∑
i=1

(1Ai⊗ xi)(s)

∥∥∥∥∥
Lp(S;X)

=

(∫
S
‖

n

∑
i=1

(1Ai⊗ xi)(s)‖p
X dµ(s)

) 1
p

=

(
n

∑
i=1

∫
S
‖(1Ai⊗ xi)(s)‖p

X dµ(s)

) 1
p

=

(
n

∑
i=1

∫
S
‖xi‖p

X dµ(s)

) 1
p

=

(
n

∑
i=1
‖xi‖p

X µ(A j)

) 1
p

.

Even though JX is not a linear operator, by the definition of µ-simple functions, since {A1,A2, . . . ,An}
is a finite collection of mutually disjoint subsets in A with 0 < µ(Ai)< ∞ for all i = 1,2, . . . ,n,
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by part (b) of Proposition 3.3, for all s ∈ S, by Proposition 3.4, we have

Jp

( n

∑
i=1

(1Ai⊗ xi)
)
(s) =

‖∑
n
i=1(1Ai⊗ xi)(s)‖p−2

X JX

(
∑

n
i=1(1Ai⊗ xi)(s)

)
(
‖∑

n
j=1(1A j ⊗ x j)‖Lp(S;X)

)p−2

=
∑

n
i=1 ‖(1Ai⊗ xi)(s)‖p−2

X ∑
n
i=1 JX

(
1Ai⊗ xi)(s)

)
(
‖∑

n
j=1(1A j ⊗ x j)‖Lp(S;X)

)p−2

=
‖∑

n
i=1(1Ai⊗ xi)(s)‖p−2

X ∑
n
i=1(1Ai⊗ JX xi)(s)(

∑
n
i= j ‖x j‖p

X µ(A j)
1
p

)p−2 ,

which completes the proof. �

As mentioned in Section 2, in general, a µ-simple function can be written in the form
∑

n
i=1 ai(1Ai⊗xi) with real coefficients a1,a2, . . . ,an. Otherwise, the real coefficients a1,a2, . . . ,an

can be considered included in x1,x2, . . . ,xn. Therefore, as a consequence of the above result, we
obtain the following result.

Proposition 3.6. Let (S,A ,µ) be a measure space, and let X be a uniformly convex and uni-
formly smooth Banach space. Let 1 < {p,q}< ∞ with 1

p +
1
q = 1. For any f ∈ Lp(S;X), let { fn}

be a sequence of µ-simple functions in Lp(S;X) satisfying fn→ f in Lp(S;X) as n→ ∞. Then,
{Jp fn} is a sequence of µ-simple functions in Lq(S;X∗) such that Jp fn→ Jp f in Lq(S;X∗), as
n→ ∞.

Proof. By Proposition 3.5, we see that {Jp fn} is a sequence of µ-simple functions in Lq(S;X∗).
The claim then follows from the continuity of Jp. �

4. THE NORMALIZED DUALITY MAPPINGS IN MULTIPLE BOCHNER SPACES

In this section, we investigate the characteristics of the normalized duality mapping in spe-
cific instances of Bochner spaces denoted as Lp(S;X), where the Banach space X itself is a
Bochner space. The examination of these particular Bochner spaces holds significant relevance,
especially in the context of stochastic variational inequalities and stochastic optimization theory.

Let (S,A ,µ) and (T,B,λ ) be measure spaces, and let Y be a uniformly convex and uni-
formly smooth Banach space. Let p,q,β ,ξ be positive numbers which are greater than 1 and
satisfy 1

p +
1
q = 1 and 1

β
+ 1

ξ
= 1. The Bochner space Lβ (T ;Y ) is a uniformly convex and uni-

formly smooth Banach space, and therefore the Bochner space Lp(S;Lβ (T ;Y )) is also a uni-
formly convex and uniformly smooth space. In the following, the normalized duality maps on
Lβ (T ;Y ) and Lp(S;Lβ (T ;Y )) are denoted by Jβ and Jp, respectively.

We note that, for any f ∈ Lp(S;Lβ (T ;Y )),

‖ f‖Lp(S;Lβ (T ;Y )) =
(∫

S
‖ f (s)‖p

Lβ (T ;Y )dµ(s)
) 1

p
=
(∫

S

(∫
T
‖ f (s)(t)‖β

Y dλ (t)
) p

β dµ(s)
) 1

p
.

The following results give an analytic representation of Jp on Lp(S;Lβ (T ;Y )).

Proposition 4.1. Let (S,A ,µ) and (T,B,λ ) be measure spaces, and let Y be a uniformly
convex and uniformly smooth Banach space. For any f ∈ Lp(S,Lβ (T ;Y )) with f 6= θ , we have
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(a) Jp f ∈ Lq(S;Lξ (T ;Y ∗));
(b) for every s ∈ S,

(Jp f )(s)(t) =
‖ f (s)‖p−β

Lβ (T ;Y )‖( f (s))(t)‖β−2
Y

‖ f‖p−2
Lp(S,Lβ (T ;Y ))

JY ( f (s)(t)) for all t ∈ T ;

(c) in particular, if β = p, then, for every s ∈ S,

(Jp f )(s)(t) =
‖( f (s))(t)‖p−2

Y

‖ f‖p−2
Lp(S,Lβ (T ;Y ))

JY ( f (s)(t)) for all t ∈ T.

Proof. Part (a) is obvious. We proceed to prove (b). Using Proposition 3.3 repeatedly, we obtain

(Jp f )(s)(t) =
‖ f (s)‖p−2

Lβ (T ;Y )

‖ f‖p−2
Lp(S,Lβ (T ;Y ))

Jβ ( f (s))(t)

=
‖ f (s)‖p−2

Lβ (T ;Y )

‖ f‖p−2
Lp(S,Lβ (T ;Y ))

‖ f (s)(t)‖β−2
Y

‖ f‖β−2
Lp(S,Lβ (T ;Y ))

JY ( f (s)(t))

=
‖ f (s)‖p−β

Lβ (T ;Y )‖( f (s))(t)‖β−2
Y

‖ f‖p−2
Lp(S,Lβ (T ;Y ))

JY ( f (s)(t)) for all t ∈ T.

�

We have the following analogous result.

Proposition 4.2. Let (S,A ,µ) and (T,B,λ ) be measure spaces, and let Y be a uniformly
convex and uniformly smooth Banach space. Let A ∈ A with 0 < µ(A) < ∞. For any ϕ ∈
Lβ (T ;Y ) with ϕ 6= θ , 1A⊗ϕ is a µ-simple function in Lp(S;Lβ (T ;Y )). Then, for any s ∈ S and
t ∈ T ,

(Jp(1A⊗ϕ)(s))(t) = µ(A)
1
p−

1
q (1A(s)⊗ Jβ ϕ)(t) = µ(A)

1
p−

1
q
‖ϕ(t)‖β−2

Y

‖ϕ‖β−2
Lβ (T ;Y )

(1A(s)⊗ Jβ ϕ(t)).

Proof. By Propositions 3.3 and 3.4, we have

Jp(1A⊗ϕ)(s)(t) = µ(A)
1
p−

1
q (1A(s)⊗ Jβ ϕ)(t) for all t ∈ T,

=

{
µ(A)

1
p−

1
q (Jβ ϕ)(t) for all s ∈ A,

θ for s /∈ A,

=

 µ(A)
1
p−

1
q ‖ϕ(t)‖

β−2
Y JY (ϕ(t))

‖ϕ‖β−2
L

β
(T ;Y )

for all s ∈ A,

θ for s /∈ A,

=

 µ(A)
1
p−

1
q ‖ϕ(t)‖

β−2
Y JY

‖ϕ‖β−2
L

β
(T ;Y )

(1A(s)⊗ JY (ϕ(t))) for all s ∈ A,

θ for s /∈ A,

and the proof concludes. �
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In view of Propositions 3.4 and 4.2, we have the following.

Proposition 4.3. Let (S,A ,µ) and (T,B,λ ) be measure spaces, and let Y be a uniformly con-
vex and uniformly smooth Banach space. Then, Jp maps every µ-simple function in Lp(S;Lβ (T ;Y ))
to µ-simple function in Lq(S;Lξ (T ;Y ∗)) with respect to the same partition in S. Moreover, for
an arbitrarily given µ-simple function ∑

n
i=1(1Ai ⊗ϕi) in Lp(S;Lβ (T ;Y )), for every s ∈ S, and

for every t ∈ T, we have

Jp(
n

∑
i=1

(1Ai⊗ϕi))(s)(t) =
‖∑

n
i=1(1Ai⊗ϕi)(s)‖p−2

Lβ (T ;Y )

(∑n
j=1 ‖ϕi‖p

Lβ (T ;Y )µ(A j))
1
p−

1
q

n

∑
i=1

‖ϕi(t)‖β−2
Y

‖ϕi‖β−2
Lβ (T ;Y )

(1Ai(S)⊗ JY (ϕi(t))).

Proof. By Proposition 3.5, we have

Jp(
n

∑
i=1

(1Ai⊗ϕi))(s)(t) =
‖∑

n
i=1(1Ai⊗ϕi)(s)‖p−2

Lβ (T ;Y )

(∑n
j=1 ‖ϕi‖p

Lβ (T ;Y )µ(A j))
1
p−

1
q

Jβ (
n

∑
i=1

(1Ai(s)⊗ϕi))(t)

=
‖∑

n
i=1(1Ai⊗ϕi)(s)‖p−2

Lβ (T ;Y )

(∑n
j=1 ‖ϕi‖p

Lβ (T ;Y )µ(A j))
1
p−

1
q
(Jβ

n

∑
i=1

(1Ai(s)⊗ϕi))(t)

=
‖∑

n
i=1(1Ai⊗ϕi)(s)‖p−2

Lβ (T ;Y )

(∑n
j=1 ‖ϕi‖p

Lβ (T ;Y )µ(A j))
1
p−

1
q

n

∑
i=1

‖ϕi(t)‖β−2
Y

‖ϕi‖β−2
Lβ (T ;Y )

(1Ai(s)⊗ JY (ϕi(t))),

and the proof is complete. �

In the above result, if every ϕi is a λ -simple functional in Lβ (T ;Y ), then the following result
is immediate.

Proposition 4.4. Let (S,A ,µ) and (T,B,λ ) be measure spaces, and let Y be a uniformly con-
vex and uniformly smooth Banach space. Let {A1,A2, . . . ,An} be an arbitrary finite collection
of mutually disjoint subsets in A with 0 < µ(Ai) < ∞, for i = 1,2, . . . ,n. Let {B1,B2, . . . ,Bn}
be an arbitrary collection of subsets in B (not necessarily disjoint) with 0 < λ (Bi) < ∞, for
i = 1,2, . . . ,n and let {y1,y2, . . . ,yn} ⊂ Y. For every s ∈ S and t ∈ T , we have

Jp(
n

∑
i=1

(1Ai⊗ (1Bi⊗ yi)))(s)(t)

=
(∑n

i=1 ‖yi‖β

Y λ (Bi))
p−2

β

(∑n
i=1 ‖yi‖β

Y (λ (Bi)
p
β µ(Ai)

1
q−

1
p

n

∑
i=1

‖1Bi(t)⊗ yi‖β−2

(‖yi‖β

Y λ (Bi))
β−2

β

(1Ai(s)⊗ ((1Bi(t)⊗ JY yi))).

5. SOME GEOMETRIC PROPERTIES OF BOCHNER AND MULTIPLE BOCHNER SPACES

5.1. Convexity of Bochner and multiple Bochner spaces. Let X be a uniformly convex and
uniformly smooth Banach space. Let δX be the modulus of convexity of X given by

δX(ε) = inf
{

1− 1
2
‖x+ y‖X : x,y ∈ SX , ‖x− y‖ ≥ ε

}
, ε ∈ (0,2],

where SX is the unit ball in X .



NORMALIZED DUALITY MAPPINGS AND PROJECTIONS 651

Let (S,A ,µ) be a measure space and, for 1< p<∞, let Lp(S;X) be the uniformly convex and
uniformly smooth Banach space. For notational simplicity, we denote the modulus of convexity
δLp(S;X) of Lp(S : X) by δp. Let Sp be the unit ball of Lp(S;X). Then,

δp(ε) = inf
{

1− 1
2
‖ f +g‖Lp(S;X) : f ,g ∈ Sp, ‖ f −g‖Lp(S;X) ≥ ε

}
, ε ∈ (0,2].

It was recently demonstrated in [17] that

δp(ε)≤ δX(ε) for every ε ∈ (0,2]. (5.1)

Let (S,A ,µ) and (T,B,λ ) be measure spaces, and let Y be a uniformly convex and uni-
formly smooth Banach space. Let p,q,β ,ξ be positive numbers, which are greater than 1 and
satisfy 1

p +
1
q = 1 and 1

β
+ 1

ξ
= 1. The modulus of convexity of Y , Lβ (T ;Y ) and Lp(S;Lβ (T ;Y ))

are denote by δY , δβ , and δp, respectively. By applying (5.1) repeatedly, we have

δp(ε)≤ δβ (ε)≤ δY (ε) for every ε ∈ (0,2]. (5.2)

Let ΓY denote the Figiel’s constant of Y which satisfies 1 < ΓY < 1.7. For any R > 0, and for
any x,y ∈ Y , if ‖x‖Y ≤ R and ‖y‖Y ≤ R, with the aid of (5.2), we have

〈JY x− Jy,x− y〉 ≥ R2

2ΓY
δY

(
‖x− y‖Y

2R

)
≥ R2

2ΓY
δβ

(
‖x− y‖Y

2R

)
≥ R2

2ΓY
δp

(
‖x− y‖Y

2R

)
. (5.3)

Let Γβ and Γp denote the Figiel’s constants of Lβ (T ;Y ) and Lp(S;Lβ (T ;Y )), respectively. Let
R > 0. For any f ,g ∈ Lβ (T ;Y ) with ‖ f‖Lβ (T ;Y ) ≤ R and ‖g‖Lβ (T ;Y ) ≤ R, we have

〈Jβ f − Jβ g, f −g〉 ≥ R2

2Γβ

δβ

(
‖ f −g‖Lβ (T ;Y )

2R

)
≥ R2

2Γβ

δp

(
‖ f −g‖Lβ (T ;Y )

2R

)
.

For any ϕ,ψ ∈ Lp(S;Lβ (T ;Y )) with ‖ϕ‖Lp(S;Lβ (T ;Y )) ≤ R and ‖ψ‖Lp(S;Lβ (T ;Y )) ≤ R, we have

〈JY ϕ− JY ψ,ϕ−ψ〉 ≥ R2

2Γp
δp

(
‖ϕ−ψ‖Lp(S;Lβ (T ;Y ))

2R

)
.

5.2. Smoothness of Bochner and multiple Bochner spaces. Let (S,A ,µ), X , and Lp(S;X)
be as in the previous section with 1 < p < ∞. For α > 0, let ρx and ρp be the modules of
smoothness of the Banach space X and Lp(S;X), given by

ρX(α) := sup
{
‖x+ y‖X +‖x− y‖X

2
−1 : x,y ∈ X ,‖x‖X = 1, ‖y‖X = α

}
,

and

ρp(α) := sup{
‖ f +g‖Lp(S:X)+‖ f −g‖Lp(S;X)

2
−1 : x,y∈Lp(S;X),‖x‖Lp(S;X)= 1, ‖y‖Lp(S;X)=α}.

Recently, it was shown in [17] that, for each α > 0, ρp(α) ≥ ρX(α). Now let (T,B,λ )
and Y be as in the previous section. Denoting the modules of smoothness of Y , Lβ (T ;Y ) and
Lp(S;Lβ (T ;Y )) by ρY , ρβ , and ρp, we can show that, for every α > 0, ρp(α)≥ ρβ (α)≥ ρY (α).
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Since all the involved spaces are uniformly convex and uniformly smooth Banach spaces, we
have the following relationship:

lim
α↓0

ρY (α)

α
= lim

α↓0

ρβ (α)

α
= lim

α↓0

ρp(α)

α
= 0. (5.4)

Furthermore, for any R > 0, we have (see [1])
(a) for any x,y ∈ Y, if ‖x‖Y ≤ R and ‖y‖Y ≤ R, then

‖JY x− JY y‖X∗ ≤
R2

2γY‖x− y‖Y
ρY

(
16ΓY‖x− y‖Y

R

)
≤ R2

2γY‖x− y‖Y
ρβ

(
16ΓY‖x− y‖Y

R

)
≤ R2

2γY‖x− y‖Y
ρp

(
16ΓY‖x− y‖Y

R

)
; (5.5)

(b) for any f ,g ∈ Lβ (T ;Y ), with ‖ f‖Lβ (T ;Y ) ≤ R and ‖g‖Lβ (T ;Y ) ≤ R, we have

‖Jβ f − Jβ g‖(Lβ (T ;Y ))∗ ≤
R2

2γβ‖ f −g‖Lβ (T ;Y )
ρβ

(
16Γβ‖ f −g‖Lβ (T ;Y )

R

)
;

(c) for any ϕ,ψ ∈ Lp(S;Lβ (T ;Y )), with ‖ϕ‖Lp(S;Lβ (T ;Y )) ≤ R and ‖ψ‖Lp(S;Lβ (T ;Y )) ≤ R, we
have

‖Jpϕ− Jpψ‖(Lp(S;Lβ (T ;Y )))∗ ≤
R2

2Γp‖ϕ−ψ‖Lp(S;Lβ (T ;Y ))
ρp

(
16Γp‖ϕ−ψ‖Lp(S;Lβ (T ;Y ))

R

)
.

5.3. Connections between convexity and smoothness of Bochner spaces. In this subsection,
we explore the interplay between the convexity and smoothness properties of uniformly con-
vex and uniformly smooth Banach spaces, as well as their counterparts in Bochner spaces and
multiple Bochner spaces.

Proposition 5.1. Let (S,A ,µ) and (T,B,λ ) be measure spaces, and let Y be a uniformly
convex and uniformly smooth Banach space Y . Let p,β ∈ (1,∞) be given. Then:

(a) for any x,y ∈ Y with ‖x‖Y and ‖y‖Y ≤ R, the following inequality holds:

ρY

(
16ΓY‖x− y‖

R

)
≥ δY

(
‖x− y‖Y

2R

)
; (5.6)

(b) for any f ,g ∈ Lβ (T ;Y ) with ‖ f‖Lβ (T ;Y ) and ‖g‖Lβ (T ;Y ) ≤ R, we have

ρβ

(
16Γβ‖ f −g‖Lβ (T ;Y )

R

)
≥ δβ

(
‖ f −g‖Lβ (T ;Y )

2R

)
;

(c) for any ϕ,ψ ∈ Lp(S;Lβ (T ;Y )) with ‖ϕ‖Lp(S;Lβ (T ;Y )) and ‖ψ‖Lp(S;Lβ (T ;Y )) ≤ R, the fol-
lowing inequality holds:

ρp

(
16Γp‖ f −g‖Lp(S;Lβ (T ;Y ))

R

)
≥ δpLp(S;Lβ (T ;Y ))

(
‖x− y‖Lp(S;Lβ (T ;Y ))

2R

)
.
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Proof. Under the given conditions, by (5.3) and (5.5), we have

R2

2ΓY
ρY

(
16ΓY‖x− y‖Y

R

)
≥ ‖JY x− JY y‖Y ∗‖x− y| ≥ 〈JX x− JX y,x− y〉

≥ R2

2ΓY
ρY

(
‖x− y‖Y

2R

)
,

which proves (5.6). Other inequalities follow by similar arguments. �

Proposition 5.2. Let (S,A ,µ) and (T,B,λ ) be measure spaces, and let Y be a uniformly
convex and uniform;y smooth Banach space Y . Let p,β ∈ (1,∞) be given. Then

lim
ε↓0

δY (ε)

ε
= lim

ε↓0

δβ (ε)

ε
= lim

ε↓0

δp(ε)

ε
= 0.

Proof. The proof follows from (5.4) and Proposition 5.1. �

5.4. The basic variational characterizations of the projections in Bochner spaces. Utiliz-
ing the fundamental variational characterizations outlined in Section 2 for metric and general-
ized metric projection operators within uniformly convex and uniformly smooth Banach spaces,
we derive the corresponding fundamental variational characterizations for these operators in
uniformly convex and uniformly smooth Bochner spaces, as well as multiple Bochner spaces.

Theorem 5.1. Let (S,A ,µ) and (T,B,λ ) be measure spaces, and let Y be a uniformly convex
and uniformly smooth Banach space. Let p,q,β ,ξ be positive numbers which are greater than
1 and satisfy 1

p +
1
q = 1 and 1

β
+ 1

ξ
= 1. Let C, D, and E be nonempty, closed, and convex sets

in Y , Lβ (T ;Y ), and Lp(S;Lβ (T ;Y )), Then,

(a) for any x ∈ Y , x∗ ∈ Y ∗ and y ∈C,

y = PC(x) ⇐⇒ 〈JY (x− y),y− z〉 ≥ 0 for all z ∈C,

y = πC(x∗) ⇐⇒ 〈x∗− JY y,y− z〉 ≥ 0 for all z ∈C,

y = ΠC(x) ⇐⇒ 〈JX x− JY y,y− z〉 ≥ 0 for all z ∈C;

(b) for any f ∈ Lβ (T ;Y ), f ∗ ∈ Lξ (T ;Y ∗) and g ∈ D,

g = PD( f ) ⇐⇒ 〈Jβ ( f −g),g−h〉 ≥ 0 for all h ∈ D,

g = πD( f ∗) ⇐⇒ 〈 f ∗− Jβ g,g−h〉 ≥ 0 for all h ∈ D,

g = ΠD( f ) ⇐⇒ 〈Jβ f − Jβ g,g−h〉 ≥ 0 for all h ∈ D;

(c) for any ϕ ∈ Lp(S;Lβ (T ;Y )), ϕ∗ ∈ Lq(S;Lxi(T ;Y ∗)) and φ ∈ E,

φ = PE(ϕ) ⇐⇒ 〈Jp(ϕ−φ),φ −ψ〉 ≥ 0 for all ψ ∈ E,

φ = πE(ϕ
∗) ⇐⇒ 〈ϕ∗− Jpφ ,φ −ψ〉 ≥ 0 for all ψ ∈ E,

φ = ΠE(ϕ) ⇐⇒ 〈Jpϕ− Jpφ ,φ −ψ〉 ≥ 0 for all ψ ∈ E.
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5.5. Some non-convex properties related to the normalized duality mapping in uniformly
convex and uniformly smooth Bochner spaces. In [13], the authors established certain non-
convex properties associated with the normalized duality mapping and projections P, π , and
Π in uniformly convex and uniformly smooth Banach spaces. In this section, we extend these
results to uniformly convex and uniformly smooth Bochner space Lp(S;X). Specifically, we
demonstrate that the normalized duality mapping Jp maintains these non-convex properties in
such spaces. Throughout the proofs of the lemmas and propositions in this section, the analytic
representations of Jp explored in Sections 3 and 4 play pivotal roles.

We have the following result in this direction.

Proposition 5.3. Let (S,A ,µ) be a measure space, and let X be a uniformly convex and uni-
formly smooth Banach space. Let θ 6= h be an arbitrary point in Lp(S;X). Then the set

{w ∈ Lp(S;X) : 〈Jpw,h〉 ≥ 0} (5.7)

is a closed cone in Lp(S;X) with vertex at θ .

We construct an example to show that the set define in (5.7) is not convex in general.

Example 5.1. We take a measure space (S,A ,µ) with µ(S) ≥ 3 and take a uniformly con-
vex and uniformly smooth Banach space X with dimension greater than 1. We consider the
uniformly convex and uniformly smooth Bochner space L3(S;X). Let A1,A2, and A3 be three
arbitrarily chosen mutually disjoint elements in A with µ(Ai) = 1, and let x1,x2, and x3 be three
linearly independent points in X with ‖xi‖i, for i = 1,2,3. We take three µ-simple functional
f ,g and h in L3(S;X) such that, for all s ∈ S,

f (s) = (1A1⊗ (3x1))(s)+(1A2⊗ (−2x2))(s)+(1A3⊗ (−x3))(s),

g(s) = (1A1⊗ (x1))(s)+(1A2⊗ (−3x2))(s)+(1A3⊗ (2x3))(s),

h(s) = 25(1A1⊗ (3x1))(s)+37(1A2⊗ (x2))(s)+77(1A3⊗ (x3))(s).

By Proposition 3.5, with p = 3 and q = 3
2 , we have

(J3 f )(s) =
1

3
√

27+8+1
(3(1A1⊗ JX(3x1))+2(1A2⊗ JX(−2x2))+(1A3⊗ JX(−x3)))(s)

=
1

3
√

36
(3(1A1⊗ (3JX(x1)))+2(1A2⊗ (−2)JX(x2))+(1A3⊗ (−JX(x3))))(s)

=
1

3
√

36
(9(1A1⊗ JX(x1))−4(1A2⊗ JX(x2))− (1A3⊗ JX(x3)))(s).

Analogously, we have

(J3g)(s) =
1

3
√

36
((1A1⊗ JX(x1))−9(1A2⊗ JX(x2))4(1A3⊗ JX(x3)))(s).
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Notice that 〈JX xi,xi〉= 1 for i = 1,2,3. We further compute

〈J3 f ,h〉= 1
3
√

36

∫
A1

〈9(1A1⊗ (JX(x1))),25(1A1⊗ x1)〉(s)dµ(s)

1
3
√

36

∫
A1

(−4)〈(1A1⊗ (JX(x1))),37(1A2⊗ x1)〉(s)dµ(s)

1
3
√

36

∫
A1

〈(−1)(1A1⊗ (JX(x1))),77(1A1⊗ x1)〉(s)dµ(s)

=
1

3
√

36

∫
A1

(9)(25)〈(1A1⊗ (JX(x1))),x1〉(s)dµ(s)

+
1

3
√

36

∫
A1

(−4)(37)〈(1A2⊗ (JX(x2))),x2〉(s)dµ(s)

+
1

3
√

36

∫
A1

〈(−77)(1A3⊗ (JX(x3))),x3〉(s)dµ(s) = 0.

Analogously, we can similarly calculate 〈J3g,h〉= 0. Hence both f and g are in the set. We take
a convex combination as follows u(s) = 2

3 f (s)+ 1
3g(s) for all s ∈ S. Then,

u(s) =
(

1A1⊗
(

7
3

x1

))
(s)+

(
1A2⊗

(
−7

3
x2

))
(s) for all s ∈ S.

By the analogous calculation as above, we have

(J3u)(s) =
7 3
√

4
6

((1A1⊗ JX x1)+(1A2⊗ (−JX x2)))(s).

Similarly, we have

〈J3u,h〉= 7 3
√

4
6

(25
∫

A1

〈JX x1,x1〉(s)dµ(s)−37
∫

A2

〈JX x2,x2〉(s)dµ(s)) =−7 3
√

4
3

< 0,

which shows that the convex combination u of f and g is not in set defined in (5.7).

Proposition 5.4. Let (S,A ,µ) be a measure space, and let X be a uniformly convex and uni-
formly smooth Banach space. Let θ 6= h be an arbitrary point in Lp(S;X). Then {w∈ Lp(S;X) :
〈Jpw,h〉 ≤ 0} is a closed cone in Lp(S;X) with vertex at θ . However, in general it is not convex.

Proposition 5.5. Let (S,A ,µ) be a measure space, and let X be a uniformly convex and uni-
formly smooth Banach space. Let K be a closed cone in Lp(S;X) with vertex at θ . Then, JpK is
a closed cone in X∗ with vertex at Jpθ = θX∗.

Proof. The proof follows from the fact Jp is continuous and positively homogeneous. �

We construct an example to demonstrate that the convexity of K does not necessarily imply
that JpK is convex.

Example 5.2. We take a measure space (S,A ,µ) with µ(S) ≥ 3 and take a uniformly convex
and uniformly smooth Banach space X with dimension greater than 1. We consider the uni-
formly convex and uniformly smooth Bochner space L3(S;X). Let A1,A2, and A3 be three arbi-
trarily chosen mutually disjoint elements in A with µ(Ai) = 1, and let x1,x2, and x3 be three lin-
early independent points in X with ‖xi‖i, for i= 1,2,3. Let x∗i = JX(xi) with ‖x∗i ‖X∗ = ‖xi‖X = 1,
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for i = 1,2,3. Take ϕ ∈ (L3(S;X))∗ as follows

ϕ(s) = (1A1⊗ x∗i )(s)+(1A2⊗ x∗2)(s)+(1A3⊗ x∗3)(s) for all s ∈ S

and define K := {w ∈ L3(S;X) : 〈ϕ,w〉= 0}. Then, K is a closed and convex cone in L3(S;X).
We will show that J3(K) is not a convex cone in (L3(S;X))∗=L3/2(S;X). We take two µ−simple
functional u,v ∈ L3(S : X) as follows:

u(a) = (1A1⊗ (−x1))(s)+(1A2⊗ x2)(s) for all s ∈ S,

v(a) = (1A2⊗ (−x2))(s)+(1A3⊗ x3)(s) for all s ∈ S.

By performing calculations similar to Example 5.1, it can be shown that 〈ϕ,u〉= 0 and 〈ϕ,v〉=
0. Therefore, u,v ∈ K. As before, we compute

(J3u)(s) =
1
3
√

2
((1A1⊗ (−x∗1)+(1A2⊗ (x∗2)))(s),

(J3v)(s) =
1
3
√

2
((1A2⊗ (−x∗2)+(1A2⊗ (x∗3)))(s).

We take a convex combination ψ of J3u and J3v as follows

ψ =
3
4

J3u+
1
4

J3v =
1

4 3
√

2
((1A1⊗ (−3x∗1))+(1A2⊗ (2x∗2))+(1A3⊗ x∗3)).

Note that J∗3
2
ψ ∈ L3(S;X). Moreover, J∗3

2
J3 f = f for every f ∈ L3(S;X). Using Proposition 3.5,

and the fact that µ(Ai) = ‖x∗i ‖X∗ = ‖xi‖= 1, for i = 1,2,3, we have

J∗3
2
ψ =

1
4 3
√

2
J3

2
((1A1⊗ (−3x∗1))+(1A2⊗ (2x∗2))+(1A3⊗ x∗3))

=
3
√

33/2 +23/2 +1
4 3
√

2
(
√

3(1A1⊗ (−3x∗1))+
√

2(1A2⊗ (x∗2))+(1A3⊗ x∗3)). (5.8)

It can be shown that 〈ϕ,J∗3
2
ψ〉> 0, which ensures that J∗3

2
/∈ K. Moreover, ψ = J3J∗3

2
ψ /∈ J3(K),

which proves that J3K is not convex.

Finally, we give another related result.

Proposition 5.6. Let (S,A ,µ) be a measure space, and let X be a uniformly convex and uni-
formly smooth Banach space. Let K be a closed subset in Lp(S;X). Then the fact that K is a
cone with vertex at the origin does not imply that JpK is a cone.

Proof. We construct a counter example to verify the claim. We adopt the setting of the previous
example, and define K:={(1− t)v+ tu ∈ L3(S;X) : 0 ≤ t < ∞}. Thus K is a ray with end
points at v 6= θ and direction u− v, which is closed and convex cone with vertex at v 6= θ in
L3(S;X). We show that J3K is not a cone in L3(S;X)∗. Since J3u and J3v are points in J3K, we
consider the convex combination ψ = 3

4J3u+ 1
4J3v. Observe that J∗3

2
∈ L3(S;X) and it satisfies

(5.8). Moreover, as in the previous example, we can see that J∗ 3
2ψ /∈ K, which implies that

ψ = J(J∗3
2
) /∈ JK. This proves that JK cannot be a ray (cone) in (L3(S;X))∗. �
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