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CONVEX SETS APPROXIMABLE AS THE SUM OF A COMPACT SET AND A
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Abstract. The class of convex sets that admit approximations as Minkowski sum of a compact convex
set and a closed convex cone in the Hausdorff distance is introduced. These sets are called approximately
Motzkin-decomposable and generalize the notion of Motzkin-decomposability, i.e., the representation of
a set as the sum of a compact convex set and a closed convex cone. We characterize these sets in terms
of their support functions and show that they coincide with hyperbolic sets, i.e., convex sets contained in
the sum of their recession cone and a compact convex set if their recession cones are polyhedral but are
more restrictive in general. In particular, we prove that a set is approximately Motzkin-decomposable if
and only if its support function has a closed domain relative to which it is continuous.

Keywords. Approximation; Closed convex sets; Motzkin decomposition; Support function; Unbounded
convex sets.

1. INTRODUCTION

Consider the closed convex sets C1 =
{

x ∈ R2
∣∣x1x2 > 1,x1 > 0

}
and C2 =

{
x ∈ R2

∣∣x2 > x2
1
}

with their recession cones 0+C1 =
{

x ∈ R2
∣∣x> 0

}
and 0+C2 =

{
x ∈ R2

∣∣x1 = 0,x2 > 0
}

. For
r > 0 we understand a truncation Ci

r of these sets to be Ci
r =

(
Ci∩ rB

)
+ 0+Ci, i = 1,2, where

B denotes the Euclidean unit ball. That is, we restrict Ci to a compact subset of itself given by
a ball of radius r and add the recession cone afterwards, yielding a subset of Ci. This situation
is depicted in Figure 1. Clearly, the truncations C1

r of C1 converge to C1 with respect to the
Hausdorff distance if r tends to +∞. However, the same is not true for C2 because, for every
r > 0, the Hausdorff distance between C2

r and C2 is infinite. Note that there is a geometric
difference between C1 and C2: C1 ⊆ {0}+ 0+C1, but there does not exist a compact set M
satisfying C2 ⊆M+0+C2. In view of this property, C1 is called hyperbolic, cf. [1, 13]. In this
work we investigate the following questions regarding a closed convex set C ⊆ Rn:

(1) What characterizes the property that C can be approximated by truncations Cr in the
above sense?

(2) How is this property related to hyperbolicity of C? Do both properties coincide (under
certain assumptions)?
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FIGURE 1. When can C be approximated by truncations?

This is motivated by the observation that conducting analysis on C presents various chal-
lenges in the presence of unboundedness. The above example demonstrates that the Hausdorff
distance is only limitedly suitable for the comparison of unbounded sets and the recession cone
may only partly capture the asymptotic behavior of C. The latter is evident from the fact that
0+C = 0+Cr whenever Cr is nonempty. Hence, from a practical perspective, it seems favourable
to reduce investigations to a bounded subset of C.

What needs to be adressed is whether it is possible to select a subset a priori in such a way
as to not neglect important information about C. One class of convex sets that permit such a
choice are called M-decomposable sets and have been studied by various authors over the last
decade [5, 7, 6, 17]. These are the sets that can be represented as the Minkowski sum of a
compact convex set and a closed convex cone. They have been characterized in different ways,
e.g. in terms of support functions and via an associated vector optimization problem and its set
of efficient points [5], with regard to their extreme points [7] and in the sense of intersections of
sets with certain hyperplanes [6]. Nevertheless, imposing M-decomposability on C is a strong
assumption. For example, both of the sets C1 and C2 above are not M-decomposable. However,
their truncations always are. Hence, the first question might be restated as:

1∗. When can a closed convex set C be approximated by M-decomposable sets?

To address these questions we introduce and study the class of approximately M-decompos-
able sets as those closed convex sets that can be approximated by M-decomposable sets in the
Hausdorff distance. Our main result is a characterization of this class in terms of support func-
tions and their demarcation from M-decomposable and hyperbolic sets. In the following section
we provide preliminary definitions and notation. Section 3 contains the definition of approxi-
mately M-decomposable sets and the main results of this manuscript. In particular we show that
approximately M-decomposable sets fit between M-decomposable and hyperbolic sets. They
coincide with the latter given their recession cones are polyhedral. Moreover, we prove that a
set is approximately M-decomposable if and only if its support function has a closed domain
relative to which it is continuous.
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2. PRELIMINARIES

Given sets M, P ⊆ Rn, and a scalar α ∈ R, we denote by clM, intM, relintM, M +P, and
αM the closure, interior, relative interior of M, the Minkowski sum of M and P and the di-
lation of M by α , respectively. The Euclidean norm of a vector x ∈ Rn and the Euclidean
unit ball are expressed as ‖x‖ and B, respectively. A set C ⊆ Rn is called convex if, for ev-
ery x,y ∈ C and scalar λ ∈ [0,1], λx+ (1− λ )y ∈ C holds. A cone is a set C such that for
every x ∈ C and µ > 0 it holds µx ∈ C. The recession cone of a convex set C ⊆ Rn is de-
fined as the set {d ∈ Rn |∀ x ∈C,µ > 0: x+µd ∈C} and denoted by 0+C. If C is closed, so
is 0+C. The polar C◦ of C is the set of linear functions that are bounded above on C by 1, i.e.
C◦ =

{
y ∈ Rn

∣∣∀ x ∈C : yTx6 1
}

. If C is a cone, then C◦ =
{

y ∈ Rn
∣∣∀ x ∈C : yTx6 0

}
. Note

that C◦ is always closed. Given nonempty sets C1, C2 ∈ Rn the Hausdorff distance dH
(
C1,C2)

between C1 and C2 is defined as

dH
(
C1,C2)= max

{
sup
x∈C1

inf
y∈C2
‖x− y‖ , sup

x∈C2
inf

y∈C1
‖x− y‖

}
.

Note that dH
(
C1,C2)may be infinite if any of the sets is unbounded. However, it is well known

that dH (·, ·) defines a metric on the class of nonempty compact subsets of Rn [9]. Moreover, it
can equivalently be expressed as

dH
(
C1,C2)= inf

{
ε > 0

∣∣C1 ⊆C2 + εB, C2 ⊆C1 + εB
}
, (2.1)

see [8].
A function f : Rn→ R∪{+∞} is called convex if f (λx+(1−λ )y)6 λ f (x)+(1−λ ) f (y)

holds for every x, y ∈ Rn and λ ∈ [0,1]. The domain dom f of f is the set of points at which f
is finite, i.e., dom f = {x ∈ Rn | f (x)<+∞}. To every f , we assign a conjugate function f ∗ de-
fined by f ∗(y) = sup

{
yTx− f (x)

∣∣x ∈ Rn}. The support function σC of a nonempty, closed, and
convex set C is given as σC(d) = sup

{
dTx

∣∣x ∈C
}

. Its conjugate is called indicator function of
C and denoted δC.

3. APPROXIMATELY M-DECOMPOSABLE SETS

In this section, we give an answer to the questions posed in the introduction. We understand
a truncation of C to be the sum of a compact subset of C and 0+C in the following sense.

Definition 3.1. Let C ⊆ Rn be nonempty closed and convex. The set Cr = (C∩ rB)+ 0+C is
called a truncation of C of radius r > 0.

Clearly, Cr ⊆C for all r > 0. Studying sets that are approximately trunctations of themselves
is motivated by the fact that, given such a set, it suffices to conduct analyses, such as minimizing
some function over the set, on a compact subset to obtain good results in an approximate sense.
To this end, we introduce the class of approximately M(otzkin)-decomposable convex sets.

Definition 3.2. A nonempty, closed, and convex set C⊆Rn is called approximately M-decomposable
if, for every ε > 0, there exists r > 0 such that C ⊆Cr + εB.

By Equation (2.1), Definition 3.2 is equivalent to the existence of a truncation Cr(ε) such
that the Hausdorff distance between Cr(ε) and C is at most ε . The designation approximately
M-decomposable is derived from the stronger property of M-decomposability.
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Definition 3.3 (see [5]). A nonempty, closed, nad convex set C ⊆ Rn is called M(otzkin)-de-
composable if there exists a compact convex set M ⊆ Rn such that C = M + 0+C. Such set M
is called a compact component of C.

If C is closed and convex, then every nonempty trunctation Cr of C is M-decomposable with
compact component C∩rB. Moreover, if C is M-decomposable, there exist truncations of C that
coincide with C. If M is any compact component of C, then Cr =C for all r>max{‖x‖|x ∈M}.
In particular, C is approximately M-decomposable in this case. A relaxation of the condition of
M-decomposability leads to hyperbolic sets.

Definition 3.4 (cf. [1, 13]). A nonempty, closed, and convex set C ⊆ Rn is called hyperbolic if
there exists a compact convex set M ⊆ Rn such that C ⊆M+0+C.

We point out that hyperbolic sets also exist under the terms 0+C-bounded [12] and self-
bounded [3] sets in the literature. Moreover, it is known that C is hyperbolic if and only if
domσC is closed; see [1, Proposition 5].

Clearly, every M-decomposable set C is also hyperbolic, where the set M in Definition 3.4
may be chosen as any compact component of C, but the converse does not hold as is seen from
the example C1 =

{
x ∈ R2

∣∣x1x2 > 1,x1 > 0
}

and the fact 0+C1 =
{

x ∈ R2
∣∣x> 0

}
; see Section

1 and Figure 1. The set C1 is the epigraph of the function x 7→ x−1 restricted to the nonnegative
real line. It is not difficult to see that this set is approximately M-decomposable. For ε > 0
set r2 > ε2 + ε−2. Example 3.1 below shows that not every hyperbolic set is approximately
M-decomposable. However, the converse statement holds, i.e., the class of hyperbolic sets is
larger in general.

Proposition 3.1. Let C ⊆ Rn be approximately M-decomposable. Then C is hyperbolic.

Proof. Let ε > 0. Then there exists r > 0 such that C ⊆Cr + εB. Now,

Cr + εB = (C∩ rB)+ εB+0+C

and (C∩ rB)+ εB is compact and convex. Thus C is hyperbolic. �

In order to characterize approximately M-decomposable sets, we need another expression for
the Hausdorff distance between certain closed convex sets. The following is a generalization of
a well-known result for compact convex sets, see, e.g., [8, Proposition 6.3].

Proposition 3.2. Let C1, C2⊆Rn be nonempty closed convex sets whose support functions have
identical domains D, i.e., D = domσC1 = domσC2 . Then

dH
(
C1,C2)= sup

d∈D∩B
|σC1(d)−σC2(d)| .

Furthermore, dH
(
C1,C2)=+∞ whenever domσC1 6= domσC2 .

Proof. Since C1 and C2 are nonempty, D is also nonempty because σC1(0) = σC2(0) = 0, i.e.
0 ∈D. Denote by d

(
x,C1) the Euclidean distance from x to C1, i.e., d

(
x,C1)= infy∈C1 ‖x− y‖.

Then dH
(
C1,C2) can be written as max

{
supx∈C1 d

(
x,C2) , supx∈C2 d

(
x,C1)}. Moreover, it

holds d
(
x,C1)= infy∈Rn (‖x− y‖+δC1(y)). According to [15, Theorem 16.4], the conjugate of
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d
(
·,C1) is thus given as d∗(·,C1) = δB +σC1 . Since d

(
·,C1) is closed proper and convex, then

it holds
d
(
x,C1)= d∗∗(x,C1)

= sup
d∈Rn

(
xTd−δB(d)−σC1(d)

)
= sup

d∈D∩B

(
xTd−σC1(d)

)
.

The first equation is due to [15, Theorem 12.2] and the third holds because domσC1 = D. Anal-
ogously, one has d

(
x,C2)= supd∈D∩B

(
xTd−σC2(d)

)
. Combining both expressions yields

dH
(
C1,C2)= max

{
sup
x∈C2

sup
d∈D∩B

(
xTd−σC1(d)

)
, sup

x∈C1
sup

d∈D∩B

(
xTd−σC2(d)

)}
= sup

d∈D∩B
max{σC2(d)−σC1(d), σC1(d)−σC2(d)}

= sup
d∈D∩B

|σC1(d)−σC2(d)| .

For the second part assume, without loss of generality, d ∈ domσC1 \domσC2 , ‖d‖= 1. Then,
for every k ∈N, there exists yk ∈C2 such that dTyk > k. Denote the set

{
x ∈ Rn

∣∣dTx6 σC1(d)
}

by H. Since C1 ⊆ H, it holds d
(
yk,C1) > d (yk,H) = dTyk − σC1(d) > k− σC1(d) for all

k > σC1(d). Taking the limit k→+∞ yields the result. �

Remark 3.1. Note that, even if domσC1 = domσC2 , it is possible that dH
(
C1,C2)=+∞. Con-

sider, for example, the sets C1 =
{

x ∈ R2
∣∣x2 > x2

1
}

and C2 = 2C1. The domain of their sup-
port functions is the non-closed set

{
x ∈ R2

∣∣x2 < 0
}
∪{0}. For dk = (1, −1/k)T and one has

σC1(dk) = k/2 and σC2(dk) = k, i.e.,

σC2

(
dk

‖dk‖

)
−σC1

(
dk

‖dk‖

)
=

k2

2
√

k2 +1
which is unbounded in k ∈ N.

We have already seen that not every closed convex set C is approximately M-decomposable,
i.e., can be approximated by truncations in the Hausdorff distance. However, truncations always
approximate C in a weaker sense.

Definition 3.5 (cf. [16]). A sequence of
{

Ck}
k∈N of closed subsets of Rn is said to converge in

the sense of Painlevé-Kuratowski or PK-converge to a closed set C ⊆ Rn if

C =

{
x ∈ Rn

∣∣∣∣ lim
k→+∞

d
(

x,Ck
)
= 0
}
.

For bounded sequences PK-convergence and convergence with respect to the Hausdorff dis-
tance coincide, but the concepts are distinct in general; see [16].

Lemma 3.1. Let C ⊆ Rn be nonempty, closed, and convex. Then {Cr}r∈N PK-converges to C.

Proof. Let x ∈C. Then x ∈Cr for all r > ‖x‖. Hence, limr→+∞ d (x,Cr) exists and is zero. On
the contrary, let x /∈C. Since C is closed, d (x,C) > 0. Moreover, d (x,Cr) > d (x,C) holds for
all r ∈ N because Cr ⊆C. Thus x /∈

{
x ∈ Rn

∣∣ limk→+∞ d
(
x,Ck)= 0

}
. �

We are now ready to prove the main result of this work.
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Theorem 3.1. Let C⊆Rn be a nonempty, closed, and convex set. The following are equivalent:
(i) C is approximately M-decomposable,

(ii) domσC is closed and σC is continuous relative to domσC.
Moreover, the set domσC in (ii) equals (0+C)

◦.

Proof. Assume that C is approximately M-decomposable, i.e.,

∀ ε > 0 ∃ r > 0: Cr ⊆C ⊆Cr + εB. (3.1)

For the remainder of the proof, we assume that ε and r are fixed such that the inclusions in (3.1)
hold. In particular, Cr + εB. Consequently, Cr are nonempty. It follows

σCr 6 σC 6 σCr+εB (3.2)

for the support functions of Cr, C, and Cr + εB; see [15, Corollary 13.1.1]. Since all three sets
have the same recession cone 0+C, it follows from [15, Corollary 14.2.1] that

cldomσCr = cldomσC = cldomσCr+εB =
(
0+C

)◦
.

However, for d ∈ (0+C)
◦, one has

σCr+εB(d) = σ(C∩rB)+εB(d)<+∞.

Thus domσCr = domσC = domσCr+εB = (0+C)
◦ due to Inequality (3.2).

The support functions σCr and σC∩rB coincide on (0+C)
◦. Since C∩rB is compact, its support

function is finite everywhere and therefore continuous according to [15, Corollary 10.1.1]. Thus
σCr is continuous relative to its domain (0+C)

◦. Using the expression for the Hausdorff distance,
we see from Equation (2.1) that (3.1) is equivalent to

∀ ε > 0 ∃ r > 0: dH (Cr,C)6 ε. (3.3)

Since
r 6 r̄ =⇒ Cr ⊆Cr̄ ⊆C, (3.4)

Statement (3.3) is equivalent to limr→+∞ dH (Cr,C) = 0. Applying Proposition 3.2 gives

lim
r→+∞

sup
d∈(0+C)◦∩B

|σC(d)−σCr(d)|= 0. (3.5)

Thus σCr converges uniformly to σC on (0+C)
◦. As σCr is continunous on its domain, the

Uniform Limit Theorem [14, Theorem 21.6] yields that σC is continuous on its domain as well.
Now, we assume that domσC is closed and σC : domσC→R is continuous. Again, domσC =

(0+C)
◦ by [15, Corollary 14.2.1]. We show that σCr converges pointwise to σC on (0+C)

◦ as
r→ +∞. Property (3.4) implies that limr→+∞ σCr(d) exists for all d ∈ (0+C)

◦ and is finite. In
particular, it holds limr→+∞ σCr(d)6 σC(d). Assume σCr does not converge to pointwise to σC
on (0+C)

◦, i.e., there exists d̄ ∈ (0+C)
◦ for which the inequality holds strictly, which implies

d̄ 6= 0. Let γ = limr→+∞ σCr(d̄). Then Cr ⊆ H :=
{

x ∈ Rn
∣∣ d̄Tx6 γ

}
for every r ∈ N and there

exists x̄ ∈C such that d̄Tx̄ > γ . It holds

d (x̄,Cr)> d (x̄,H) =
d̄Tx̄− γ∥∥d̄

∥∥ > 0,

which is a contradiction because {Cr}r∈N PK-converges to C by Lemma 3.1, i.e., C can be
expressed as {x ∈ Rn | limr→+∞ d (x,Cr) = 0}. Thus σCr converges pointwise to σC on (0+C)

◦.
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Since σC is continuous and σCr is monotonically non-decreasing in r, Dini’s theorem [10,
Theorem 12.1] yields that the convergence is uniform on (0+C)

◦∩B, i.e., Equation (3.5) holds.
Finally, using the equivalence between (3.5), (3.3), and (3.1) proves that C is approximately
M-decomposable. �

Remark 3.2. In the above proof, we have demonstrated the pointwise convergence of the
support functions of truncations Cr to the support function of C on (0+C)

◦ by using the PK-
convergence of {Cr}r∈N. We point out that this may also be achieved by using the different
concept of C -convergence introduced in [11]. To this end, one needs to take into account that
σC = supr∈NσCr and apply [11, Theorem 5.9] and [11, Proposition 5.3 (iv)].

Remark 3.3. In [4], continuous convex sets were introduced, which are similar to, but different
from, approximate M-decomposable sets. A convex set is called continuous if its support func-
tion is continuous everywhere (and not necessarily only relative to its domain). For example,
the set C1 from Section 1 is approximately M-decomposable, but not continuous, whereas C2

is continuous, but the domain of its support function is not closed. Thus it is not approximately
M-decomposable; see [4, p. 1]. Clearly, every compact convex set is both continuous and
(approximately) M-decomposable.

Using Theorem 3.1, we can show that hyperbolicity does not imply approximate M-decom-
posability.

Example 3.1. Let C2 =
{

x ∈ R2
∣∣x2 > x2

1
}

(Section 1 and Figure 1), and consider the following
set

C =
(
C2×{0}

)
+ clcone

(
C2×{1}

)
in R3. By [15, Theorem 8.2], it holds

clcone
(
C2×{1}

)
= cone

(
C2×{1}

)
∪
(
0+C2×{0}

)
.

Now, according to [15, Corollary 9.1.2], C is closed and one has 0+C = clcone
(
C2×{1}

)
.

To see that C is hyperbolic, we choose any x ∈ C. Then x = c+ s for some c ∈ C2×{0} and
s ∈ 0+C. For d = (0,0,−1)T, it holds x = d +(c−d)+ s. Since c−d ∈ 0+C, c−d + s ∈ 0+C
as well. Hence, C ⊆ {d}+0+C.

According to [2, Theorem 3.1], one has(
0+C

)◦
= clcone

(
C2◦×{−1}

)
and a simple calculation shows that C2◦ =

{
x ∈ R2

∣∣x2 6−x2
1/4
}

. Therefore,

dn =

 n−1

−(2n)−2

−1

 ∈ (0+C
)◦

for every n ∈ N and limn→+∞ dn = d. Now,

σC(dn)> dT
n

 n
n2

0

=
3
4
> 0.

However, σC(d) 6 0 because for x ∈ C it holds x3 > 0. Hence, σC is not continuous at d ∈
(0+C)

◦ and by Theorem 3.1 not approximately M-decomposable.
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If an additional assumption is made, hyperbolicity and approximate M-decomposability are
equivalent.

Corollary 3.1. Let C ⊆ Rn be nonempty, closed, and convex, and let 0+C be polyhedral. Then
C is approximately M-decomposable if and only if it is hyperbolic.

Proof. By Proposition 3.1, the first implication is true regardless of the polyhedrality of 0+C.
Assume that C is hyperbolic, i.e., C⊆M+0+C for some compact convex set M, which implies
domσC ⊆ (0+C)

◦ and thus actually domσC = (0+C)
◦ by [15, Corollary 14.2.1]. Since 0+C

is polyhedral, so is (0+C)
◦. Hence it is locally simplicial; see [15, Theorem 20.5], and [15,

Theorem 10.2] implies that σC is continuous relative to its domain. In view of Theorem 3.1, we
have the desired conclusion immediately. �

The corollary implies that, whenever C ⊆ R2, it is approximately M-decomposable if and
only if it is hyperbolic because every closed convex cone in R2 is polyhedral. Thus, the set
from Example 3.1 is in the lowest possible dimension to demonstrate that hyperbolicity is, in
general, not equivalent to approximate M-decomposability.

4. CONCLUSION

In this apaper, we introduced the class of approximately M-decomposable sets as those closed
convex sets that can be approximated arbitrarily well by truncations with respect to the Haus-
dorff distance. We showed that they generalize the class of M-decomposable sets and are a
special case of hyperbolic sets but coincide with neither in general as demonstrated by exam-
ples. Furthermore, we characterized the approximately M-decomposable sets in terms of their
support functions. Finally, we proved that, when considering only polyhedral recession cones,
approximate M-decomposability and hyperbolicity are equivalent.
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