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Abstract. In this paper, we consider an inexact projected gradient method equipped with a nonmonotone
line search rule for smooth constrained multiobjective optimization. In this method, a new nonmonotone
line search technique proposed here is employed and the relative errors on the search direction is ad-
mitted. We demonstrate that this method is well-defined. Then, we prove that each accumulation point
of the sequence generated by this method is Pareto stationary and analyze the convergence rate of the
algorithm. When the objective function is convex, the convergence of the sequence to a weak Pareto
optimal point of the problem is established.

Keywords. Gradient method; Multiobjective optimization; Nonmonotone line search; Pareto optimality.

1. INTRODUCTION

In this paper, we consider the constrained multiobjective optimization problem of the form:

min
x∈C

F(x), (1.1)

where C ⊆ Rn is a closed and convex set and F = ( f1, · · · , fm)
> : Rn→ Rm is a vector-valued

function and continuously differentiable on an open superset of C. Such optimization prob-
lem has a wide range of applications in many fields, such as economy, finance, engineering,
management science, location theory, game theory and so on; see, e.g., [2, 9, 24, 27, 28].

In terms of numerical optimization algorithms, first-order methods are the mainstream algo-
rithms for solving large-scale problems due to their efficiency and computational simplicity. In
the present work, we focus on one first-order method, namely the projected gradient method. In
scalar optimization, the projected gradient method and its modified versions are often used to
solve nonsmooth optimization problems, feasibility problems, variational inequalities, and so
on [1, 3, 31, 33]. For the vector optimization, Graña Drummond and Iusem [16] proposed two
projected gradient methods for vector optimization problems. For one method, they showed
the stationarity of the cluster points without convexity assumptions. For the other method, they
proved the convergence to a weakly efficient solution when the objective function is convex.
Bello Cruz et al. [4] considered the projected gradient method for quasiconvex multiobjective
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optimization. They showed the convergence to a stationary point and further to a weakly effi-
cient solution when the multiobjective function is pseudoconvex. In [13], Fliege et al. analyzed
the convergence rate of the gradient method for smooth unconstrained multiobjective optimiza-
tion. We note that these methods are all descent methods, that is, the Armijo-type line search
rule is adopted to calculate the stepsize and the sequence of the objective function values is
monotone decreasing. While, this monotonicity can considerably slow the convergence rate of
the algorithms. In [7], by employing a scalarization process, Brito et al. proposed a projected
subgradient method for constrained nondifferentiable convex multiobjective optimization prob-
lems and obtained the convergence to a Pareto optimal point of the problem. Recently, based
on the Plastria subdifferential, we considered a projected subgradient method for solving con-
strained nondifferentiable quasiconvex multiobjective optimization problems in [30] and estab-
lished the convergence to a Pareto optimal point. However, in scalarization approaches, the
choice of the parameters is not known in advance, which leaves the modeler and the decision-
maker with the burden of choosing them. Moreover, for some problems, unproper choices of the
parameters may give rise to unbounded scalar problems [11, 17]. We see that using nonmono-
tone line search techniques is a good alternative, which does not require parameter information
and allows some increase of objective function values in some iterations to improve the con-
vergence speed of the algorithms. In [25], by extending the max-type nonmonotone line search
given by Grippo et al. [19] in the scalar context to vector optimization case, Qu et al. proposed
nonmonotone gradient methods for convex vector optimization, and established the global con-
vergence and local linear convergence results for the methods. Fazzio and Schuverdt [10] con-
sidered a nonmonotone projected gradient method for multiobjective optimization based on
the average-type nonmonotone line search technique of [29], and proved the convergence to a
weakly Pareto optimal solution when the multiobjective function is convex. Recently, based
on the average-type nonmonotone line search, we considered a projected gradient method with
exogenously given square summable sequence in the computation of the search direction for
the convex multiobjective optimization [32].

Nonetheless, the research on nonmonotone algorithms for solving multiobjective optimiza-
tion problems is still insufficient. Note that, for scalar optimization, Huang et al. [21] proposed
a nonmonotone line search rule, which was verified to be an improved version of the average-
type nonmonotone line search technique. Inspired by this, in the present paper, we extend it to
the case of multiobjective optimization and propose a new nonmonotone line search strategy.

On the other hand, most of the existing algorithms for vector optimization are exact al-
gorithms. That is, in each iteration, the search direction is obtained by solving the auxil-
iary subproblem exactly, which increases the computational cost of the algorithm. In view
of this, the inexact gradient methods for vector optimization have been considered in some
work [6, 12, 15, 18], in which an approximation of the exact search direction was computed
at each iteration. Whereas, these methods are descent methods. In this paper, based on the
nonmonotone line search rule proposed here, we consider an inexact nonmonotone projected
gradient method for multiobjective optimization problem (1.1) and analyze the convergence of
the method.

The outline of this paper is as follows. In Section 2, we present some notations and pre-
liminary results which are needed in this work. In Section 3, we propose the method and
demonstrate its well-definedness. Some properties of the method are also investigated. Section
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4 concerns the convergence analysis of the proposed method without convexity assumptions.
It is proved that each accumulation point of the sequence generated by the method is Pareto
stationary and the method has a convergence rate of O( 1√

k
). In Section 5, we show the conver-

gence of the method to a weak Pareto solution in the convex case. Finally, some conclusions
are given in Section 6.

2. NOTATIONS AND PRELIMINARY RESULTS

The notations used in the present paper are standard (cf. [22,26]). We denote by 〈·, ·〉 the inner
product and by ‖ · ‖ the corresponding norm of Rn. N denotes the set of all positive integers,
and N∗ := N∪{0}. The transpose sign is denoted by >.

For a function f : Rn→ R := R∪{+∞}, the effective domain of f is denoted by dom f :=
{x ∈Rn : f (x)<+∞}, and f is called proper if dom f 6= /0. A proper function f is called convex
if, for all x,y∈ dom f and for all t ∈ [0,1], f (tx+(1−t)y)≤ t f (x)+(1−t) f (y), while f is called
strictly convex if the above inequality is strict for any x,y ∈ dom f with x 6= y and t ∈ (0,1). We
call a proper function f is strongly convex with modulus τ > 0 (or τ-strongly convex) if, for
any x,y ∈ dom f and t ∈ [0,1], f (tx+(1− t)y) ≤ t f (x)+ (1− t) f (y)− τ

2t(1− t)‖x− y‖2. A
proper function f is said to be differentiable at x̄ ∈ dom f if there exists a vector v ∈Rn with the
property that

lim
x→x̄

f (x)− f (x̄)−〈v,x− x̄〉
‖x− x̄‖

= 0.

Such a v, if it exists, is called the gradient of f at x̄ and is denoted by ∇ f (x̄). The subdifferential
of a proper convex function f at x̄ ∈ dom f is defined by

∂ f (x̄) := {x∗ ∈ Rn : f (x̄)+ 〈x∗,x− x̄〉 ≤ f (x), ∀ x ∈ dom f},
and we say that f is subdifferentiable at x ∈ dom f if ∂ f (x) 6= /0. If f is differentiable at x̄, then
∂ f (x̄) = {∇ f (x̄)}.

It is known that if a τ-strongly convex function f is subdifferentiable at x ∈ dom f , then, for
all x,y ∈ dom f and x∗ ∈ ∂ f (x),

f (y)≥ f (x)+ 〈x∗,y− x〉+ τ

2
‖y− x‖2. (2.1)

The function f is said to be Lipschitz continuous with Lipschitz constant L> 0 if | f (x)− f (y)| ≤
L‖x− y‖ for all x,y ∈ dom f .

Let Rm
+ and Rm

++ denote the nonnegative orthant and positive orthant of Rm, respectively.
We consider the partial order � (≺) induced by Rm

+ (Rm
++): for two vectors x,y ∈ Rm, x � y

(x ≺ y) if and only if y− x ∈ Rm
+ (y− x ∈ Rm

++). The multiobjective function F is said to be
continuously differentiable (convex, respectively, strictly convex), if each component function
fi with i = 1, · · · ,m is continuously differentiable (convex, respectively, strictly convex). Let
JF(x) denote the Jacobian matrix of the vector-valued function F in (1.1) at x, that is, JF(x) =
(∇ f1(x), · · · ,∇ fm(x))>. The definition of the Pareto optimality for multiobjective optimization
problem (1.1) is recalled as follows.

Definition 2.1. A point x∗ ∈C is said to be
(a) a Pareto optimal point of (1.1) if there does not exist x ∈ C such that F(x) � F(x∗) and

F(x) 6= F(x∗);
(b) a weak Pareto optimal point of (1.1) if there does not exist x ∈C such that F(x)≺ F(x∗);
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(c) a Pareto stationary point of (1.1) if JF(x∗)(C− x∗)∩ (−Rm
++) = /0.

It is known that every Pareto optimal point is also a weak Pareto optimal point, and each
weak Pareto optimal point is also a Pareto stationary point. Conversely, if F is convex, then
Pareto stationarity implies weak Pareto optimality. Also, it can be verified by definition that
if F is strictly convex, then every weak Pareto optimal point is also a Pareto optimal point.
Indeed, if we suppose that a weak Pareto optimal point x∗ is not a Pareto optimal point, then
there exists x ∈Rn such that F(x)� F(x∗) and F(x) 6= F(x∗). Consequently, for all i = 1, · · · ,m
and λ ∈ (0,1), one can obtain from the strict convexity of fi that

fi(x∗+λ (x− x∗))< λ fi(x)+(1−λ ) fi(x∗).

It follows that
fi(x∗+λ (x− x∗))− fi(x∗)

λ
< fi(x)− fi(x∗)≤ 0,

which further yields that F(x∗+λ (x− x∗))≺ F(x∗). This is a contradiction to the weak Pareto
optimality of x∗.

Finally, we recall the following quasi-Fejér convergence theorem, which will be used in the
convergence analysis of the method.

Definition 2.2. A sequence {uk} ⊆ Rn is said to be quasi-Fejér convergent to a nonempty set
U ⊆ Rn if, for each u ∈U , there exists a sequence {εk} ⊆ R+ with ∑

∞
k=0 εk < ∞ such that

‖uk+1−u‖2 ≤ ‖uk−u‖2 + εk.

Proposition 2.1. [8, Theorem 1] If {uk} ⊆ Rn is quasi-Fejér convergent to a nonempty set
U ⊆ Rn, then {uk} is bounded. Furthermore, if a cluster point ū of {uk} belongs to U, then
limk→∞ uk = ū.

3. THE ALGORITHM AND PROPERTIES

In this section, we propose the inexact projected gradient method equipped with a nonmono-
tone line search rule introduced for multiobjective optimization problem (1.1). Some properties
of the algorithm are also presented.

Given a parameter β > 0, for x ∈C, define the function ϕx : Rn→ R by

ϕx(v) = β max
i∈{1,··· ,m}

〈∇ fi(x),v〉+
‖v‖2

2
, ∀v ∈ Rn.

In view of the strong convexity of ϕx, it has a unique minimum point on the closed and convex
set C− x, denoted by v(x), i.e.,

v(x) := argminv∈C−xϕx(v). (3.1)

We denote the optimal value of (3.1) as

θ(x) := β max
i∈{1,··· ,m}

〈∇ fi(x),v(x)〉+
‖v(x)‖2

2
.

Since 0 ∈C− x, we have θ(x) ≤ 0. The following characterization of Pareto stationary points
of the problem (1.1) in terms of v(·) and θ(·) follows from [16, Proposition 3].
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Lemma 3.1. For x ∈C, the following conditions are equivalent:
(i) The point x is not a Pareto stationary point of (1.1);
(ii) θ(x)< 0;
(iii) v(x) 6= 0.
In particular, x ∈C is a Pareto stationary point of (1.1) if and only if θ(x) = 0.

For the following continuity of the function θ(·), one can refer to [14, Proposition 3.4].

Lemma 3.2. The function θ : C→ R is continuous.

In exact projected gradient methods, the minimizer v(x) of problem minv∈C−xϕx(v) needs
to be calculated in each iteration as the search direction. From a numerical perspective, it is
interesting to work with the inexact solution of this problem. In this paper, we consider the
approximate search directions as considered in [12, 15, 18].

Definition 3.1. Let x ∈C and σ ∈ [0,1). We say that the vector v ∈C− x is a σ -approximate
direction at x if ϕx(v)≤ (1−σ)θ(x).

Note that the exact direction v(x) is always a σ -approximate direction at x for any σ ∈ [0,1).
Since ϕx is strongly convex with modulus 1 and 0 ∈ ∂ϕx(v(x)), we have by (2.1) that

ϕx(v)−θ(x)≥ 1
2
‖v− v(x)‖2, for any v ∈ Rn. (3.2)

Particularly, for a σ -approximate direction v at x, it follows from (3.2) that ‖v− v(x)‖2 ≤
2σ |θ(x)|, which establishes the degree of proximity between a σ -approximate direction v and
the exact direction v(x) in terms of the optimal value θ(x).

From Definition 3.1 and Lemma 3.1, the following characterization of Pareto stationary
points of the problem (1.1) given by approximate directions can be acquired, which is the theo-
retical basis for the stopping criterion of Algorithm 3.1.

Proposition 3.1. Given x ∈C and σ ∈ [0,1), x is a Pareto stationary point of (1.1) if and only
if v = 0 is a σ -approximate direction at x.

Proof. If x is a Pareto stationary point of (1.1), then θ(x) = 0 thanks to Lemma 3.1. Therefore,
it follows directly from Definition 3.1 that v = 0 is a σ -approximate direction at x. Conversely,
if v = 0 is a σ -approximate direction at x, then 0 ≤ (1−σ)θ(x), so θ(x) = 0, which is due to
θ(x)≤ 0. Then, applying Lemma 3.1 again yields that x is a Pareto stationary point of (1.1). �

We describe the method considered here as follows.

Algorithm 3.1
Step 1 Choose parameters β > 0, σ ∈ [0,1), 0 ≤ ηmin ≤ ηmax < 1, δmax < 1, and 0 < δmin <

(1−ηmax)δmax. Let x0 ∈ C be an arbitrary initial point. Set C0 = F(x0),Q0 = 1 and
k = 0.

Step 2 If ∇ fi(xk)= 0 for some i∈{1, · · · ,m}, then stop. Otherwise, compute the inexact search
direction vk ∈C− xk such that ϕxk(vk)≤ (1−σ)θ(xk).

Step 3 If vk = 0, then stop. Otherwise, proceed to Step 4.
Step 4 Choose ηk ∈ [ηmin,ηmax] and define

Qk+1 = ηkQk +1. (3.3)
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Choose δk ∈
[
δmin,

δmax
Qk+1

]
. Compute a stepsize αk ∈ (0,1] as the maximum of { 1

2 j : j ∈
N∗} such that

ηkQkCk +F(xk +αkvk)

Qk+1
�Ck +δkαkJF(xk)vk. (3.4)

Step 5 Define
xk+1 = xk +αkvk (3.5)

and

Ck+1 =
ηkQkCk +F(xk+1)

Qk+1
. (3.6)

Set k := k+1 and go back to Step 2.

Observe that, for each k, one can equivalently rewrite Ck+1 as

Ck+1 =
(ηkQk +1)Ck +F(xk+1)−Ck

Qk+1
=Ck +

F(xk+1)−Ck

Qk+1
. (3.7)

By the definition of Qk+1 in (3.3), one can compute that

Qk+1 = 1+
k

∑
j=0

j

∏
l=0

ηk−l ≤ 1+
k

∑
j=0

η
j+1

max ≤
∞

∑
j=0

η
j

max ≤
1

1−ηmax
. (3.8)

Then, one has δmin < (1−ηmax)δmax ≤ δmax
Qk+1

, so the parameter δk can be selected. Moreover,
by the definition of Qk+1 in (3.3), it can be seen that (3.4) is equivalent to

F(xk +αkvk)�Ck +Qk+1δkαkJF(xk)vk. (3.9)

If ηk = 0 for each k, then Ck = F(xk) and Qk = 1, and the line search (3.9) (if further δk is a
constant) reduces to the Armijo line search that was adopted in the descent methods [4, 6, 15,
16, 18]. In addition, the average-type nonmonotone line search that was considered in [10, 32]
can be regarded as a special form of (3.9) with δk =

δ

Qk+1
, δ ∈ [δminQk+1,δmax].

Note that, if Algorithm 3.1 stops at iteration k, then xk is a Pareto stationary point of (1.1).
Indeed, if ∇ fi0(xk) = 0 for some i0 ∈ {1, · · · ,m}, then 〈∇ fi0(xk),x− xk〉 = 0 for any x ∈ C.
Thus JF(xk)(C− xk)∩ (−Rm

++) = /0, i.e., xk is a Pareto stationary point. In the case that vk = 0,
the Pareto stationarity of xk follows immediately from Proposition 3.1. Therefore, for any
nonstationary point xk, we have vk 6= 0 and ∇ fi(xk) 6= 0 for each i ∈ {1, · · · ,m}. Then, it can be
verified from

ϕxk(vk) = β max
i∈{1,··· ,m}

〈∇ fi(xk),vk〉+
‖vk‖2

2
≤ (1−σ)θ(xk)≤ 0

that
JF(xk)vk ≺ 0 and ‖vk‖ ≤ 2β‖∇ fi(xk)‖ for each i ∈ {1, · · · ,m}. (3.10)

Next, we show the well-definedness of the line search in Algorithm 3.1.

Proposition 3.2. The line search (3.4) in Algorithm 3.1 is well-defined and F(xk)�Ck for each
k ∈ N∗.
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Proof. We prove this result by mathematical induction. In the case that k = 0, one has C0 =
F(x0) and Q0 = 1, and the line search rule (3.4) needs to calculate α0 such that

F(x0 +α0v0)� F(x0)+Q1δ0α0JF(x0)v0. (3.11)

From Q1δ0 ≤ δmax < 1 and JF(x0)v0 ≺ 0, we can see that (3.11) is the standard Armijo line
search. Thus (3.11) is true, i.e., such a α0 exists. Fix any K ∈ N and suppose that for all
1≤ k ≤ K, there exists αk such that

F(xk+1) = F(xk +αkvk)�Ck +Qk+1δkαkJF(xk)vk, (3.12)

and F(xk)�Ck.
Now, we consider the case that k = K + 1. Let us first show that F(xK+1) � CK+1. To this

end, for each i ∈ {1, · · · ,m}, we define the function Di
K+1 :R+→R by Di

K+1(t) =
tCi

K+ fi(xK+1)
t+1 ,

where we use the notation Ci
k to denote the jth component of Ck for any k. Then,

D′iK+1(t) =
Ci

K− fi(xK+1)

(t +1)2 . (3.13)

Since JF(xK)vK ≺ 0, it follows from (3.12) that F(xK+1) � CK , which together with (3.13)
implies that D′iK+1(t)≥ 0, i.e., Di

K+1 is an increasing function of t. Thus

fi(xK+1) = Di
K+1(0)≤ Di

K+1(ηKQK) =Ci
K+1,

which is equivalent to that F(xK+1)�CK+1 as i ∈ {1, · · · ,m} is arbitrary.
Next, we prove line search (3.4) holds for K + 1 by contradiction. Suppose that there does

not exist αK+1 such that (3.4) holds for k = K + 1. Then, for any positive integer l ∈ N, there
exists i(l) ∈ {1, · · · ,m} such that

fi(l)

(
xK+1 +

1
2l vK+1

)
>Ci(l)

K+1 +QK+2δK+1
1
2l ∇ fi(l)(xK+1)

>vK+1

≥ fi(l)(xK+1)+QK+2δK+1
1
2l ∇ fi(l)(xK+1)

>vK+1.

Without loss of generality, we assume that i(l) = î ∈ {1, · · · ,m} for all l. Then, by the mean-
value theorem, it can be concluded that there exists some λ ∈ (0,1) such that

1
2l ∇ fî

(
xK+1 +

λ

2l vK+1

)>
vK+1 > QK+2δK+1

1
2l ∇ fî(xK+1)

>vK+1,

so (
∇ fî

(
xK+1 +

λ

2l vK+1

)
−∇ fî(xK+1)

)>
vK+1 > (QK+2δK+1−1)∇ fî(xK+1)

>vK+1.

Letting l → ∞ in the above inequality and noting the continuous differentiability of fî, we
obtains that (QK+2δK+1−1)∇ fî(xK+1)

>vK+1 ≤ 0. Since QK+2δK+1 ≤ δmax < 1, it follows that
∇ fî(xK+1)

>vK+1 ≥ 0, which contradicts the fact that JF(xK+1)
>vK+1 ≺ 0. Consequently, (3.4)

is true for k = K +1 and the proof is complete. �

Thanks to Proposition 3.2, Algorithm 3.1 is well-defined. From now on, we assume that
the sequence {xk} generated by Algorithm 3.1 is infinite. By the definition of the iteration
xk+1 = xk +αkvk and the convexity of C, the feasibility of {xk}, i.e., {xk} ⊆C can be obtained
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easily. Moreover, for each k, from the definition of Ck+1 in (3.6) and JF(xk)vk ≺ 0, one obtains
by (3.4) that Ck+1 �Ck, that is, {Ck} is a nonincreasing sequence in Rm.

4. CONVERGENCE ANALYSIS: THE NONCONVEX CASE

In this section, we analyze the convergence property of Algorithm 3.1 without the convexity
assumption on F . We show that each accumulation point of {xk}, if any, is a Pareto stationary
point of problem (1.1). Then, we prove that Algorithm 3.1 has a convergence rate of the order of

1√
k
. For this, additional assumption is needed. It is known that the assumption {x ∈C : F(x)�

F(xk),∀k ∈ N∗} 6= /0 is standard for guaranteeing the existence of efficient solutions for vector
optimization problems [22], and has been frequently used in the convergence analysis of the
algorithms [4, 5, 15, 23, 30]. While, for nonmonotone algorithms, by considering Ck instead of
F(xk), we use the following assumption:

(A1) The set T := {x ∈C : F(x)�Ck,∀k ∈ N∗} is nonempty.

Recently, this assumption was adopted in [10,32] to prove the convergence of their algorithms
proposed therein.

Theorem 4.1. Assume that (A1) holds. Then, every accumulation point, if any, of the sequence
{xk} generated by Algorithm 3.1 is a Pareto stationary point of problem (1.1).

Proof. Let x∗ be an accumulation point of {xk}, and let {x jk} be a subsequence of {xk} such
that limk→∞ x jk = x∗. Since {xk} ⊆ C and C is closed, it follows that x∗ ∈ C. We prove the
conclusion of the theorem in the following two cases:

(i) limsup
k→∞

α jk > 0, and (ii) limsup
k→∞

α jk = 0.

First, assume that (i) holds. For each k ∈ N∗, since JF(xk)vk ≺ 0 and δk ≥ δmin, it follows from
(3.4) and (3.6) that

Ck+1 �Ck +δkαkJF(xk)vk �Ck +δminαkJF(xk)vk. (4.1)

By the assumption (A1), it can be concluded that {Ck} is bounded from below, say R ≤Ck for
all k. This, together with (4.1), implies that, for any l ∈ N,

l

∑
k=0

δmin(−αkJF(xk)vk)�
l

∑
k=0

(Ck−Ck+1) =C0−Cl+1 �C0−R. (4.2)

Letting l→ ∞ in (4.2), it follows that ∑
∞
k=0 δmin(−αkJF(xk)vk)≺+∞. Thus

lim
k→∞

αkJF(xk)vk = 0. (4.3)

By assumption (i), there exists a subsequence {α jlk
} of α jk such that limk→∞ α jlk

= α > 0.
Combining this with (4.3) yields that limk→∞ JF(x jlk

)v jlk
= 0, which can be written component-

wisely as limk→∞ ∇ fi(x jlk
)>v jlk

= 0 for each i = 1, · · · ,m. Consequently, we have that, for each
i ∈ {1, · · · ,m},

0≤ limsup
k→∞

β max
i∈{1,··· ,m}

〈∇ fi(x jlk
),v jlk

〉+
‖v jlk
‖2

2
= limsup

k→∞

ϕx jlk
(v jlk

)

≤ limsup
k→∞

(1−σ)θ(x jlk
) = (1−σ)θ(x∗),

(4.4)
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where the second inequality is due to the fact that v jlk
is a σ -approximate direction and the

second equality follows from Lemma 3.2. Then, we obtain from (4.4) that θ(x∗) = 0, so x∗ is a
Pareto stationary point of problem (1.1) by Lemma 3.1.

Now, we assume that (ii) holds. Since {x jk} is bounded, it follows from the continuous dif-
ferentiability of F that JF(x jk) is bounded. Using (3.10), one obtains that {v jk} is also bounded.
Considering assumption (ii), one sees that there exists sequence { jrk} of { jk} such that

lim
k→∞

x jrk
= x∗, lim

k→∞
v jrk

= v∗, and lim
k→∞

α jrk
= 0. (4.5)

From the σ -approximation of {v jrk
} and the characterization of Pareto stationary points in

Lemma 3.1, one can obtain that

β max
i∈{1,··· ,m}

〈∇ fi(x jrk
),v jrk

〉 ≤ ϕx jrk
(v jrk

)≤ (1−σ)θ(x jrk
)< 0.

Then, letting k→ ∞ in the above inequality and taking into account (4.5), we have

β max
i∈{1,··· ,m}

〈∇ fi(x∗),v∗〉 ≤ (1−σ)θ(x∗)≤ 0. (4.6)

Now fix a positive integer q. Since limk→∞ α jrk
= 0, there exists some K ∈N such that α jrk

< 1
2q

for all k ≥ K, which means that 1
2q does not satisfy the line search (3.4) with x jrk

, that is,

F
(

x jrk
+

1
2q v jrk

)
�C jrk

+Q jrk+1δ jrk

1
2q JF(x jrk

)v jrk
, ∀ k ≥ K.

Hence, for each k ≥ K, there exists i(k) ∈ {1, · · · ,m} such that

fi(k)

(
x jrk

+
1
2q v jrk

)
>Ci(k)

jrk
+Q jrk+1δ jrk

1
2q ∇ fi(k)(x jrk

)>v jrk

≥ fi(k)(x jrk
)+δmax

1
2q ∇ fi(k)(x jrk

)>v jrk
,

(4.7)

where the second inequality holds due to Proposition 3.2 and that Q jrk+1δ jrk
≤ δmax. By con-

sidering the subsequence if necessary, we may assume that i(k) = ĩ ∈ {1, · · · ,m} for all k ≥ K.
Then, taking k→ ∞ in (4.7) and noting (4.5), one obtains

fĩ

(
x∗+

1
2q v∗

)
≥ fĩ(x

∗)+δmax
1
2q ∇ fĩ(x

∗)>v∗. (4.8)

As the positive integer q is arbitrary, it follows from (4.8) and the continuous differentiability of
fĩ that ∇ fĩ(x

∗)>v∗ ≥ 0. Thus maxi∈{1,··· ,m}〈∇ fi(x∗),v∗〉 ≥ 0. This, together with (4.6), implies
that θ(x∗) = 0, so x∗ is a Pareto stationary point of (1.1) by Lemma 3.1. The proof is complete.

�

In the remaining part of this section, we analyze the convergence rate of Algorithm 3.1. For
this purpose, we consider the following assumption.

(A2) For each i ∈ {1, · · · ,m}, ∇ fi is Lipschitz continuous on C with Lipschitz constant Li,
that is, ‖∇ fi(x)−∇ fi(y)‖ ≤ Li‖x− y‖ for all x,y ∈C.

In the following result, we show the existence of a uniform lower bound on the stepsize {αk},
which will be used later in the convergence analysis.
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Lemma 4.1. Assume that (A2) holds. Then, the stepsize {αk} satisfies αk≥αmin :=
{

1, 1−δmax
2βLmax

}
for all k ∈ N∗, where Lmax := max{L1, · · · ,Lm}.

Proof. Take any k ∈ N∗. We consider the case that αk < 1. By the definition of αk, we know
that 2αk does not satisfy the line search condition (3.4) of Algorithm 3.1. Hence, there exists
an index i ∈ {1, · · · ,m} such that

fi(xk +2αkvk)>Ci
k +Qk+1δk2αk∇ fi(xk)

>vk ≥ fi(xk)+δmax2αk∇ fi(xk)
>vk. (4.9)

On the other hand, by the assumption (A2), we have

fi(xk +2αkvk)≤ fi(xk)+2αk∇ fi(xk)
>vk +

Li

2
‖2αkvk‖2

≤ fi(xk)+2αk∇ fi(xk)
>vk +2α

2
k Lmax‖vk‖2.

(4.10)

Combining (4.9) and (4.10), one obtains

αk ≥
(δmax−1)∇ fi(xk)

>vk

Lmax‖vk‖2 . (4.11)

Moreover, it follows from ϕxk(vk)≤ 0 that ∇ fi(xk)
>vk ≤−‖vk‖2

2β
. Applying this to (4.11) estab-

lishes that αk ≥ 1−δmax
2βLmax

. Then, the desired result follows by noting that αk is never larger than
1. �

We conclude this section with the following theorem regarding the convergence rate of Al-
gorithm 3.1.

Theorem 4.2. Assume that (A2) holds and that there exists some nonempty set J ⊆ {1, · · · ,m}
such that each fi with i ∈ J has a lower bound f min

i on Rn. Denote Fmin := mini∈J f min
i and

Fmax := maxi∈{1,··· ,m} fi(x0). Let {xk} and {vk} be the sequences generated by Algorithm 3.1.
Then limk→∞ ‖vk‖= 0 and

min
0≤l≤k−1

‖vl‖ ≤
√

Fmax−Fmin

M
1√
k
,

where M = δminαmin
2β

with αmin being given in Lemma 4.1.

Proof. Let i ∈ J. For each l ∈N∗, noting (3.6) and JF(xl)vl ≺ 0, we can obtain from line search
(3.4) and Lemma 4.1 that

δminαmin|∇ fi(xl)
>vl| ≤ δlαl|∇ fi(xl)

>vl| ≤Ci
l−Ci

l+1.

Summing up the above inequality from l = 0 until k−1 and noting Proposition 3.2 give

δminαmin

k−1

∑
l=0
|∇ fi(xl)

>vl| ≤
k−1

∑
l=0

(
Ci

l−Ci
l+1
)
=Ci

0−Ci
k ≤ Fmax−Fmin. (4.12)

Letting k→ ∞ in (4.12) yields
∞

∑
l=0
|∇ fi(xl)

>vl|< ∞. (4.13)
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On the other hand, for any l ∈ N∗, it follows from ϕxl(vl)≤ 0 that

∇ fi(xl)
>vl ≤−

‖vl‖2

2β
. (4.14)

Applying (4.14) to (4.13) yields ∑
∞
l=0 ‖vl‖2 <∞, which implies that limk→∞ ‖vk‖= 0. Moreover,

applying (4.14) to (4.12), one can obtain that

k min
0≤l≤k−1

‖vl‖2 ≤
k−1

∑
l=0
‖vl‖2 ≤ 2β

k−1

∑
l=0
|∇ fi(xl)

>vl| ≤
2β (Fmax−Fmin)

δminαmin
=

Fmax−Fmin

M
.

Then the convergence rate is followed. The proof is complete.
�

5. CONVERGENCE ANALYSIS: THE CONVEX CASE

In this section, we investigate the convergence properties of Algorithm 3.1 with the convex-
ity assumption on multiobjective function F . We prove that the sequence {xk} generated by
Algorithm 3.1 converges to a weak Pareto optimal point of problem (1.1). Let us start with the
following concept. Denote Λm := {λ ∈ Rm

+ : ∑
m
i=1 λi = 1}. For a nonempty closed and convex

set Ω, let PΩ denote the projection operator onto Ω.

Definition 5.1. Let x∈C. A direction v∈C−x is said to be scalarization compatible (or simply
s-compatible) at x if there exists λ ∈ Λm such that

v = PC−x

(
−βJF(x)>λ

)
.

The concept of scalarization compatible direction was used in [18] to study the steepest de-
scent method for unconstrained vector optimization, and then was extended in [15] to study
the projected gradient method for constrained vector optimization. In this paper, we apply this
concept to the case of multiobjective optimization.

Observe that the exact search direction v(xk) is s-compatible at xk. Indeed, from the first order
optimality condition for minv∈C−xk ϕxk(v), it can be concluded that there exists uk ∈ ∂ϕxk(v(xk))
such that

〈uk,v− v(xk)〉 ≥ 0, ∀v ∈C− xk. (5.1)

Then, by the expression of ϕxk and the formula for the subdifferential of the maximum of convex
functions (see, e.g., [20]), we see that there exist /0 6= Jk ⊆ {1, · · · ,m} and λ k

j > 0 with j ∈ Jk
such that

∑
j∈Jk

λ
k
j = 1, 〈∇ f j(xk),vk〉= max

1≤i≤m
〈∇ fi(xk),vk〉, ∀ j ∈ Jk

and uk = v(xk)+β ∑ j∈Jk
λ k

j ∇ f j(xk), which together with (5.1) yields〈
v(xk)+β ∑

j∈Jk

λ
k
j ∇ f j(xk),v− v(xk)

〉
≥ 0, ∀v ∈C− xk,

which is equivalent to

v(xk) = PC−xk

(
−β ∑

j∈Jk

λ
k
j ∇ f j(xk)

)
.
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The following result is necessary for obtaining the quasi-Fejér convergence of the sequence
generated by Algorithm 3.1.

Lemma 5.1. Assume that F is convex. Let {xk} be the sequence generated by Algorithm 3.1,
where, for all k ∈ N∗, vk is a s-compatible direction at xk given by vk = PC−xk(−βJF(x)>λ k)

with λ k =
(
λ k

1 , · · · ,λ k
m
)> ∈ Λm. Then, for all x ∈C and k ∈ N∗,

‖xk+1− x‖2 ≤ ‖xk− x‖2 +2βαk

m

∑
i=1

λ
k
i ( fi(x)− fi(xk))+

2β

δmin

m

∑
i=1

(
Ci

k−Ci
k+1
)
.

Proof. Let x ∈C and k ∈ N∗. By (3.5), we have

‖xk+1− x‖2 = ‖xk− x‖2−2αk〈vk,x− xk〉+α
2
k ‖vk‖2. (5.2)

Since vk is s-compatible at xk, one has from the obtuse angle property of projections that〈
−β

m

∑
i=1

λ
k
i ∇ fi(xk)− vk,v− vk

〉
≤ 0, ∀v ∈C− xk.

Taking v = x− xk in the above inequality, we obtain that

−〈vk,x− xk〉 ≤ β

m

∑
i=1

λ
k
i 〈∇ fi(xk),x− xk〉−β

m

∑
i=1

λ
k
i 〈∇ fi(xk),vk〉−‖vk‖2. (5.3)

Since F is convex, it follows that

〈∇ fi(xk),x− xk〉 ≤ fi(x)− fi(xk), for each i ∈ {1, · · · ,m}. (5.4)

Moreover, by using line search (3.4) and noting the definition of Ck+1 in (3.6), one has that, for
each i ∈ {1, · · · ,m},

−〈∇ fi(xk),vk〉 ≤
Ci

k−Ci
k+1

δkαk
. (5.5)

Applying (5.4) and (5.5) to (5.3), and multiplying both sides by 2αk yield

−2αk〈vk,x− xk〉 ≤ 2βαk

m

∑
i=1

λ
k
i ( fi(x)− fi(xk))+

2β

δk

m

∑
i=1

λ
k
i
(
Ci

k−Ci
k+1
)
−2αk‖vk‖2

≤ 2βαk

m

∑
i=1

λ
k
i ( fi(x)− fi(xk))+

2β

δmin

m

∑
i=1

(
Ci

k−Ci
k+1
)
−2αk‖vk‖2,

where the second inequality holds due to the fact that Ck+1 � Ck and that {λ k
i } ⊆ [0,1], δk ≥

δmin. Combining this and (5.2) and noting that αk ∈ (0,1], we obtain the desired inequality
immediately. �

Now, we establish the convergence of Algorithm 3.1 to a weak Pareto optimal point of the
problem (1.1).

Theorem 5.1. Assume that F is convex and that (A1) holds. Let xk be the sequence generated
by Algorithm 3.1, where, for all k ∈ N∗, vk is s-compatible at xk. Then, {xk} converges to a
weak Pareto optimal point of problem (1.1).
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Proof. First, we show that {xk} is quasi-Fejér convergent to T . Take any x ∈ T . Then, by using
Lemma 5.1 and taking into account that F(xk)�Ck for all k (see Proposition 3.2), {λ k

i }⊆ [0,1],
and αk ∈ (0,1], one sees that, for all k ∈ N∗,

‖xk+1− x‖2 ≤ ‖xk− x‖2 +2βαk

m

∑
i=1

λ
k
i
(
Ci

k− fi(xk)
)
+

2β

δmin

m

∑
i=1

(
Ci

k−Ci
k+1
)

≤ ‖xk− x‖2 +2β

m

∑
i=1

(
Ci

k− fi(xk)
)
+

2β

δmin

m

∑
i=1

(
Ci

k−Ci
k+1
)
.

For each k, let

εk := 2β

m

∑
i=1

(
Ci

k− fi(xk)
)
+

2β

δmin

m

∑
i=1

(
Ci

k−Ci
k+1
)
.

The nonincreasing property of {Ck} implies that {εk} ⊆R+. We now prove that ∑
∞
k=0 εk <+∞.

By (3.7) and (3.8), we can obtain that, for each i ∈ {1, · · · ,m} and k ∈ N,

Ci
k− fi(xk) =Ci

k−1− fi(xk)+
fi(xk)−Ci

k−1

Qk
=

Qk−1
Qk

(
Ci

k−1− fi(xk)
)

= (Qk−1)
(
Ci

k−1−Ci
k
)
≤ ηmax

1−ηmax

(
Ci

k−1−Ci
k
)
.

(5.6)

Fixing any N ∈ N and noting C0 = F(x0), we have that

N

∑
k=0

εk =
N

∑
k=1

(
2β

m

∑
i=1

(
Ci

k− fi(xk)
))

+
N

∑
k=0

(
2β

δmin

m

∑
i=1

(
Ci

k−Ci
k+1
))

= 2β

m

∑
i=1

(
N

∑
k=1

(
Ci

k− fi(xk)
))

+
2β

δmin

m

∑
i=1

(
N

∑
k=0

(
Ci

k−Ci
k+1
))

≤ 2β

m

∑
i=1

(
N

∑
k=1

ηmax

1−ηmax

(
Ci

k−1−Ci
k
))

+
2β

δmin

m

∑
i=1

(
Ci

0−Ci
N+1
)

=
2βηmax

1−ηmax

m

∑
i=1

(
Ci

0−Ci
N
)
+

2β

δmin

m

∑
i=1

(
Ci

0−Ci
N+1
)

≤
(

2βηmax

1−ηmax
+

2β

δmin

) m

∑
i=1

(
Ci

0− fi(x)
)
,

(5.7)

where the first inequality is due to (5.6) and the second inequality holds because x ∈ T . Letting
N→∞ in (5.7), one has that ∑

∞
k=0 εk <+∞. Thus {xk} is quasi-Fejér convergent to T as x∈ T is

arbitrary. Then, it follows from Proposition 2.1 that {xk} is bounded, so it has an accumulation
point, denoted by x∗, which is a weak Pareto optimal point of problem (1.1) thanks to Theorem
4.1 and the convexity of F .

Finally, we show that x∗ ∈T . By this and Proposition 2.1, it can be concluded that limk→∞ xk =
x∗ as we wanted. Take any k0 ∈N. Let {x jk} be a subsequence of {xk} such that limk→∞ x jk = x∗.
By Proposition 3.2 and the nonincreasing property of {Ck}, we have that F(x jk) �C jk �Ck �
Ck0 for all k ≥ k0. Since F is continuous, we then conclude that F(x∗) = limk→∞ F(x jk)�Ck0 .
Thus x∗ ∈ T as k0 is arbitrary. The proof is complete. �
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6. CONCLUSION

In this work, we made further studies on the projected gradient method for constrained mul-
tiobjective optimization problems. The proposed method is constructed based on a new non-
monotone line search rule proposed here, and in each iteration, the approximate direction is
adopted instead solving the subproblem exactly. In the case that the problem is nonconvex, we
established the Pareto stationarity of the accumulation points of the sequence generated by this
method, and demonstrated that the algorithm has a convergence rate of O( 1√

k
). When the mul-

tiobjective function is convex, we proved the convergence of the generated sequence to a weak
Pareto optimal point of the problem. In future research, we are interested in further investigating
novel nonmonotone techniques as well as the accelerated methods.
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[20] J.-B. Hiriart Urruty, C. Lemarèchal, Convex Analysis and Minimization Algorithms, Springer, Berlin, 1993.
[21] S. Huang, Z. Wan, X. Chen, A new nonmonotone line search technique for unconstrained optimization,

Numer. Algorithms 68 (2015) 671-689.
[22] D. T. Luc, Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, Springer,

Berlin, 1989.
[23] E. A. Papa Quiroz, S. Cruzado, An inexact scalarization proximal point method for multiobjective quasicon-

vex minimization, Ann. Oper. Res. 316 (2022), 1445-1470.
[24] M. Pappalardo, Multiobjective optimization: a brief overview. In: A. Chinchuluun, A. Migdalas, P. M. Parda-

los, L. Pitsoulis (eds.) Pareto Optimality, Game Theory and Equilibria, pp. 517-528, Springer, 2008.
[25] S. Qu, Y. Ji, J. Jiang, Q. Zhang, Nonmonotone gradient methods for vector optimization with a portfolio

optimization application, European J. Oper. Res. 263 (2017), 356-366.
[26] R. T. Rockafellar, Convex Analysis, Priceton University Press, Princeton, 1970.
[27] G. T. Ross, R. M. Soland, A multicriteria approach to the location of public facilities, European J. Oper. Res.

4 (1980), 307-321.
[28] M. Tapia, C. Coello, Applications of multi-objective evolutionary algorithms in economics and finance: A

survey, in Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press, Piscataway, NJ,
(2007), 532-539.

[29] H. Zhang, W. W. Hager, A nonmonotone line search technique and its application to unconstrained optimiza-
tion, SIAM J. Optim. 14 (2004), 1043-1056.
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