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A POLYHEDRAL APPROXIMATION ALGORITHM FOR RECESSION CONES OF
SPECTRAHEDRAL SHADOWS
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Abstract. The intersection of an affine subspace with the cone of positive semidefinite matrices is called
a spectrahedron. An orthogonal projection thereof is called a spectrahedral shadow or projected spec-
trahedron. Spectrahedra and their projections can be seen as a generalization of polyhedra. This article
is concerned with the problem of approximating the recession cones of spectrahedra and spectrahedral
shadows via polyhedral cones. We present two iterative algorithms to compute outer and inner approxi-
mations to within an arbitrary prescribed accuracy. The first algorithm is tailored to spectrahedra and is
derived from polyhedral approximation algorithms for compact convex sets and relies on the fact, that an
algebraic description of the recession cone is available. The second algorithm is designed for projected
spectrahedra and does not require an algebraic description of the recession cone, which is in general
more difficult to obtain. We prove correctness and finiteness of both algorithms and provide numerical
examples.
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1. INTRODUCTION

Polyhedral approximation is a common technique used in mathematical programming. It is,
e.g., used in algorithms that approximate the feasible region of a convex optimization problem
by a sequence of polyhedra in order to obtain an approximate solution. Early publications of
these algorithms include, amongs others, Cheney’s and Goldstein’s Newton method for con-
vex programming [8], Kelley’s cutting-plane method [29], and Veinott’s supporting hyperplane
method [53]. These algorithms have been improved and extended in various directions and
different fields, such as global optimization [51, 52], geometry [33], solution concepts for mul-
tiple objective optimization problems [49, 24, 14, 36], and algorithms for mixed-integer convex
optimization problems [12, 55, 32]. Kamenev united the approximation ideas in the above men-
tioned works into a family of iterative algorithms called augmenting and cutting schemes [26]
and analyzes their efficiency and convergence properties in [27, 28].

Interest in polyhedral approximations arises from the fact that, while polyhedra do not have
to be finite sets, they can be represented in a finite manner and many set calculus operations can
be performed with them straightforwardly; see [10]. This makes them particularly suitable for
computer-aided treatment and easier to work with than with more general convex sets.
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The algorithms mentioned so far are tailored to compact sets, because unbounded sets can
only be approximated by polyhedra in the Hausdorff distance if they satisfy restrictive properties
as investigated in [41]. However, unbounded sets arise naturally in applications. In the theory
of convex vector optimization, for example, there exists a solution concept, which is based on
finding a polyhedral approximation of the so-called extended feasible image of the problem.
This set is unbounded by its construction, but it is advantageous to work with it rather than
with the possibly bounded feasible image, because its boundary satisfies certain minimality
properties; see [34, 14]. The recession cone of a set describes its asymptotic behaviour and is
therefore a crucial characteristic in the study of unbounded sets. In order to properly deal with
unboundedness in the framework of polyhedral approximation, the recession cone of the given
set should be approximated in some sense. There are several ways to define metrics on the space
of closed and convex cones, which are summarized in the survey article [25].

Spectrahedra are intersections of affine subspaces with the cone of positive semidefinite ma-
trices and can be defined by affine matrix inequalities. Projections of spectrahedra are called
projected spectrahedra, spectrahedral shadows or semidefinitely-representable sets and arise
as the feasible regions of semidefinite programs. Hence, they are ubiquitous in modern opti-
mization. They can be viewed as a generalization of polyhedra, as they contain the class of
polyhedral sets as a proper subclass and as they are closed under many operations under which
polyhedra are also closed; see, e.g., [40]. One aspect in which spectrahedra and their projections
differ from each other is the difficulty in expressing their recession cones. While the recession
cone of a spectrahedron can be described by the linear part of the defining matrix inequality,
there is no straightforward way to describe the recession cone of a projected spectrahedron from
its data.

This paper is concerned with the task of computing polyhedral approximations of the reces-
sion cones of specrahedra and spectrahedral shadows. To the best of the authors knowledge,
there do not exist any algorithms in the literature tailored to this problem. We present two iter-
ative approximations algorithms for recession cones. The first one is designed for spectrahedra
and is derived from augmenting and cutting schemes. A key requirement for this algorithm is
that an algebraic description of the recession cone is known. The second algorithm does not
require prior knowledge about the whole recession cone, but only a single element must be
known. It is suitable for the approximation of the recession cone of a spectrahedral shadow.
Both algorithms compute polyhedral inner and outer approximations to within a prescribed ac-
curacy. We show that the algorithms are correct and finite, given that the input set contains no
lines and has a solid recession cone. The algorithms are tested and compared on three examples.

The article is structured as follows. In Section 2 we introduce the necessary notation and
definitions. Section 3 is devoted to the polyhedral approximation of recession cones of spec-
trahedra. After reciting some results on convex cones and presenting first results on relevant
semidefinite optimization problems, the first algorithm is presented. Thereafter, its correctness
and finiteness is proved. The algorithm for the approximation of recession cones of spectrahe-
dral shadows is provided in Section 4. Again, we prove correctness and finiteness. In the final
section, Section 5, we test both algorithm on examples.
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2. PRELIMINARIES

Given a set C⊆Rn, we denote by convC, coneC, intC, bdC, and clC the convex hull, conical
hull, interior, boundary, and closure of C, respectively. The Minkowski addition between two
sets C1 and C2 ⊆ Rn is defined as C1 +C2 := {c1 + c2 | c1 ∈C1,c2 ∈C2} . A set K is called a
cone if x ∈ K implies αx ∈ K for every α ≥ 0. A cone K is called pointed if K ∩ (−K) = {0}.
The set {d ∈ Rn | x ∈C⇒ x+d ∈C} , denoted by 0∞C, is called the recession cone of the
convex set C. A closed convex set is called line-free if its recession cone is pointed. The polar
cone of a convex cone K ⊆ Rn is defined as

{
x ∈ Rn | y ∈ K⇒ xTy≤ 0

}
and denoted by K◦.

A polyhedron P ⊆ Rn is defined as the intersection of finitely many closed halfspaces, i.e.,
P = {x ∈ Rn | Ax≤ b} for some A ∈ Rm×n, b ∈ Rm, and m ∈ N. The tuple (A,b) is called a
H-representation or halfspace representation of P. Alternatively, P can also be expressed as
the Minkowski sum of the convex hull of finitely many points and the conical hull of finitely
many directions, i.e., there exist k, ` ∈ N, points v1, . . . ,vk ∈ Rn, and unit directions d1, . . . ,d` ∈
Rn such that P = conv{vi | i = 1, . . . ,k}+ cone

{
d j | j = 1, . . . , `

}
. In this connection, we use

the convention conv /0 = /0 and cone /0 = {0}. Given the matrices V ∈ Rn×k and D ∈ Rn×`,
where the i-th column of V is vi and the j-th column of D is d j, we call the tuple (V,D) a V-
representation or vertex representation of P. If the sets {vi | i = 1, . . . ,k} and

{
d j | j = 1, . . . , `

}
are minimal in the sense that no proper subset of any of the sets generates the same polyhedron,
then we call the vi vertices of P and the d j extreme directions of P. The well-known Minkowski-
Weyl theorem states that every polyhedron admits both an H- and a V-representation. Given a
hyperplane H(w,γ) with normal vector w and offset γ , i.e. H(w,γ) =

{
x ∈ Rn | wTx = γ

}
, we

denote the corresponding halfspace
{

x ∈ Rn | wTx≤ γ
}

by H−(w,γ). Moreover, we say that a
hyperplane H(w,γ) supports a set C ⊆ Rn or is a supporting hyperplane of C, if C ⊆ H−(w,γ)
and C∩H(w,γ) 6= /0.

We write ei for the i-th standard unit vector in Rn and e for the vector whose components are
all equal to one. The Euclidean norm of a vector x ∈ Rn is written as ‖x‖. The vector space
of real symmetric n× n matrices is denoted by S n. The identity matrix in S n is declared
I. If a matrix S ∈ S n is positive semidefinite, we write S < 0, and if it is positive definite,
S � 0. The usual inner product on S n is defined by S1 · S2 = trace(S1S2), where S1S2 means
ordinary matrix multiplication. The Hausdorff distance between two sets C1,C2 ⊆ Rn, denoted
by dH (C1,C2), is defined as

max

{
sup

c1∈C1

inf
c2∈C2

‖c1− c2‖ , sup
c2∈C2

inf
c1∈C1

‖c2− c1‖
}
.

It is well known that the Hausdorff distance defines a metric on the space of compact subsets
of Rn. However, if one argument is unbounded, the Hausdorff distance may be infinite. In
particular, if K1,K2 are convex cones, their Hausdorff distance is 0 if clK1 = clK2 and +∞

otherwise.
The (linear matrix) pencil A of size ` defined by the matrices A1, . . . ,An ∈S ` is the linear

function

A : Rn→S `, A (x) =
n

∑
i=1

xiAi.
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A pencil A of size ` together with a matrix A ∈S ` define the spectrahedron

{x ∈ Rn |A (x)+A< 0} .
Given two pencils A and B of size ` defined on Rn and Rm, respectively, and a matrix A ∈S `,
the set

S := {x ∈ Rn | ∃y ∈ Rm : A (x)+B(y)+A< 0}
is called a projected spectrahedron or spectrahedral shadow. The set S is the projection of the
spectrahedron {(x,y) ∈ Rn+m | (A +B)(x,y)+A< 0} onto the x-variables, hence the name.

3. AN APPROXIMATION ALGORITHM FOR RECESSION CONES OF SPECTRAHEDRA

In this section, we present an algorithm for the computation of a polyhedral inner and outer
approximation of the recession cone of a spectrahedron. The algorithm is based on augmenting
and cutting schemes introduced in [26] and [7]. Augmenting and cutting schemes are iterative
algorithms for compact convex sets that successively improve the polyhedral approximations.
In doing so, augmenting schemes compute inner approximations and cutting schemes compute
outer approximations. Their functionality can be described as follows. Assume C ⊆ Rn is the
set to be approximated and Ok/I k are the polyhedral outer and inner approximations computed
after iteration k by a cutting and augmenting scheme, respectively. Then a cutting scheme
refines Ok by

(1) Choose a direction w.
(2) Compute a supporting hyperplane H of C with normal vector w.
(3) Construct Ok+1 = Ok∩H−.

In an augmenting scheme, the procedure can be stated as

(1) Compute a point x ∈ bdC.
(2) Contruct I k+1 = conv

(
I k∪{x}

)
.

These iterative schemes are also jointly called Hausdorff schemes because the above steps are
typically iterated until the Hausdorff distance between C and Ok/I k is at most a predefined
margin. Various algorithms using the ideas of cutting and augmenting schemes can be found in
the literature, for example to approximate compact spectrahedral shadows [9] or in the realm of
vector optimization [13, 3].

As we are working with cones, the Hausdorff distance is unsuitable as a measure of similarity.
Therefore, we consider the following distance measure on the space of closed convex cones.

Definition 3.1 (cf. [25]). Let K1,K2⊆Rn be closed convex cones. The truncated Hausdorff dis-
tance between K1 and K2, denoted d̄H(K1,K2), is defined as d̄H(K1,K2) := dH (K1∩B,K2∩B) ,
where B := {x ∈ Rn | ‖x‖ ≤ 1}.

It is known that the truncated Hausdorff distance defines a metric in the space of closed
convex cones in Rn; see [48, 21]. Moreover, it clearly holds, that d̄H(K1,K2)≤ 1 for all closed
convex cones K1, K2.

We use the truncated Hausdorff distance to define polyhedral approximations of cones.

Definition 3.2. Given a closed convex cone K ⊆ Rn and ε > 0, we call a polyhedral cone R an
outer (inner) ε-approximation of K, if K ⊆ R (R⊆ K) and d̄H(R,K)≤ ε .
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In order to link this idea to the Hausdorff distance and work with cones in the framework of
Hausdorff schemes, we need the concept of bases.

Definition 3.3. Let K ⊆Rn be a convex cone. A subset M ⊆K is called a base of K if, for every
x ∈ K \{0}, there exists a unique λx > 0 such that λxx ∈M.

The following two results establish that every closed pointed cone admits a compact base and
that such a base can be constructed via its polar cone. Proofs of these results can be found in
[2, Theorem 3.5] and [31, Theorem 3.2]. There are numerous sources that study cones and their
properties; see, e.g., [19, 6, 20, Chapter 2].

Proposition 3.1. Let K ⊆ Rn be a closed pointed cone. Then intK◦ 6= /0.

Proposition 3.2. Let K ⊆ Rn be a closed pointed cone. Then H(w,−γ)∩K is a compact base
of K for ever w ∈ intK◦ and γ > 0.

As a consequence, we are able to reduce the approximation of the recession cone with respect
to the truncated Hausdorff distance to the approximation of a compact base of the cone with
respect to the Hausdorff distance.

Proposition 3.3. Let K ⊆ Rn be a closed pointed cone and w ∈ intK◦. Assume that P is a
polyhedron satisfying dH (P,H(w,−γ)∩K)≤ ε . Then the following implications hold:

(i) H(w,−γ)∩K ⊆ P, γ ≥ (1+ ε)‖w‖⇒ coneP is an outer ε-approximation of K.
(ii) P⊆ H(w,−γ)∩K, γ ≥ (1+ ε)‖w‖⇒ coneP is an inner ε-approximation of K.

Proof. We begin the proof with the first assertion. By the Cauchy-Schwarz inequality, it holds
‖x‖ ≥ 1 + ε for every x ∈ H(w,−γ), which together with dH (P,H(w,−γ)∩K) ≤ ε yields
‖x‖ ≥ 1 for every x ∈ P. Proposition 3.2 ensures that H(w,−γ)∩K is a compact set and
K = cone(H(w,−γ)∩K) because H(w,−γ)∩K is a base of K. Since the Hausdorff distance
between P and H(w,−γ)∩K is bounded from above, P must also be compact. This guarantees
that coneP is a polyhedral cone.

Now, we assume that d̄H(coneP,K) is attained as ‖p− k‖ for p ∈ coneP and k ∈ K, which
implies ‖p‖= 1. Let α be chosen such that αk ∈ P. By the above remark that ‖x‖ ≥ 1 for every
x ∈ P, we have α ≥ 1. Observe that

d̄H(coneP,K) = ‖p− k‖ ≤ α ‖p− k‖
≤ inf

k̄∈H(w,−γ)∩K

∥∥α p− k̄
∥∥

≤ dH (P,H(w,−γ)∩K)

≤ ε.

The second inequality holds true because αk is the projection of α p onto K, i.e.,

‖α p−αk‖= inf
k̄∈K

∥∥α p− k̄
∥∥ .

To complete the proof, we note that H(w,−γ)∩K ⊆ P implies K ⊆ coneP because taking the
conical hull is an inclusion preserving operation. The proof of the second assertion is analogous
to the first one with the roles of P and H(w,−γ)∩K interchanged. �
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Now, from a polyhedral approximation P of a compact base of the recession cone of a spec-
trahedron, we obtain an approximation of the recession cone itself by constructing coneP. Con-
structing the conical hull requires no other computation than transposing and concatenating the
matricial data of P as is shown in [10, Propositions 8, 10].

From now on, we denote by C the spectrahedron C := {x ∈ Rn |A (x)+A< 0} for matrices
A,A1, . . . ,An ∈ S `. We consider the following semidefinite optimization problem associated
with C and a nonzero direction w ∈ Rn.

max wTx s.t. A (x)+A< 0 (P1(C,w))

Geometrically, solving (P1(C,w)) amounts to determining the maximal shifting of a hyperplane
with normal direction w within the spectrahedron C. Another optimization problem we consider
reads as

max t s.t. A (x)+A< 0

x = c+ td,
(P2(C,c,d))

for a point c ∈ Rn and a nonzero direction d ∈ Rn. Geometrically, given c ∈ intC, a solution
to (P2(C,c,d)) is be determined by starting at the point c and moving a positive distance in the
direction d until a boundary point of C is reached. In general, a part of a solution to (P2(C,c,d)),
if it exists, will be a point in bdC∩{c+ td | t ∈ R}. In the field of vector optimization, the
problems of type (P2(C,c,d)) can be derived from the Tammer-Weidner functional; see [17,
18]. They also appear in the literature under the name Pascoletti-Serafini scalarization and
are related to Minkowski functionals; see, e.g., [44, 15, 22]. The Lagrange dual problem of
(P2(C,c,d)) is

min (A (c)+A) ·U s.t. Ai ·U =−wi, i = 1, . . . ,n

dTw = 1

U < 0.

(D2(C,c,d))

Solutions to (P2(C,c,d)) and (D2(C,c,d)) give rise to a supporting hyperplane of C.

Proposition 3.4. Let c ∈ intC and set d = v− c for some v /∈ C. Then solutions (x∗, t∗) to
(P2(C,c,d)) and (U∗,w∗) to (D2(C,c,d)) exist. Moreover, w∗Tx ≤ A ·U∗ for all x ∈ C and
equality holds for x = x∗.

Proof. Since c ∈ intC, we can, without loss of generality, assume that A (c) + A � 0; see
[23, Lemma 2.3]. Then the point (c,0) is strictly feasible for (P2(C,c,d)). Since v /∈ C and
due to convexity of C, the first constraint is violated whenever t ≥ 1. The compactness of
C∩ conv{c,v} implies the existence of a solution (x∗, t∗) of (P2(C,c,d)) with t∗ ∈ [0,1]. The
strict feasibility of problem (P2(C,c,d)) is sufficient for strong duality between the problems
(P2(C,c,d)) and (D2(C,c,d)) to hold. This implies the existence of a solution (U∗,w∗) to
(D2(C,c,d)). Next, let x ∈C and observe that

A ·U∗−w∗Tx = A ·U∗+
n

∑
i=1

xi (Ai ·U∗)

= A ·U∗+A (x) ·U∗

= (A (x)+A) ·U∗

≥ 0.
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Moreover, for x = x∗, we have

w∗Tx∗ =w∗T (c+ t∗d)

=−
n

∑
i=1

(Ai ·U∗)ci + t∗w∗Td =−A (c) ·U∗+ t∗

=−A (c) ·U∗+A (c) ·U∗+A ·U∗ =A ·U∗,
where the fourth equality holds due to strong duality. �

Before we present the algorithm, we make the following assumptions about C:
(C1) C is line-free.
(C2) There exists x̄ ∈ Rn, such that A (x̄)� 0.

Since spectrahedra are closed convex sets, Assumption (C1) means that 0∞C is pointed. More-
over, it is straightforward to verify that 0∞C = {x ∈ Rn | A< 0}. Therefore, Assumption (C2)
is equivalent to int0∞C 6= /0, see [45, Corollary 5]. Pseudo-code of the algorithm is presentend
in Algorithm 1 and one iteration is illustrated in Figure 1.

Algorithm 1: Polyhedral approximation of 0∞C
Data: Matrix pencil A and matrix A describing the spectrahedron C, x̄ satisfying

A (x̄)� 0, error tolerance ε > 0
Result: An inner ε-approximation KI and an outer ε-approximation KO of 0∞C

1 w← (−A1 · I, . . . ,−An · I)T /
∥∥∥(−A1 · I, . . . ,−An · I)T

∥∥∥ // interior point of

(0∞C)◦

2 M← H−(w,−(1+ ε))∩H−(−w,1+2ε)∩0∞C
3 x̄←−2+3ε

2wTx̄ x̄ // interior point of M
4 O,I ← /0
5 for every z ∈ {−e,e1, . . . ,en} do
6 Compute a solution x∗ to (P1(M,z))
7 Compute a solution (y∗, t∗) to (P2(M, x̄,z))
8 O ← O ∩H−(z,zTx∗)
9 I ← conv(I ∪{y∗})

10 κ ←+∞

11 while κ > ε do
12 κ ← dH (O,I )

13 for every vertex v of O do
14 Compute a solution (U∗,w∗) to (D2(M, x̄,v− x̄))
15 O ← O ∩H−(w∗,A ·U∗)
16 for every defining halfspace H−(w,γ) of I do
17 Compute a solution x∗ to (P1(M,w))
18 I ← conv(I ∪{x∗})

19 KO ← coneO

20 KI ← coneI
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M

O
x̄

0∞ C

(A) Left: The boundary of the current outer approximation is colored in blue, the set M is shaded in gray.
Center: The dotted lines connect the point x̄ with the vertices of O . Solutions to (P2(M, x̄,v− x̄)) are
indicated by the blue dots. The blue arrows are the normal vectors of M at these points and correspond to
parts of solutions to (D2(M, x̄,v− x̄)). Right: The boundary of the updated outer approximation is shown
in blue.

MI

0∞ C

(B) Left: The set M is shaded in gray, the current inner approximation I is colored orange. Center:
The normals of the facets of I a indicated as orange arrows. The dashed lines are translations of these
facets obtained by solving (P1(M,w)). The orange dots mark the solutions. Right: The updated inner
approximation is shown in orange.

FIGURE 1. One iteration of Algorithm 1. Subfigure 1a illustrates the update of
the outer approximation and Subfigure 1b the update of the inner approximation.
The boundary of the unit ball is indicated by the black arc to illustrate that its
intersection with M is empty.

The algorithm starts by constructing the set M, which can be viewed as a strip of the cone.
M is not a base of 0∞C in the sense of Definition 3.3, but the set M ∩H(w,−γ) is one for
every γ ∈ [1+ ε,1+ 2ε]. The reason of working with M, instead of with a base, is that M has
nonempty interior, given that 0∞C has nonempty interior. This ensures that Proposition 3.4 can
be applied. Clearly, from an approximation of M, an approximation of any of the above bases
is available. In line 3 the provided interior point x̄ is scaled such that it belongs to the interior
of M.

In the loop in lines 5–9 an initial outer and inner approximation of M are computed. The
outer approximation is obtained by solving n+ 1 instances of (P1(M,z)). This gives an H-
representation of O . Similarly, the inner approximation is obtained by solving n+ 1 instances
of the problem type (P2(M, x̄,z)). This yields n+1 points on the boundary of M, whose convex
hull is a full dimensional set. Thus, the inner approximation I is given as a V -representation.

In the main loop, the approximations are successively refined according to the cutting and
augmenting procedure introduced at the beginning of this section. For every vertex v of the
outer approximation, one problem of type (D2(M, x̄,v− x̄)) is solved. Thereby, a supporting
hyperplane of M is determined according to Proposition 3.4. The vertex v is then cut off from
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the current outer approximation by intersecting O with the corresponding halfspace obtained
by (P2(M, x̄,v− x̄)). To refine the inner approximation, every defining halfspace or facet of I
is considered and an instance of (P1(M,w)) is solved. This yields a point on the boundary of
M, which is appended to the current inner approximation. The algorithm terminates when the
Hausdorff distance between the current inner and outer approximation is not larger than ε . This
ensures, that both the Hausdorff distance between O and M and the Hausdorff distance between
M and I is at most ε .

Since O and I are polytopes with I ⊆ O , the quantity dH (O,I ) will be attained by some
vertex of O . Then, evaluating dH (O,I ) in line 12 amounts to computing inf{‖v− x‖ | x ∈I }
for every v ∈ vertO , which are convex quadratic optimization problems, and taking the maxi-
mum over the infima.

Being able to select the vertices of O requires a V -representation of O . However, during the
algorithm O is given by an H-representation. The task of computing a V -representation from
an H-representation is called vertex enumeration. Likewise, in order to choose the facets of
I an H-representation is needed. Computing an H-representation from a V -representation is
called facet enumeration. We point out, that vertex and facet enumeration are sensitive to the
dimension of the polyhedron and not stable when imprecise arithmetic is used; see [30, 35].

Theorem 3.1. Assume that the spectrahedron C input to Algorithm 1 satisfies Assumptions (C1)
and (C2). Then the algorithm is finite and works correctly, i.e. it computes an inner and outer
ε-approximation of 0∞C.

Proof. Assumption that (C1) is equivalent to 0∞C being pointed. This implies that (0∞C)◦ has
nonempty interior [47, Corollary 14.6.1] and that the matrices A1, . . . ,An defining A are linearly
independent, see [40, Lemma 3.2.9]. Therefore, the assignment to w in line 1 is valid.

w =
(−A1 · I, . . . ,−An · I)T∥∥∥(−A1 · I, . . . ,−An · I)T

∥∥∥ ∈ int(0∞C)◦.

For every x ∈ 0∞C, x 6= 0, it holds∥∥∥(−A1 · I, . . . ,−An · I)T
∥∥∥wTx =−

n

∑
i=1

xi (Ai · I) =−A (x) · I < 0.

The inequality holds, because at least one eigenvalue of A (x) is positive. Now, it follows easily
from Proposition 3.2 that the set M defined in line 2 is compact. From Assumption (C2), it
follows that the redefinition of x̄ in line 3 is an element of intM. Solutions to the problems
(P1(M,z)), (P2(M, x̄,z)) and (P1(M,w)) in lines 6, 7 and 17 exist, because M is compact. The
existence of solutions to the problems (D2(M, x̄,v− x̄)) in line 14 is guaranteed by Proposition
3.4. Note that the component w∗ of a solution is always nonzero, because x̄ ∈ intM implies
that the optimal value of (P2(M, x̄,v− x̄))/(D2(M, x̄,v− x̄)) is always positive. Now, if the con-
dition of the while loop is violated, we have dH (O,I ) ≤ ε . Since I ⊆ M ⊆ O , this yields
dH (O,M) ≤ ε as well as dH (M,I ) ≤ ε . Taking into account the definition of M and the fact
‖w‖ = 1, applying Proposition 3.3 yields that KO is an outer ε-approximation of 0∞C and KI

is an inner ε-approximation of 0∞C.
The finiteness of the algorithm is due to [27, 28], which shows that the inner approximations

converge in Hausdorff distance to M, because they are constructed according to the augmenting
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scheme, and due to [9, Theorem 4.38], it shows the convergence for the outer approximations.
�

4. AN APPROXIMATION ALGORITHM FOR RECESSION CONES OF PROJECTIONS OF

SPECTRAHEDRA

In this section, we present an algorithm for the approximation of the recession cone of a
spectrahedral shadow. An similar algorithm has recently and independently been developed in
[54] for convex vector programs. The technique used in Algorithm 1 cannot be utilized in this
more general setting. The reason is, that for the approach in Algorithm 1 it is crucial that an
algebraic description of the recession cone is available, as it gives rise to a description of a base.
Unfortunately, such a description is not easily available in the projected case. As an example,
consider the spectrahedron

C =

{(
x1
x2

)
∈ R2 |

(
x2 x1
x1 1

)
< 0
}

and its recession cone

0∞C =

{(
x1
x2

)
∈ R2 |

(
x2 x1
x1 0

)
< 0
}
.

C is the epigraph of the function x 7→ x2 und its recession cone is simply the cone generated
by the direction (0,1)T. Applying to C the projection (x1,x2)

T 7→ x1 yields the spectrahedral
shadow

S =

{
x1 ∈ R | ∃x2 :

(
x1
x2

)
∈C
}
.

Evidently, S =R. Thus S is its own recession cone. However, 0∞ S is not equal to the projection
of 0∞C onto the x1-variable, which results in the singleton

{
x1 ∈ R | ∃x2 : (x1,x2)

T ∈ 0∞C
}
={

(0,0)T
}

. Consequently, projection is not sufficient to obtain an algebraic representation of
0∞ S and Algorithm 1 is not applicable without one. Therefore, we present in this section
an approximation algorithm that does not directly use information of the recession cone of a
spectrahedral shadow, but only uses information of the spectrahedral shadow itself to obtain
information about its recession cone. We want to point out however, that it is known, that the
recession cone of a spectrahedral shadow is again a spectrahedral shadow; see, e.g., [50, Lemma
6.6] and [40, Proposition 6.1.1].

Remark 4.1. Clearly, the previous example does not rule out the possibility that a semidefinite
representation of 0∞ S can be found. In fact, the following relation holds true for closed spectra-
hedral shadows S containing the origin; see [47, Theorem 14.6]: 0∞ S = (coneS◦)◦. Therefore,
a representation of 0∞ S ensues if the conical hull and the polar of a spectrahedral shadow can
be represented. How one can represent the conical hull is certainly well-known; see, e.g., [50,
Lemma 6.6] and [40, Proposition 4.3.1]. A representation of S◦ seems to be more difficult to
obtain or require certain regularity assumptions. In [40, Proposition 4.1.7] a representation of
S◦ is presented given that the defining pencils of S are strictly feasible. However, this condition
cannot be guaranteed for the set coneS◦. In [46] a representation of the polar of a spectrahe-
dron is derived using only the assumption that the set contains the origin. This result can be
extended to the projected case as the polar set of S can be formulated in terms of the polar of
the spectrahedron from which it is projected; see [47, Corollary 16.3.2]. This representation of
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S◦ comes with the pitfall that the number of variables needed in the description is of the order
O((n+m)`2) and the size of the pencil is of the order O((n+m)2), where n+m is the dimension
of the spectrahedron that is projected and ` is the size of the original pencils. Hence, a represen-
tation of 0∞ S would require O((n+m)5`2) many variables and matrices of size O((n+m)2`4),
because the polar of a set has to be computed twice according to the equation above.

Given two pencils A and B of equal size ` and a matrix A ∈S `, we consider from now on
the spectrahedral shadow

S = {x ∈ Rn | ∃y ∈ Rm : A (x)+B(y)+A< 0} ,
whose recession cone we want to approximate. We make the following assumptions about S:

(S1) S is closed and S 6= Rn.
(S2) A point x̄ with A (x̄)+B(ȳ)+A� 0 for some ȳ ∈Rm is known. In particular, intS 6= /0.
(S3) A point d̄ ∈ int0∞ S∩B is known. In particular, int0∞ S 6= /0.

Remark 4.2. The closedness in Assumption (S1) cannot be omitted. Unlike for the spectrahe-
dral case, where the sets are always closed, spectrahedral shadows need not be closed. Consider,
for example, the set

S =

{
x ∈ R | ∃y ∈ R :

(
x 1
1 y

)
< 0
}
,

which is equal to the sets {x ∈ R | ∃y : xy≥ 1,x≥ 0} = {x ∈ R | x > 0}. The last set is clearly
not closed. The closedness is important to guarantee the existence of solutions to the problems
(P1(S,w)) and (P2(S,c,d)) in theory. From a practical perspective, however, the fact that S might
fail to be closed does not affect the ability of modern solvers to compute approximate solutions
to a prescribed precision, because they employ interior-point methods.

Problems (P2(S,c,d)) and (D2(S,c,d)) take the form
max t s.t. A (x)+B(y)+A< 0

x = c+ td
(P2(S,c,d))

and
min (A (c)+A) ·U s.t. Ai ·U =−wi, i = 1, . . . ,n

B j ·U = 0, j = 1, . . . ,m

dTw = 1

U < 0,

(D2(S,c,d))

where B j, j = 1, . . . ,m are the matrices defining the pencil B, respectively. We derive the
following analogous result of Proposition 3.4 for the projected case.

Corollary 4.1. Let Assumptions (S1) and (S2) hold for the spectrahedral shadow S and set
d = v− x̄ for some v /∈ S. Then solutions (x∗,y∗, t∗) to (P2(S, x̄,d)) and (U∗,w∗) to (D2(S, x̄,d))
exist. Moreover, w∗x≤ A ·U∗ for all x ∈ S and equality holds for x = x∗.

Proof. Assumption (S2) implies that x̄ ∈ intS. Therefore, the point (x̄, ȳ,0) is strictly feasible
for (P2(S, x̄,d)). Convexity and Assumption (S1) imply the existence of a solution (x∗,y∗, t∗)
with t∗ ∈ [0,1]. A solution (U∗,w∗) of (D2(S, x̄,d)) exists due to strong duality. The rest of the
proof is analogous to the proof of Proposition 3.4 using the fact that B j ·U = 0 for j = 1, . . . ,m
and feasible points (U,w) of (D2(S, x̄,d)). �
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We describe the functioning of the algorithm before we present it in pseudo-code. Similar to
Algorithm 1, the core idea is to simultaneously maintain an outer approximation O and an inner
approximation I of 0∞ S. Also, the approximations are updated in a similar manner as in Algo-
rithm 1, i.e. the outer approximation is updated by computing a supporting hyperplane H(w,0)
of 0∞ S and setting O∩H−(w,0) as the improved approximation and the inner approximation is
updated by computing a direction d ∈ 0∞ S and setting cone(I ∪{d}) as the new inner approx-
imation. Contrary to Algorithm 1, however, we cannot steer in advance which approximation
will be updated. After determining a direction d ∈ Rn, we investigate (P2(S, x̄,d)). If the prob-
lem is unbounded, then d is a direction of recession and I will be updated. If the problem has
an optimal solution, then a solution (U∗,w∗) to the Lagrange dual yields a supporting hyper-
plane H(w∗,0) of 0∞ S according to Corollary 4.1 and O is updated. These steps are iterated
until d̄H(O,I ) is certifiably not larger than some preset tolerance ε > 0. To determine initial
approximations, we set I = cone

{
d̄
}

and solve (P2(S, x̄,−d̄)), from which a supporting hyper-
plane of 0∞ S is obtained. The corresponding halfspace is set as the initial outer approximation.
It remains to explain, how the search directions are chosen in each iteration. Let v be a vertex
of the set {x ∈ O | ‖x‖

∞
≤ 1} and consider the directions dk

v = 2k−1
2k v+ 1

2k d̄ for k ∈ N. Starting
with k = 1, we determine whether d0

v ∈ 0∞ S. If this is the case, then I is updated and k is incre-
mented. Now, d1

v is considered. This process is iterated until either dk
v /∈ 0∞ S for some k ∈ N,

in which case O will be updated and we continue with another vertex v, or k ≥ log2

(
‖v−d̄‖

ε

)
,

in which case
∥∥v−dk

v
∥∥ ≤ ε and v need no longer be considered in the calculations. Note that

(P2(S, x̄,dk
v )) only needs to be solved, if dk

v is not already in I . Otherwise, it is known, that
(P2(S, x̄,dk

v )) is unbounded and k can be incremented. The set {x ∈ O | ‖x‖
∞
≤ 1} character-

izes O in the sense that taking its conical hull yields O again. In particular, if v is an extreme
direction of O , then v/‖v‖

∞
is a vertex of {x ∈ O | ‖x‖

∞
≤ 1}.

One iteration of Algorithm 2 for one direction v is illustrated in Figure 2. The outer for loop in
line 6 requires a V-representation of the polytope {x ∈ O | ‖x‖

∞
≤ 1}. During the execution of

the algorithm, however, O is always given by an H-representation and I by a V-representation.
Therefore, a vertex enumeration has to be performed in every iteration. The algorithm termi-
nates if lines 14 - 17 are not executed during one full iteration, i.e. if O receives no upgrade.
This happens only if for every v of the set in line 6 and k =

⌈
log2

(
‖v−d‖

ε

)⌉
the point dk

v belongs
to I . This implies

inf
di∈I
‖v−di‖ ≤

∥∥∥v−dk
v

∥∥∥= 1
2k

∥∥v− d̄
∥∥≤ ε

for every vertex v, which certifies d̄H(O,I )≤ ε . Since I ⊆ 0∞ S⊆O , the relations d̄H(O,0∞ S)≤
ε and d̄H(0∞ S,I )≤ ε follow. We now prove that Algorithm 2 works correctly and is finite.

Theorem 4.1. Let Assumptions (S1)-(S3) be satisfied for a spectrahedral shadow S. Then Al-
gorithm 2 terminates after finitely many steps and is correct, i.e. the algorithm returns an inner
ε-approximation I and an outer ε-approximation O of 0∞ S.

Proof. We first prove the correctness. Assumptions (S1) and (S3) imply that −d̄ /∈ 0∞ S. Oth-
erwise we had 0 ∈ int0∞ S, which implies S = Rn; see [47, Theorem 6.1]. Then, since A (x̄)+
B(ȳ)+A � 0 and S is closed, a solution to (D2(S, x̄,−d̄)) in line 1 exists according to Corol-
lary 4.1. Furthermore, Assumption (S3) and Corollary 4.1 imply that the set I initialized
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Algorithm 2: Polyhedral approximation of 0∞ S
Data: Matrix pencils A , B and matrix A describing the spectrahedral shadow S, x̄

satisfying (S2), d̄ satisfying (S3), error tolerance ε > 0
Result: An inner ε-approximation I and an outer ε-approximation O of 0∞ S

1 Compute a solution (U∗,w∗) to (D2(S, x̄,−d̄))
2 I ← cone

{
d̄
}

3 O ← H−(w∗/‖w∗‖ ,0)
4 repeat
5 Stop← TRUE

6 for every nonzero vertex v of {x ∈ O | ‖x‖
∞
≤ 1} do

7 for k = 1 to
⌈

log2

(
‖v−d̄‖

ε

)⌉
do

8 dk
v ← 2k−1

2k v+ 1
2k d̄

9 if dk
v ∈I then

10 continue

11 else if (P2(S, x̄,dk
v )) is UNBOUNDED then

12 I ← cone
(
I ∪

{
dk

v
})

13 else
14 Compute a solution (U∗,w∗) to (D2(S, x̄,dk

v ))
15 O ← O ∩H−(w∗/‖w∗‖ ,0)
16 Stop← FALSE

17 break

18 until Stop

in line 2 and the set O initialized in line 3 are an inner and an outer approximation of 0∞ S,
respectively. For the latter, take into account that the recession cone of a polyhedron in H-
representation is described by the corresponding homogeneous system of inequalities; see [47,
p. 62]. During the first execution of the outer for loop in lines 6–17, O = H−(w∗/‖w∗‖ ,0)
and the set {x ∈ O | ‖x‖

∞
≤ 1} in line 6 is nonempty. In particular, it is a polytope and the

for loop is executed at least once. Now, let v be a from this set, for which the inner for loop
is executed. Without loss of generality we can assume that such v exists, otherwise we have

log2

(
‖v−d̄‖

ε

)
≤ 0 for all vertices v of {x ∈ O | ‖x‖

∞
≤ 1}, which implies that

d̄H(O,I ) = sup
v∈O∩B

inf
d∈I
‖v−d‖

≤ sup
v∈O∩{x|‖x‖

∞
≤1}

inf
d∈I
‖v−d‖

≤max
{∥∥v− d̄

∥∥ | v is a vertex of O ∩{x | ‖x‖
∞
≤ 1}

}
≤ ε.

The first equality holds true because I ⊆ O and the projection onto a convex cone is a norm-
reducing operation, i.e. the infimum is attained for some d ∈ B, cf. [39]. The inequality in the
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S

d̄

d1v

x̄

v
d2v

x̄

d̄

v

d1v

x̄

d̄

v

FIGURE 2. One iteration of the outer for loop of Algorithm 2 for the direction
v. The top row shows how the blue outer approximation and the orange inner
approximation change during the process and how the next search direction is
obtained. The bottom row depicts the set S with interior point x̄ and illustrates the
problems (P2(S, x̄,dk

v ))/(D2(S, x̄,dk
v )) that are considered. In the leftmost column

the direction d1
v is chosen as the midpoint of the line segment from v to d̄ and

(P2(S, x̄,d1
v )) is determined to be unbounded as indicated by the dashed orange

ray originating from x̄. Thus, the inner approximation is updated by constructing
the conical hull of d̄ and d1

v . This is shown in the top of the center column.
Since d1

v is a direction of recession, d2
v is obtained as the midpoint between v

and d1
v . The bottom picture illustrates part of the solution of (D2(S, x̄,d2

v )) as
the outward pointing normal direction, which yields a supporting hyperplane of
S. Subsequently, the outer approximation is updated by shifting the hyperplane
to the origin and intersecting the outer approximation with the corresponding
halfspace. The right column shows the updated outer approximation. Since O
was updated, a new direction v is chosen.

second line simply reflects the fact that B is contained in {x ∈ Rn | ‖x‖∞ ≤ 1}. Moreover, the
supremum in the second line is attained at a vertex of O∩{x ∈ Rn | ‖x‖∞ ≤ 1}; see [4, Theorem
3.3]. Thus O and I are ε-approximations of 0∞ S already.

Next, note that the search direction dk
v defined in line 8 is zero only if v = −d̄. However,

due to the fact that x̄ ∈ intS it is straightforward to see, that the initial outer approximation
in line 3 does not contain −d̄. Hence, subsequent approximations also do not contain −d̄,
i.e. dk

v �= 0 for every vertex v selected in line 6. Now, assume (P2(S, x̄,dk
v )) is unbounded for

some k, i.e., x̄+ tdk
v ∈ S for every t ≥ 0. Since S is closed by Assumption (S1), this implies

dk
v ∈ 0∞ S; see [47, Theorem 8.3]. Hence, the updated inner approximation in line 12 still

satisfies I ⊆ 0∞ S. If (P2(S, x̄,dk
v )) is not unbounded, then Assumption (S2) and Corollary 4.1

guarantee that (D2(S, x̄,dk
v )) has an optimal solution (U∗,w∗). Moreover, H(w∗,A ·U∗) supports

S, which implies that H(w∗/‖w∗‖ ,0) supports 0∞ S. Therefore, after the update in line 15 it
still holds 0∞ S ⊆ O and O is a cone.
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It remains to show that upon termination of the algorihm, I and O are ε-approximations of
0∞ S. Algorithm 2 terminates if and only if during one iteration of the repeat until loop in lines
4–18 the outer approximation is not modified, i.e. lines 14–17 are not executed. This is the case
if and only if for vertex v of {x ∈ O | ‖x‖

∞
≤ 1} it holds d k̄(v)

v ∈I with k̄(v) =
⌈

log2

(
‖v−d‖

ε

)⌉
.

Using the same derivation as above but replaing d̄ with d k̄(v)
v and taking into accound the relation∥∥∥v−d k̄(v)

v

∥∥∥≤ ∥∥∥∥v− ‖v−d‖− ε

‖v−d‖ v− ε

‖v−d‖d
∥∥∥∥

=
ε

‖v−d‖ ‖v−d‖= ε,

which yields d̄H(O,I ) ≤ ε. Since I ⊆ 0∞ S ⊆ O this implies both d̄H(O,0∞ S) ≤ ε and
d̄H(0∞ S,I )≤ ε . This concludes the proof of correctness.

Now, we show that Algorithm 2 indeed terminates after finitely many iterations. Assume
that at some point during the algorithm the approximations O and I have been computed
and that the algorithm does not halt for these sets. Then there exists a vertex v of the set

in line 6 and some k ≤
⌈

log2

(
‖v−d̄‖

ε

)⌉
for which (P2(S, x̄,dk

v )) is bounded. This implies

that lines 14–17 are executed. Let (U∗,w∗) be a solution to (D2(S, x̄,dk
v )) and let w be the

normalized vector w∗/‖w∗‖. Then, by the same reasoning as above, the hyplerplane H(w,0)
supports 0∞ S. Therefore, I ⊆ H−(w,0). By Assumption (S3) there exists some r > 0, such
that Br(d̄) :=

{
x ∈ Rn |

∥∥x− d̄
∥∥≤ r

}
⊆I . Hence,

inf{‖x−d‖ | x ∈ H(w,0)}=
∣∣∣wTd

∣∣∣=−wTd ≥ r.

Taking into account the definition of dk
v and the fact that w∗Tdk

v = 1, we conclude

inf{‖x− v‖ | x ∈ H(w,0)}=
∣∣∣wTv

∣∣∣= wTv

≥ wT

(
2k

2k−1
dk

v −
1

2k−1
d̄
)

=
2k

(2k−1)‖w∗‖ +
r

2k−1

≥ r
2k−1

≥ r
2‖v−d̄‖

ε
−1

>
εr

4
√

n− ε
.

The last inequality follows from
∥∥v− d̄

∥∥ < 2
√

n. That means, whenever O receives an update
in line 15, a ball of radius at least εr

4
√

n−ε
around v is cut off. Since v belongs to the compact

set {x ∈ Rn | ‖x‖
∞
≤ 1}, O can only be updated a finite number of times. This proves that the

algorithm terminates. �

In comparison to Algorithm 1, the main advantage of Algorithm 2 is its higher degree of
flexibility. It generalizes Algorithm 1 in two aspects. Firstly it works for spectrahedral shadows,
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which contain spectrahedra as a proper subclass, and secondly it is also applicable to sets with
a recession cone that is not necessarily pointed. The only drawback of Algorithm 2 is that an
interior point of the recession cone must be known beforehand and it is not trivial to compute
one. However, knowledge of an interior point of the set to be approximated is a commom
assumption in the literature about polyhedral approximation, see e.g. [26], where it is assumed,
that the origin is contained in the interior of the set, [12], where some form of Slater’s constraint
qualification is assumed, or [3], where some interior point is assumed to exist.

5. EXAMPLES

We apply Algorithms 1 and 2 to three examples in this section and provide numerical results.
The algorithms are implemented in Python version 3.9.12. The semidefinite problems (P1), (P2)
and (D2) are solved using version 1.1.18 of the API CVXPY [11, 1] with the solver SCS [42]. To
carry out the vertex and facet enumerations on the approximations we use the Python wrap-
per pycddlib of the library cddlib [16]. The figures in Examples 5.2 and 5.3 are generated
with the polyhedral calculus toolbox bensolve tools [37, 10]. The first example considers a
spectrahedron and is applied to both algorithms, while in Examples 5.2 and 5.3 spectrahedral
shadows are investigated where only Algorithm 2 can be applied.

Example 5.1. Consider the spectrahedron

C =

{
x ∈ R3 |

(
x1 x2
x2 x3

)
<

(
1 0
0 1

)}
.

Its recession cone is the set S2
+. As input parameters we set x̄ =

√
2

2 (1,0,1)T for Algorithm

1 and x̄ = (2,0,2)T, d̄ =
√

2
2 (1,0,1)T for Algorithm 2. Figure 3 shows the number of solved

SDP subproblems and the elapsed CPU time for different values of ε and both algorithms.
We see that the number of solved subproblems is of the same order of magnitude for both
algorithms. However, Algorithm 2 performs the approximation much faster, by a factor of
around 23 for ε = 10−3. This is explained by the fact that the number of solved SDPs for
Algorithm 2 includes the unbounded instances of (P2(C, x̄, d̄)), for which SCS can terminate as
soon as the unboundedness is detected. Another remarkable observation is that the number of
subproblems for Algorithm 1 is smaller for ε = 0.05 than for ε = 0.1. The reason is that the
set M approximated by Algorithm 1 depends on the value of ε . Recall that M can be seen as a
slice of 0∞C and as ε decreases so does the thickness of M. This evidently has an impact on the
performance.

Example 5.2. We consider the cone Σ1,4 of univariate polynomials of degree at most four which
can be represented as a sum of squares of polynomials. By identifying the polynomials by their
coefficients it can be written as the following spectrahedral shadow in R5:

Σ1,4 =

x ∈ R5 | ∃y ∈ R :

 x1
1
2x2

1
3x3− y

1
2x2

1
3x3 +2y 1

2x4
1
3x3− y 1

2x4 x5

< 0

 .

The cone of sums of squares of polynomials or SOS cone is contained in the cone of nonneg-
ative polynomials. It is of interest that optimization problems involving SOS polynomials are
tractable by semidefinite programming [43]. For a derivation of semidefinite representations of
SOS polynomials, we refer to [5, p. 61]. We approximate Σ1,4 with ε = 0.1 and x̄ = d̄ = 1/

√
5e.
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FIGURE 3. Computational results for Example 5.1.

Algorithm 2 computes the approximations in 26.4 seconds while solving 1081 subproblems.
Figure 4 shows the projections of the base

Σ1,4∩
{

x ∈ R5 | pTx =−1
}
,

where p≈ (−0.71,−0.08,−0.21,−0.08,−0.66)T onto the variablesx1
x2
x3

 ,

x1
x2
x4

 ,

x1
x3
x4

 and

x2
x3
x4

 ,

respectively.

Example 5.3. Since Algorithm 2 operates in the ambient space of the spectrahedral shadow and
not in the space of the typically high dimensional spectrahedron, we want to investigate how
well it scales with the size of the involved pencils. Therefore, we consider the shadow

S =




x11
x22
x33
`(X)

 | X < I

 ,

where `(X) = x11 + x22 + x33 + 2(x12 + x13 + x23), for different sizes n of the matrix X . Since
X is symmetric the number of variables depends on n as n(n+1)

2 . For the computations we set
d̄ = (1,1,1,0)T. Figure 5 shows the outer and inner approximations of the base

H
(
− 1√

4
e,−1

)
∩0∞ S

for n = 3 and ε = 0.01, respectively. The set is the convex dual of a spectrahedron known
as elliptope [38], which has applications in statistics. Some numerical results are presented in
Table 1. It shows the size n of the pencil, the numver of variables (#var), the number of solvex
SDPs (#SDP) and the elapsed time. The number of solved SDPs for ε = 0.01 is approximately
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FIGURE 4. The orthogonal projections of the 4-dimensional base of the cone
Σ1,4 from Example 5.2 onto three coordinates.

n #var #SDP time

3 6 474 2.25
6 21 673 12.92
9 45 384 6.10

12 78 673 23.84
15 120 721 45.96

n #var #SDP time

3 6 11810 132.65
4 10 11879 111.39
5 15 11647 152.99
6 21 12059 308.07

TABLE 1. Numerical results for Example 5.3 for ε = 0.1 and ε = 0.01, respectively.

the same for different n. For n ≥ 7, the vertex enumeration fails and no results are obtainable.
For ε = 0.1 the computation time generally increases, although drops can be seen, for example,
for n = 9. This may be explained by SCS taking advantage of the problem structure that is
hidden from the user.
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FIGURE 5. The outer and inner approximations of a base of 0∞ S computed by
Algorithm 2, respectively.
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