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Abstract. The aim of this paper is to study the stability analysis for a contaminant convection-reaction-
diffusion model of the recovered fracturing fluid (RFFM, for short), which couples a nonlinear and non-
smooth stationary incompressible Navier-Stokes equation with a multivalued frictional boundary condi-
tion, and a nonlinear reaction-diffusion equation with mixed Neumann boundary conditions. First, we
introduce a family of perturbation problems corresponding to (RFFM), and present the variational for-
mulation of perturbation problem which is a perturbation elliptic hemivariational inequality driven by a
perturbation nonlinear variational equation. Then, the existence of solutions and the uniform bound of
the solution set to the perturbation problem are obtained. Finally, it is established that, as the perturba-
tion parameter tends to zero, the solution set of the perturbation problems converge to the solution set of
(RFFM) in the sense of the Kuratowski upper limit. This shows that (RFFM) is stable with respect to the
perturbation data.

Keywords. Hemivariational inequality; Kuratowski upper limit; Mosco convergence; Navier-Stokes
equation; Recovered fracturing fluid.

1. INTRODUCTION

Stability analysis of mathematical models has become an important problem in many fields,
such as computation, control theory, and frame theory. The main motivation is that researchers
can not expect to know the exact data of the problem in practical applications, so the stability
analysis is a key step to evaluate whether a mathematical model is of a good quality. From the
view-point of numerical approximation, the stability analysis is essential. Indeed, due to the
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perturbation of coefficients by different factors, stability analysis could help us to study numer-
ical solutions. In the recent years, there have been efforts to establish the stability results for
variational problems, optimal control problems, optimization problems, and so on. In partic-
ular, Han-Li [1] systematically analyzed the stability of a class of variational-hemivariational
inequalities, including the continuous dependence of the solution on the data, and then provided
the stability analysis of the solution of inequality problems in contact mechanics with respect to
constitutive relations, external forces, constraints, and nonsmooth contact boundary conditions.
Chen-Mar [2] proved the Lipschitz continuity of the optimal value, and closedness and upper
semicontinuity of the optimal solution set in robust optimization problems with an uncertainty
in the constraint. For the more results in this direction, one could refer to [3-8].

The hydraulic fracturing technology has an important role in increasing production of shale
gas reservoir, for example, connecting artificial fractures with natural fractures and layered
interfaces to form a large-scale fracture network, which is the main channel of shale gas pro-
duction. In order to obtain the effective network volume and fracture complexity in shale gas
reservoir, many scholars paid attention to the flow process of recovered fracturing fluid [9-14],
since the flowback data of fracturing fluid carries the characteristic information about effective
fracture network. Recently, in [15], the authors studied the flow behavior of the recovered frac-
turing fluid and the reaction-diffusion phenomenon of contaminants in the wellbore of shale gas
reservoir, and applied various constitutive laws, diffusion principles, and friction relations to
construct a contaminant convection-reaction-diffusion model of recovered fracturing fluid (re-
covered fracturing fluid model, RFFM, for short). More precisely, the model introduced in [15]
was formulated by the following problem:

Problem 1.1. Find a velocity field v: Q — R%, a pressure m: Q — R, and a concentration
c: Q — R such that

—DivC(D(v))+v-Vv+Vr = f in Q, (1.1)

V.v=0 in Q, (1.2)

v=0 on I, (1.3)
=0, r (1.4)
~Te(v) € 9j(x.c,ve) oo '

( Vv+P 207

>0

) Ty(v, ) + ¢ >0, on Ty, (1.5)
(vww+p)(tv(v,m)+¢) =0,

\ tf(v):()a

( Vv Z 07
(v, ) = — @, on I}, (1.6)
TT<V):0,
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and

—div (k(v) | Vel|P2*Ve) +g(x,c) +v-Ve =0 inQ,

dc _ (1.7)
5= (kW) |Vell27?Ve) -v = o xr,ur, onT.
K

Here, the boundary I' of Q is assumed to be divided into four disjoint and measurable parts
I (i=0,1,2,3) such that meas(I'y) > 0, Vv is the unit outward normal on the boundary I,
Xr,ur; 1s the characteristic function of I UI'3, vy = v -V and v; = v — v,V represent for the
normal and tangential components of velocity field v on I', 7y (v,p) = T(v,p) -V and T¢(v) =
T(v,p) — Ty(v, p)Vv are the normal and tangential components to traction vector field T on I".

The recovered fracturing fluid model couples a nonlinear and nonsmooth stationary incompres-
sible Navier-Stokes equation with a multivalued frictional boundary condition, and a nonlinear
reaction-diffusion equation with mixed Neumann boundary condition. In Problem 1.1, con-
dition (1.3) indicates that v satisfies homogeneous Dirichlet condition on I'y; condition (1.4)
models that there is no inflow and outflow of recovered fracturing fluid, and 7;(v) satisfies a
multivalued and nonmonotone friction law on I'y; conditions (1.5) reflect that v satisfies a gener-
alized Signorini-type contact condition on I, and p > 0 is a constant; condition (1.6) describes
that the recovered fracturing fluid satisfies the outflow boundary condition on I'3; condition
(1.7), shows that the concentration c¢ satisfies the nonhomogeneous Neumann boundary condi-
tion on I, UT3.

However, the measurement and acquisition of flowback data of fracturing fluid are often
affected by various factors, which may lead to deviations in the identification of fracture param-
eters by flowback data. Therefore, it is necessary to study the stability analysis of the recovered
fracturing fluid model. Essentially speaking, the stability results for the recovered fracturing
fluid model could guarantee that the computational implementation of the model is not overly
sensitive to possible round-off errors in the data. Based on these motivations, this paper is de-
voted to the stability of the recovered fracturing fluid model. To be precise, the main purpose of
this paper is twofold. The first one is to consider a family of perturbation problems (see Prob-
lem 3.1) corresponding to Problem 1.1, and to obtain the existence of weak solutions for the
perturbated problem. The second goal is to provide a stability result for Problem 1.1 by using
the Mosco convergence approach and the theory of nonsmooth analysis, which reveals that the
solution set of Problem 1.1 can be approached in the sense of the Kuratowski upper limit by the
solution set of Problem 3.1 when the perturbation parameter € tends to zero.

This paper is organized as follows. In Section 2, we recall some preliminaries, and present
the existence of weak solutions to the recovered fracturing fluid model, Problem 1.1. In Sec-
tion 3, we introduce a family of perturbation problems (see Problem 3.1) corresponding to
Problem 1.1, and deliver its variational formulation, which is a coupled system consisting of
an elliptic hemivariational inequality and a nonlinear variational equation with a perturbation
parameter €. Finally, the existence of weak solutions to Problem 3.1 and a stability result to
Problem 1.1 are established in Section 4.

2. PRELIMINARIES

In this section, we recall some necessary notations, basic definitions, and a result on the
solvability to Problem 1.1 which were recently proved in [15].
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Given a normed space X, we denote by || - ||x and X* the norm and its topological dual of
X, respectively. In the sequel, we utilize the symbol (-, -)x+xx to stand for the duality pairing
between X* and X. If no confusion arises, we often skip the subscript. The weak and the strong
convergences in X are denoted by ”—” and ”—", respectively. Furthermore, by .Z(X,X), we
denote the space of linear and bounded operators from a normed space X; to a normed space X,
endowed with the operator norm | - || ¢ (x, x,)-

Let us recall the definitions concerning the generalized directional derivative and generalized
gradient in the sense of Clarke for a locally Lipschitz function; see, e.g., [16—19].

Definition 2.1. Let J: X — R be a locally Lipschitz function defined on a Banach space X. We
define the generalized Clarke directional derivative of J at the point u € X in the direction v € X
by
J Av)—J
J2(u;v) = limsup (wotav) = J(w) :

A—=0t, w—u A

The generalized Clarke subgradient of J at u € X is a subset in the dual space X™* given by
aJ(u)={&eXx*| JO(uzv) > (E,v) forall v €X}.

Some important properties of the generalized directional derivative and generalized subgradi-
ent in the sense of Clarke are selected by the following proposition; see [20, Proposition 3.23].

Proposition 2.1. Assume that J: X — R is a locally Lipschitz function. Then the following
assertions hold:
(1) for every u € X, the function X > v Jo(u;v) € R is positively homogeneous and sub-
additive, i.e.,
JO(u; Av) = A0 (uzv) and JO(u;vy +v2) < JO(usvy) +J°(u;v2)

forall A >0 and v,u,vi,vy € X;
(i) for each v € X, we have J°(u;v) = max { (§,v) | & € dJ(u) };
(iii) the function X x X 3 (u,v) — J°(u;v) € R is upper semicontinuous.

We review the definition of Mosco convergence; see, e.g., [18, Chapter 4.7] and [21].

Definition 2.2. Let X be a Banach space and {K¢,K}e~o C 2%\ {0}. We say that K¢ con-

verges to K in the sense of Mosco as € — 0, denoted by K¢ Mk , if and only if the following
conditions hold:
(i) for each u € K, there exists a sequence {ug }¢~o such that u; € K for every € > 0 and
Ueg —> uin X;
(ii) for each sequence {ue }¢~0 such that ue € K¢ for every € > 0 and ug — u in X, one has
uek.

To give a result on existence of weak solutions to Problem 1.1, we consider the following
spaces

&= {veC“(ﬁ;Rd) |'V-v=0inQ, v=0on Ty and v, :00nrl},
E = the closure of & in W!P1(Q;RY),
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where py > 2. The space E is equipped with the standard norm [|v[| = [|v|[yy 1.5, (a) for v €
E, and then it becomes a separable and reflexive Banach space. Invoking Korn’s inequality
(see [22]), combined with positive measure of [ 5, we can find a constant cg > 0 such that

CK”VHWLM(Q;RLJ) < [IDW)|lzr1 (@:g¢) forall veE,

where D(v) denotes the deformation tensor of v, which means that ||v[|g := |D(v)|| 1 (q,s¢) for
v € E is an equivalent norm of E. Therefore, in what follows, we use || - || as the norm in the
space E, and define the duality brackets for E* and E as follows

(v,w) 1= / D(v): D(w)dx forall vyw € E.
Q

We introduce the trace operator y: E — LP!(T";R?), which is continuous and compact; see,

e.g., [20, Theorem 2.21]. Its norm is denoted by [|7]| = [|¥]| (g 171 (r;re))- Moreover, we need
the admissible set K C E of velocity field v given by
K:={veE |vy>—p onIandv, >0o0nT3}. (2.1)

It should be noted that since p > 0 and 0 € K, then K is a nonempty, closed, and convex subset
of E.
Next, we make the following hypotheses on the data of Problem 1.1.

H(C): There exists a function G: Q x S? — R such that C(x,D) = VpG(x,D) for all D € S¢
and a.e. x € Q, and the following conditions hold:

(i) G(-,D) is measurable in Q for all D € S%;
(i) G(x,-) is continuously differentiable (i.e., C') and strictly convex on S¢ for a.e. x € Q
with G(x,0g.) belonging to L' (Q);
(iii) there exist a function ac € L”! (Q)4+ with p; > 2 and a constant be > 0 satisfying

IC(x,D)l|ss = [|VpG(x,D)||ss < ac(x)+bc||DJ|Z "

forall D € S? and a.e. x € Q;
(iv) the inequality G(x,D) > cc||D||£}; +dc(x) holds for a.e. x € Q and for all D € S? with
dc € L'(Q) and cc > 0.

H(f): f € L/ (Q;RY).

H(j): j: T1 x RxR? — Ris such that

(i) j(-,s,&) is measurable on 'y for all s € R and & € R?, and j(-,s,0pq) € L' (I}) for all
sEeR;
(ii) j(x,s,-) is locally Lipschitz for a.e. x € I'; and for all s € R;
(iii) there exist a function a; € L”\(I'}), and a constant b; > 0 such that

19j(x,5,&)|lge < aj(x) +bj||§||£‘[1 forae x eIy, forall € € R? and s € R,

where d j stands for the generalized Clarke subgradient operator of j with respect to its
last variable;

({v) R+ 5 (5,E,8) — jO(x,s,E:&) € R is upper semicontinuous for a.e. x € I';, where
7O(x,s,E: &) is the generalized Clarke directional derivative of R? 5 € — j(x,s,&) € R;

(v) either j(x,s,-) or —j(x,s,-) is regular fora.e. x € '] and all s € R.
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H(x): k: Q xRY — (0,00) is such that
(i) K(-,u) is measurable on Q for all u € R%;
(ii) x(x,-) is continuous on RY for a.e. x € Q;
(iii) there exist constants ay, by > 0 such that 0 < a, < k(x,u) < by for a.e. x € Q and all
ucRe
H(g): g: QxR — Ris such that

(i) g(+,s) is measurable on Q for all s € R;
(i) g(x,-) is continuous on R for a.e. x € Q;
(iii) there exist a function ag € L (€)+ and a constant b, > 0 such that

|g(x,5)| < ag(x) —I—bg|s|1’§_1 fora.e.x € Qandall s € R,

where p3 represents the critical exponent of p»;
(iv) there exist a function ¢, € L'(Q) and a constant dg > 0 such that

g(x,5)s > co(x) +d,|s|® forae xcQandallsc R
with 6 > p».

H(o): o € LP2(T,UT3), ¢ € LM (T,), @ € LPi(T'3) and p > 0.

Under hypotheses H(C), H(j), H(x), H(f), H(g), and H(®), the authors in [15, Theo-
rem 5.1] applied a surjectivity theorem for multivalued operators together with an alternative
iterative method and the theory of nonsmooth analysis to establish the following existence the-
orem for the recovered fracturing fluid model (Problem 1.1).

Theorem 2.1. Assume that H(C), H(j), H(x), H(f), H(g), and H(®) hold. If, in addition, the
inequalities

cc = billy|" = 8(p) S 1712 >0 and minfax,de8(6)} ~ 8(p2)% | |* >0
are satisfied, then the recovered fracturing fluid model, Problem 1.1, has at least one weak
solution (v,c) € K x WhP2(Q), where y: E — LPV(T;RY), and 1, : WP2(Q) — L2(T) are trace
operators, and §: (0,+o0) — {0,1} is defined by
s ={ & 12

otherwise.

Remark 2.1. It should be pointed out that (v,c) € K x W!P2(Q) is a weak solution to the
recovered fracturing fluid model, Problem 1.1, if (v, ¢) satisfies the following coupled system

/C D(w— vdx+/ v-Vv)-(w—v)dx+ [ jO(x,c,ve;we—v;)dD
1"1
+

(p(wv—vv)dl"-l—/ q)(wv—vv)dFZ/f-(w—v)dx forall we K,
I I3 Q

and

/ k()| Vellpy 2Vc-Vzdx+/g(x,c)zdx+/(v-Vc)-zdx:/ wzdl'
Q Q Q | P10)

for all z € WHP2(Q).
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3. A PERTURBATION SYSTEM

The goal of this section is to introduce a family of perturbation problems corresponding to
the recovered fracturing fluid model (Problem 1.1), and to deliver its variational formulation.

Let € > 0 be a given perturbation parameter. We denote by Ce¢, f,, je, Pe, Qc. Q¢, Ke, 8¢, and
®g, the corresponding perturbed functions of C, f, j, p, ¢, ¢, K, g, and @, respectively. We
consider the following perturbed recovered fracturing fluid model.

Problem 3.1. Find a velocity field ve: Q — R, a pressure me: Q — R, and a concentration
ce: Q — R such that

_DIVCS<D(VE))+VEVVS+VTCS :fg in Q, (3.1)
Vve=0 in Q, (3.2)
ve=0 on I, (3.3)
ver =0, r 3.4)
. on 1, .
_Tsf(ve) € a]S(xacsav&;)?
Ve, +Pe > 0,
T, T >0
EV(V87 e) + ¢ >0, on Ty, (3.5)
(ve, +Pe)(Te, (e, Te) + @) =0,
\ TS:(VE) =0,
( VSV Z 07
Tev(Veaﬂe) = — g, on I3, (3.6)
L TST(V&‘) - 07

and
— div(Ke(ve) || Vee |7 *Vee) + ge(x,ce) +ve - Vee =0 in Q,

dce P22

(3.7)
IV, = (K«?(VS)”VCSHRd

ch) “V = W YT, Ul onl.

We suppose that P is the total stress tensor on the boundary I'. Then 7(v, ) := P- V represents
for the traction vector of total stress tensor P on the boundary I', and P satisfies the following
identity (see equation (3.5) in [15]) P = —nl + C(D(v)). The above equation combined with
Ty(v,m) =T(v,7)- v and T-(v) = T(v,®) — Ty (v, )V implies

7y(v,m) =C(D(V))y — 7 and T(v)=C(D(v)); on T,
where C(D(v))y := (C(D(v))-v)-v and C(D(v)); := C(D(v))v —C(D(v))yVv. Hence, for
Problem 3.1, one has

Te, (v, ) =C¢(D(v))y — 7 and T¢ (v) =Ce(D(v))r on T,

where C¢(D(v))y := (Ce(D(v))-v)-vand C¢(D(v))7 := Ce(D(v))V — Ce(D(v))y V.
We now introduce appropriate sets of hypotheses.
H(C¢): There exists a function Ge: Q x SY — R such that C¢(x,D) = VpGe(x,D) for a.e.

x € Qand all D € S%, and the following conditions hold:
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(i) Ge(-,D) is measurable on Q for all D € S%;
(ii) Ge(x,-) is continuously differentiable (i.e., C') and strictly convex on S9 for a.e. x € Q,
Ge(x,0gq) belongs to L'(Q) and is uniformly bounded with respect to parameter &;
(iii) there exist a function ac, € L ()4 with p; > 2 and a constant bc, > 0 satisfying

-1
ICe(x,D)|sa = [[VDGe(x, D)5 < ac, (x) + be, | DI|g;

for a.e. x € Q and all D € S¢, where {ac, }e=0 C L (Q), and {bc, }e>0 C (0,+400) are
uniformly bounded with respect to parameter €;
(iv) the inequality

Ge(x,D) > cc, || Dl|g; + dc. (x)
holds for a.e. x € Q and all D € S¢ with cc, > 0 and dc, € L'(Q), where {dc, }e~0 C
L'(Q) and {cc, }e=0 C (0,+o) are uniformly bounded with respect to parameter €;

(v) there exist a sequence { ¢t } C (0,+o0) which depends on parameter € and two nonneg-

ative functions /1y : S? — [0, +o0), hp: S x S? — [0, 4+0) such that o — 0 for € — 0
and

|Ce(x,D1) — C(x,D3)l|s¢ <mc(aehi(Dy)+ha(Dy,D3))

for a.e. x € Q and all Dy, D, € S¢, where m¢ > 0 and the functions k1, satisfy the
following conditions

i (Dy) < cn, +dp, |D1 |27 and hay(Dy,Dy) < ci, +di (|D1[|5S" + [D2]|2) )
such that hip(Dy,Dy) =0 and cp,, ¢p,, dp, ,dp, > 0.

H(fe): fe € LP1(Q:RY), and f, — f in L/ (Q;RY) as & — 0.

H(je): je: I'1 x R x RY — R is such that

(i) je(-,s,€) is measurable on T'; forall s € R and & € R?, j(-,5,0) € L'(T'y) forall s € R;
(ii) je(x,s,-) is locally Lipschitz for a.e. x € T'; and all 5 € R;

(ii1) there exist a function a;, € LPi I'1). and a constant ;. > 0 such that
Je + Je

10 je(x,5,8)|ga < aj.(x)+bj|E ||fﬂ'gd_1 fora.e. x € 'y, forall £ € R? and all s € R,

where dj, stands for the generalized Clarke subgradient of j; with respect to its last
variable, {aj,}e~0 C LY\ (T}, and {b je Je>0 C (0,4-00) are uniformly bounded with
respect to parameter &;

(v) R+ 5 (5,E,8) — j9(x,s,E:&) € R is upper semicontinuous for a.e. x € I';, where
7(x,s,E: &) is the generalized Clarke directional derivative of RY 5 & > je(x,s,€) € R;

(V) Je(x,s,) or —je(x,s,-) is regular for a.e. x € I'; and all 5 € R;

(vi) forall {€,} C R?, {£.} CRY and {s¢} C Rsuchthat &, — & and {, — { in RY and
se — sin R as € — 0, we have

limsup j¥(x,s¢,E.:&,) < j0(x,5,E:8) forae. xel.
e—0

H(¢e): ¢ € LP2(I), and ¢ — ¢ in LP2(I) as € — 0.

=

(@¢): Qe € LP2(T'3), and @z — @ in LP2(T'3) as € — 0.




STABILITY ANALYSIS FOR A CONTAMINANT CONVECTION-REACTION-DIFFUSION MODEL

H(ke): Ke: Q@ x R? — R is such that

(i) Kke(-,v) is measurable on Q for all v € R?;
(ii) xe(x,-) is continuous on R for a.e. x € Q;
(1i1) there exist constants ay, , by, > 0 such that infe~gax, = ap > 0 and

0 <ag, <ke(x,v) <bg, forae.xecQandallve RY:
@iv) for all {v¢} C R?, v € RY with v, — v as € — 0, we have

lim k¢ (x,ve) = K(x,v) fora.e. x € Q.
e—0

H(ge): 8¢ Q xR — Ris such that

(i) ge(-,s) is measurable on Q for all s € R;
(ii) ge(x,-) is continuous on R for a.e. x € Q;
(iii) there exist a function ag, € L”2(Q), and a constant bg, > 0 such that

lge(x,5)] < ag.(x)+ by, |s|P>~! fora.e. x € Qandall s € R,

589

where p3 represents the Sobolev critical exponent of ps, {ag,}es0 C LP> (Q)+ and

{bg, }e>0 C (0,400) are uniformly bounded with respect to parameter &;
(iv) there exist a function c,, € L'(Q) and a constant dg, > 0 such that

ge(x,5)s > cq, (x) +dg,|5|° forae x € Qandalls € R

with 6 > p, where {cg, }e~0 C L1(Q) and {dg, }¢~0 C (0, +o0) are uniformly bounded

with respect to parameter €;
(v) forall {c¢} C R, ¢ € R with ¢ — ¢ as € — 0, we have

lim ge(x,ce) = g(x,c¢) forae. x € Q.
e—=0

(we): @ € LP'Z(Fz UT3), and e — @ in L‘"z(l“z UT3)as e —0.

=

H(pe): pe > 0,and pe — pinRas e — 0.

In order to derive the variational formulation of Problem 3.1, we introduce the admissible set

K¢ C E of velocity fields given by

Ke={v€EE |vy>—peonly, vy >00nTI3}.

We can see that K, is a nonempty, closed, and convex subset of £ due to 0 € K¢ and pe > 0.

Remark 3.1. From the definition of K and K¢ (see (2.1) and (3.8)), we can verify that K Mk

(3.8)

as € — 0 (namely, K¢ converges to K in the sense of Mosco as € — 0). Indeed, let sequence
{ve }e=0 be such that ve € K, for each € > 0 and v — vin E as € — 0. Then, by the definition
of K¢ and the Sobolev embedding theorem, we have vy, > —p on I'; and vy, > 0 on I'5. Thus
v € K. On the other hand, for any v € K, let ve = v+ (p — p¢)+, SO we can observe that ve — v

inE,ve, > —pgonlyandve, > (p —pe)+ >0o0nly,ie., ve € Keand ve — vin E.
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Assume that the functions v¢: Q - R, 7.: Q - R, and c¢: Q — R are sufficiently smooth
and satisfy (3.1)—(3.6). Let we € K¢ be arbitrary fixed. Multiplying (3.1) by we — v¢ and
integrating the resulting equality on Q, we obtain

—/QDiVCg(D(vg))-(wg—vg)dx—l—/Q(VS-va)-(wg—vg)dx (3.9)

+/QV718-(wg—vg)dx:/gfs-(wg—vg)dx.

For the pressure 7, we apply Green’s formula (see [20]) to have

/QVng-(wg—vg)dx:—/g(V-(wg—vg))ngdx+/rngv-(wg—ve)dr (3.10)

— ﬂ«-g (ng — ng) dr,
LUl

where we used the conditions ve = we = 0 on I'p, v, = we, = 0 on I'y, and the divergence free
condition for v¢ and we. Also, we use the divergence theorem (see [20]) and the conditions
ve = we = 0 on I' to obtain

—/QDing(D(vg))-(wg—vg)dx (3.11)
:/ Ce(D(ve)) :D(wg—vg)dx—/Cg(D(vg))%(wg—vg)dF
Q r

:/ Ce(D(ve)) : D(we —vg)dx—/ Ce(D(ve))V - (We —ve)dT.
Q I UT,UT;

Combining the boundary conditions ve, =wg, =0o0n Iy, T¢, (ve) =0 on I, UT'3, with equalities
Tgv (Vg, TEg) = Cg(D(Vg))v — 71'5, Tgr (Vg) = C[.;(D(Vg))f on r, we Obtain

_/ CS(D(Ve))V'(Wg—Vg)dF (312)
U, UL
= /HUFM (Ce(D(ve))v - (we, —ve,) +Ce(D(ve))r - (We, — Ve,)) dT

Z—/ Tef(Vs)'(Wer—Ver>dF—/ (Te, (Ve, Tte) + e ) (We, — Ve, ) dT.
I | P10) It

By the boundary condition —7T¢_(ve) € d je(x, e, Ve, ) and the definition of the Clarke subgradi-
ent, we see that

—/F 'l:gr(vg)-(w,gf—vgr)dl“g/F jg(x,cg,vgr;wgr—vgf)dl". (3.13)
1 1
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We use the boundary conditions (3.5)1_3 and (3.6); to have

—/ (Tgv(v‘g,jrg) +7Tg)(ng —ng)dr (314)
ILuls
:_/r (Tev(vsﬂfe)+¢£)(Wev+Pe)dr+/r (Te, (Ve, Tte) + @) (Pe + Ve, ) dT

+ (Pg(ng — ng)dr— / Tgv (Vg,ng)(ng — ng)dr_ ﬂg(ng —ng)dr
I, I3 LUl

< Oc (we, _ng)dr‘i'_/ Qe (we, — v, )dl’ — e (We, — Ve, ) dI.
I I3 IHLul;

Inserting (3.10)-(3.14) into (3.9), we deduce

/QCS(D(VE)):D(wg—vg)dx+/g(v8~Vv€)~(wg—v£)dx+ . Jx,ce,ve, s we, —ve ) dT
1

+ ¢8(ng_v(gv>dr+/ (pg(wgv—vgv)dFZ/fs-(wg—vg)dx for all w, € K.
T, I Q

On the other hand, we apply Green’s formula and the boundary condition (3.7); to obtain the
following variational equation

/ Ke(ve)||Vee|[22 Ve - Vadx+ / ge(x,ce)zdx + / (ve-Vee)-zdx — / wpzdT
Q Q Q | P10) IS

for all z € W!P2(Q). Therefore, we obtain the variational formulation of Problem 3.1 as follows.

Problem 3.2. Find a velocity filed ve € K¢ and a concentration field ce € W1P2(Q) such that

/Cg(D(vg)) :D(wg—vg)dx+/(ve-Vve)-(wg—vg)dx+/ Oc(we, —ve,)dl
Q Q I

+/ jg(x,Cg,VgT;Wgr—Vgr)dr—i—/ (pg(ng—ng)dFZ/ fg'(Wg_Vg>dx

I I3 Q

forallwe € K¢ and
/ Ke(ve)|[Veel %ﬁ,_chg . Vzdx+/ ge(x, Cg)de+/ (ve-Vee)-zdx = / Wezdl
Q Q Q ILUl;

forall z€ WhP2(Q).

4. STABILITY ANALYSIS

This section is concerned with the stability analysis of the recovered fracturing fluid model,
namely Problem 1.1. More precisely, we are going to establish a result that if a perturbation
parameter € tends to zero, then the solution set of the perturbation problem, Problem 3.1, con-
verges to the solution set of the recovered fracturing fluid model (Problem 1.1) in the sense of
Kuratowski upper limit.

The main result is stated in the form of the following theorem.

Theorem 4.1. Assume that H(C¢), H(f.), H(je), H(@¢), H(®e), H(Ke), H(ge), H(@¢), and
H(pe) hold. In addition, we suppose that

inf (cc, — by || VII"* — S(p) 272 >0 and inf (min{ax,,dg, 6(0)} — 8(p2) 2 m?) > o.
£>0 2 £>0 2
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Then,

(i) for each € > 0, the perturbation problem (Problem 3.1) has at least one weak solution
(Ve,ce) € Ke x WhP2(Q);
(ii) if {€,} C (0,4+o0) is such that €, — 0 as n — oo, then it holds

w-limsup S,, = s—limsupS, C S,
n—oo n—oo

where S, and S are the solution sets of Problems 3.1 and 1.1, respectively, w—limsup,,_.,, Sy
(resp. s—limsup,_,..S,) is the Kuratowski upper limit of the sequence S, with respect to
the weak topology (resp. with respect to the strong topology).

Proof. (1) Arguing as in the proof of Theorem 2.1, it can be obtained directly that, for each
perturbation parameter € > 0, perturbation problem (Problem 3.1) is solvable.

(i1) We consider the nonlinear operators A: E — E* and A¢: E — E™ defined by

(Av,w) /C (w)dx forallv,w € E, 4.1)

(Aev, W) = / Ce(D(v)) : D(w)dx forall v,w € E, 4.2)
Q
and mapping B[-]: E — E* defined by
(B(v,u),w) := / (v-V)u-wdx =:b(v,u,w) forall v,u,w e E 4.3)
Q

with B[v] = B(v,v). Suppose that (v,,c,) := (vg,,Ce,) is @ weak solution of the perturbation
problem, Problem 3.1, corresponding to € = g,. Set K,, = K¢,, A, = Ag,, jun = Je,» On = ¢,
On=0Qe. f,= fgn Kn = Ke,, 8n = 8¢, and @, = wg,. Then, for each n € N, one has

(Apvn+ Blvy],wy, —vy) + / jg (x,¢n, YVns Y (Wi — vy)) dDT 4.4)
I

+ ¢n(wnv—vnv)dr+/ (pn(wnv—vnv)dl“z/fn.(wn—vn)dx
I I3 Q

for all w, € K,,, and

/ (v | Vel 2Vey - Vedx + / 2n(X, Cn)zdx + / (Vo-Ven) - zdx = / w,2dT (4.5)
Q Q Q LUl

for all z € WhHP2(Q).
We complete the proof in some steps, to underline its crucial moments.

Step 1. The boundedness of Upen{(vy,cn)}-
We argue by contradiction and assume that U,en{ (Vy,c,)} is unbounded in E x W1P2(Q).
Then, without any loss of generality, we may suppose that

||vn||E + ”CnHWl-pg(Q) —» 00 aS n —» oo,

Since 0 € K),, we insert w, = 0 into inequality (4.4) to find

(AnVn -+ B[Va], V) — / 700,y Y9ms (0 — v)) dT 4.6)

/fn v, dx — / d)nvn dl’ — / OnVn, dr.
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From definition of A¢ (see (4.2)) and hypothesis H(C¢)(ii)(iv), we have

(AnVn, Vi) = /Q Co(D(v,)) : D(v,)dx > /Q (Ga(x,D(v)) — Gu(x,050)) dx  (4.7)

> [ (ccIDW) 2} +do, ()= [Ga(x.050)]) dx
> e |DODIh g — 14110 = 1Ga 050 iy

= cc,|vallg' = lldc, |21 (@) = 1Ga (-, 0sa) [l 1 ()

Next, for each w € V, we use Green’s formula and the divergence free condition to deduce

2
B = dx = dx =
(Biwl.w) = [ (00-V)w) - wax = /,,le’ Swydx = /,,le’axl
1 d ) 1 d ) d
—— 5 [(Tw Y wax+s [ Yar=1
2.Jo );(W’) 2 vai;(w,) 2 Jryury ;
Then,
B =1 [ G L (iar
nlyVn) =35 U Vn vi:1 Vn)i .
The boundary conditions (3.5); and (3.6); show that
1 d d
Blv|,v,) = = Vi dF>—— V)i (4.8)
Bl =5 [ ny Y (0 X

2
=7 Wl iz

It follows from hypothesis H (j¢)(ii) and Proposition 2.1(ii) that there exists ] € d j,(x,cu, YV»)
such that

j?,(x, Cny Y V(0 —vi)) = (1, 7(0 —wy)).

Combining the latter with the hypothesis H (j¢)(iii), we have

— [ Acn i@ =v))dl = = [ 70— v,) T @9
1 1

1
2—/F (aj, (%) +bj, 1 vvalle ) - 17vallge dl > —HajnHqu(rl)HYHHVnHE—bjnHYH”‘anHZ‘-

1

Moreover, by Holder’s inequality and Korn’s inequality, we can find a constant C; > 0 such that

/an .vndx S ||fn||Lp’1 (Q;Rd)”vn”LPl (Q;Rd) S Cl an”Lp’I (Q;Rd)HVnHE: (410)
and

= T < 10l Il sy < 10l 1PVl

= Jo, Orvne AT @l g 1Vl ryimey < N@all o 17 TVille

(4.11)
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Taking into account (4.6)—(4.11), we have
P
(cc, =B IT1P") vallE' — 7"\|7|!2!|vn||% = llde, Iz @) = 1Gn (-, 0s4) | 11 ()

< (Wt g I+ g o+ I )+ 1@l ) Il

Recall that ||v, ||z — o0 as n — co. Passing to the upper limit as n — oo in the inequality above,
and using the inequalities

infe~o(cc, — bj |77t = B (|7l*) > 0 if p1 =2,
infe~o(cc, —bj.||7l|P*) >0 if p1>2,

we obtain a contradiction, that is,

n—soo

ldc, [l @) + ||Gn('70Sd)||L1(Q)>

. 1 P
oo =limsup | (cc, — by [IVIP)IvallZ ™~ = ZE 7P Ivalle —
2 [vallE

< timsup ((laj, |5 g, 171+ CollFll o+ 11101, ey 1710 1)
< oo,

which implies that {v,} is uniformly bounded in E.
On the other hand, let us take z = ¢, in equation (4.5) to obtain

/Kn(vn)HVanp2 ZVcn-Vcna’JH—/gn(x,cn)cndx—l—/(vn-Vcn)-cndx 4.12)
Q Q Q
= w,c,dl.
IHuls
In virtue of hypotheses H (kg )(iii) and H(g¢)(iv), one has
/ a(v)|[Ven| 22 Vey - Ve dx + / gn(X,cn)endx (4.13)
Q
>ag, [ IVelfhdx-+ | (cq,(6)+d e >dx
>ay, || Veall7; L7 (QRY) + ||an||L1 +d n||Cn||L9

Then, we use the divergence theorem and condition (3.2) to obtain

/(vn-Vc,,)-cndx:/cﬁvwvdl“—/cﬁdivvna’x—/cnvn-Vcndx
Q r Q Q

:/c,%vn-vdl"—/ chV - Ve, dx.
r Q

We combine boundary conditions (3.3), (3.4)1, (3.5); and (3.6); to see

1
/(vn'vcn)'cnd-x:_/ C nVn ' vdl' > — pn/ C%drz H%H chHWIpz Q)" (414)
Q 2 Luls I,
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Applying Holder’s inequality, it follows that

/l"zur3 Wy Cp dI’ SH wnHLp'z (T,UT3) ||Cn||LP2 (TLUI3) (415)
:Hw"HL”/Z(rzura) Il HC"HW”'Z(Q)’

where 7 is the trace operator from W172(Q) to LP?(T"). Combining this with (4.12)—~(4.15), we
have

IV enl ey + s (@) F i lenlfoiey = 2B NenlS gy 416)
<Nl g,y 1 el )

Recall that [|cy [y1.5,(q) — = as n — eo. Passing to the limit as n — oo in (4.16), and using the
assumption 8 > p, and the inequality

inf (min{ax,  dg, 5(8)} — 8(p2) 2 | [1%) > 0

e>0

we conclude that

—+ oo
1 0
= i o (Ve el iy~ APl e )
nilw P2 (Q
< Nl e 121

which triggers a contradiction. Consequently, we conclude that {c,} is uniformly bounded in
WP2(Q). By using the reflexivity of E x W!72(Q) and passing to a subsequence if necessary,
we may suppose that there exist a subsequence of {(v,,c,)}, still denoted by the same way, and
a pair of functions (v,c) € E x W2(Q) such that

(Viycn) = (v,¢) in E X WIP2(Q) as n — oo, (4.17)

Step 2. (v,,,c,) converges strongly to (v,c) in E x WhP2(Q).

Remark 3.1 reveals that K, L K as € — 0. Invoking the convergence (4.17), we infer that
(v,c) € K x WhP2(Q). Moreover, for each n € N, one has

(AnVn+ B[Va], Wi — Vi) + / 700,y YV V(W — v)) dT (4.18)
I

+ ¢n(wnv_vnv)dr+/ (Pn(an_an)dFZ/fn'(wn_vn)dx
I I3 Q

for all w, € K,,, and

/ (V) [Ven |22V e, - Vzdx+ / 2n(X,cr)zdx+ / (Vo-Ven) - zdx — / 0nzdT (4.19)
Q Q Q THLul's
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for all z € W1P2(Q). By virtue of K M, K as € — 0, there exists a sequence {V,} such that
v, € K,, for each n € N and v, — v in E. Putting w,, = v, into (4.18), it gives

(B[Va], ¥ — Vi) + / 8o s ¥ Fa =) AT+ [ 00T, =i, T (4.20)
2
n <pn<vnv—vnv)dr+/fn.(vn—vn)dxz (AnVi, Vi — ).
I's Q

It follows from [15, Theorem 5.1] that the operator B[-| : E — E* (see (4.3)) is weakly-weakly
continuous and

lim (B[v,],v,) = (B[v],V). (4.21)

n—oo

Then we have

lim (B[v,], ¥ — va) = lim (B[v,] — B[v],%,) + lim (B[v],%,) — lim (B[v],vs) =0. (4.22)

n—oo n—oo n—oo n—oo

By the embedding theorem, it holds yv,(x) — yv(x) and c,(x) — c(x) for a.e. x € . We
employ the hypothesis H ( j¢)(vi) and Fatou’s lemma to obtain

limsup [ j2(x,cp, Yn: Y(Vn —v))dD < [ limsup jO(x,cp, YWn; P9 — yv,)dl (4.23)

n—oo Iy I' n—e

< Moemor—o
I

Also, we apply the embedding theorem and hypotheses H(¢¢), H(¢¢) and H(f) to obtain

lim ( On(Vay — Vi, ) dT + / @V, — v, ) dT + / £ (Vo — ) dx) —0. (424

n—o \ JT, I3 Q

From the hypothesis H(C¢)(v) and the definition of A and A, (see (4.1) and (4.2)), we have
Apvy —Avy, v, — V)|

/ |Co(D(v,)) = C(D(v2)) |54 [D(v) = D(v) s dx
< | meaui (D(v,)|D(v,) = D)0 dx
< | meoulen, + iy [ D)2 D) = D) s d.

where oy, = o,. Hence

lim (A, v, —Av,,v, —v) =0. (4.25)

n—oo

It follows from [15, Lemma 5.2] that operator A: E — E* (see (4.1)) is bounded, continuous,
maximal monotone and of type (S5). Passing to the upper limit as n — oo in inequality (4.20),
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and using inequalities (4.22)—(4.25), we find

limsup(Av,,v, — V)
n—soo

<limsup(Av, — AV, +ApVy, vy — V)

n—oo

<limsup (< [V, Vi +/ Jn(X,Cn, Y3 Y(V — V) dT

n—soo

+ ¢n(‘7nv_vnv)dr+/ @n(f’/nv_vnv)dr+/ fn'(Vn_;n)dx)
I, I Q

<0.

We infer that v,, — v in E as n — oo. Besides, we insert z = ¢ — ¢, into inequality (4.19) to have

/gn(x,cn)(c—cn)dx+/ (vi-Ven) - (c—cp)dx+ o @y (¢, —c)dl (4.26)
2 3

By the Sobolev embedding theorem, we can see that ¢, — ¢ in LP2(Q). Applying hypothesis
H(g¢)(v), we obtain

n—oo

lim (/ gn(x,cn)(c— cn)dx—l—/ (vi-Veu) - (c— c,,)dx) =0. (4.27)
Q Q

It follows from the hypothesis H(®;) that

lim @ (cn —c)dl = 0. (4.28)

n—ee JT,UI3

Passing to upper limit as n — o in inequality (4.26) and using the inequalities (4.27)—(4.28), we
have

0= lim </an(x,cn)(c—cn)dx+/9(vn-Vcn)-(c—c,,)dx+

n—o0

@y (¢ —c) dF)

IHUul3

—limsup an(v,,)uvcnnm 2Ven - Vien—c)dx

n—oo

> liminf (Kn(vn) )HV anz 2Vc’,1~V(c,l—c)czfx
Q

n—yoo

+ lim sup —HVanp2 Ve, V(en—c)dx

n—oo

> liminf (Kn(vn)——> IVe|lP272Ve-V(e, —c)dx
Q

n—soo

+ limsup —HVanm 2Ven-V(cn —c)dx

n—yoo

—limsup Q—HVan” Ve, -V(en —c)dx,

n—oo
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where we used the monotonicity of the p,-Laplace operator and hypothesis H (kg )(v). Com-
bined with (S )-property of — div(x(v)|Vc|P2~2Vc), we obtain ¢, — ¢ in W1P2(Q). Therefore,
we conclude that (v,,,c,) — (v,c) in E x W!P2(Q), which means that w—limsup,, .. S, # @ and
w=limsup,_.., S, = s—limsup,,_.,, S,.

Step 3. (v,c) € K x WhP2(Q) is also a weak solution of Problem 1.1,

M e .\

Let u € K. Because of the convergence K, — K as € — 0, by condition (i) of Definition 2.2,

there exists a sequence {u,} such that u, € K,, and u, — u in E as n — oo. Inserting w, = u,, in
(4.18), we see that

(Ayvn+ Blvy], up —vy) +/ jg(x, Cny Vs V(Uy — vy))dDT (4.29)
I

+ ¢n(”nv_vnv)dr+/ ‘Pn(”nv_"nv)drz/fn'(un_er)dx-
I, I3 Q

Since the operator A: E — E* is continuous, we deduce from (4.25) that A,,v,, — Av in E, and

li_r}n (A, y —vy) = (Av,u—v). (4.30)
The weak-weak continuity of B and (4.21) prove that
li_r>n (Blvy],uy —v,) = (B]v],u—v). (4.31)
n—oo

By the hypothesis H (j¢)(vi), we have
limsup [ /3 (X,Cn, YVu3 Y(tn — i) dT" < / /(¢ v y(u—v))dr. (4.32)
n—oo 1"1 1—‘1

We pass to the upper limit as n — oo in inequality (4.29), and use hypotheses H (¢ ), H(®¢),
H(f,) with (4.30)-(4.32) to see that

0 <limsup (<Anvn + B[vn), uy — V) +/r Jn (X, Cny Yo Y(y — v)) dT (4.33)
1

n—oo

+ F2¢),1(unv—v,,v)dl“—f—/F3 (pn(unv—vnv)dl“—f—/gfn.(vn—un)dx)
<(v+Blu—v)+ [ e wiyu—v)dr

+ F2¢(uv—vv)df+/r3q)(uv—vv)dl"—k/gf-(u—v)dx.

On the other hand, letting n — oo in inequality (4.19) and using the conditions H (ke ), H(ge),
H(w;), we deduce

/ K(V)HVcH@_ZVc : Vzdx+/ g(x,c)zdx+/ (v-Ve)-zdx— / wzdl = 0.
Q Q Q LUl
This fact together with (4.33) and the arbitrarity of u € K implies that (v,c) € K x Wl"2(Q) is
a weak solution of the recovered fracturing fluid model (Problem 1.1).

Consequently, we conclude that, for each n € N, if (v,,, ¢,) is a weak solution to the perturbed
problem (Problem 3.1) with € = g, then there exists a subsequence of {(v,,c,)}, still denoted
by the same way, and (v,c) € E x W'"P2(Q) such that (v,,c,) — (v,c) in E x WhP2(Q) as
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n — oo, and (v,c) is a weak solution to the recovered fracturing fluid model (Problem 1.1).
Therefore, the stability result w—limsup,_,., S, = s—limsup,_,.. S, C S is valid.
O]

Remark 4.1. It follows from Theorem 4.1 that if the recovered fracturing fluid model (Prob-
lem 1.1) has the unique weak solution, and the perturbed problem (Problem 3.1) also has the
unique solution, then the stability result stated in Theorem 4.1 reduces to following one

(Vnacn) — (V,C) in E X lepz(‘Q')7

where (v, ¢,) and (v,c) are the unique weak solutions of Problems 3.1 and 1.1, respectively.

Acknowledgments

This work has received funding from the Natural Science Foundation of Guangxi Grant Nos.
2024GXNSFBAO010337, 2021GXNSFFA196004 and GKAD23026237, the NNSF of China
Grant No. 12371312, the European Union’s Horizon 2020 Research and Innovation Programme
under the Marie Sklodowska-Curie grant agreement No. 823731 CONMECH, and the Na-
tional Science Centre of Poland under Project No. 2021/41/B/ST1/01636. It is also supported
by the Startup Project of Postdoctoral Scientific Research of Zhejiang Normal University No.
7304023924, and the project cooperation between Guangxi Normal University and Yulin Nor-
mal University.

REFERENCES

[1] W.M. Han, Y. Li, Stability analysis of stationary variational and hemivariational inequalities with applica-
tions, Nonlinear Anal. 50 (2019), 171-191.

[2] T.C.Y. Chan, P.A. Mar, Stability and continuity in robust optimization, STAM J. Optim. 27 (2017), 817-841.

[3] G.H. Yang, H. Yang, Stability of weakly Pareto-Nash equilibria and Pareto-Nash equilibria for multiobjective
population games, Set-Valued Var. Anal. 25 (2017), 427-439.

[4] Y.B. Xiao, M.T. Liu, T. Chen, N.J. Huang, Stability analysis for evolutionary variational-hemivariational
inequalities with constraint sets, Sci. China Math. 65 (2022), 1469-1484.

[5] C.J. Fang, W.M. Han, Stability analysis and optimal control of a stationary Stokes hemivariational inequality,
Evol. Equ. Control Theory 9 (2020), 995-1008.

[6] J. Gwinner, On a new class of differential variational inequalities and a stability result, Math. Program. 139
(2013), 205-221.

[7] Z.Y. Peng, J.W. Peng, X.J. Long, J.C. Yao, On the stability of solutions for semi-infinite vector optimization
problems, J. Glob. Optim. 70 (2018), 55-69.

[8] X. Wang, W. Li, X.S. Li, N.J. Huang, Stability for differential mixed variational inequalities, Optim. Lett. 8
(2014), 1873-1887.

[9] E. Ghanbari, M.A. Abbasi, H. Dehghanpour, D. Bearinger, Flowback volumetric and chemical analysis for
evaluating load recovery and its impact on early-time production, Presented at the SPE Unconventional Re-
sources Conference Canada, Calgary, Alberta, Canada, November, SPE-167165-MS, 2013.

[10] M.A. Abbasi, D.O. Ezulike, H. Dehghanpour, R.V. Hawkes, A comparative study of flowback rate and pres-
sure transient behavior in multifractured horizontal wells completed in tight gas and oil reservoirs, J. Nat.
Gas Sci. Eng. 17 (2014), 82-93.

[11] A. Alkouh, S. McKetta, R.A. Wattenbarger, Estimation of effective-fracture volume using water-flowback
and production data for shale-gas wells, J. Can. Petrol. Technol. 53 (2014), 290-303.

[12] X.X. Dong, W.J. Li, H.H. Wang, Research on convection-reaction-diffusion model of contaminants in fractur-
ing flowback fluid in non-equidistant fractures with arbitrary inclination of shale gas development, J. Petrol.
Sci. Eng. 208 (2022), 109479.



600 J. CEN, S. MIGORSKI, C. VETRO, S. ZENG

[13] A. Zolfaghari, H. Dehghanpour, E. Ghanbari, D. Bearinger, Fracture characterization using flowback salt-
concentration transient, SPE J. 21 (2016), 233-244.

[14] FY. Zhang, H. Emami-Meybodi, Analysis of early-time production data from multi-fractured shale gas wells
by considering multiple transport mechanisms through nanopores, J. Petrol. Sci. Eng. 197 (2021), 108092.

[15] J.X. Cen, S. Migoérski, J.C. Yao, S.D. Zeng, Variational-hemivariational system for contaminant convection-
reaction-diffusion model of recovered fracturing fluid, Adv. Nonlinear Anal. 13 (2024), 20230141.

[16] F.H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247-262.

[17] E.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, Interscience, New York, 1983.

[18] Z. Denkowski, S. Migoérski, N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer
Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.

[19] Z.Denkowski, S. Migorski, N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer
Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.

[20] S.Migérski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Anal-
ysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013.

[21] U. Mosco, Covergence of convex sets and of solutions variational inequalities, Adv. Math. 3 (1969), 510-585.

[22] S. Migérski, S. Dudek, A class of variational-hemivariational inequalities for Bingham type fluids, Appl.
Math. Optimi. 85 (2022), 16.



	1. Introduction
	2. Preliminaries
	3. A Perturbation System
	4. Stability Analysis
	References

