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Abstract. Robust approach is a special scalarization method to deal with multiobjective optimization
problems in the worst-case. In this paper, we propose a new non-monotone gradient type algorithm for
solving unconstrained multiobjective optimization problems by the conjugate technique and the robust
approach. The proposed method has a memory gradient property since the search direction is constructed
by using the current descent direction and the past multi-step iterative descent directions. For this, the
search direction is called a memory gradient search direction. The step-size is computed by the non-
monotone linear search. A lower bound of the stepsize is presented under some mild conditions. Then
the iterative sequence generated by the proposed method is proved to be convergent to a Pareto critical
point of the multiobjective optimization problem under some mild conditions. Numerical experiments
are reported to show the effectiveness of the proposed method.

Keywords. Multiobjective optimization; Memory gradient direction; Nonmonotone line search; Pareto
critical point; Robust approach.

1. INTRODUCTION

Multiobjective optimization is an important topic in the optimization community, and has
been widely applied to solve many practical problems arising from economic management, en-
gineering design, machine learning, and so on; see, e.g., [1-4]. Due to the difficulty of several
objectives to be minimized simultaneously, various optimal solution notions, such as Pareto
efficient solutions, weak efficient solutions, and properly efficient solutions, were introduced
according to the different decision situations or decision preferences. The theory of multiob-
jective optimization has been extensively established; see, e.g., [5—7]. However, the numerical
algorithms for multiobjective optimization are still deserved to be developed due to the actual
needs of applications. The development of strategies for solving multiobjective optimization
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problems has attracted wide attention, and many iterative methods for solving scalar optimiza-
tion problems have been extended to multiobjective optimization, such as the projected gradient
method [8, 9], the proximal point method [10-13], the steepest descent method [14, 15], the
Newton method [16, 17], the trust-region method [18, 19], and so on.

Among these strategies for solving multiobjective optimization problems, there are mainly
two different kinds of approaches. One is linearized scalarization methods such as the weighted
normalization method, which aims to convert multiobjective optimization problems into the pa-
rameterized single objective ones; see [11,20,21]. As described in [16,22], the drawback of
this method is that even when the original vector-valued problem has solutions, the selection of
weighted parameters is not easy to determined in advances; and the other one is nonlinear scalar-
ization methods such as oriented distance function and Tammer type scalarization function by
which do not require any weighted parameters information; see [8, 14, 17]. By these strategies,
the first-order and second-order methods, such as the gradient descent method, the proximal
gradient method, the Newton method, and the conjugate-gradient method of optimization prob-
lems were extended from one objective to multiobjective. The basic iterative framework is as
follows:

S =k pd*, k=0,1,2,3,... (1.1)

where d* is the search direction such as steepest descent direction and conjugate gradient direc-
tion [14,23-25], and p* is the stepsize calculated by using 0.618 method, Armijo line search
and Wolfe line search; see [8,9, 14,26-28]. In [29], the nonlinear conjugate gradient method
for vector optimization was proposed in which the search direction d¥ was defined as

k if k=0
s V), nE 1.2
{v(xk)+ockdk1, ifk>1, (12)

where of is a conjugate parameter. Considering the multi-step iterative search directions de-
fined by (3.2), a new conjugate gradient method, termed as the multiobjective memory gradient
method (MMG), was proposed to find Pareto critical points of a unconstrained smooth mul-
tiobjective optimization problem with Armijio-type monotone line search in [27]. Numerical
experiments illustrated that MMG was superior than the multiobjective nonlinear conjugate gra-
dient methods. In [27], the stepsize was obtained by Armijio-type monotone line search and
adaptive step size.

As we know, the monotone linear search made the decreasing of objective function values at
each iteration, which may slow the convergence rate in the minimization process, especially in
the presence of narrow curved valley; see [30]. Considering the limitation of the monotone type
linear search, some nonmonotone line search methods have been proposed, which allowed that
the value of objective function can be increased in some iterations to improve the rate of con-
vergence in the process of line search; see [26,30-32]. As pointed out in [31], the Zhang-Hager
type nonmonotone line search technique requires the average value of successive functions to
be reduced and has been proved to be more efficient than monotone or traditional nonmonotone
strategies. A max-type nonmonotone line search method was proposed for solving multiob-
jective constrained problems in [33]. The nonmonotone line search techniques [30, 31] were
extended from the single objective to multiobjective case; see e.g., [9,26, 28, 32, 34] and the
references therein.
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Inspired by the above works, we propose a new memory gradient method for a multiobjective
optimization problem by the non-monotone line search rule [26,31, 32, 34] and the robust ap-
proach. The search direction of the proposed method is constructed by using the current descent
direction and the past multi-step iterative descent directions. Under mild assumptions, we show
that the sequence generated via this method converges to a Pareto critical point of the problem.
Numerical experiments are reported to verify the effectiveness of the proposed method.

The paper is organized as follows. In Section 2, we recall some definitions and basic results.
In Section 3, we propose the multiobjective nonmonotone memory gradient method (MNMG)
and its some properties. The convergence of the iterative sequence generated by the MNMG is
analyzed in Section 4. In Section 5, some numerical tests are reported to verify the efficiency
of the MNMG. Finally, we give the conclusions in 6.

2. PRELIMINARIES

Throughout this paper, if not otherwise stated, let R be the real number field and R"” be the
n-dimensional Euclidean space with inner product (-,-) and norm || - ||, i.e., ||x|| = 1/ (x,x) for
all x € R". For a positive integer m € Z, R'Y, and R’! , denote the nonnegative orthant and
positive orthant of R™, set (m) := {1,2,--- ,m}, e := (1,1,---,1)" € R, where T denotes the
transpose, and denote the zero vector of R” by 0,,. We also denote y ™ (x € R) by

0, if x=0
+ ) )
x —{ L if x € R\ {0}. 21

It is easy to see that y ¥ < 1 and yx¥ = 1 whenever ¥ # 0. The norm of a real matrix

A= (A,-’j) € R™*" ig calculated as
< 2
— max A ., 2.2
ic(m) Z’l b 2.2)

mxn
We give the partial orders thaty <z (z=y) © z—y€e R  andy<z(z>y) & z—ye R}
for y,z € R™.
We in this paper study the following unconstrained multiobjective optimization problem:

min f(x) = (f1(x), f20x), - S ) (2.3)

where f: R" — R™ is a continuously differentiable function with the lower boundedness, i.e.,
fi are continuously differentiable and bounded from below for all i € (m).

A point x* € R" is called a Pareto optimal point (or Pareto point) of (2.3) if there exists no
other point x € R” such that f(x) < f(x*) and f(x) # f(x*). Similarly, a point x* € R" is called
a weak Pareto optimal point (or weak Pareto) of (2.3) if there exists no other point x € R" such
that f(x) < f(x*).

It is clear that a Pareto optimal point is also a weak Pareto optimal point but not vice versa.
The set of the objective values of all Pareto optimal solutions is also called Pareto frontier. Since
f is continuously differentiable, the Jacobian of f at x € R" is denoted by

) = (VAG),. .., V() T, (2.4)

and the image of the Jacobian of F at x is denoted by
Im(Jf(x)) :={3f(x)d : d e R"},

Ax])w
4] = max A= o gy |
A0 x| ie(m)
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where 3 (x)d := ((V£i(x),d) , (Vf2(x),d) -, (Vu(x),d)) .
It is well-known [6, 15, 35] that if x € R"” is a weak Pareto optimal point to problem (2.3),
then the first order optimality necessary condition for problem (2.3) can be characterized by

(—R7,) NIm(Jf(x)) =0, (2.5)
which implies that, for any d € R”", there exists at least one i* € (m) such that
(Ff(x)d)i = (Vi (x),d) = 0.

So, for each d € R”, m<a)§ (Vfi(x),d) > 0. We also call the function m<a)§<V fi+(x),d) as worst-
ie{m i€

m

case function with respect to the index i € (m). Moreover, x € R" is a local weak Pareto optimal
point of problem (2.3) if and only if d = 0, is the solution to the robust optimization problem:

mmip, max (Vfi(x),d). (2.6)
In particular, if f is a convex function, i.e., f; are convex functions for i € (m), then x € R"
is a weak Pareto optimal point to problem (2.3) if and only if d = 0, is the solution to robust
optimization problem (2.6). The robust approach (2.6) is very important method to design
numerical algorithms for solving multiobjective optimization problem (2.3), which can also be
regarded as a scalarization method.

A point x € R" satisfying (2.5) is said to be a Pareto critical point of problem (2.3). Observe
that if x € R" is not a Pareto critical point, then there exists a direction d € R" such that J f(x)d <
0, which implies that there exists € > 0 such that f(x+ ad) < f(x) forall @ € (0,¢],i.e.,disa
descent direction of f at x.

We now define a function ¢ : R” x R" — R as follows

¢(x,d) = ,m<a>§<Vﬁ(X),d>- (2.7)
em

Clearly, ¢ is convex with respect to the second argument. Then problem (2.6) can be equiva-
lently reformulated as the following convex optimization:

min §(x,d). (2.8)

As we know, proximal point method is a popular approach to solve the convex optimization
problem (2.8) by the proximal function ¢ with respect to the variable d, i.e.,

. 1 2
prox, (0) = arg min ¢ (x,d) + = |d — On||".

Itis easy to see that prox, (0,) is well-defined, single-valued, and dependent on x since ¢ (x,d) +
3lld|)? is a strongly convex function, so we set v(x) := prox, (0y,), i.e.,

1
= i d)+ = ||d|? 2.
v(x) = arg min ¢ (x,d) + 5 [|d|%, (2.9)
and set the optimal value
1 ) 1
0(x) := ¢ (x,v(x)) + 5 [v(x)[|* = min ¢ (x,d) + 5 [|]|*. (2.10)
2 deR” 2
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Clearly, 0(x) <0 for all x € R". By the classical convex analysis, we conclude from [28, p. 78]
that there exist A;(x) > 0,i € (m) and Y./" ; A;(x) = 1 such that v(x) = — Y | A;(x)Vfi(x) and

1
9 (x,v(x)) = —[v@)[?, 6(x) = —§||V(X)||2- (21D
Proposition 2.1. [36] Forany x,y,d;,dy € R" andt > 0, the following statements hold:

(i) ¢(x,td1) =19(x,dy);

(i1) ¢(x7 di+ d2) < ¢(X, dl) + ¢(X, dz),'
(iii) [@(x,d1) — 90 d2)| < [|3f(x)d1 — I f(v)da||;
(iv) d € R" is a descent direction at x € R" if and only if ¢ (x,d) < 0;

(v) x € R" is a Pareto critical point if and only if ¢ (x,d) > 0 for any d € R".

Proposition 2.2. [14] Let the functions v(-) and 6(-) be defined by (2.9) and (2.10). Then the
following assertions hold:
(i) v(-) and 6(-) are continuous;
(11) The following statements are equivalent:
(a) x € R" is not a Pareto critical point;
(b) v(x) #0;
(c) 6(x) <O.

Remark 2.1. From Proposition 2.1 (iv), we deduce that if v(x) # 0, then v(x) is a descent
direction of problem (2.3) at x € R"” which results from (2.9), (2.10), and (2.11). Further,
Proposition 2.2 (ii) shows a stronger conclusion that v(x) is a descent direction of problem (2.3)
at x € R" if and only if v(x) # 0. If x € R”" is not a Pareto critical point, we have
2

max (Vfi(x),v(x)) < _ vl <0.

i€ (m) 2
Proposition 2.3. [16, Theorem 3.1] If f is convex and X is a Pareto critical point, then X is a
weakly Pareto optimal point of problem (2.3).

3. MULTIOBJECTIVE NONMONOTONE MEMORY GRADIENT METHOD

In this section, we propose a new multiobjective nonmonotone memory gradient algorithm
(MNMQ) for problem (2.3) by using the conjugate technique and the robust approach, and then
present some basic results of MNMG.

The MNMG generates some sequence {x*} by the following basic iterative procedure:

X=Xk prak, (3.1)

where d¥ is a combination of the current steepest descent direction and past multi-step descent
direction defined as follows:

dk _ Yiev (xk) s ifk= ()7 (3 2)
v () + X0 agpdt T, ik > 1 :

The search direction inherits the memory property of conjugate gradient method.
We now present the multiobjective nonmonotone memory gradient algorithm for problem
(2.3) with the nonmonotone Armijo-type line search.

Algorithm 3.1. [Multiobjective Nonmonotone Memory Gradient Method (MNMG)]
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Step 1. Choose parameters 6 € (0,1), 1 >0, u >0, N € Z, and §,& € (0,1). Let x° € R" be
an arbitrary initial point. Set C° = f(x°), go = 1, and k = 0.
Step 2. Compute the direction v(x*) = arg;ngl o (. d)+ 3 ||d|*.
6 n
Step 3. If v(xX) = 0, STOP. Otherwise, go to Step 4.
Step 4. Compute the search direction d* by (3.2), where 0 < 7y, < +oo, Ny = min{N, k}, and

1 ¢ (x*,d" )
Ockj:—lvk¢)(xk,v(xk))a),:;., a)kj>max{T,0 . (3.3)
Step 5. Compute the step-size py = WE"™, where hy is the smallest nonnegative integer satisfy-
ing:
f*+prd®) 2 Ch +oprp (o, db)e. (3.4)
Set x**1 = xk + pd*.
Step 6. Update gy and C* as follows:
qrv1 = Oqi+1, (3.5)
gt = S H W) (3.6)
Gk+1
Set k = k+ 1, return to Step 2.
Remark 3.1. (1) It is worth noting that the nonmonotone line search techniques have been

extended to solve multiobjective optimization problems by using some directions, such
as steepest descent direction and Newton descent direction. The MNMG combines non-
monotone Armijo-type line search with memory gradient direction, which is different
from the memory gradient method [27] with monotone line search and nonmonotone
line search without the memory gradient direction for unconstrained multiobjective op-
timization problems [28].

(ii) As mentioned in [31], if § = 0, then C* = f(x*) and the line search (3.4) is the usual
Armijo line search; if § = 1, then C¥ = Fll Z{;O fi(x;) is the average of all the previous
function values.

For the convergence analysis to MNMG, we give the more stringent condition
0(x*,d") < 1o, v(x)), (3.7)

for some 7 > 0 and any k € N. In multiobjective optimization, we say that a direction d* € R”
meets the sufficient descent condition at x* whenever (3.7) holds.
The next property shows that the search direction d* given by (3.2) is a descent direction.

Proposition 3.1. Let the direction d* be given by (3.2). Then it is a descent direction for all
ke N.

Proof. The proof is the same as that of [27, Lemma 3.1], so it is omitted. OJ

Proposition 3.2. Let the direction d* be given by (3.2). Assume that there exists a constant
Y* > 0 such that y, > v* and @y has the following property:

o (. d" ) + 3£ G ||
Yk
Then d* satisfies the sufficient descent condition (3.7) at x* with T = % >0 forall k € N.

Wy >
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Proof. The proof is the same as that of [27, Lemma 3.2], so it is omitted. [

Proposition 3.3. For the iterative sequence {x*} generated by the MNMG, f(xX) < C* holds
forall k € N.

Proof. The proof is the same as that of [31, Lemma 1.1], so it is omitted. O
The following result which shows that the line search in the MNMG is well-defined.

Proposition 3.4. For the iterative sequence {x*} generated by the MNMG, if x* is not Pareto
critical point, then there exists a stepsize Py that satisfies the nonmonotone Armijo-type line
search condition (3.4).

Proof. Tt follows from Proposition 3.1 that ¢ (x,d*) < 0, so V£;(xX)Td* < 0 for all i € (m).
Since f is continuously differentiable and ¢ € (0, 1), then, for any i € (m), there exists some
Px € (0,1) such that

fild +pd") = fi(") + pV£i(x*) Td" +o(p)
< fi(*) + opo(F,db)
<Cf+opp(*.d"), ¥ p e (0.5,
where the last inequality follos from Proposition 3.3. Moreover, one has
S +pd*) X C* +opg(,d*)e,Yp € (0,p].

It therefore implies that there exists a stepsize pj that satisfies the nonmonotone Armijo-type
line search condition (3.4). ]

We next show the well-definedness of the MNMG.

Proposition 3.5. Assume that all conditions of Proposition 3.2 are satisfied. Then the MNMG
is well-defined.

Proof. By the strong convexity of ¢ (x*,-) + 3| - ||, the direction v(x*) can be uniquely existed.
It follows from Propositions 3.1 and 3.2 that ¥ € R" is a descent direction. Besides, Proposition
3.4 yields that there exists a stepsize py that satisfies the nonmonotone Armijo-type line search
condition (3.4). Consequently, the MNMG is well-defined. 0

We now present the usual assumption which will be used to estimate the stepsize py.

Assumption 3.1. For all k € N, if p; < ue, Vf; (i € (m)) satisfy the following Lipschitz condi-
tion with Lipschitz constant ¢:

IV i) = VA < dllx =] (3.8)
for all x on the line segment connecting x* and x* + é prd”.

Remark 3.2. It should be pointed out that Assumption 3.1 was applied to show the bounded-
ness from below of the stepsize of a non-monotone gradient method in [26]. In particular, if
fi (i € (m)) are continuously differentiable with gradient Lipschitz continuity, Assumption 3.1
is natural.
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4. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of MNMG under some suitable assumptions.

From the iterative procedure of MNMG, we know that MNMG stops when v(x*) = 0, which
implies that x* is a Pareto critical point by Proposition 2.2 (ii). If MNMG stops at x* with finite
steps k, then x* is a Pareto critical point. We consider the case that the iterative number of the
sequence {x¥} is infinite in the rest of this paper.

Proposition 4.1. Let d* be defined by (3.2) and the sequence {xk } be generated by the MNMG.
Assume that the conditions of Proposition 3.2 are satisfied. Then

T
0 at) < W2 = 10,
where T = g > 0.

Proof. Tt follows from Proposition 3.2 that the direction d¥ satisfies the sufficient descent con-
dition (3.7) at x*. Due to G(xk) < 0, we have

T
(P(xkadk) < T¢<xk7v(xk)) < _EHV(xk)HZa

which together with (2.11) shows that ¢ (x*,d*) < —Z|lv(x*)||> = 76 (+F). O
We next present a nonincreasing property of the sequences {Clk}

Proposition 4.2. Let the sequence {x*} be the sequence generated by the MNMG. Then {C*}
is nonincreasing (i.e., C*t1 < C*) and has a limit as k — oo

Proof. The proof is similar to that of [28,32], so it is omitted. OJ
Theorem 4.1. Let the sequence {x*} be generated by the MNMG. Then,

lim p6 (x*) = 0.

k—>oo

Proof. From Proposition 4.2, one has

lim (ck—c"“) —0.

k—roo

It follows from (3.4) that
+1\ _ k k gk
I om0t
qk+1 dk+1

Taking into account that o € (0, 1), % > 0 and ¢ (x*,d*) <0, one has

Ck+1 — C/(

TPk ko gk -t :
0 < lim —¢(x",d") < lim —+— =0, i € (m),
k—o0 Qi1 k—roo o
which implies that

lim 25 (&, aF) = 0. @.1)

k—reo G+ 1
In view of § € (0,1), we have 0 < 1 — 6 < 1. Using (3.5) yields that
1

k oo
1+5§6]k+1=1+25]+1§2512ﬁ> (4.2)
j=0 j=0 N
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so0<1—-0< ﬁ < 14%8 for all k € N. In turn, we conclude from Proposition 4.1 that

P gk ak) < gy <. 43)
qk+1 qk+1

Therefore, taking the limit in both sides of the above formula (4.3) as k — oo, which together
with (4.1) shows that lim pi6(xK) = 0. O
—>00

We present a lower bound estimation of the stepsize p; generated by (3.4).

Proposition 4.3. Let the sequence {x*} be generated by the MNMG, d* be defined by (3.2),
and the stepsize py be defined by (3.4). Assume that Assumption 3.1 and the conditions of
Proposition 3.2 hold. Then, for each k,

(0= 1o ") 3 i

. £
o2 min e, 208

Proof. Since ¢(x*,d*) <0 and &, € (0,1) for each k, then %@ﬁ;’k’ > 0. If py > pé, then

(4.4) holds. If py < ue, then ue = p, < pe, so by > 2. Set s; := épk = e By (3.4), we
have

FOF 453d%) £Cr+ o519 (6, d¥)e.
Clearly, d* # 0 because of f(x*) A CF and ¢ (x*,0) = 0. Thus there exists ji € {m) such that

Fii 0+ s5ed") > €5+ osip (F,d5) > £, (FF) + o9 (+F,d").

k
Since f is continuously differentiable, by the Mean-Value Theorem, there exists 1 € [0, 1] such
that fj, (k4 spd*) — £, () = (V £}, (K + spud®), sid*), so
(V1 (6 +sud), db) > 09 (:5,d") > o (Vf;, (), "),
where the second inequality results from (2.7). It follows that
0< (0 - 1)o(,d) < (Vf (o +sud),db) — 6 (¢, aY)
< <ijk (xk + Sklkdk)vdk> - <ijk (xk)adk>
<NV £+ siwd®) = V£ 61144
1
< el d||* = Epkad"Hz,

(0—1)¢(x*.d")

so py > £ e Thus the stepsize py has a bounded below satisfying (4.4). U

Theorem 4.2. Let the sequence {x*} be generated by the MNMG and all conditions of Propo-
sition 3.2 be satisfied. Then the following assertions are true

(1) each accumulation point of the sequence {xk} is Pareto critical point of problem (2.3);

(ii) assume that the level set {x € R : f(x) < f(x°)} is bounded. Then there exists at least
one Pareto critical point X of problem (2.3) such that X is an accumulation point of
iterative sequence {xk}. Further, if f is convex, then there exists at least one Pareto
optimal point X of problem (2.3) such that X is an accumulation point of {xk}
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Proof. (i) Let X be an accumulation point of {x*}. Then there exists a subsequence {x/} of {x*}
such that x*/ — ¥ as j — co. From Proposition 2.2 we conclude that v(-) and 6(-) are continuous.
It follows that lim j_ye v(x%/) = limj_,e v(X) and lim e, 8 (x*/) = 6(X). In view of Theorem 4.1,
one has
0= lim py,0(x*) = lim py, lim 8(x*) = O(%) lim py.
J—reo k—oo' T j—poo k—oo Y

Then there exists at least 8 (X) =0 or klirn Px; = 0. It therefore follows from Proposition 2.2 that
—soo

X is a Pareto critical point of problem (2.3) when 0 (%) = 0.

We now consider the case klim Px; = 0. If X is not Pareto critical point of problem (2.3), then
—o0

v(¥) # 0. For sufficiently large j, there exist i € (m) and € € (0, 1] such that 0 < p;; < & and

Fidi 47 pyd") > CF + e pi ¢ (,dY) = [() + o piy o (H,ah),
where the first inequality results from (3.4) and the second inequality follows from Proposition
3.3. It implies that

fi(xki &7 py dhi) — f(xk)
8*1ij

> o (xh,d)

> 6 (Vfi(4),d")
oe ! p Vi () T ki
B e_lpkj

(fz(xkf +elpg,dY) — f:(X) o(e7 py, b H))
=0 + .

871ij 871ij
Moreover, we have
S+ &7 pg,d*i) — fi(x) .0 o(e™ py;[1d"]))
ey, S0 e lpg

and

-1 k;j
¢)(xkj,dkj)> 1 0(8 pijd H)

. 4.5
T (4.5)

Since v(-) is continuous, then [|v(-)||? is continuous. Again, from v(%) # 0, it implies that there
exists some & > 0 such that ||v(x*/)||> > &. Then we deduce from (4.5) and Proposition 4.1 that

1 o(e Yo ||d¥i
0> —% > lim ¢(x’<f,d’<j) > lim (e Pyl

1 =0,
J—roo jool—0 €7 Py

which is a contradiction. Consequently, we obtain v(x) = 0, so ¥ is a Pareto critical point of
problem (2.3).

(11) It follows from Propositions 3.3 and 4.2 that {Clk } is nonincreasing and f(x¥) < C for all
k€ N. Thus f(x¥) < C* < - <% = f(x%) for all k € N. Since the level set {x € R : f(x) =<
f(x%)} is bounded, then {x*} is bounded, which implies that {x*} has at least one accumulation
point. It thus follows from (i) that the accumulation point of {x*} is a Pareto critical point of
problem (2.3), which together with Proposition 2.3 yields that the accumulation point of {x*}
is a Pareto optimal point of problem (2.3) when f is convex. U
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5. NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments to illustrate the potential practical
advantages of the MNMG for solving multiobjective problems by comparing MNMG, mul-
tiobjective memory gradient (MMG) [27] and multiobjective nonmonotone steepest descent
(MNSD) [28] method.

The codes are edited in Matlab programming language, and implemented in Matlab R2021b
on a computer CPU Intel(R) Core(TM) i15-10210U 1.60GHz and 8GB RAM. We use ¢ = 1074,
u=1,€e=0.5,and N =5 forall k € N, and we set

¢k, 0) + | 3f () ||| + 1
Y '

It follows that the value of @y ; fork € N, j € (Ny) meet with the condition in Lemma 3.2, and
we consider the stop condition v(x*) < 1076, or maximum number of iterations equals to 1000.

o = (5.1)

Example 5.1. Let f : R” — R? be a vector-valued function with the form of f(x) = (f1(x), f2(x)),
where fi(x) := ||[Ax—b|)3, f2(x) == ||x]|5, A € R™", and b € R".

In the experiments, we let n = 2, A, and b be randomly generated by the RAND function in
Matlab. We consider two cases of the choice of 7 firstly:

(1) %= 1forall k € N;
(i1) Y% =1 for k =0 and for k > 1, we have

o [t
- 1, if VT | <7, (5.2)
Ye = [k k1| h . .
m, otherwise ,

where y* = 10710,

Obviously, the value of ¥, for all k£ € N satisfies the condition in Lemma 3.2, which together
with the choice of ay; for k € N, j € (N), suggests that d* for all k € N is sufficient descent
directions.

TABLE 1. Average number and average runtime of iterations of the MNMG with
different choices of 7, for Example 5.1.

‘ AverIter AverTime
Case (i) 32.56 5.36
Case (ii) 12.49 1.24

We solve the problem using different 100 initial points from a random distribution. Table 1
shows the average runtime and average number of iterations of the MNMG with two choices
of 7y, for Example 5.1, in which Column “Averlter” stands for the average number of iterations,
and Column “AverTime” states the average runtime. It follows from Table 1 that Case (ii) is
obviously better than Case (i). We take ¥ as in (5.2) in the subsequent discussion.

Furthermore, to show the superior of MNMG, we also compare the numerical performance of
MNMG with that of MMG and MNSD. Table 2 shows the average number and average runtime
of iterations of the MNMG, MMG and MNSD for Example 5.1. From Table 2, one can see that
in terms of the average runtime and the average number of iterations, MMG is pretty better than
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TABLE 2. Average number and average runtime of iterations of the MNMG,
MMG and MNSD for Example 5.1.

| MNMG MMG MNSD
Averlter | 1249 3592 31.28
AverTime 1.24 3.55 3.08

FIGURE 1. The Pareto frontiers generated by MNMG, MMG and MNSD for
solving Example 5.1.
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MMG and MNSD. The Pareto frontiers generated by MNMG, MMG and MNSD for solving
Example 5.1 are shown in the Figure 1.

Example 5.2. Let f(x) = (f1(x), f2(x)) " for x € R?, where fi(x) := (x; —1)? + (x; —x2)? and
Fr(x) == (x2—3)*+ (x1 —x2)%.

We solve the problem using different 100 initial points from a random distribution to compare
the numerical performance of MNMG with that of MMG and MNSD. Table 3 shows the average
number and average runtime of iterations of the MNMG, MMG and MNSD for Example 5.2.
From Table 3, one can see that MMG is significantly better than MMG and MNSD in terms

of the average runtime and the average number of iterations. The Pareto frontiers generated by
MNMG, MMG and MNSD for solving Example 5.2 are shown in the Figure 2.

TABLE 3. Average number and average runtime of iterations of the MNMG,
MMG and MNSD for Example 5.2.

| MNMG MMG MNSD
Averlter 6.36 12.52 48.49
AverTime 0.69 1.30 443

2 .
Example 5.3. Let f : R" — R?, where fi(x) := Y % and fo(x) :== Y1, (x’:’)z.
For n = 5,10,20,50, we solve the problem using different 100 initial points from a random
distribution respectively to compare the numerical performance of MNMG with that of MMG
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FIGURE 2. The Pareto frontiers generated by MNMG, MMG and MNSD for

solving Example 5.2.

TABLE 4. Average number and average runtime of iterations of the MNMG,
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MMG and MNSD for Example 5.3.

MNMG MMG MNSD
Averlter | AverTime | Averlter | AverTime | Averlter | AverTime
n=5 13.20 1.23 14.01 1.44 43.05 5.74
n=10 | 22.59 2.33 23.47 2.94 78.84 12.44
n=20 | 34.77 7.04 36.61 8.63 149.58 46.11
n=50 | 59.77 11.82 63.56 20.42 356.20 186.96

and MNSD. Table 4 shows the average number and average runtime of iterations of the MNMG,
MMG and MNSD with n = 5, 10,20, 50 respectively for Example 5.3. From Table 4, one can
see that MMG is slightly better than MMG and obviously better than MNSD in terms of the
average runtime and the average number of iterations.

6. CONCLUSION

A new multiobjective nonmonotone memory gradient method was proposed to solve uncon-
strained smooth multiobjective optimization problem. The proposed method was constructed
by the worst-case function and conjugate gradient method in which the search direction has
memory property. The asymptotically convergence of the sequences generated by MNMG was
established under suitable conditions. Numerical experiments were reported to show the effec-
tiveness of the MNMG. In the future research, it is interesting to study the convergence rate of
MNMG under some suitable conditions.
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