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THE TWO-GUARD PROBLEM ON CURVININEAR POLYGONS
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Abstract. Given a simple polygon on the plane with two distinct vertices, s and t, the original two-guard
problem asks whether there is a route for two guards to simultaneously walk along the two boundary
chains from s to t so that they are always mutually visible. We study a generalization of this problem
to curvilinear polygons, in which the boundary consists of a finite number of curved pieces. We focus
on locally-convex polygons, which are polygons with locally convex arcs, and we solve this problem in
O(n2) time for a curvilinear polygon with n edges, by either constructing a required route or deciding
that such route does not exist.
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1. INTRODUCTION

Visibility is an important concept in road network surveillance, robotics, motion planning,
and security [5]. The formal definition of visibility is as follows.

Definition 1.1. Given a set P⊆Rn, we say that a point x ∈ P is visible from a point y ∈ P if and
only if the line segment xy = {λx+(1−λ )y|λ ∈ [0,1]} is entirely contained in P.

Real-life surveillance systems are usually modeled by using simple polygons, which are
closed regions in R2 with the border made up of finite chains of straight line segments. The
two-guard problem is an important class of visibility problems. This problem asks for a walk
of two points (guards) on the boundary of a simple polygon P from the starting vertex s to
the ending vertex t, one clockwise and one counterclockwise, such that the guards are always
mutually visible. A more formal statement of the problem is given in Definition 1.4 below.

Let a polygon P be given by a simple, closed, and polygonal chain. Any two distinct points
s and t on its boundary divide the polygonal chain into two subchains, denoted by L and R,
corresponding to the clockwise and counter-clockwise walks from s to t, respectively.

Definition 1.2. Given a simple polygon P and its two vertices s and t, a two-guard boundary
walk from s to t is a pair (l,r) of continuous functions such that:

(1) l : [0,1]→ L,r : [0,1]→ R,
(2) l(0) = r(0) = s, l(1) = r(1) = t,
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(3) l(x) is visible from r(x) for all x ∈ [0,1].

Any line segment l(x)r(x),x ∈ [0,1] is called a walk line segment of the two-guard walk. The
point r(x) is the walk partner of l(x), and vice versa.

Definition 1.3. A two-guard walk from s to t on P is called straight if both l and r are non-
decreasing with respect to the s to t orientation of L and R. The polygon P is called walkable
from s to t if it admits a straight walk.

Definition 1.4. Given a polygon P and s, t on the boundary of P, the TWO-GUARD problem is
to determine if P is walkable from s to t.

The two-guard problem was first introduced by Icking and Klein [8], who developed an
O(n logn) time algorithm to decide whether P is walkable. Soon after, Heffernan [7] proposed
a linear-time algorithm to solve this problem. Later, Tseng et al. [21] proposed an O(n logn)-
time method to compute all pairs (s, t) of vertices such that P is walkable from s to t, and Bhat-
tacharya et al. [2] developed an optimal O(n) algorithm for the same problem. There has been
a considerable amount of research towards generalizing this problem in various directions [24].
Aurenhammer et al. [1] considered the problem of partially walking a non-walkable polygon,
which asks how far the two guards can reach from a given source vertex while staying mutu-
ally visible. They showed that there can be Θ(n) maximal walks of this type and all of them
can be found in O(n logn) time. Crass et al. studied a modified version called ∞-searcher in
an open-edge “corridor”. Several researchers [3, 14, 15, 16, 18, 23] generalized the two-guard
problem to the setting of rooms, in which a room is a simple polygon with a designated point on
its boundary called the door. Suzuki and Yamashita [17] formulated a more general framework
of polygon search problems and [4, 9, 11, 12, 19, 22] contributed to this framework.

The generalizations considered in the literature assume that the polygon is defined by line
segments, whereas in real-life applications the boundaries are often curves instead of line seg-
ments. Therefore, generalizing the two-guard problem to a polygon with curves as its bound-
aries is of interest. Such polygons, referred to as curvilinear polygons, were first studied in the
context of guarding problems by Karavelas [10]. The curvilinear polygons considered in [10]
are assumed to be both piecewise locally convex and made up of convex arcs in order to admit
triangulation. However, in our setting of the two-guard problem, the curvilinear polygon is only
required to be piecewise locally convex.

Let v1, ...,vn,n ≥ 2 be a set of points and let a1, ...,an be a set of curvilinear smooth Jordan
arcs such that ai has the points vi and vi+1 as endpoints (here and below, all indices are assumed
to be taken mod n, so if i = n then i+ 1 should be replaced with 1). Assume that the arcs ai
and a j (i 6= j) intersect only if i = j + 1 or j = i+ 1, and they only intersect at vi or vi+1. A
curvilinear polygon P is the closed region of the plane delimited by the arcs ai, i = 1, . . . ,n. The
points vi are the vertices of P.

Definition 1.5. A curvilinear polygon P is called a piecewise locally convex polygon if for every
non-vertex point p on the boundary of P there exists a disk Dp centered at p such that P∩Dp is
a convex set.

Figure 1 shows an example of a piecewise locally convex polygon. Note that one of its arcs is
non-convex and the local convexity requirement imposed on non-vertex points in Definition 1.5
is not satisfied in vertex s. In the two-guard problem, we are interested in ensuring visibility
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FIGURE 1. Illustration of a piecewise locally convex polygon.

along the guard walks; hence, it is natural to require piecewise local convexity for the conisdered
curvilinear polygons, since this property can ensure visibility locally. The two-guard problem
in piecewise locally convex polygons is stated as follows.

Definition 1.6. Given a piecewise locally convex polygon P and two points s and t on the
boundary of P, the CURVILINEAR TWO-GUARD problem is to determine if P is walkable from
s to t.

The remainder of this paper is organized as follows. In Section 2, we analyze the properties of
piecewise locally convex polygons essential for solving the curvilinear two-guard problem. In
Section 3, we investigate the necessary and sufficient conditions for a piecewise locally convex
polygon to be walkable in analogy to the original two-guard problem. In Section 4, we de-
velop an algorithm to construct a solution for the case of walkable curvilinear polygon. Finally,
Section 5 concludes this paper and discusses potential future research directions.

2. PROPERTIES OF A PIECEWISE LOCALLY CONVEX POLYGON

In this section, we develop the tools we will use to solve the curvilinear two-guard problem.
We will use the following notations, definitions, and results. For S ⊆ Rn, let ∂S denote the
boundary of S. By a neighborhood of x ∈ Rn we will mean an open ball of positive radius
centered at x.

Definition 2.1 ([13]). For S ⊆ Rn and x ∈ ∂S, we say that S is weakly supported at x locally if
there exists a neighborhood N(x) of x and a linear functional f (f 6≡ 0) such that if y∈N(x)\{x}
and f (y)> f (x) then y /∈ S.

Proposition 2.1 (Tietze’s Theorem, see p. 110 of [13]). An open connected subset S of Rn is
convex if and only if S is weakly supported locally at each of its boundary points.

Proposition 2.2 ([20]). Every point on a convex curve γ has a supporting line (supporting
hyperplane in R2). Furthermore, if γ is smooth, then it has tangent line and the tangent line is
always a supporting line.
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Given a piecewise locally convex polygon P with the vertices v1, . . . ,vn,n ≥ 2 and the arcs
a1, . . . ,an such that ai has the points vi and vi+1 as endpoint, we consider vi and ai (see Figure 2).
We would like to guarantee the existence of directional tangents of the polygon.

FIGURE 2. Illustration of vi and ai.

Proposition 2.3. Suppose vi and ai are as above, then there exists u ∈ ai such that the set S
made up of the line segment viu and the segment of ai between vi and u (denoted by ai[vi,u]) is
a convex set.

Proof. Since P is locally convex in all points except for the n points v1, . . . ,vn, there exists
u ∈ ai such that the open line segment viu⊂ intP and ai[vi,u] is entirely contained in one half-
plane defined by f (x) = f (vi) for the functional f corresponding to the line through vi and u
(see Figure 2). Let S be the set defined by the border consisting of ai[vi,u] and viu. Then by
definition, int(S) is weakly supported at vi locally with any N(vi) and f . Since S is locally
convex at all points other than vi, int(S) is weakly supported at its boundary points other than vi
locally by Tietze’s Theorem (Proposition 2.1). Now, applying Tietze’s Theorem in the opposite
direction, int(S) is convex and hence S is convex. �

Proposition 2.3 shows that ai[vi,u] is a convex arc, so the tangent line of ai[vi,u] at vi exists;
denote it by Tai(vi), as illustrated in Figure 3.

Suppose that we are given a piecewise locally convex polygon P and two distinct points s
and t on its boundary. Analogously to the case of a simple polygon, we denote by L and R,
respectively, the two oriented subchains formed by the arcs of P along the two alternative paths
from s to t.

Let vi−1,vi,vi+1 be three consecutive vertices on L (if vi = s, vi−1 is the vertex from R that
neighbors s; if vi = t,vi+1 is the vertex from R that neighbors t) and ai−1 and ai are the arcs
whose endpoints are vi−1,vi and vi,vi+1, respectively. Let Tai−1(vi) and Tai(vi) be the tangents at
vi as an endpoint of ai−1 and as an endpoint of ai, respectively.
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FIGURE 3. Illustration of vi and ai.

Obviously, if Tai−1(vi) is outside P in a neighborhood of vi, Tai(vi) is also outside P in this
area, and vice versa. In this case, we call vi a straight vertex. Otherwise, we call vi a reflex
vertex.

If vi is a reflex vertex, let d−(vi) be the direction of Tai−1(vi) from outside of P to inside of
P and let d+(vi) be the opposite direction of Tai(vi). Denote the first intersection point (other
than vi) of the ray originating from vi in the direction of d−(vi) and the boundary of P by t−(vi).
Analogously, t+(vi) is the first intersection point (other than vi) of the ray from vi in the direction
of d+(vi) and P (see Figure 4).

FIGURE 4. Illustration of definitions of Tai−1(vi), Tai(vi), t+(vi), and t−(vi).

By Proposition 2.2, Tai(vi) is a supporting line of S, so S is entirely in one half-plane formed
by Tai(vi). Hence, ai in a neighborhood of vi is entirely in one half-plane formed by Tai(vi).
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Next lemma shows that for any point u in the piecewise locally convex polygon P that lies in
the different half-plane, we can find a point w on ai in the neighborhood of vi such that u and
w are not mutually visible. For simplicity, in this lemma we suppose that ai is entirely in one
half-plane formed by Tai(vi), but it is easy to see the lemma is still correct in general case. Let
ai, vi, Tai(vi), and t+(vi) be as defined above; see Figure 5 for an illustration.

FIGURE 5. An illustration to Lemma 2.1.

Lemma 2.1. (1) Suppose that u is on the boundary of P and it is in the different from ai half-
plane formed by Tai(vi). Then there exists w ∈ ai such that u and w are mutually invisible.
Furthermore, if u′ is also on the boundary of P and the order is u′, u and t+(vi), then w and u′

are mutually invisible. (2) Similarly, if u is on the boundary of P and it is in the different from
ai−1 half-plane formed by Tai−1(vi), then there exists w ∈ ai−1 such that u and w are invisible.
Furthermore, if u′ is also on the boundary of P and the order is t−(vi), u and u′, then w and u′

are invisible.

Proof. Since Tai(vi) is a tangent line of ai, the line through u and vi should intersect ai in another
point; suppose it is w′. Since u is in the different from ai half-plane formed by Tai(vi), every line
segment from u to a point on ai in P must cross the line segment Tai(vi) between vi to t+(vi).
Thus, any point w ∈ ai(vi,w′) is not visible from u as the line segment between u and w cannot
cross the line segment Tai(vi) between vi and t+(vi). Furthermore, if u′ is also on the boundary
of P and the order is u′, u and t+(vi), if w is visible from u′, then w is also visible from t+(vi),
and it is easy to show that the set made of line segments l[w,u′], l[w, t+(vi)] and the boundary of
P from u′ to t+(vi) is convex. So, w should be visible from u, and this is a contradiction. Thus
the first statement is true. The proof of the second statement is similar. �
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3. NECESSARY AND SUFFICIENT CONDITIONS FOR WALKABILITY

In this section, we develop a necessary and sufficient condition for a piecewise locally convex
polygon P to be walkable. As before, we denote by L and R the two sub-chains of the boundary
of a piecewise locally convex polygon P corresponding to the clockwise and counter-clockwise
walks from s to t, respectively. We use the notation p < q to indicate that p is visited before
q when walking from s to t along L or R. In addition, L<p (L>p) represents the parts of L
preceding (following) p on the walk from s to t. R<p and R>p are defined likewise.

The necessary conditions are summarized in the following lemma.

Lemma 3.1. If one of the following conditions is satisfied for reflex vertices p, q of P, then P is
not walkable.

(1) p > t−(p) ∈ L or p < t+(p) ∈ L or p < t+(p) ∈ R or p > t−(p) ∈ R.
(2) p∈ L,q∈ R,q < t+(p)∈ R, p < t+(q)∈ L or p∈ L,q∈ R,q > t−(p)∈ R, p > t−(q)∈ L.
(3) p,q ∈ L, p < q, t−(q)< t+(p) ∈ R or p,q ∈ R,q < p, t−(p)< t+(q) ∈ L.

FIGURE 6. Illustration of the three cases considered in Lemma 3.1.

Proof. If case 1 applies, W.L.O.G., we suppose the first alternative holds, see the left image in
Figure 6. Denote the boundary curve between p and t−(p) by a, then by Lemma 2.1, for any
point u ∈ R, there exists w ∈ a such that w is invisible from u or any u′ > u in R. So P is not
walkable.

If case 2 applies, W.L.O.G., we suppose the first alternative holds, see the middle image in
Figure 6. Since q < t+(p) ∈ R, we can choose v ∈ R with q < v < t+(p). By Lemma 2.1, there
exists p′ > p such that p′ is not visible form v and any point in R<v. So, any walking partner p̄
of p′ must satisfy p̄ > v. Symmetrically, choose u ∈ L with p′ < u < t+(q), we can find q′ with
q′ < v (so q′ < p̄) whose walking partner q̄ must satisfy q̄ > u > p′. If P is walkable, q̄ > p′

implies that a walk must visit p′ before q′ while p̄ > q′ implies that a walk must visit q′ before
p′. We obtained a contradiction. So P is not walkable.

If case 3 applies, again W.L.O.G. we suppose the first alternative holds, see the right image
in Figure 6. Choose u,v ∈ R with t−(q)< u < v < t+(p). As before, there exists p′ whose walk
partner p̄ > v and q′ whose walk partner q̄ < u. So q̄ < p̄. But p < q, this is a contradiction. So
P is not walkable. �

To derive the sufficient conditions, we need the following definitions and lemmas.
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Definition 3.1. For every reflex vertex p in L, define
• hiP(p) = min{q|q is a vertex in R,L 3 t+(q)> p}
• hiS(p) = min{t−(p′) ∈ R|p′ is a vertex in L>p}
• hi(p) = min{hiP(p),hiS(p), t}
• loP(p) = max{q|q is a vertex in R,L 3 t−(q)< p}
• loS(p) = max{t+(p′) ∈ R|p′ is a vertex in L<p}
• lo(p) = max{loP(p), loS(p),s}.

Obviously, lo and hi are monotonically increasing functions in vertices of L. Similarly, we
can define lo and hi for vertices of R.

The following two lemmas describe an important relationship between lo and hi.

Lemma 3.2.
(1) If q < lo(p) then hi(q)< p; if q > hi(p), then lo(q)> p.
(2) p ∈ [lo(q),hi(q)] if and only if q ∈ [lo(p),hi(p)].

Proof. (1) For the first statement, if lo(p) = loS(p), q < loS(p). By definition of loS(p), ∃p′ <
p, q < t+(p′) ∈ R, so by definition of hiP(q), hi(q) ≤ hiP(q) ≤ p′ < p. If lo(p) = loP(p),
q < loP(p). So loP(p) ∈ L>q and t−(loP(p)) < p, so hi(q) ≤ hiS(q) ≤ t−(loP(p)) < p. The
second statement can be proved similarly. (2) If q 6∈ [lo(p),hi(p)], then q > hi(p) or q < lo(p).
By the first statement, p < lo(q) or p > hi(q), and we get contradiction in both cases. �

Lemma 3.3. If none of the conditions in Lemma 3.1 applies in any vertex p, then lo(p)≤ hi(p)
for every vertex p in P.

Proof. We use contradiction. If lo(p)> hi(p) for some vertex p ∈ P, W.L.O.G., suppose p ∈ L.
Then lo(p) 6= s and hi(p) 6= t. There are four cases.

(1) hi(P) = hiP(p), lo(P) = loS(P). In this case, let q = hiP(p) ∈ R, then t+(q) > p.
loS(p) = t+(p′) for some p′ ∈ Lp, so t+(p′)> q and t+(q)> p> p′. The first alternative
of condition 2 in Lemma 3.1 applies.

(2) hi(P) = hiS(p), lo(P) = loS(P). In this case, hiS(p) = t−(p′) for some p′ ∈ L>p.
loS(p) = t+(p′′) for some p′′ ∈ L<p. So, p′′ < p′ and t+(p′′) > t−(p′). The first alter-
native of condition 3 in Lemma 3.1 applies.

(3) hi(P) = hiP(p), lo(P) = loP(P). In this case, hiP(p) = q′ ∈ R with t+(q′) > p.
loP(p) = q ∈ R with t−(q) < p. So, q′ < q and t−(q) < t+(q′). The second alterna-
tive of condition 3 in Lemma 3.1 applies.

(4) hi(P) = hiS(p), lo(P) = loP(P). In this case, hiS(p) = t−(p′) for some p′ ∈ L>p.
loP(p) = q ∈ R with t−(q′) < p. So, t−(p′) < q and t−(q′) < p < p′. The second
alternative of condition 2 in Lemma 3.1 applies.

So, in general, lo(p)≤ hi(p) for every vertex p in P. �

The following two lemmas explain the reason that we analyze lo and hi. In fact, these con-
cepts play critical roles in checking whether P is walkable.

Lemma 3.4. Each walk partner of a vertex p is contained in [lo(p),hi(p)].

Proof. Let p̄ be a walk partner of p. We aims to show lo(p) ≤ p̄ ≤ hi(P). If lo(p) = s or
hi(p) = t, it is trivial. So, the following four situations are remaining.



THE TWO-GUARD PROBLEM ON CURVININEAR POLYGONS 9

FIGURE 7. Illustration of the four situations in the proof of Lemma 3.4.

(1) lo(p) = loP(p). See the leftmost picture of Figure 7. Suppose q = loP(p). Then by
Lemma 2.1, there is a sequence of points {qn} with R 3 qn ≤ q and qn→ q, qn is not
visible from L≥p. If p̄ < q, ∃qN s.t. p̄ < qN < q, then qN does not have a walk partner.

(2) lo(p) = loS(p). See the second from the left image of Figure 7. Suppose t+(q) =
loS(p). If p̄ < loS(p), by Lemma 2.1, there is a sequence of points {qn}with L3 qn≥ q
and qn → q, qn is not visible from R≤p̄. Any member of {qn} does not have a walk
partner.

(3) hi(p) = hiS(p). See the second from the right picture of Figure 7. Suppose t−(q) =
hiS(p). If p̄ > hiS(p), by Lemma 2.1, there is a sequence of points {qn} with L3 qn ≤ q
and qn → q, qn is not visible from R≥p̄. Any member of {qn} does not have a walk
partner.

(4) hi(p)= hiP(p). See right most figure of Fig 7. Suppose q= hiP(p). Then by Lemma 2.1,
there is a sequence of points {qn} with R 3 qn ≥ q and qn→ q, qn is invisible from L≤p.
If p̄ > q, ∃qN s.t. p̄ > qN > q, then qN does not have a walk partner.

�

Lemma 3.5. Suppose that condition 1 in Lemma 3.1 does not apply in any reflex vertex p ∈ P.
If p ∈ P satisfies lo(p)≤ hi(p), then [lo(p),hi(p)] is visible from p.

Proof. Without loss of generality, we suppose p ∈ L.
If lo(p) = loS(p), then there exists L 3 p′ < p such that lo(p) = t+(p′), so p′ is visible from

lo(p). If lo(p) = loP(p), we let p′ = t−(loP(p)) and see that p′ < p and p′ is visible from
lo(p). If lo(p) = s, we let p′ = s and see that p′ is visible from lo(p). Thus ∃L 3 p′ < p, p′ is
visible from lo(p). Similarly, ∃L 3 p′′ > p, p′′ is visible from hi(p).

If p is not visible from lo(p), the boundary of P must intersect plo(p). If L>p′′ ∪R>hi(p)

intersects plo(p), it must intersect p′′hi(p), so p′′ is not visible from hi(p), which is a contra-
diction. If L<p′ ∪R<lo(p) intersects plo(p), it must intersect p′lo(p), so p′ is not visible from
lo(p), which is also a contradiction.

If L[p′,p] intersects plo(p), then there is a vertex p′′′ ∈ L[p′,p] such that L 3 t+(q) > p or R ∈
t+(q) > lo(p), both are contradictions. For the same reason, L[p,p′′] does not intersect plo(p).
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If R[lo(p),hi(p)] intersects plo(p), there is a vertex q ∈ R[lo(p),hi(p)] such that R 3 t−(q)< lo(p) or
L ∈ t−(q)< p, both are contradictions. So, none of L∪R intersects plo(p), and thus p is visible
from lo(p). Similarly, p is visible from hi(p).

For all q ∈ [lo(p),hi(p)], by definition of lo and hi, we have t−(q)≥ p and t+(q)≤ p. Now,
if the boundary of P intersects pq, it must intersect one of plo(p),phi(p),t−(q)q and t+(q)q,
but all of them cause contradictions. Therefore, [lo(p),hi(p)] is visible from p. �

Now we are ready to present the sufficient condition for P to be walkable.

Lemma 3.6. If none of the cases in Lemma 3.1 applies, then P is walkable.

Proof. We show that P is walkable by construction of a straight walk. This task is equivalent
to finding a walk instruction that decides the location of two guards at each time moment to
keep them visible to each other. First, we partition P into smaller pieces and discuss the walk
instruction for each such piece. It is proved in Lemma 3.3 that lo(p)≤ hi(p) for every vertex p.
Then it follows by Lemma 3.5 that [lo(p),hi(p)] is visible from p. Choose lo(p) to be a walk
partner of p for every vertex p in L. Because lo is monotonically increasing in L, no two walk
line segments cross. For every vertex q ∈ R, if it does not have a walk partner yet, then there
exist consecutive p, p′ ∈ L with p < p′ and lo(p)< q < lo(p′). It follows from Lemma 3.2 that
p < hi(p)< p′. Choose hi(q) to be walk partner of q so that no pairs of plo(p) and qhi(q) will
cross. Since hi is also monotonic, no two walk line segments will cross. Now P is partitioned

FIGURE 8. Example of a partition constructed in the proof of Lemma 3.6.

into a sequence of lenses (made of two curves), curvilinear triangles (made of three curves),
and quadrilaterals (made of four curves). Figure 8 is an example of such a partition. Set A is an
example of a lens, set B is an example of a curvilinear triangle, and sets C and D are examples
of quadrilaterals. For lens A, it is obvious that one of its vertices must be s or t. In Lemma 2.3,
we have already shown that A is convex, so W.L.O.G., assume s is a vertex in A and one curve
of A is a part of L. The walk instruction is to keep the guard on R at s while the guard on L
moves from s to the other end point.

Next, we need to present a walk instruction in every curvilinear triangle and quadrilateral.
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For curvilinear triangles, if one of the three vertices, p, is in L and the other two, q1 and q2
(q1 < q2), are in R, we need to show that q1,q2 ∈ [lo(p),hi(p)]. There are three cases.

(1) q1 = lo(p) and q2 = hi(p). If hi(p) < q2, then, by Lemma 3.2, lo(q2) > p, which is a
contradiction. Thus lo(p) = q1 < q2 ≤ hi(p), the walk instruction is to keep one guard
in p and let the other guard walk from q1 to q2.

(2) q2 = lo(p) and hi(q1) = p. It means q1 < lo(p). By Lemma 3.2 hi(q1)< p, this case is
impossible.

(3) p = hi(q1) = hi(q2). If lo(p) > q1, by Lemma 3.2, hi(q1) < p = hi(q1), which is a
contradiction. If hi(p) < q2, by Lemma 3.2, lo(q2) > p = hi(q2), which is also a con-
tradiction. Thus lo(p) = q1 < q2 ≤ hi(p) for the same reason as in case 1, and we can
generate the walk instruction.

If two of the three vertices, p1 and p2 (p1 < p2), are in L and the other one, q, is in R, then
lo(p1)= lo(p2)= q. If p1 < lo(q), by Lemma 3.2 hi(p1)< q= lo(p1), which is a contradiction.
If p2 > hi(q), by Lemma 3.2 lo(p2) > q = lo(p2), which is also a contradiction. So, lo(q) =
p1 < p2 ≤ hi(q), then the triangle is convex and it is easy to generate the walk instruction.

Each quadrilateral Q is made up of two consecutive vertices p < p′ ∈ L and two points q <
q′ ∈ R. Thus, q = lo(p) or p = hi(q); q′ = lo(p′) or p′ = hi(q′). If Q is not locally convex
in p, then p must be a reflex vertex in P. In this case, if t+(p) > q′, then by definition of
loS(p′), lo(p′) > q′. By Lemma 3.2, hi(q′) > p′. They contradict to both cases of q′ = lo(p′)
or p′ = hi(q′). Thus, t+(p)≤ q′. Similarly, when Q is not locally convex in either of q, p′, q′,
we have t+(q)≤ p′, t−(p′)≥ q, and t−(q′)≥ p, respectively.

If Q is not locally convex in both p and q, then t+(q) > p and t+(p) > q, and case 2 in
Lemma 3.1 applies. So, Q must be locally convex in at least one of p,q. Similarly, Q must be
locally convex in at least one of p,q. If Q is locally convex in p,q, p′, and q′, the quadrilateral
is convex since it is locally convex in all boundary points. If Q is not locally convex in only
one of p,q, p′,q′, say p, then q < t+(p) ≤ q′. The triangle made up of p,q and t+(p) and the
quadrilateral made up of p, t+(p), p′,q′ are both convex since it is locally convex in all boundary
points. If Q is not locally convex in one of p,q and one of p′,q′, by symmetry, there are two
cases.

FIGURE 9. An illustration to designing the walk instruction for quadrilaterals.

(1) p, p′ are the point of local non-convexity. See Figure 9 (left). Then q < t+(p), t−(p′)≤
q′. If t+(p)> t−(p′), case 3 in Lemma 3.1 apples, so t+(p)≤ t−(p′). Then the triangle
made up of p,q and t+(p), the triangle made up of p′,q′ and t−(p′) and the quadrilateral
made up of t−(p′), t+(p), p′,q′ are all convex due to local convexity in all boundary
points.
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(2) p,q′ are the point of local non-convexity. See Figure 9 (right). At that time q < t+(p)≤
q′ and p < t+(q) ≤ p′.The triangle made up of p,q and t+(p), the triangle made up of
p′,q′ and t−(q′) and the quadrilateral made up of p, t+(p), p′,q′ are all convex since all
boundary points are locally convex.

In each case, we divide Q into at most 3 convex pieces, each of which obviously admits a walk
instruction. Putting them together, we get a walk instruction for Q.

Now we generate the walk instruction for every piece, and putting the piece instructions
together we get a walk instruction for P, so P is walkable. �

4. CONSTRUCTION OF SOLUTIONS

In this section, we summarize the results in previous sections and develop an algorithm to
check whether a piecewise locally convex polygon is walkable in quadratic time. We also
develop an algorithm to generate the walk instruction if the polygon is walkable in quadratic
time.

Theorem 4.1. P is walkable if and only if none the cases in Lemma 3.1 applies. With tangent
information of reflex vertices of P at hand, there exists an algorithm running in time O(n2) to
check whether P is walkable.

Proof. Combining Lemma 3.1 and Lemma 3.6, we know that P is walkable if and only if none
of the cases in Lemma 3.1 applies.

To check the conditions in Lemma 3.1, for each reflex vertex p that is the intersection of
boundary curves a and b, it takes O(n) time to compare the intersection points of Ta(p), Tb(p)
and every boundary curve other than a,b to derive t−(p) and t+(p) by the similar method as
in [6]. So it takes O(n2) time to derive t−(p) and t+(p) for all reflex vertices.

With information of t−(p) and t+(p) for every reflex vertex p, we need O(n) time to check
condition 1 in Lemma 3.1 as we only need to compare p with t−(p) and t+(p) for the n reflex
vertices. It takes O(n2) time to check condition 2 in Lemma 3.1 as we need to compare each
pair of p,q with t−(p), t+(p), t−(q) and t+(q). For the same reason, it takes O(n2) time to
check condition 3 in Lemma 3.1. So, the total time required to check whether P is walkable is
O(n2). �

Corollary 4.1. There is an algorithm running in time O(n2) to construct a walk instruction if
P is walkable.

Proof. See Algorithm 1.

Algorithm 1 Construction of a walk instruction.

1: Derive t−(p) and t+(p) for every reflex vertex p.
2: Calculate hi(p) and lo(p) for every reflex vertex p.
3: For every reflex vertex p ∈ L, connect p and lo(p); then if for some reflex vertex q ∈ R, q is

not connected with any reflex vertex p∈ L, connect q and hi(q). As a result, P is partitioned
into smaller pieces.

4: Construct a walk instruction for every piece.
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By Theorem 4.1, Step 1 takes O(n2) time. With known t−(p) and t+(p) and by definition of
lo and hi, it takes O(n2) time to complete step 2. Obviously step 3 needs O(n) time and the re-
sulting small pieces are lenses, curvilinear triangles and quadrilaterals by Lemma 3.6. The total
number of small pieces is at most 2n and by Lemma 3.6, it takes O(1) time to construct a walk
instruction for every small piece, so the total time required for step 4 is O(n). Therefore, the
time complexity of this algorithm is O(n2). The correctness of this algorithm follows directly
from Lemma 3.6 and Theorem 4.1. �

5. CONCLUSION

In this paper, we generalized the two-guard problem from a simple polygon to a piecewise
locally convex polygon. By carefully analyzing the properties of piecewise locally convex
polygons, we were able to develop tools necessary to solve the two-guard problem on such
curvilinear polygons. We presented an algorithm running in quadratic time to decide whether a
piecewise locally convex polygon is walkable. In addition, our algorithm generates a valid walk
if the polygon is walkable.

There exist linear and O(n logn) time algorithms for solving the original two-guard problem
but they are not suitable for solving our problem. Instead, our algorithm runs in quadratic time.
It is an interesting topic for future research if the running time of our algorithm can be improved
from quadratic time to O(nlogn) time. Such an improvement requires improvement on shortest
path queries in a curvilinear polygon, which is itself an interesting problem in computational
geometry.

There are many modified versions and generalizations of the two-guard problem, and all
of them assume that the polygon is simple, defined by line segments. As our generalization
considers curvilinear polygons, it is natural to consider curvilinear polygons in the modified or
generalized two-guard problems in the future research. These include the two-guard problem
in counter-walk polygons, the two-guard problem in the setting of rooms, and polygon search
problems.
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