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Abstract. In this paper, we propose two linear-implicit local energy dissipation-preserving algorithms
for a gradient flow system. We first prove that the gradient flow system possesses a local energy dissipa-
tion law, which is exactly conserved within any local time-space region. We then introduce an auxiliary
variable to reformulate the gradient flow system into an equivalent system, which is proven to preserve
the local energy dissipation property. To maintain the intrinsic properties as many as possible, two
linear-implicit local energy dissipation-preserving algorithms are developed by means of the composi-
tion method. Furthermore, we prove that the proposed algorithms adhere to the discrete local energy
dissipation laws with the assistance of the Leibnitz rules. Particularly, under appropriate boundary con-
ditions, these innovative algorithms naturally preserve the discrete total mass laws and ensure the global
energy stability in the sense of energy decay for the gradient flows. Finally, numerical examples are
provided to demonstrate the efficiency of the proposed algorithms and their effectiveness in preserving
the energy dissipation laws.

Keywords. Gradient flow system; Global energy stable; Local energy dissipation preserving algorithm;
Total mass conservation.

1. INTRODUCTION

With the advances in materials science and fluid dynamics, the dynamics with energy dissi-
pation property were extensively investigated by gradient flow systems. For their applications,
we refer to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and the references therein.

In this paper, we are interested in the gradient flow system as follows [11]{
∂φ

∂ t = ∆µ, (~x, t) ∈Ω×R+,

µ = δE
δφ

= F ′(φ)−κ∆φ ,
(1.1)

with the initial condition

φ(~x,0) = φ0(~x),~x ∈Ω = Ωx×Ωy = [xL,xR]× [yL,yR],
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and periodic boundary conditions or ∂φ

∂n |∂Ω = ∂ µ

∂n |∂Ω = 0, in which φ represents the concentra-
tion field and µ stands for the chemical potential. Here E is a functional of φ known as the free
energy, typically chosen as E[φ(x)] =

∫
Ω

κ

2 |∇φ |2 +F(φ), where κ denotes the square of the
transition-layer thickness of the two phases. Moreover, F is the free energy density, commonly
expressed as F(φ) = 1

4(φ
2−1)2.

One has the following trivial results on system (1.1).

Proposition 1.1. System (1.1) holds the local energy dissipation law LEDL

∂t

(
κ

2
|∇φ |2 +F(φ)

)
−∇ ·

(
κφt∇φ +µ∇µ

)
+ |∇µ|2 = 0. (1.2)

Proof. Multiplying the first and the second line of (1.1) with µ and φt , respectively, one deduces
that φt µ = ∆µµ and µφt =−κφt∆φ +φtF ′(φ). Utilizing the continuous Leibnitz rule, one sees
that

∂t

(
κ

2
|∇φ |2 +F(φ)

)
−∇ · (κφt∇φ +µ∇µ)+ |∇µ|2 = 0.

�

Remark 1.1. Given suitable boundary conditions, such as periodic boundary conditions, in-
tegrating LEDL (1.2) over the spatial domain leads to the following global energy dissipation
law (EDL) d

dt E[φ ] =−
∫

Ω
|∇µ|2dx<0, where E[φ ] =

∫
Ω

(
κ

2 |∇φ |2 +F(φ)
)

dx is the global free
energy of system (1.1). Furthermore, the gradient flow system (1.1) also conserves the total
mass density. By taking the L2 inner product of the first equation of (1.1) with 1, we obtain

1
dt

∫
Ω

φdx =
∫

∆µdx =
∫

∂Ω

∂nµ(x, t)dx = 0,

where I(t) =
∫

Ω
φ(x, t)dx is the total mass of the system (1.1).

In view of the wide applications of gradient flow systems, various efficient numerical algo-
rithms were investigated extensively; see, e.g., [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
and the references therein. It is known that the energy dissipation property plays a crucial role in
the convergence and existence of numerical solution; see, e.g., [25] and the references therein.
Recently, a great deal of attention has been given to various algorithms that adhere to the global
energy dissipation law, known as energy stable algorithms.

To the best of our knowledge, the energy stability methods proposed in the previous works
can be classified into the following categories, including but not limited to the convex splitting
method [26, 27, 28, 29], the stabilizer method [30, 31], the energy quadratization method [32],
and the scalar auxiliary variable approach [11]. The convex splitting method proposed by Elliott
et al. [26, 27, 28] in 1993 and further developed by Eyre in [29]. The key to this method is to
divide the free energy into convex and concave parts, which are dealt with implicit and explicit
methods respectively afterwards. Such method, while admitting the energy stable law, leads to a
nonlinear system which suffers high computational costs for long time computation. In [30, 31],
Shen et al. developed another classical method by introducing a suitable stabilizer. The method
has two significant advantages of simplicity and efficiency, but the stabilizer is usually chose
empirically, which might fail to preserve the nonlinear energy stability. Unlike the above two
methodologies, inspired by seminal work [18, 33], Yang et al. [32] proposed the invariant
energy quadratization method (IEQ) for the three-component Cahn-Hilliard phase-field model
to obtain linear energy stable algorithms. Subsequently, Shen et al. [11] further popularized
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the invariant energy quadratization method (IEQ) to develop the scalar auxiliary variable (SAV)
approach. Later on, there has been a great deal of excellent results relevant to the IEQ or the SAV
method [34, 35, 36, 37, 38]. We notice that the existing works mainly preserve the global energy
stable which defines on the global space region and much more depend on the suitable boundary
conditions, or else they will be invalid. In order to reduce numerical methods’ dependency
on boundary conditions, Wang et al. [39] proposed the concept of local structure-preserving
method which is proved to be valid in any local areas or any points in time-space region. In
view of its merits, the local structure-preserving method is now under the spotlight; see, e.g,
[40, 41]. Meanwhile, we note that the existing local energy dissipation preserving algorithms
are mainly implicit which usually needs to solve a nonlinear algebra system. Therefore, these
motivate us to explore a novel linear-implicit algorithm preserving local energy dissipation law
for the gradient flow system, which inherits the local dissipation law.

The main purpose of this paper is to explore two novel linearly implicit local energy dissi-
pation law preserving algorithms for solving the gradient flow system. To this end, we make
use of the composition method and the invariant energy quadratization method to construct ex-
pected algorithms. We rigorously prove the proposed algorithms are the local energy dissipation
preserving law, which can produce richer information on the discrete system for the gradient
flow system rather than the global energy stable preserving algorithms. As given the proper
boundary conditions, such as periodic or homogeneous and so on, the local energy dissipation
preserving algorithms are to be proven to preserve the global energy dissipation law and the
total mass conservation law.

The rest of the paper is organized as follows. In Section 2, we rewrite gradient flow sys-
tem (1.1) as an equivalent system, which is strictly proven to inherit a modified local energy
dissipation law. Meanwhile, some operators and their relevant laws are provided to facilitate
follow-up expression and theoretical proof. In Section 3, we present two local energy dissipa-
tion preserving algorithms for solving the gradient flow system and prove the preservation of
the discrete local energy dissipation law exactly. In particular, given the appropriate boundary
conditions, these new algorithms are also proven to preserve the total mass law and the global
energy dissipation law. Furthermore, some numerical simulations are carried out to validate the
accuracy and efficiency of the proposed numerical algorithms.

2. PRELIMINARIES

In this section, we initially reduce the equation to an equivalent system and correspondingly
give the energy dissipation property. Meanwhile, some operators and related properties are
enumerated for the convenience of follow-up research expression. Assuming that the function
F(φ) is bounded from below, e.g., there exists a constant C0 > 0, one can introduce an auxiliary
variable q =

√
F(φ)+C0, and system (1.1) can be recast as

∂φ

∂ t = ∆µ,

µ =−κ∆φ +q F ′(φ)√
F(φ)+C0

,

qt =
F ′(φ)

2
√

F(φ)+C0
·φt .

(2.1)
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The corresponding free energy function is as follow

E(φ) =
∫

Ω

(
κ

2
|∇φ |2 +q2)dxdy.

Theorem 2.1. The transformed system for gradient flow system (2.1) admits the following mod-
ified local energy dissipation law ∂t(

κ

2 |∇φ |2 +q2)−∇ · (κφt∇φ +µ∇µ)+ |∇µ|2 = 0.

Proof. Multiplying the first and the second line of (2.1) with µ and φt respectively, we obtain

φt µ = ∆µµ (2.2)

and

µφt =−κφt∆φ +φtq
F ′(φ)√

F(φ)+C0
. (2.3)

In view of (2.1), we have

(q2)t = 2qqt = 2q
F ′(φ)

2
√

F(φ)+C0
φt . (2.4)

By the Leibnitz rule, we obtain from the (2.2), (2.3), and (2.4) that

∂t(
κ

2
|∇φ |2 +q2)−∇ · (κφt∇φ +µ∇µ)+ |∇µ|2 = 0.

This completes this proof. �

Corollary 2.1. With the periodic boundary conditions, system (2.1) admits the modified global
energy dissipative law,

dE
dt

=−
∫

Ω

(
|∇µ|2

)
dx, E[φ ] =

∫
Ω

(
κ

2
|∇φ |2 +q2

)
dx.

For brevity, some notations are introduced to deal with the discrete systems throughout this
paper. Let tn = n∆t, 0≤ n≤ Nt , where ∆t = T/Nt . The spatial domain Ω = [xL,xR]× [yL,yR] is
uniformly partitioned with mesh size hx = (xR− xL)/Nx,hy = (yR− yL)/Ny and

Ωh =
{
(x j,yk)|x j = xL + jhx,yk = yL + khy,0≤ j ≤ Nx,0≤ k ≤ Ny

}
.

Let the notation f n
j,k represent the approximation value of f (x j,yk, tn), where the index j,k cor-

respond to increments in space and n to increments in time. A grid function f =
{

f j,k| j,k ∈ Z
}

is called periodic if

(x-periodic) fNx+ j,k = f j,k; (y-periodic) f j,Ny+k = f j,k.

The finite difference operators and the average operators are defined as follows

δ
+
t f n

j,k =
f n+1

j,k − f n
j,k

∆t
, δ

+
x f n

j,k =
f n

j+1,k− f n
j,k

hx
, δ

+
y f n

j,k =
f n

j,k+1− f n
j,k

hy
,

δt f n
j,k =

f n+1
j,k − f n−1

j,k

2∆t
, f

n+ 1
2

j,k =
f n+1

j,k + f n−1
j,k

2
, f̂

n+ 1
2

j,k =
3 f n

j,k− f n−1
j,k

2
,

and

At f n
j,k =

f n+1
j,k + f n

j,k

2
, Ax f n

j,k =
f n

j+1,k + f n
j,k

2
, Ay f n

j,k =
f n

j,k+1 + f n
j,k

2
.
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Accordingly, the discrete inner product and norm for tensor valued functions are also defined as

(F,G)h = ∑
m,n

Nx−1

∑
j=0

Ny−1

∑
k=0

(Fm,n) j,k(Gm,n) j,khxhy, ‖F‖h = (F,F)
1
2
h .

These operators satisfy the following discrete rules (as [41])
(1) Commutative law:

δαδβ f n
j,k = δβ δα f n

j,k, AαAβ f n
j,k = Aβ Aα f n

j,k, δαAβ f n
j,k = Aβ δα f n

j,k, α,β ∈ {x,y, t},

(2) Discrete Leibnitz rule:

δx( f n
j−1,k ·g

n
j,k) = f n

j,k ·δxgn
j,k +δx f n

j−1,k ·g
n
j,k,

δx( f n
j,k ·g

n
j,k) = f n

j,k ·δxgn
j,k +δx f n

j,k ·g
n
j+1,k,

δx( f n
j,k ·g

n
j,k) = Ax f n

j,k ·δxgn
j,k +δx f n

j,k ·Axgn
j,k.

For operator δy and δt , we have a series of analogous discrete Leibnitz rules.

(3) Chain rule:

δαF(un) = δuF(un)δαun +o(∆α), α ∈ {x,y, t}.

The properties of these operators play a crucial role in proving the local structure property of
the algorithm.

3. MAIN RESULTS

Now, we are ready to give our main results, that is, two linear-implicit local energy dissipation
preserving algorithms for the gradient flow system are developed by the concatenating method.

3.1. Linear-implicit local energy dissipation preserving algorithm I (LILEDP-I). We first
introduce the intermediate variables a = ∇µ and b = ∇φ , and rewrite system (2.1) into the
following first-order partial differential equation system

φt = ∇ ·a,
∇µ = a,
∇φ = b,
µ =−κ∇ ·b+q F ′(φ)√

F(φ)+C0
,

qt =
F ′(φ)

2
√

F(φ)+C0
·φt ,

(3.1)

which admits the following LEDL

∂t

(
κ

2
|∇φ |2 +q2

)
−∇ ·

(
κφtb+µa

)
+ |∇µ|2 = 0.
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Applying the leap frog method and the discrete variational derivative method in space and
time for system (3.1), we have

δtφ
n
j,k = ∇

+
h · (a

n+ 1
2

j,k ),

∇
−
h µn

j,k = an
j,k,

∇
−
h φ n

j,k = bn
j,k,

µ
n+ 1

2
j,k =−κ∇

+
h · (b

n+ 1
2

j,k )+q
n+ 1

2
j,k ·

F ′(φ̂
n+ 1

2
j,k )√

F(φ̂
n+ 1

2
j,k )+C0

,

δtqn
j,k =

F ′(φ̂
n+ 1

2
j,k )

2

√
F(φ̂

n+ 1
2

j,k )+C0

·δtφ
n
j,k,

(3.2)

where

δtφ
n
j,k =

φ
n+1
j,k −φ

n−1
j,k

2∆t
, φ

n+ 1
2

j,k =
φ

n+1
j,k +φ

n−1
j,k

2
, ∇

+
h =

(
δ+

x
δ+

y

)
, ∇

−
h =

(
δ−x
δ−y

)
.

By eliminating the auxiliary variables, algorithm (3.2) can be recombined into a single equation

δtφ
n
j,k =−κ∆

2
hφ

n+ 1
2

j,k +∆h

(qn−1
j,k +

F ′(φ̂
n+ 1

2
j,k )

4

√
F(φ̂

n+ 1
2

j,k )+C0

· (φ n+1
j,k −φ

n−1
j,k )

)
·

F ′(φ̂
n+ 1

2
j,k )√

F(φ̂
n+ 1

2
j,k )+C0

 .

(3.3)
Next, we analyze the properties of the above algorithm.

Theorem 3.1. Algorithm (3.2) satisfies the following discrete modified LEDL

δt

(
κ

2
|∇+

h φ
n
j,k|

2 +(qn
j,k)

2
)
−∇

+
h ·
(
∇
−
h µ

n+ 1
2

j,k ·µ
n+ 1

2
j,k +κδtφ

n
j,k ·∇

−
h φ

n+ 1
2

j,k

)
=−|∇+

h (µ
n+ 1

2
j,k )|2,

(3.4)
where

∇
+
h · ( f n

j,k ·a
n
j,k) := δ

+
x ( f

n+ 1
2

j,k ·a1
n
j,k)+δ

+
y ( f

n+ 1
2

j,k ·a2
n
j,k), a = (a1,a2)

T ,

and

∇
+
h · (a

n
j,k f n

j,k +bn
j,kgn

j,k) := ∇
+
h · ( f n

j,kan
j,k)+∇

+
h · (g

n
j,kbn

j,k).

Proof. For the sake of convenience, after eliminating the intermediate variables, algorithm (3.2)
is rewritten as follow

δtφ
n
j,k = ∇

+
h · (∇

−
h µ

n+ 1
2

j,k ),

µ
n+ 1

2
j,k =−κ∇

+
h · (∇

−
h φ

n+ 1
2

j,k )+q
n+ 1

2
j,k ·

F ′(φ̂
n+ 1

2
j,k )√

F(φ̂
n+ 1

2
j,k )+C0

,

δtqn
j,k =

F ′(φ̂
n+ 1

2
j,k )

2

√
F(φ̂

n+ 1
2

j,k )+C0

δtφ
n
j,k.

(3.5)
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Multiplying each these three equations by µ
n+ 1

2
j,k , −δtφ

n
j,k, and q

n+ 1
2

j,k , respectively, we obtain

µ
n+ 1

2
j,k ·δtφ

n
j,k = δ+

x (δ+
x µ

n+ 1
2

j−1,k ·µ
n+ 1

2
j,k )+δ+

y (δ+
y µ

n+ 1
2

j,k−1 ·µ
n+ 1

2
j,k )−|∇+

h (µ
n+ 1

2
j,k )|2,

−µ
n+ 1

2
j,k ·δtφ

n
j,k =−κ∇

+
h · (∇

−
h φ

n+ 1
2

j,k ) ·δtφ
n
j,k +q

n+ 1
2

j,k ·
F ′(φ̂

n+ 1
2

j,k )√
F(φ̂

n+ 1
2

j,k )+C0

·δtφ
n
j,k,

δtqn
j,k ·q

n+ 1
2

j,k =
F ′(φ̂

n+ 1
2

j,k )

2

√
F(φ̂

n+ 1
2

j,k )+C0

δtφ
n
j,k ·q

n+ 1
2

j,k .

(3.6)

Adding the above two equations, we obtain by (3.6) that

κ∇
+
h · (∇

−
h φ

n+ 1
2

j,k ) ·δtφ
n
j,k−δ

+
x (δ−x µ

n+ 1
2

j,k ·µ
n+ 1

2
j,k )−δ

+
y (δ−y µ

n+ 1
2

j,k ·µ
n+ 1

2
j,k )−2δtqn

j,k ·q
n+ 1

2
j,k

=−|∇+
h (µ

n+ 1
2

j,k )|2.

It follows from the Leibnitz rules that

δt

(
κ

2
|∇+

h φ
n
j,k|

2 +(qn
j,k)

2
)
−∇

+
h ·(∇

−
h µ

n+ 1
2

j,k ·µ
n+ 1

2
j,k )−∇

+
h ·
(
κδtφ

n
j,k ·∇

−
h φ

n+ 1
2

j,k

)
=−|∇+

h (µ
n+ 1

2
j,k )|2,

which leads to (3.4). �

Theorem 3.2. Under the periodic boundary conditions, algorithm (3.2) conserves the discrete
modified MCL (

φ
n+1,1

)
h =

(
φ

n,1
)

h, (3.7)

and the discrete modified EDL

δtEn
h +‖∇

+
h (µ

n+ 1
2 )‖2

h = 0, (3.8)

where

En
h =

κ

2
‖∇+

h φ
n‖2

h +
(
(q(φ n))2,1

)
h.

Proof. Summing the first equation of algorithm (3.2) and discrete LEDL (3.4) over all index j
and k directly, respectively, and then combining the periodic boundary conditions, we obtain
(3.7) and (3.8). This completes the proof. �

Remark 3.1. If the terms F(φ̂
n+ 1

n
j,k ) and F ′(φ̂

n+ 1
n

j,k ) in (3.2) or (3.3) are replaced by F(φ n
j,k) and

F ′(φ n
j,k) separately, the corresponding algorithm still remains the corresponding local energy

dissipation law. If these terms are replaced by F(φ
n+ 1

2
j,k ) and F ′(φ

n+ 1
2

j,k ), the corresponding algo-
rithm becomes an implicit locally structure-preserving algorithm.

3.2. Linear-implicit local energy dissipation preserving algorithm II (LILEDP-II). For
(2.1), applying the linear-implicit Crank-Nicolson method in time and the leap-frog algorithm
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in space, we obtain 

δ
+
t φ n

j,k = ∆hAt µ
n
j,k,

At µ
n
j,k =−κ∆hAtφ

n
j,k +Atqn

j,k ·
F ′(φ̂

n+ 1
2

j,k )√
F(φ̂

n+ 1
2

j,k )+C0

,

δ
+
t qn

j,k =
F ′(φ̂

n+ 1
2

j,k )

2

√
F(φ̂

n+ 1
2

j,k )+C0

δ
+
t φ n

j,k,

(3.9)

where

Atφ
n
j,k =

1
2
(φ n

j,k +φ
n+1
j,k ), φ̂

n+ 1
2

j,k =
3φ n

j,k−φ
n−1
j,k

2
, ∆h f j,k := δ

2
x f j−1,k +δ

2
y f j,k−1.

By eliminating the auxiliary variables, algorithm (3.9) can be recombined into a single equation

δ
+
t φ

n
j,k =−κ∆

2
hAtφ

n
j,k +∆h

(qn
j,k +

F ′(φ̂
n+ 1

2
j,k )

4

√
F(φ̂

n+ 1
2

j,k )+C0

(φ n+1
j,k −φ

n
j,k)

)
·

F ′(φ̂
n+ 1

2
j,k )√

F(φ̂
n+ 1

2
j,k )+C0

 .

(3.10)
Next, we analyze properties of algorithm (3.9).

Theorem 3.3. Algorithm (3.9) possesses the following discrete modified LEDL

δ
+
t

(
κ

2
|∇+

h φ
n
j,k|

2 +(qn
j,k)

2
)
−∇

+
h ·
(
κδ

+
t φ

n
j,k ·∇

−
h Atφ

n
j,k +At µ

n
j,k ·∇

−
h At µ

n
j,k
)
=−|∇+

h At µ
n
j,k|

2,

(3.11)
where

∇
−
h :=

(
δ−x
δ−y

)
.

Proof. Multiplying the three equations in (3.9) by At µ
n
j,k,δtφ

n
j,k, and Atqn

j,k, respectively, we
obtain 

At µ
n
j,k ·δ

+
t φ n

j,k = At µ
n
j,k ·∆hAt µ

n
j,k,

−At µ
n
j,k ·δ

+
t φ n

j,k = κ∆hAtφ
n
j,k ·δ

+
t φ n

j,k−Atqn
j,k

F ′(φ̂
n+ 1

2
j,k )√

F(φ̂
n+ 1

2
j,k )+C0

·δ+
t φ n

j,k,

Atqn
j,k ·δ

+
t qn

j,k =
F ′(φ̂

n+ 1
2

j,k )

2

√
F(φ̂

n+ 1
2

j,k )+C0

δ
+
t φ n

j,k ·Atqn
j,k.

Adding the above two equations and together with the third equation, we have

At µ j,k ·∆hAt µ j,k +κ∆hAtφ
n
j,k ·δ

+
t φ

n
j,k−2Atqn

j,k ·δ
+
t qn

j,k = 0,

∇
+
h · (∇

−
h At µ

n
j,k ·At µ

n
j,k +κ∇

−
h Atφ j,kn ·δ+

t φ
n
j,k)−δ

+
t (

κ

2
|∇+

h φ
n
j,k|

2)−δ
+
t (qn

j,k)
2 = |∇+

h At µ
n
j,k|

2.

Thanks to the following Leibnitz rules, we obtain

δx( f n
j−1,k ·g

n
j,k) = f n

j,k ·δxgn
j,k +δx f n

j−1,k ·g
n
j,k,

δt( f n
j,k ·g

n
j,k) = At f n

j,k ·δtgn
j,k +δt f n

j,k ·Atgn
j,k,
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The discrete modified LEDL is derived

δ
+
t

(
κ

2
|∇+

h φ
n
j,k|

2 +(qn
j,k)

2
)
−∇

+
h ·
(
κδ

+
t φ

n
j,k ·∇

−
h Atφ

n
j,k +At µ

n
j,k ·∇

−
h At µ

n
j,k
)
=−|∇+

h At µ
n
j,k|

2.

This completes the proof. �

Theorem 3.4. Under the periodic boundary conditions, algorithm (3.9) conserves the following
discrete modified MCL (

φ
n+1,1

)
h =

(
φ

n,1
)

h, (3.12)
and the discrete modified EDL

δtEn
h +‖∇

+
h (At µ

n)‖2
h = 0, (3.13)

where

En
h =

κ

2
‖∇+

h φ
n‖2

h +

(
(q(φ n))2,1

)
h
.

Proof. Summing the first equation of system (3.9) and discrete modified LEDL (3.11) over all
index j and k directly, respectively, and then combining the periodic boundary conditions, we
obtain (3.12) and (3.13). This completes the proof. �

3.3. Numerical validation. In this section, algorithm (3.3) and algorithm (3.10) are imple-
mented for some benchmark examples to test the accuracy and efficiency. For simplicity, we
assume periodic boundary conditions in all numerical experiments and consider the free energy
functional with a double-well bulk term. To test the proposed algorithms, we define the discrete
mass error and energy error of the algorithm (3.10) by using the following unified formula,
respectively,

Rn
M =

∣∣(φ n,1)h− (φ 0,1)h
∣∣, En

h =
κ

2
‖∇+

h φ
n‖2

h +

(
(q(φ n))2,1

)
h
.

Example 3.3.1. (Accuracy verification) We solve the gradient flows (1.1) with the model pa-
rameter γ = 1, κ = 1, c0 = 0.01 for (x,y) ∈ [0,2π]2, and 0 < t < 1. The exact solution of the
system modified is obtained by a appropriate forcing function φ(x,y, t) = cos(x)cos(y)cos(t).
Here, we choose the number of the spatial grids as Nx = Ny = N, and compare the numerical
solution with the exact solution at T = 1. We compute the discrete L2 and L∞ errors of phase
variable φ by varying the grid size in space and time. According to the Tables 1-4, we clearly
observe that the new algorithms are second-order accurate in both time and space. Meanwhile,
we keep a recorder of the CPU time used in the computations. The results demonstrate that
algorithm LILEDP-II has much higher calculation efficiency than that of algorithm LILEDP-I.
The algorithm LILEDP-II has an overwhelming advantage. Thus we mainly conduct numerical
experiments for the algorithm LILEDP-II in the following experiments.

TABLE 1. Mesh refinement test of the algorithm LILEDP-I at T = 1 with fixed ∆t = 0.001.

N L∞-error L2-error L∞-order L2-order CPU(s)
11 3.39e-02 1.047e-01 - - 13.69
33 3.70e-03 1.16e-02 2.0002 2.0073 16.27
99 4.15e-04 1.30e-03 1.9995 2.0001 23.91
297 4.64e-05 1.01e-04 1.9933 1.9939 83.53
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TABLE 2. Mesh refinement test of the algorithm LILEDP-I at T = 1 with fixed N = 1001.

∆t L∞-error L2-error L∞-order L2-order CPU(s)
0.2 2.08e-02 5.28e-02 - - 8.22
0.1 3.40e-03 1.22e-02 2.6264 2.1107 13.18
0.05 9.56e-04 3.00e-03 1.8158 2.0093 22.98
0.025 2.29e-04 7.66e-04 2.0654 1.9863 41.89

TABLE 3. Mesh refinement test of the algorithm LILEDP-II at T = 1 with fixed ∆t = 0.001.

N L∞-error L2-error L∞-order L2-order CPU(s)
11 3.39e-02 1.05e-01 - - 0.59
33 3.70e-03 1.16e-02 2.0073 2.0003 1.09
99 4.15e-04 1.30e-03 2.0005 1.9999 4.96
297 4.62e-05 1.44e-04 1.9972 1.9967 25.18

TABLE 4. Mesh refinement test of the algorithm LILEDP-II at T = 1 with fixed N = 1001.

∆t L∞-error L2-error L∞-order L2-order CPU(s)
0.2 7.50e-03 2.52e-02 - - 4.29
0.1 1.70e-03 6.10e-03 2.1524 2.0436 6.69
0.05 4.00e-04 1.50e-03 2.0024 2.0174 11.71
0.025 1.00e-04 4.00e-04 1.9664 1.9773 21.25

Example 3.3.2. We simulate the system (1.1) with the double well free energy to investigate
coalescence of two drops on [0,1]2, starting from

φ(x,y,0) =


tanh

(
(0.2−δ1)/r

)
, δ1 < 0.2+ r,

tanh
(
(0.2−δ2)/r

)
, δ2 < 0.2+ r,

−1, other,

where δ1 =
√
(x−0.3+ r)2 +(y−0.5)2, δ2 =

√
(x−0.7− r)2 +(y−0.5)2, and r = 0.01. We

choose γ = 0.1,κ = 1.0e−5, and discretize the space with 113 modes.
Figure 1 displays the evolution of drops obtained by using the algorithm LILEDP-II with

∆t = 10−5. The numerical solution at t = 0,1,3,5,10,30 are shown. As can be seen from
Figure 1, the two equal-sized circular drops coalesce quickly in the early stage of the evolution,
and slowly later until they eventually merge into a single one. The errors in the total mass
and the energy change with respect to time are plotted in Figure 2. It can easily be seen that
the mass is numerically conservative, while energy decays with the same trajectory. Through
numerical experiments, we observe that the algorithm LILEDP-II demonstrates efficiency and
effectiveness in preserving energy dissipation law.
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FIGURE 1. Coalescence of two drops simulated using LILEDP-II with N = 113, ∆t = 10−5.

(a) (b)

FIGURE 2. The evolution of mass and energy in the drop coalescence example using
the LILEDP-II with N = 113, ∆t = 10−5. (a) Mass error. (b) The evolution of energy.

.
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