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Abstract. Current methods achieved reasonable success in solving short-term parametric partial differen-
tial equations (PDEs). However, solving long-term PDEs remains challenging, and existing techniques also
suffer from low efficiency due to requiring finely-resolved datasets. In this paper, we propose a physics-
informed Fourier neural operator (PIFNO) for parametric PDEs, which incorporates physical knowledge
through regularization. The numerical PDE problem is reformulated into an unconstrained optimization
task, which we solve by using an enhanced architecture that facilitates longer-term datasets. We compare
PIFNO against standard FNO on three benchmark PDEs. Results demonstrate improved long-term perfor-
mance with PIFNO. Moreover, PIFNO only needs coarse dataset resolution, which enhances computational
efficiency.
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1. INTRODUCTION

Nowadays, partial differential equations (PDEs) as a mathematical tool were widely used in sci-
entific and engineering problems. The traditional methods commonly used to solve PDEs include
the finite element method [1], finite difference method [2], and finite volume method [3], which
rely on discretizing the space into very fine meshes. Despite significant progress in these traditional
methods, there is still a need for improvement in terms of trade-off; coarse grids are fast but lack
accuracy, while fine grids are high in accuracy but slow. Complex PDEs often require extremely
fine grids. Thus it is challenging and time-consuming for traditional algorithms.

Due to the limitations of traditional algorithms, machine learning methods are recognized as a
potential tool for PDEs. Dissanayake and Phan-Thien [4] first considered a numerical method. It
can only be solved on extremely tiny datasets and linear problems. Lagaris, Likas, and Fotiadis [5]
discussed a method for nonlinear PDEs. As the dimensionality increases, both memory and com-
putation time requirements become intractable. Han, Jentzen, and E [6] proposed the deep BSDE
method with a proper loss function to optimize parameters only for the specific PDEs with general
high-dimensional parabolic. Consequently, Raissi, Perdikaris, and Karniadakis in [7] proposed a
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physics-informed neural network (PINN) that uses physics equations as an operational constraint,
which makes the final training result approximately satisfy the laws of physics. Along the line of
[7], E and Yu [8] presented the deep Ritz method for variational problems, which has made con-
siderable progress. In recent years, the PINNs method gradually become a research hotspot at the
cross-discipline of machine learning and computational mathematics, as well as yields relatively
deeper variants, such as cPINNs [9] (conserved PINNs) and vPINNS [10] (variational PINNs),
etc. However, most of the previous work using PINNs is restricted to solving only one PDE, which
results from learning to map from vectors to vectors. In a word, this method has some problems in
practical applications, with slow training or even non-convergence and low accuracy. The reason is
that a new network needs to be retrained once the parameters of the equations change, for example,
boundary conditions, the source terms, or other parameters in the PDEs.

Furthermore, in some cases, we have to obtain quickly available accurate solutions for the set
of PDEs. One approach that makes such problems feasible is the neuron operator method, which
is based on the fact that the set of PDEs can be learned by a map from the source function to the
solution function [11]. Such a method can only be solved at a fixed point. Therefore, Lu, Jin,
and Karniadakis [12] proposed the DeepOnet method, in which the source term is transmitted to
the network at fixed grid points. However, the output can be predicted at any point by adding
additional input points to the network. Nevertheless, this method is often inefficient or difficult to
handle owing to the need for particularly large and precise sampling points. Kovachki et al. [13]
proposed neural operator methods, which can be evaluated at any point in time and any space. They
summarized and proved a universal approximation theorem of the neural operator. On the basis
of [13], Li et al. [14] proposed Fourier neural operators. The difference lies in integral operators
working directly in Fourier space by parameterizing. It is obvious that the neural operator method
is a completely data-driven approach that requires a lot of fine datasets. However, when analyzing
complex physical, biological, or engineering systems, the expense of data acquisition often poses
a barrier, leading us to confront the challenge of drawing long-term conclusions with incomplete
information. Therefore, these methods above are inefficient.

In this paper, we propose PIFNO for parametric PDEs. Over-parameterization is recognized
as one of the fundamental components of architecture design in machine learning [15] crucial for
performance [16] and optimization [17]. Therefore, the PIFNO architecture employs an optimiza-
tion technique that joins the physical information as regularization. In the proposed approach, the
model function is written as the sum of two terms: the first term satisfies the laws of physics (ini-
tial/boundary conditions and equation) that contain no adjustable parameters, and the second term
involves a feed-forward neural operator to be trained, containing adjustable parameters. Compared
with the above methods, we naturally encode an underlying physical law as prior information,
which is fed into the training of the neural network as regularization, thus contributing to solutions
in the long term that are consistent with our experimental results.

The rest of the paper is organized as follows. Some definitions and properties of operator learn-
ing and PINNs are reviewed in Section 2. In Section 3, we propose a Fourier operator learning
method based on the integration of physical information. The numerical test examples of PDEs in
the linear and non-linear cases are reported in Section 4. In Section 5, we provide a mathematical
proof of the technical results presented in the previous sections. Section 6 concludes the paper.
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2. PRELIMINARIES

2.1. General parametric PDEs. The generic form of a family of parametric PDEs can be written
as follows:

(Lau)(x) = f (x), x ∈ D,

u(x) = 0, x ∈ ∂D,
(2.1)

where the open set A = (D;RdA) and U = (D;RdU) denote input and output function spaces. The
differential operator La depends on a ∈ A, and the fixed function f ∈ U∗ is determined by the
structure of La on a bounded domain D⊂ Rd . It is assumed that

(i) the solution u : D→ R of problem (2.1) lies in the Banach space U,
(ii) the operator La is a mapping from the parameter Banach space A to the space of linear

operators (possibly unbounded) that map U to its dual U∗, and
(iii) the problem (2.1) is well-posed.
Note that although the parametric PDEs in (2.1) are linear, but La’s are not linear.

2.2. Problem setting. Our objective is to understand how to establish a mapping between two
infinite-dimensional spaces by using only a finite collection of observations of input-output pairs
derived from this mapping. We aim to define this problem with clarity in the following way.

Let the parameter space Θ ⊆ Rp be finite-dimensional. Assume that we have a set of N data
points, {a(i),u(i)}N

i=1, where the observations a(i) ∼ µ are i.i.d.. We aim to train a neural opera-
tor, denoted as F†, which maps from the space A to the space U. This operator is parameterized
by θ . The map a 7→ u with u(i) = F†(a(i)) is potentially with noise. The objective is to discover
a finite-dimensional approximation, denoted as Fθ : A→U, which is parameterized by θ ∈Θ.
This approximation is intended to satisfy the condition

Fθ ≈ F†, almost everywhere with respect to µ.

We frame this problem as an optimization problem with the objective function as MSEF, which
represents the loss functional C : U×U→R. We adopt the squared-error loss within a suitable
norm || · ||U on U and approximate the expectation using the training data:

MSEF = min
θ∈Rp

Ea∼µ

∥∥∥F†(a)−Fθ (a)
∥∥∥2

U
≈ min

θ∈Rp

1
N

N

∑
i=1

∥∥∥u(i)−Fθ

(
a(i)
)∥∥∥2

U
.

This formulation closely mirrors the classical finite-dimensional scenario [18].

3. ALGORITHM

In this section, we introduce the PIFNO, which comprises two components. The first satisfies
the initial or boundary conditions and physics equations with no adjustable parameters. The second
involves a Fourier neural operator containing tunable parameters. By incorporating physics priors
into the Fourier operators, PIFNO integrates physical knowledge.

Definition 3.1. (Fourier integral operator κ). If La in equation (2.1) exhibits uniform ellipticity,
the Green’s function formula suggests that u(x) =

∫
D Ga(x,y) f (y)dy. Given that Ga remains con-

tinuous for all points x 6= y, it is reasonable to represent the integral operator’s action by using
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κ(φ), where φ denotes the parameters. The following operator κ is called the Fourier integral
operator:

(κ(φ)v)(x) =
∫

D
κφ (x,y,a(x),a(y))v(y)dy ∀x ∈ D.

To simplify matters, we assume that D = Td represents the unit torus and κ is periodic so that it
admits a Fourier series expansion. Let F : D→Rdv denote the Fourier transform, with F−1 as its
inverse. By defining κ(x,y) = κ(x− y) and employing the convolution theorem, we establish

(κ(φ)v)(x) = F−1(F (κ) ·F (v))(x) for all x ∈ D.

Subsequently, we introduce the Fourier integral operator

(κ(φ)v)(x) = F−1(Rφ ·F (v))(x) for all x ∈ D.

Here, Rφ signifies the Fourier transform of κ : D→Cdv×dv , with φ ∈Rp serving as its parameteri-
zation.

Definition 3.2. (Pre-training PFNO). Pre-training to obtain initialized weights and the shared pa-
rameters between the initial or boundary conditions and Fourier neural operators can be acquired
by minimization of the mean squared error loss

L = MSEF +λMSEbc/initial,

where

MSEbc/initial =
1

N f

N f

∑
i=1
|u(t i

0,x
i
0)−ui

0|2 and MSEF =
1

NF

NF

∑
i=1
|F†(ai

0)−Fθ (ai
0)|.

In this work, {t i
0,x

i
0,a

i
0,u

i
0}N

i=1 represents the initial and boundary training datasets. The loss
term MSEbc/initial corresponds to constraints imposed by the initial data and boundary data, while
MSEG imposes the structure of the Fourier neural operator.

Definition 3.3. (Fine-tuning PFNO). Frozen the network structure and inherited the network weight
parameters to obtain a well-initialized model as described previously. This facilitates accelerated
convergence. We then fine-tune the trained network by feeding a larger dataset and modifying the
loss function through regularization adjustment:

L = MSEF +λ
′MSE f

where

MSE f =
1

Nu

Nu

∑
i=1
| f (t i

f ,x
i
f )|2 and MSEF =

1
NF

NF

∑
i=1
|F†(ai)−Fθ (ai)|.

Here, the set {t i
f ,x

i
f }N

i=1 represents the collocation points for f (t,x), with the loss function MSE f
enforcing the structural constraints imposed by equations.

We proceed next by delineating the PIFNO framework. We presuppose that the input functions
denoted as a∈A, are Rda-valued and described within the bounded domain D⊂Rd . Concurrently,
the output functions, represented as u ∈U, are Rdu-valued and defined within the bounded domain
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D′⊂Rd′ . The proposed architecture Fθ : A→U encompasses the following overarching structure:

Algorithm 1: Structure for physics-informed Fourier neural operator learning
Input: Provide the functions {a j}N

j=1
Output: Output the functions {u j}N

j=1
1 for i = 0,1,2, ..., do
2 Compute MSEF +λMSEbc/initial on boundary and initial points on (ai

0,u
i
0);

3 Update Fourier neural operator for pre-traning;
4 Compute λ ′MSE f +MSEF, fine-tune Fourier neural operator;
5 for j = 1 to K do
6 From the distribution, sample up a′;
7 Compute MSE f +MSEF on a′;
8 Update Fourier neural operator;
9 end

10 end

Step 1. Initialized solution. Upon receiving an input function a : D→RdA , we apply a point-wise
operator P to a, yielding the computation of v0:

v0(x) = P(x,a(x),aε(x),∇aε(x))+ p.

Here, P is a matrix in Rn×2(d+1), parameterized by the function Pθ : RdA → Rd0 , and p is a vector
in Rn. We augment the initialization (x,a(x)) with a Gaussian-smoothed version of the coefficients
aε(x), alongside their gradients ∇aε(x). This augmentation results in a 2(d +1)-dimensional vec-
tor field at initialization. Typically, we opt for dA� dv0 , making this a lifting operation executed
by a fully local operator.

Step 2. Iterative update. We apply a sequence of nonlinear integral Fourier operators (κ(φ)v)(x)=
F−1 (Rt ·F vt)(x)

Fi : {vt : Dt → Rdvt }→ {vt+1 : Dt+1→ Rdvt+1}, t ∈ {0,1,2, ...,T}

to update vt :

vt+1(x) = σ(Wvt(x)+F−1 (Rt(k) ·F vt)(x)),

where σ is an activation function GELU [20], Rt : Zd → Cdt+1×dt is a linear transform which can
work on lower Fourier modes and filter out higher modes, and W ∈ Rn×n and φ entering kernel
κφ : R2(d+1)→ Rn×n, which are to be learned from data. Let Dt ⊂ Rd be a measurable set accom-
panied by a measure µi. In this context, we establish D0 = D and DT = D′, with the stipulation
that Dt ⊂ Rdt represents a bounded domain.

Step 3. Solution function. Computing vT for the T layer operator, we compute the last hidden
representation u : D′→ RdU by a fully local operator

u(x) = QvT (x)+q.
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The Q is parameterized with a function Qθ : RdvT → RdU , where vt(x) ∈ Rn and Q ∈ R1×n, q ∈ R.
Typically, dvT � dU.

Step 4. Initialized parameters. We initialize the neural network based on the initial conditions and
boundary conditions. The loss function is as the following

L = MSEF +λMSEbc/initial,

where λ ≥ 0. Based on the properties of the PDEs, we select the boundary points (x at 0 or 1)
and initial points u(0) for training. This subset is more tractable to handle and effectively reduces
training costs.

Step 5. Regularization. In order to impose physical constraints, the equations are appended to
the loss function as a regularization term. The network architecture and parameters initialized in
Steps 1–4 remain the same. Steps 1–3 and 5 are iterated to optimize further the parameters shared
between the network and the equations by minimizing the loss function:

L = MSEF +λ
′MSE f ,

where λ ′ ≥ 0. Specifically, the term in MSE f acts as a regularizer that penalizes solutions violating
the physics equations and enforces the structure imposed by the equations at the collocation points.

The entire process is sketched in Figure 1.

FIGURE 1. (a) The architecture of neural operators; (b) Informing physical bound-
ary and initial conditions in the loss function as regularization of backpropagation;
(c) Informing physical functions in the loss function as regularization of backprop-
agation; (d) Fourier operator.
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Therefore, a key advantage of PIFNO is effective training with regular datasets, which can avoid
the cost of data acquisition. In the next section, we demonstrate PIFNO on three benchmark
operator learning tasks.

4. EXPRIMENTS

In this section, we present experiments on Burger’s equation (1D), Darcy flow (2D), and Navier-
Stokes equation (3D) to evaluate the performance of PIFNO. For each problem, we describe the
setup, implementation details, and empirical results. In all experiments, we use the Adam optimizer
[19] with a learning rate of 0.001 and the GeLu activation function [20], which can represent finite
element method approximations [1] from an approximation theory perspective [21]. The overall
PIFNO network architecture contains four layers of Fourier layers.

4.1. Burgers’ equation. Burgers’ equation is a non-linear PDE with a Dirichlet boundary of the
following form:

∂tu(x, t)+∂x
(
u2(x, t)/2

)
−ν∂xxu(x, t) = 0, x ∈ (0,1), t ∈ (0,1],

u(x,0) = u0(x), x ∈ (0,1).

Burgers’ equation arises in various areas of applied mathematics, including traffic flow, gas dynam-
ics, fluid dynamics, and nonlinear acoustics. Burgers’ equation considers only convective effects
and ignores viscous and source terms of the Navier-Stokes system. Here we study the initial value
problem for Burgers’ equation with periodic boundary conditions and viscosity coefficient ν ∈R+.
Specifically, we assume the initial condition u0 ∈ L2

per((0,1);R) and aim to learn the operator map-
ping from parameters to solutions.

Let us define f (t,x) and h(0,x0) by

MSE f = ∂tu(x, t)+∂x
(
u2(x, t)/2

)
−ν∂xxu(x, t) and MSEbc/initial = u(0,x)−u0(x).

The Dirichlet boundary and initial conditions are used to pre-train the model. The shared param-
eters between the neural operator u(x, t) and f (x, t) are optimized by minimizing the total loss
function.

We solve the PDE on a spatial mesh with 8192 points and a time mesh with 2048 points. This
high-resolution solution is used to generate datasets for training at lower resolutions. Specifically,
the dataset consists of the evolution from a to u on a 2048×8192 grid, which can be downsampled
to obtain lower precision training data. In this experiment, we only add a physical regularization
term to the loss function to constrain the solution, laying the foundation for incorporating datasets
with richer information and more complex PDE constraints in future work. The overall loss func-
tion can be written in the following form

L =
1

NF

NF

∑
i=1
|F(t i

F,x
i
F)−Fi|2 +λ

′ 1
N f

N f

∑
i=1
| f (t i

f ,x
i
f )|2.

To train the PIFNO solution operator, we randomly sample 1000 initial conditions u0 from
the distribution µ , where µ follows a normal distribution N (0,625(−∆+ 25I)−2). We opt for
the 1D Fourier neural operator as our foundational model, featuring four Fourier layers with 16
frequencies per channel and a width of 64. This entails a total of 1400 seconds of training on a
single Nvidia GPU. PIFNO achieves an average relative L2 error of 0.24% across 200 test instances,
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showcasing an improvement over the 0.38% error observed with FNO under the same problem
configuration.

FIGURE 2. 100 solutions visulization FIGURE 3. 1000 solutions visulization

FIGURE 4. 2000 solutions visulization FIGURE 5. 8000 solutions visulization

FIGURE 6. N=1000 FIGURE 7. N=2000

The experiment result is as follows. Figures 2–5 show 3D visualizations of the PDEs solutions
with an increasing number of data points N. We observe that the solutions become smoother as N
increases. However, with the addition of physical constraints, the solutions at N = 2000 are not
much different from N = 8000 even when scaled up. Figures 6–7 compare the loss for FNO and
PIFNO at N = 1000 and N = 2000 data points, respectively. Except for the black FNO line, all
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other lines denote PIFNO with different λ ’s. We found that λ between 0.02 and 0.1 gives the best
performance for regular datasets. Thus, for subsequent experiments, λ is selected from this range.

4.2. Darcy flow. In this section, we showcase our method’s ability to address boundary conditions
by considering a two-dimensional steady-state Darcy flow equation, which is a linear elliptic PDE
with a Dirichlet boundary condition of the following form:

−∇ · (a(x)∇u(x)) = f (x), x ∈ (0,1)2

u(x) = 0, x ∈ ∂ (0,1)2.

Here, a is the diffusion coefficient with a∈A⊆ L∞ (D;R+), u∈U⊆H1
0 (D;R) is the solution, and

f ∈ F = H−1(D;R) is the forcing function. The spatial domain is taken to be D = (0,1)2. This
PDE has wide-ranging applications, including simulation of groundwater flow, geothermal system
modeling, oil reservoir permeability, and engineering seepage analysis.

Let us define f (t,x) and the loss function to be given as follows

MSE f =−∇ · (a(x)∇u(x))− f (x)

and L =
1

NF

NF

∑
i=1
|F(t i

F,x
i
F)−Fi|2 +λ

′ 1
N f

N f

∑
i=1
| f (t i

f ,x
i
f )|2 +λ

1
N0

N0

∑
i=1
|u(0,xi

0)−ui
0)|2.

To prepare the dataset, we define µ ∼N
(
0,(−∆+9I)−2) as a probability measure incorporating

zero Neumann boundary conditions on the Laplacian, where for all x ≥ 0, ψ(x) = 12 and for all
x < 0,ψ(x) = 3. The forcing function is fixed at f (x) = 1. The coefficient a(x) is sampled from
µ , and the solutions u’s are obtained using the traditional finite element method on 241×241 and
421× 421 grids in Matlab. Datasets of different resolutions can be generated by downsampling.
We parameterize the 2D Fourier neural operator with four Fourier layers, each comprising 20
frequencies per channel and a width of 64.

FIGURE 8. (s = 241) visual-
ization of one solution

FIGURE 9. (s = 421) visual-
ization of one solution

Figures 8–9 show 3D visualizations of a solution to the equation. To clearly illustrate the solu-
tion, we have chosen to visualize a single equation rather than a series, unlike the multiple equa-
tions shown above. Figures 10–11 compare the experimental loss values for FNO and PIFNO
on datasets with resolutions of 241× 241 and 421× 421, respectively. The black line indicates
FNO and the purple line indicates PIFNO. Zooming in, we see that PIFNO achieves lower and
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FIGURE 10. Loss values of
FNO and PIFNO for s = 241×
241

FIGURE 11. Loss values of
FNO and PIFNO for s = 421×
421

more stable loss long term. The solution operator Fθ maps a diffusion coefficient function a to the
corresponding solution u.

4.3. Navier-Stokes equation. In this section, we assess the accuracy and efficiency of the pro-
posed technique over time. We examine the following 2D Navier-Stokes equations for a viscous,
incompressible fluid in vorticity form on the unit torus. The system is described as follows:

∂tw(x, t)+u(x, t) ·∇w(x, t) = ν∆w(x, t)+ f (x), x ∈ (0,1)2, t ∈ (0,T ]

∇ ·u(x, t) = 0, x ∈ (0,1)2, t ∈ [0,T ]

w(x,0) = w0(x), x ∈ (0,1)2.

The Navier-Stokes equation encapsulates fundamental laws governing viscous fluid flows and is
of significant importance in fluid mechanics. Here, w denotes the vorticity field, w0(x) ∈ (0,1)2 is
the initial vorticity, ν is the viscosity coefficient, and f is the forcing function.

To generate the dataset, initial vorticity conditions w0 were randomly sampled from the distri-
bution µ = N (0,73/2(−∆+49I)−2.5) with periodic boundary conditions. The forcing function f
was fixed to f (x) = 0.1(sin(2π(x1 + x2))+ cos(π(x1 + x2))). Data was generated on a 256×256
grid, which could then be downsampled for low-resolution training and high-resolution testing.

Let us define f (t,x), h(t,x) and loss function to be given as follows

MSE f = ∂tw(x, t)+u(x, t) ·∇w(x, t)−ν∆w(x, t)+ f (x),

MSEbc/initial = ∇ ·u(x, t) and

L =
1

NF

NF

∑
i=1
|F(t i

F,x
i
F)−Fi|2 +λ

1
N f

N f

∑
i=1
| f (t i

f ,x
i
f )|2 +λ

′ 1
N0

N0

∑
i=1
|u(0,xi

0)−ui
0)|2.

Our aim is to train an operator capable of transforming the vorticity field from an initial time
interval [0,Tin] to a subsequent contrasting time interval (Tin,T ]. Notably, we trained PIFNO on
low-resolution datasets and tested it on high-resolution. The details are presented in the following.
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t=0.png

FIGURE 12. Solution for T = 0,
s = 64×64

FIGURE 13. Solution for T = 0,
s = 256×256

t=10.png

FIGURE 14. Solution for T =
10, s = 64×64

FIGURE 15. Solution for T =
10, s = 256×256

FIGURE 16. Loss values of
FNO and PIFNO for s = 64×64

FIGURE 17. Loss values of
FNO and PIFNO for s = 32×32
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Figures 12–13 show 3D visualizations of a solution to the equation at low and high resolutions,
respectively, at the initial time. To clearly illustrate the solution, we have chosen to visualize a
single equation rather than a series, unlike the multiple equations shown in Figures 2–5. The lower
and higher resolutions were selected to demonstrate the behavior across scales. Figures 14–15
similarly show 3D visualizations at low and high resolution but at the final time rather than the
initial. As before, a single equation is visualized for clarity rather than a series.

Figures 16–17 then compare the experimental loss values for FNO and PIFNO at dataset res-
olutions of 64× 64 and 32× 32, respectively. The black line indicates FNO, while PIFNO is
in purple. At low resolution, PIFNO is observed to converge faster initially and achieve better
long-term performance. FNO and PIFNO converge simultaneously at high resolution, but PIFNO
retains superior long-term performance.

FIGURE 18. Loss value for T =
20,s = 64,N = 1200

FIGURE 19. Loss value for T =
50,s = 256,N = 20

In Figure 18, we test both models on a dataset with a size 1200, a resolution of 256, and a
time span of 20 seconds. The results demonstrate that PIFNO achieves lower or comparable loss
versus FNO in most cases, highlighting its advantages over the baseline. We further challenge
both models on a longer time series in Figure 19, using data of size 20, resolution 256, and time
50 seconds. PIFNO starts to significantly outperform FNO for long-time prediction tasks. More-
over, we train both models on low-resolution data but test on high-resolution counterparts. The
superior performance of PIFNO thus indicates its ability to retain resolution invariance, a highly
desirable property for robust generalization. In summary, our quantitative experiments with varied
dataset complexities reveal PIFNO’s capabilities for accurate long-term forecasting. The consis-
tent improvements over FNO verify PIFNO’s efficacy in extracting invariant physical features in
a resolution-preserving manner. These results corroborate the design of PIFNO and highlight its
potential for tackling real-world complex systems. Further rigorous benchmarking on large-scale
problems will be conducted as future work to fully leverage the strengths of the proposed architec-
ture.

5. CONVERGENCE ANALYSIS OF THE ALGORITHM

5.1. Settings. We consider a fixed spatial dimension d ∈ N, where D ⊂ Rd denotes a domain
in Rd . Our focus lies in approximating operators Fθ : A

(
D;Rda

)
→ U

(
D;Rdu

)
, mapping a to
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u := Fθ (a). Here, the input a ∈ A
(
D;Rda

)
, da ∈ N, represents a function a : D→ Rda with da

components, and the output u ∈ U
(
D;Rdu

)
, du ∈ N, signifies a function u : D→ Rdu with du

components. The spaces A
(
D;Rda

)
and U

(
D;Rdu

)
are Banach spaces, or suitable subsets thereof.

Typical examples of A and U encompass the space of continuous functions C
(
D;Rdu

)
, or Sobolev

spaces Hs (D;Rdu
)

with s≥ 0.

5.2. Universal approximation. We demonstrate that PIFNO possesses universality. Within the
framework outlined earlier, one can discover a PIFNO capable of approximating a broad array of
operators to the desired level of precision. To elucidate further, we present the following theorem.

Theorem 5.1. (Universal approximation). Let s,s′≥ 0. Consider Fθ : Hs (Td;Rda
)
→Hs′ (Td;Rdu

)
as a continuous operator. Let K ⊂Hs (Td;Rda

)
be a compact subset. For any ε > 0, there exists a

PIFNO F† : Hs (Td;Rda
)
→ Hs′ (Td;Rdu

)
, continuous as an operator Hs→ Hs′ , satisfying

sup
a∈K
‖Fθ (a)−F†(a)‖Hs′ ≤ ε.

Sketch of the proof : The comprehensive proof of this universal approximation theorem is furnished
in Subsection 5.3, and we provide an outline here. For the sake of simplicity in notation, we set
da = du = 1.

Lemma 5.1. Suppose the universal approximation Theorem 5.1 holds for s′ = 0. Then, it extends
to arbitrary s′ ≥ 0.

The primary aim is to establish Theorem 5.1 for the specific scenario of s′ = 0. In other words,
given a continuous operator Fθ : Hs (Td)→ L2 (Td), where K ⊂ Hs (Td) is compact and ε > 0,
our goal is to construct a PIFNO F† : Hs (Td)→ L2 (Td) such that supa∈K ‖Fθ (a)−F†(a)‖Hs′ ≤ ε .
To begin, we define the operator

FN : Hs
(
Td
)
→ L2

(
Td
)
, FN(a) := PNF(PNa) ,

where PN is the operator. In essence, FN loosely represents the Fourier projection of the continuous
operator Fθ . Furthermore, we can demonstrate that for any given ε > 0, there exists N ∈ N such
that

‖Fθ (a)−FN(a)‖L2 ≤ ε ∀a ∈ K.

Thus, the crux of the proof lies in identifying a PIFNO capable of approximating the operator FN
with any desired level of accuracy.

5.3. Proofs and technical details. The proof of Lemma 5.1 depends on the subsequent technical
lemma.

Lemma 5.2. Give s′ ≥ 0 and N ∈ N. Let K ⊂ Hs′ be compact. Suppose σ ∈Cm, where m > s′ is
an integer. Then, for any ε > 0, there exists a single-layer PIFNO L : Hs′ → Hs′ such that

sup
v∈K
‖PNv−L (v)‖Hs′ ≤ ε.

Proof. Initially, we acknowledge that the Fourier projection PN : Hs′ → Hs′ is a continuous opera-
tor. Consequently, the image PNK ⊂ Hs′ is compact. Moreover, PN maps into a finite-dimensional
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subspace of Hs′ . As a result of the norm equivalence on finite-dimensional spaces, there exists
C0 =C0(N,K)> 0 such that

sup
v∈K
‖PNv‖L∞ ≤C0 and sup

v∈K
‖PNv‖Hm ≤C0.

Let x0 ∈ R be such that σ ′ (x0) 6= 0. For h > 0, we define

ψh(x) :=
σ (x0 +hx)−σ (x0−hx)

2hσ ′ (x0)
.

It is easily verified that ψh ∈Cm, and there exists a constant C1 =C1 (σ ,C0)> 0 such that

‖ψh‖Cm([−C0,C0])
≤C1 ∀h ∈ (0,1].

Moreover, by Taylor expansion, we obtain

|ψh(x)− x| ≤Ch, ∀x ∈ [−C0,C0] ∀h ∈ (0,1].

Applying the composition rule for Sobolev functions, we deduce that ψh◦PNa∈Hm for PNa∈Hm.
Additionally, there exists a constant C2 =C2 (C1,C0)> 0 such that

‖ψh (PNv)‖Hm ≤C2 ∀v ∈ K. (5.1)

We note that the mapping v 7→Lh(v) := ψh (PNv) can be succinctly represented by a single-layer
PIFNO. By equation (5.1), we have ‖Lh(v)‖Hm ≤ C2 for all v ∈ K. Applying the interpolation
inequality between Sobolev spaces, we deduce that

‖Lh(v)−PNv‖Hs′ ≤ ‖Lh(v)−PNv‖θ

L2 ‖Lh(v)−PNv‖1−θ

Hm ,

independently of h > 0. Utilizing equations (5.4) and (5.1), we obtain

‖Lh(v)−PNv‖L2 = ‖ψh (PNv)−PNv‖L2 ≤Ch

where C > 0 is a constant independent of h and v ∈ K. Consequently, we conclude that

‖Lh(v)−PNv‖Hs′ ≤Chθ → 0,

as h→ 0, where C > 0 is a constant independent of h. This concludes the proof. �

Proof of Lemma 5.1.

Proof. Let Fθ : Hs → Hs′ represent a continuous operator, and consider K ⊂ Hs as a compact
set. Assuming the universal approximation capability of FNOs for operators Hs → L2, we aim
to establish the existence of a PIFNO approximation F : Hs → Hs′ within an accuracy of ε > 0.
Initially, we observe that due to the compactness of F(K)⊂ Hs′ , there exists N ∈ N such that

sup
a∈K
‖Fθ (a)−PNFθ (a)‖Hs′ ≤ ε/2

Let us set δ > 0 for now, with the specific value of δ to be determined later in this proof. According
to the assumption on the universal approximation of operators Hs → L2, there exists a PIFNO
F̃† : Hs→ L2, continuously operating as Hs→ L2, satisfying

sup
a∈K

∥∥∥PNFθ (a)− F̃†(a)
∥∥∥

L2
≤ δ .
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One challenge in the current setup is that there is no assurance that ˜N defines a mapping Hs→
Hs′ , particularly when s′ > s. To address this limitation, we incorporate an additional FNO layer
L̃ : L2→ Hs′ . Leveraging Lemma 5.2, we obtain a single-layer FNO v 7→ L̃ (v), which satisfies
the equation L̃ (v) = L̃ (PNv) for all v, and establishes a continuous operator Hs′ → Hs′ . This
operator ensures that

sup
v∈K′

∥∥∥PNv− L̃ (v)
∥∥∥

Hs′
≤ δ (5.2)

where K′ := PNF̃†(K)⊂ Hs′ is a compact subset of Hs′ .
Next, we introduce a PIFNO denoted by F† := L̃ ◦ F̃† : Hs→ Hs′ . F† represents a continuous

operator Hs→ Hs′ , structured as the composition

Hs F̃†
−→ L2 PN−→ Hs′ L̃−→ Hs′,

consisting of continuous operators. For any a ∈ K, we establish the following bound∥∥∥PNFθ (a)−F†(a)
∥∥∥

Hs′
≤
∥∥∥PNFθ (a)−PNF̃†(a)

∥∥∥
Hs′

+
∥∥∥PNF̃†(a)−F†(a)

∥∥∥
Hs′

≤CNs′
∥∥∥PNFθ (a)− F̃†(a)

∥∥∥
L2
+
∥∥∥PNF̃†(a)− L̃

(
PNF̃†(a)

)∥∥∥
Hs′

.

We employ the inequality ‖PNv‖Hs′ ≤CNs′ ‖PNv‖L2 with a constant C = C
(
Td,s′

)
> 0, indepen-

dent of N. Additionally, note that F†(a) = L̃ (F̃†(a)) = L̃
(

PNF̃†(a)
)

. So,

CNs′
∥∥∥PNFθ (a)− F̃†(a)

∥∥∥
L2
≤CNs′

δ .

The bound (5.2) implies that
∥∥∥PNF̃†(a)− L̃

(
PNF̃†(a)

)∥∥∥
Hs′

=
∥∥∥PNv− L̃ (v)

∥∥∥
Hs′
≤δ , with v :=

PNF†(a) ∈ K′. We thus obtain∥∥∥PNFθ (a)−F†(a)
∥∥∥

Hs′
≤
(

CNs′+1
)

δ ,

where C = C
(
Td,s′

)
> 0 is independent of δ . Since δ > 0 was arbitrary, we can conclude that

there exists a PIFNO F† : Hs→ Hs′ such that

sup
a∈K
‖Fθ (a)−F†(a)‖Hs′ ≤ sup

a∈K
‖Fθ (a)−PNFθ (a)‖Hs′ + sup

a∈K

∥∥∥PNFθ (a)−F†(a)
∥∥∥

Hs′
≤ ε.

Hence, the result follows. �

Due to Lemma 5.1, given a continuous operator Fθ : Hs (Td)→ L2 (Td), where K ⊂ Hs (Td)
is compact and ε > 0, our goal is to create a PIFNO F† : Hs (Td)→ L2 (Td). This PIFNO should
satisfy supa∈K ‖Fθ (a)−F†(a)‖L2 ≤ ε .

Proof of Theorem 5.1.

Proof. In this proof, we simplify notations by considering da = du = 1, although the general case
with da,du > 1 follows similarly. For any N ∈ N, PN represents the orthogonal Fourier projection
operator. Initially, we observe that if K ⊂ Hs (Td) is compact, basic arguments demonstrate that
the set K̃, defined as K̃ := K∪

⋃
N∈NPNK, remains compact. As Fθ is continuous, its behavior on
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K̃ is uniformly continuous. In other words, there exists a continuity function ω : [0,∞)→ [0,∞),
where ∥∥Fθ (a)−Fθ

(
a′
)∥∥

L2 ≤ ω
(∥∥a−a′

∥∥
Hs

)
,

for all a,a′ ∈ K̃. Note that the expression FN is formulated as follows:

‖Fθ (a)−FN(a)‖L2

≤ ‖Fθ (a)−PNFθ (a)‖L2 +‖PNFθ (a)−PNFθ (PNa)‖L2

≤ ‖Fθ (a)−PNFθ (a)‖L2 +‖Fθ (a)−Fθ (PNa)‖L2

≤ sup
v∈G (K̃)

‖(1−PN)v‖L2 +ω

(
sup
a∈K̃
‖(1−PN)a‖Hσ

)
.

Observe that K̃ is compact, so is the image Fθ (K̃), which leads to

limsup
N→∞

sup
u∈Fθ (K̃)

‖(1−PN)v‖L2 = 0 = limsup
N→∞

sup
a∈K̃
‖(1−PN)a‖Hs .

In essence, there exists N ∈ N such that ‖Fθ −FN(a)‖L2 ≤ ε for all a ∈ K ⊂ K̃.
In the subsequent part of this proof, our aim is to devise a PIFNO approximation of FN . Specif-

ically, we observe that FN establishes a continuous operator FN : L2 (Td)→ L2 (Td) through the
mapping a 7→ PNG (PNa). Moreover, the compact set K remains compact even when considered as
a subset of L2 (Td). Our goal is to demonstrate the existence of a PIFNO F† : L2 (Td)→ L2 (Td),
satisfying supa∈K

∥∥FN(a)−F†(a)
∥∥

L2 < ε. Consequently, the restriction of F† to H∗
(
Td)⊂L2 (Td)

furnishes an approximation of F, ensuring

sup
a∈K
‖Fθ (a)−F†(a)‖L2 < 2ε.

Since ε > 0 was chosen arbitrarily, the assertion naturally follows. As elucidated in the overview,
our proof establishing the existence of an FNO approximating FN relies on a decomposition
scheme, which is defined through the Fourier conjugate operator ĜN . Our objective is to demon-
strate that each operator in the decomposition can be accurately approximated by FNOs. To ac-
complish this, let ε > 0 be arbitrary, and select RK,RK̂,Rĝ > 0, satisfying the conditions

K ⊂ BRK (0) := {‖u‖L2 ≤ RK} ⊂ L2 (Td) ,
FN ◦PN (BRK(0))⊂

[
−RK̂

2 ,
RK̂
2

]2KN
,

F̂N

([
−RK̂,RK̂

]2KN
)
⊂
[
−Rĝ

2 ,
Rĝ
2

]2KN
.

 (5.3)

Introducing RK,RK̂,RĜ serves the purpose of ensuring that each PIFNO in the composition prop-
erly maps its own domain into the subsequent PIFNO’s domain. The PIFNO approximations for
the individual steps in the composition FN = F−1

N ◦FN ◦ (FN ◦PN) are outlined below.

5.3.1. PIFNO approximation of F−1
N . We commence our endeavor by devising a PIFNO approx-

imation for the final step in the composition. To facilitate this, we interpret the mapping

F−1
N : [−R,R]2KN ⊂ R2KN → L2

(
Td
)
,
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as follows:

F−1
N :

{
L2 (Td; [−R,R]2KN

)
→ L2 (Td) ,

{Re(v̂k) , Im(v̂k)}|k|≤N 7→ v(x), (5.4)

where the input {Re(v̂k) , Im(v̂k)}|k|≤N ∈ [−R,R]2KN corresponds to a constant function in the space
L2 (Td; [−R,R]2KN

)
. For non-constant input functions v(x), we apply F−1

N to the constant function
x 7→ fTd v(ξ )dξ to define the mapping (5.4), allowing for general inputs. This mapping can be
approximated with any desired accuracy by a PIFNO F†

IFT : L2 (Td;R2KN
)
→ L2 (Td), satisfying∥∥∥F†

IFT(v̂)−F−1
N (v̂)

∥∥∥
L2
≤ ε/3, (5.5)

for any constant input functions v̂ ∈ L2 (Td; [−R,R]2KN
)
.

5.3.2. PIFNO approximation of F̂N . We view the operator F̂N as a continuous mapping

F̂N :
[
−RK̂,RK̂

]2KN ⊂ R2KN → R2KN .

As
[
−RK̂,RK̂

]2KN is compact, there exists a finite-dimensional canonical neural network F̂† :
R2KN → R2KN such that

sup
v̂∈[−R

ℵ̂
,RK̃]κN

∥∥∥F̂N(v̂)− F̂†(v̂)
∥∥∥
`2
≤ ε/3. (5.6)

Moreover, by (5.3), we deduce

ĜN

([
−RK̂,RK̂

]2KN
)
⊂
[
−

RĜ
2
,
RĜ
2

]2KN

.

Thus, by selecting a neural network approximation F† with adequate precision, we ensure

F̂†
([
−RK̂,RK̂

]2KN
)
⊂
[
−Rĝ,Rĝ

]2κN ,

alongside (5.6). Notably, for v ∈ L2 (Td;R2KN
)
, the corresponding mapping

F̂† : L2
(
Td;R2KN

)
→ L2

(
Td;R2KN

)
, v(x) 7→ F̂†(v(x)),

is essentially an operator featuring solely local layers of the form

v`(x) 7→ σ (A`v`(x)+b`) ,
(

A` ∈ Rdv×dv,b` ∈ Rdv
)
,

where dv := 2 |KN |, i.e., a PIFNO characterized by all P̀ ≡ 0. In particular, denoting Lip(N̂) the
Lipschitz constant of the PIFNO constructed in the previous step, we can ensure that

Lip(F†)
∥∥∥FNPNv−F†

FT(v)
∥∥∥

e
≤ ε/3, ∀v ∈ BRK(0), (5.7)

and furthermore, since by (5.3), we have

FN ◦PN (BRK(0))⊂
[
−

RK̂
2
,
RK̂
2

]2KN

.

We can, in addition, ensure that F†
FT (BRK(0))⊂

[
−RK̂,RK̂

]2KN .



62 T. ZHANG, H. XIAO, D. GHOSH

5.3.3. Error estimate for resulting PIFNO approximation. We now define a PIFNO F†(a) :=
F†

IFT ◦F† ◦F†
FT (a), where the right-hand side terms have been constructed above. We note that

sup
K

∥∥∥FN−F†
∥∥∥

L2
≤ sup

BKK (0)

∥∥∥F−1
N ◦ F̂N ◦FN ◦PN−F†

IFT ◦ F̂† ◦F†
FT

∥∥∥
L2

≤ sup
BκK (0)

∥∥∥F−1
N ◦FN ◦FN ◦PN−F−1

N ◦F† ◦F†
FT

∥∥∥
L2

+ sup
BKK (0)

∥∥∥F−1
N ◦ F̂† ◦F†

FT−F†
IFT ◦ F̂† ◦F†

FT

∥∥∥
L2

≤ sup
BKK (0)

∥∥∥F̂N ◦FN ◦PN− F̂† ◦F†
FT

∥∥∥
L2
+ sup

N̂(NY T(BKK (0)))

∥∥∥F−1
N −F†

IFT

∥∥∥
L2

=: (I)+(II).

For the second term (II), we note that

F̂†
(

F†
FT (BRK(0))

)
⊂ F̂†

([
−RK̂,RK̂

]2KN
)
⊂
[
−Rĝ,Rĝ

]2KN ,

and hence, by (5.5), we can bound

(II)≤ sup
[−RF,Rg]

2KN

∥∥∥F−1
N −F†

IFT

∥∥∥
L2
≤ ε/3.

To estimate the first term (I), we note that

(I) = sup
BKK (0)

∥∥∥F̂N ◦FN ◦PN− F̂† ◦F†
FT

∥∥∥
L2

≤ sup
BπK (0)

∥∥∥F̂N ◦FN ◦PN− F̂† ◦FN ◦PN

∥∥∥
L2
+ sup

BKK (0)

∥∥∥F̂† ◦FN ◦PN− F̂† ◦F†
FT

∥∥∥
L2

=: (Ia)+(Ib).

To estimate (Ia), we note that FN (PN (BRK (0)))⊂
[
−RK̂,RK̂

]2KN , and hence

(Ia)≤ sup
[−R

K̂
,RK̃]

2KN ∥∥∥F̂N− F̂†
∥∥∥

L2
≤ ε/3,

by (5.6). Finally, to estimate (Ib), we note that

(Ib)≤ Lip(F̂†) sup
BKK (0)

∥∥∥FN ◦PN−F†
FT

∥∥∥
L2
≤ ε/3,

by (5.7). Combining these estimates, we conclude that supa∈K
∥∥FN(a)−F†(a)

∥∥
L2 ≤ ε, which

shows that the continuous operator FN can be approximated by a PIFNO F† to any desired accuracy
ε > 0, and together with (2.9 concludes our proof of the universal approximation Theorem 5.1 for
the special case s′ = 0. The general case with s′ ≥ 0 now follows from Lemma 5.2. �
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6. CONCLUSION

In this paper, we proposed a PIFNO, a new neural operator architecture with several advan-
tages compared to prior works. Our approach is inspired by PINN and demonstrates superior
long-term performance, especially when fine dataset resolution is limited. PIFNO is highly conve-
nient to tune, achieves faster convergence, and exhibits minimal need for hyperparameter tuning.
Notably, PIFNO retains performance even when trained on low-resolution datasets and tested on
high-resolution ones, evidencing discretization invariance. However, performance still relies heav-
ily on dataset quality, an aspect that we aim to improve in future work.
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