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Abstract. This paper concerns the study of a class of nonconvex programming problems with data uncer-
tainty in both the objective and constraints. We first introduce two new constraint qualifications in terms
of the tangential subdifferential of the involved functions. Under the new constraint qualifications, we
provide some necessary and sufficient conditions for KKT-type local optimality conditions to hold. Sim-
ilarly, local saddle point theorems and local total Lagrange dualities for robust nonconvex programming
problems are also given.
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1. INTRODUCTION

The classic convex programming problem with infinite inequality constraints has received
much attention and many important results, for example, Farkas lemma, strong duality and
total duality, optimality condition, stability and robustness analysis, have been established in
the last decades; see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and the references therein. Especially,
as a strengthened condition of the Lagrange multiplier, the KKT-type optimality conditions,
and saddle point theorems play important roles in mathematical programming and have been
extensively studied by many authors; see, e.g., [3, 4, 9, 10] and the references therein.

As mentioned in [12], the study of mathematical programming problems that are affected by
data uncertainty is becoming increasingly important in optimization due to the reality of uncer-
tainty in many real-world optimization problems and the importance of identifying and locating
solutions that are immunized against data uncertainty. Thus, mathematical programming prob-
lems under uncertainty received much attention; see, e.g., [13, 14, 15, 16, 17, 18, 19, 20, 21]
and the references therein. In particular, many authors considered the convex programming
problems with data uncertainty in the objective function and/or the constraint functions. By
using the properties of epigraphs and subdifferentials of the involved functions, they introduced
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some constraint qualifications. Under these constraint qualifications, they provided some nec-
essary and sufficient conditions for duality results, optimality conditions, and so on to hold, for
example, Lagrange duality in [12, 13, 14, 16], characterizations of the solution set in [15, 18],
approximate optimality conditions in [22, 23], and saddle point theorems in [19].

Observe that most results in the literature mentioned above were done under the assumption
that the involved functions are convex. However, in practical problems, many problems usually
involve nonconvex functions. Recently, a lot of attention has been focused on tangent convex
programming problems that the objective function and/or the constraint functions are tangent
convex. The tangent convex optimization problem has been studied extensively in the literature
and a series of meaningful results were obtained, for example, optimality conditions in [24, 25,
26, 27, 28, 29, 30], and characterizations of the solution set in [31, 32, 33]. Especially, in [29],
the authors studied a class of semi-infinite programming problems where the objective function
and constraint functions, which were assumed to be perturbed by data uncertainty, are tangent
convex, and they gave some necessary conditions for KKT-type optimality conditions to hold
by using tangential subdifferentials.

Inspired by the works mentioned above, we continue to study the tangent convex program-
ming problem introduced in [29] but in real locally convex Hausdorff topological vector spaces.
By using the tangential subdifferential of the involved functions, we introduce some new con-
straint qualifications. Under those constraint qualifications, some characterizations for the local
optimal solution, the saddle point theorem, and the total Lagrangian duality about this tangent
convex programming problem under data uncertainty are given. Moreover, applications to ro-
bust conic programming are also given. We not only extend and improve some recent known
results in [29] but also provide new results as detailed in Section 5.

This paper is organized as follows. The next section contains some necessary notations and
preliminary results. In Section 3, some new constraint qualifications are provided and several
relationships among them are given. Under those constraint qualifications, some optimality
conditions (of KKT-type) for the tangent convex programming problem are established. In
Section 4, characterizations for the saddle point theorems and the total Lagrangian dualities are
provided. Applications to the robust conic programming problem under data uncertainty are
given in the last section, Section 5.

2. NOTATIONS AND PRELIMINARY RESULTS

Let X be a real locally convex Hausdorff topological vector space, and let X∗ denote the
dual space of X endowed with the weak∗-topology w∗(X∗,X). By 〈x∗,x〉, we denote the value
of the functional x∗ ∈ X∗ at x ∈ X ; i.e., 〈x∗,x〉 = x∗(x). We endow X∗×R with the product
topology of w∗(X∗,X) and the usual Euclidean topology. Let K be a nonempty subset of X .
The positive dual cone K⊕, the indicator function δK , and the support function σK of K are
defined respectively by

K⊕ := {x∗ ∈ X∗ : 〈x∗,x〉 ≥ 0 for each x ∈ K} ,

δK(x) :=
{

0, x ∈ K,
+∞, otherwise,

and
σK(x∗) := sup

x∈K
〈x∗,x〉 for each x∗ ∈ X∗.
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Let x ∈ X . We use ‖x‖ to denote the norm of x and B(x,ε) to denote the neighborhood of x with
radius ε > 0, that is,

B(x,ε) := {y ∈ X : ‖x− y‖ ≤ ε}.
Let T be an arbitrary index set. We use R(T ) to denote the space of real tuples λ := (λt)t∈T with
only finite many λt 6= 0 and let R(T )

+ denote the nonnegative cone of R(T ), that is,

R(T )
+ := {λ = (λt)t∈T ∈ R(T ) : λt ≥ 0, t ∈ T}.

Let f : X → R := R∪ {+∞} be a proper function and define the effective domain of f by
dom f := {x ∈ X : f (x)<+∞} and the subdifferential of f at x ∈ dom f by

∂ f (x) := {x∗ ∈ X∗ : f (x)+ 〈x∗,y− x〉 ≤ f (y) for each y ∈ X} . (2.1)

Furthermore, the normal cone NK(x) of a convex set K ⊆ X at the point x ∈ K is defined by

NK(x) := ∂δK(x) = {x∗ ∈ X∗ : 〈x∗,y− x〉 ≤ 0 for each y ∈ K} .
Let x,d ∈ X . The directional derivative (or Dini derivative) of f at x in direction d is defined

by

f ′(x;d) := lim
θ↓0

f (x+θd)− f (x)
θ

.

We say that f is directionally differentiable at x if its directional derivative exists in all directions
d; and f : X → R is tangentially convex at x if, for every d ∈ X , f ′(x;d) exists, is finite and the
function f ′(x;d) is a convex function of d. Note that f ′(x;d) is positively homogeneous. If f
is tangentially convex at x, then f ′(x; ·) is sublinear. The tangential subdifferential of f at x is
defined by

∂
T f (x) := {x∗ ∈ X∗ : f ′(x;d)≥ 〈x∗,d〉 for all d ∈ X}.

It follows that ∂ T f (x) 6= /0 and f ′(x; ·) is the support function of ∂ T f (x), that is,

f ′(x;d) = max
ξ∈∂ T f (x)

〈ξ ,d〉 for each d ∈ X .

If f is a convex function which has an open domain and x∈ dom f , then f is tangentially convex
at x and ∂ T f (x) = ∂ f (x). If f is Gâteaux differentiable at x ∈ dom f , then f is tangentially
convex at x and ∂ T f (x) = {∇ f (x)}.

Lemma 2.1. [26] Let f ,g be two functions from X to R. If f and g are tangentially convex at
common point x ∈ dom f ∩domg, then

∂
T ( f +g)(x) = ∂

T f (x)+∂
T g(x).

3. NEW CONSTRAINT QUALIFICATIONS AND LOCAL OPTIMATION CONDITIONS

From now on, let X ,Z and Z be real locally convex Hausdorff topological vector spaces,
C ⊆ X be a nonempty convex set, and T be a nonempty infinite index set. Assume that f is a
function from X×Z to R :=R∪{+∞} and gt is a function from X×Z to R for each t ∈ T . We
consider the following nonconvex optimization problem under uncertainty:

(UP)
inf
{

f (x,u)
}

s.t. gt(x,vt)≤ 0, t ∈ T,
x ∈C,
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where uncertain parameters u and vt , t ∈ T , belong to the corresponding convex and compact
sets U ⊆ Z and Vt ⊆ Z, t ∈ T , respectively. To address (UP), it typically involves the association
with the min-max type robust (worst-case) counterpart:

(RP)
inf
{

max
u∈U

f (x,u)
}

s.t. gt(x,vt)≤ 0,∀vt ∈Vt , t ∈ T,
x ∈C,

where one considers the worst case of the uncertain objective w.r.t. the uncertainty set U , and
the uncertain constraints are enforced for every possible value of the parameters within the
uncertainty set Vt .

To study the necessary and sufficient conditions for optimality conditions and saddle point
theorems of the problem (RP), we consider the problem (RP) with linear perturbations:

(RP)p

inf
{

max
u∈U

f (x,u)−〈p,x〉
}

s.t. gt(x,vt)≤ 0,∀vt ∈Vt , t ∈ T,
x ∈C.

In this paper, unless explicity stated otherwise, we always assume that f (·,u) and gt(·,vt), t ∈ T ,
are tangentially convex at each x ∈ X . Denote the feasible set of (RP)p by

A := {x ∈C : gt(x,vt)≤ 0,∀vt ∈Vt , t ∈ T}.
For a given x ∈ A, we define the index set of all active constraints at x by

T (x) := {t ∈ T : gt(x,vt) = 0,∀vt ∈Vt}
and the set of active constraint multipliers at x by

Λ(x) := {λ ∈ R(T )
+ : λtgt(x,vt) = 0,∀vt ∈Vt , t ∈ T}.

Definition 3.1. Let p ∈ X∗. It is said that x ∈ A is a local optimal solution of (RP)p if there
exists ε > 0 such that

max
u∈U

f (x,u)−〈p,x〉 ≤max
u∈U

f (y,u)−〈p,y〉 for each y ∈ B(x,ε)∩A.

Proposition 3.1. Let p ∈ X∗ and x ∈ intA. Then x is a local optimal solution of (RP)p if and
only if p ∈ ∂ T (max

u∈U
f (·,u)+δA)(x).

Proof. Let x be a local optimal solution (RP)p. Then, by definition, there exists ε > 0 such that
B(x,ε)⊆ A and

max
u∈U

f (x,u)−〈p,x〉 ≤max
u∈U

f (z,u)−〈p,z〉 for each z ∈ B(x,ε). (3.1)

Let y ∈ X and 0 < θ < ε

‖x−y‖ . Then x+ θ(y− x) ∈ B(x,ε) ⊆ A. Thus, δA(x+ θ(y− x)) =
δA(x) = 0. Hence, by (3.1),

lim
θ↓0

max
u∈U

f (x+θ(y− x),u)+δA(x+θ(y− x))−max
u∈U

f (x,u)−δA(x)

θ
≥ 〈p,y− x〉, (3.2)

that is, p ∈ ∂ T (max
u∈U

f (·,u)+δA)(x).
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Conversely, Suppose that p ∈ ∂ T (max
u∈U

f (·,u)+δA)(x). Then (3.2) holds for each y ∈ X . Let

y∈ X be such that ‖y−x‖= 1. Then, by (3.2), there exists εy > 0 such that, for each θy ∈ (0,εy),

max
u∈U

f (x+θy(y− x),u)+δA(x+θy(y− x))−max
u∈U

f (x,u)−δA(x)

θy
≥ 〈p,y− x〉.

Let ε := min
‖x−y‖=1

{εy}. By the above inequality, for each θ ∈ (0,ε),

max
u∈U

f (x+θ(y− x),u)+δA(x+θ(y− x))−max
u∈U

f (x,u)−δA(x)≥ 〈p,θ(y− x)〉.

Thus, for each θ ∈ (0,ε) and z = x+θ(y− x), we see that z ∈ B(x,ε) and

max
u∈U

f (z,u)+δA(z)−max
u∈U

f (x,u)≥ 〈p,z− x〉.

This implies that x is a local optimal solution of (RP)p. The proof is complete. �

Let x ∈ A, v = (vt)t∈T ∈ V := ∏
t∈T

Vt and U(x) := {u ∈U : f (x,u) = max
u∈U

f (x,u)}. For sim-

plicity, we denote

Ω1(x) :=
⋃

u∈U(x)

∂
T f (·,u)(x)+

⋃
λ∈Λ(x),v∈V

∑
t∈T

λt∂
T gt(·,vt)(x)+NC(x)

and

Ω2(x) :=
⋃

(λ ,u,v)∈Λ(x)×U(x)×V

∂
T
(

f (·,u)+ ∑
t∈T

λtgt(·,vt)+δC

)
(x).

Then, the following inclusions hold.

Proposition 3.2. Let x ∈ intA. Then

Ω1(x)⊆Ω2(x)⊆ ∂
T (max

u∈U
f (·,u)+δA)(x).

Proof. Let p ∈Ω1(x). Then there exists (λ ,u,v) ∈ Λ(x)×U(x)×V such that

p ∈ ∂
T f (·,u)(x)+ ∑

t∈T
λ t∂

T gt(·,vt)(x)+NC(x),

which implies that there exist α ∈ ∂ T f (·,u)(x) and βt ∈ ∂ T gt(·,vt)(x), t ∈ T such that p−α−
∑

t∈T
λ tβt ∈ NC(x). Thus, by the definitions of tangential subdifferential and normal cone, we

have that, for each y ∈C,

lim
θ↓0

f (x+θ(y− x),u)− f (x,u)
θ

≥ 〈α,y− x〉, (3.3)

lim
θ↓0

gt(x+θ(y− x),vt)−gt(x,vt)

θ
≥ 〈βt ,y− x〉, t ∈ T, (3.4)

and
〈p−α−∑

t∈T
λ tβt ,y− x〉 ≤ 0. (3.5)
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Note that x ∈ intA. It follows that there exists ε > 0 such that B(x,ε) ⊆ A. Let y ∈ C and
0 < θ < ε

‖x−y‖ . Then x+θ(y− x) ∈ B(x,ε)⊆ A. Thus, δC(x+θ(y− x)) = δA(x+θ(y− x)) =
δA(x) = δC(x) = 0. Hence, it follows by (3.3)-(3.5) that

lim
θ↓0

( f (·,u)+ ∑
t∈T

λ tgt(·,vt)+δC)(x+θ(y− x))− ( f (·,u)− ∑
t∈T

λ tgt(·,vt)+δC)(x)

θ
(3.6)

≥ 〈p,y− x〉,
which implies that

p ∈ ∂
T ( f (·,u)+ ∑

t∈T
λ tgt(·,vt)+δC)(x), (3.7)

and hence, p ∈Ω2(x). Therefore, Ω1(x)⊆Ω2(x).
Below we verify that Ω2(x)⊆ ∂ T (max

u∈U
f (·,u)+δA)(x). To do this, let p ∈Ω2(x). Then there

exists (λ ,u,v) ∈ R(T )
+ ×U×V such that

λ tgt(x,vt) = 0 for each t ∈ T, (3.8)

f (x,u) = max
u∈U

f (x,u) (3.9)

and (3.7) hold. Note that x ∈ intA. It follows that there exists ε > 0 such that B(x,ε) ⊆ A. Let
y ∈ X and 0 ≤ θ ≤ ε

‖x−y‖ . Then, x+ θ(y− x) ∈ B(x,ε) ⊆ A and (3.6) holds by (3.7). Thus,
δC(x+θ(y− x)) = δA(x+θ(y− x)) = δA(x) = δC(x) = 0. Hence,

lim
θ↓0

max
u∈U

f (x+θ(y− x),u)+δA(x+θ(y− x))−max
u∈U

f (x,u)−δA(x)

θ

≥ lim
θ↓0

f (x+θ(y− x),u)+ ∑
t∈T

λ tgt(x+θ(y− x),vt)− f (x,u)− ∑
t∈T

λ tgt(x,vt)

θ

≥〈p,y− x〉,

where the first inequality holds by (3.8), (3.9), and λ tgt(x+θ(y−x),vt)≤ 0 for each t ∈ T and
the last inequality holds by (3.6). Thus, by definition, we see that p ∈ ∂ T (max

u∈U
f (·,u)+δA)(x)

and hence Ω2(x)⊆ ∂ T (max
u∈U

f (·,u)+δA)(x). The proof is complete. �

To establish optimality conditions and saddle point theorems for robust programming prob-
lem (RP), we introduce the following robust type constraint qualifications with tangential sub-
differential:

(RTCQ) ∂
T (max

u∈U
f (·,u)+δA)(x) = Ω1(x). (3.10)

(WRTCQ) ∂
T (max

u∈U
f (·,u)+δA)(x) = Ω2(x). (3.11)

Remark 3.1. Let x ∈ intA. Then by Proposition 3.2, we see that (3.10) and (3.11) can be
equivalently replaced by

∂
T (max

u∈U
f (·,u)+δA)(x)⊆Ω1(x),

and
∂

T (max
u∈U

f (·,u)+δA)(x)⊆Ω2(x).
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In addition, we also see that the following implication holds:

the condition (RTCQ)⇒ the condition (WRTCQ).

Below we give some local optimality conditions for robust programming problem (RP)p in
terms of the condition (RTCQ).

Theorem 3.1. Let x ∈ intA. Then the following statements are equivalent.
(i) The condition (RTCQ) holds at x.
(ii) For each p∈X∗, x is a local optimal solution of (RP)p if and only if there exists (λ ,u,v)∈

R(T )
+ ×U×V such that

p ∈ ∂
T f (·,u)(x)+ ∑

t∈T
λ t∂

T gt(·,vt)(x)+NC(x),

λ tgt(x,vt) = 0 for each t ∈ T (3.12)

and
f (x,u) = max

u∈U
f (x,u). (3.13)

Proof. By Proposition 3.1, (ii) is equivalent to

p ∈ ∂
T (max

u∈U
f (·,u)+δA)(x)⇔ p ∈Ω1(x) for each p ∈ X∗,

which is equivalent to (i). The proof is complete. �

If p = 0, then we obtain by Theorem 3.1 the following corollary straightforwardly.

Corollary 3.1. Let x ∈ intA. Suppose that the condition (RTCQ) holds at x. If x is a local
optimal solution of (RP), then there exists (λ ,u,v) ∈R(T )

+ ×U×V such that (3.12)-(3.13) hold
and

0 ∈ ∂
T f (·,u)(x)+ ∑

t∈T
λ t∂

T gt(·,vt)(x)+NC(x). (3.14)

Remark 3.2. In the case when X := Rn, Z := Rm, Z := Rq, f : Rn×U → R, gt : Rn×V →
R, t ∈ T are proper functions. Assuming that f is continuous on Rn×U , f (x, ·) is concave
on U , and the mapping x 7−→ f ′(·,u)(x;d) is upper semicontinuous on Rn, the authors in [29]
obtained a similar result via the following condition

NA(x)⊆
⋃

λ∈Λ(x),v∈V

(
∑
t∈T

λt∂
T gt(·,vt)(x)

)
+NC(x). (3.15)

Note that, in this case, by [29, Proposition 3.1],

∂
T (max

u∈U
f (·,u))(x) =

⋃
u∈U(x)

∂
T f (·,u)(x).

Let x ∈ intA. Then, by Lemma 2.1,

∂
T (max

u∈U
f (·,u)+δA)(x) = ∂

T (max
u∈U

f (·,u))(x)+NA(x),

which together with (3.15) and Remark 3.1 implies that the condition (RTCQ) holds at x. There-
fore, Theorem 3.1 extends and improves the corresponding one in [29, Theorem 3.1].
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4. LOCAL SADDLE POINT THEOREMS

Let p ∈ X∗. Define the Lagrange function Lp on C×R(T )
+ ×U×V by

Lp(x,λ ,u,v) := f (x,u)+ ∑
t∈T

λtgt(x,vt)−〈p,x〉

for each (x,λ ,u,v) ∈C×R(T )
+ ×U×V.

Consider the problem (RP)p and its Lagrange dual problem

(RD)p sup
(λ ,u,v)∈R(T )

+ ×U×V

inf
x∈C

Lp(x,λ ,u,v).

For simplicity, we denote L0 by L, that is,

L(x,λ ,u,v) := f (x,u)+ ∑
t∈T

λtgt(x,vt) for each (x,λ ,u,v) ∈C×R(T )
+ ×U×V

and denote problem (RD)0 by (RD), that is,

(RD) sup
(λ ,u,v)∈R(T )

+ ×U×V

inf
x∈C

L(x,λ ,u,v).

As usual, we use the notations v((RP)p) and v((RD)p) for the optimal values of problems (RP)p
and (RD)p, respectively. Then, the following inequality holds:

v((RD)p)≤ v((RP)p) for each p ∈ X∗,

that is, the stable weak duality holds between (RP) and (RD).
Let p ∈ X∗. It is said that (x,λ ,u,v) ∈C×R(T )

+ ×U×V is a local saddle point of Lp if there
exists ε > 0 such that, for each (x,λ ,u,v) ∈ (B(x,ε)∩C)×R(T )

+ ×U×V ,

Lp(x,λ ,u,v)≤ Lp(x,λ ,u,v)≤ Lp(x,λ ,u,v).

Theorem 4.1. Let x ∈ intA. Then the following statements are equivalent.
(i) The condition (WRTCQ) holds at x.
(ii) For each p ∈ X∗, if x is a local optimal solution of (RP)p, then there exists (λ ,u,v) ∈

R(T )
+ ×U×V such that (x,λ ,u,v) is a local saddle point of Lp.
(iii) For each p ∈ X∗, if x is a local optimal solution of (RP)p, then there exists B(x,ε) ⊆ A

such that

max
u∈U

f (x,u)−〈p,x〉 = inf
x∈B(x,ε)

{max
u∈U

f (x,u)−〈p,x〉}

= max
(λ ,u,v)∈R(T )

+ ×U×V
inf

x∈B(x,ε)
Lp(x,λ ,u,v).

Proof. (i)⇒(ii) Suppose that (i) holds. Let p∈ X∗ and let x be a local optimal solution of (RP)p.
Then, by Proposion 3.1, we see p ∈ ∂ T (max

u∈U
f (·,u)+δA)(x). Hence, it follows from condition

(WRTCQ) that there exists (λ ,u,v) ∈ R(T )
+ ×U×V such that (3.12)-(3.13) hold and

p ∈ ∂
T ( f (·,u)+ ∑

t∈T
λ tgt(·,vt)+δC)(x), (4.1)
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which implies that, for each y ∈ X ,

lim
θ↓0

( f (·,u)+ ∑
t∈T

λ tgt(·,vt)+δC)(x+θ(y− x))− ( f (·,u)− ∑
t∈T

λ tgt(·,vt)+δC)(x)

θ
(4.2)

≥ 〈p,y− x〉.

Let y ∈ X be such that ‖y− x‖ = 1. Then, by (4.2), there exists εy > 0 such that, for each
θy ∈ (0,εy),

( f (·,u)+ ∑
t∈T

λ tgt(·,vt)+δC)(x+θy(y− x))− ( f (·,u)− ∑
t∈T

λ tgt(·,vt)+δC)(x)

θy

≥ 〈p,y− x〉.

Let ε := min
‖y−x‖=1

{εy}. From the inequality above, for each θ ∈ (0,ε), one obtains that

( f (·,u)+ ∑
t∈T

λ tgt(·,vt)+δC)(x+θ(y− x))− ( f (·,u)−∑
t∈T

λ tgt(·,vt)+δC)(x)

≥ 〈p,θ(y− x)〉.

Thus, for each θ ∈ (0,ε) and x = x+θ(y− x), we see that x ∈ B(x,ε) and

f (x,u)+ ∑
t∈T

λ tgt(x,vt)+δC(x)−〈p,x〉 ≥ f (x,u)+ ∑
t∈T

λ tgt(x,vt)−〈p,x〉.

This implies that

Lp(x,λ ,u,v)≥ Lp(x,λ ,u,v) for each x ∈ B(x,ε)∩C. (4.3)

Below we show that

Lp(x,λ ,u,v)≥ Lp(x,λ ,u,v) for each (λ ,u,v) ∈ R(T )
+ ×U×V. (4.4)

To do this, we find, for each (λ ,u,v) ∈ R(T )
+ ×U×V , that

f (x,u)+ ∑
t∈T

λ tgt(x,vt)−〈p,x〉 = max
u∈U

f (x,u)−〈p,x〉

≥ max
u∈U

f (x,u)+ ∑
t∈T

λtgt(x,vt)−〈p,x〉

≥ f (x,u)+ ∑
t∈T

λtgt(x,vt)−〈p,x〉,

where the first equality holds by (3.12)-(3.13) and the first inequality holds by λtgt(x,vt)≤ 0 for
each t ∈ T . Thus, (4.4) holds. This together with (4.3) implies that (x,λ ,u,v) is a local saddle
point of Lp.

(ii)⇒(i) Suppose that (ii) holds. Let p ∈ ∂ T (maxu∈U f (·,u)+ δA)(x). Then, by Proposition
3.1, x is a local optimal solution of (RP)p. It follows from (ii) that there exists (λ ,u,v) ∈
R(T )
+ ×U ×V such that (x,λ ,u,v) is a local saddle point of Lp. This implies that there exists

B(x,ε) such that (4.3) and (4.4) hold. Hence, by (4.3), we get that for each x ∈ B(x,ε)∩C,

f (x,u)+ ∑
t∈T

λ tgt(x,vt)− f (x,u)−∑
t∈T

λ tgt(x,vt)≥ 〈p,x− x〉. (4.5)
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Note that x ∈ intA. It follows that there exists ε1 > 0 such that B(x,ε1)⊆ A. Let ε = min{ε,ε1}.
Then B(x,ε) ⊆ B(x,ε)∩C. Let y ∈ X and let 0 < θ < ε

‖x−y‖ . Then, x+ θ(y− x) ∈ B(x,ε).
Thus, δC(x+θ(y− x)) = δC(x) = 0. This together with (4.5) implies that (4.2) holds, so does
(4.1). Therefore, to show (i), we only need to show that (3.12) and (3.13) hold. To do this, by
(4.4), we see that, for each (λ ,u,v) ∈ R(T )

+ ×U×V ,

f (x,u)+ ∑
t∈T

λtgt(x,vt)−〈p,x〉 ≤ f (x,u)+ ∑
t∈T

λ tgt(x,vt)−〈p,x〉. (4.6)

Take u = u and λ = λ̂ ∈ R(T )
+ , vt = v̂t ∈ Vt such that λ̂tgt(x, v̂t) = 0 for each t ∈ T . Then

∑
t∈T

λ tgt(x,vt)≥ 0. Note that x ∈ intA. It follows that λ tgt(x,vt)≤ 0 for each t ∈ T. Thus, (3.12)

holds. Next, we take λ = λ̂ ∈ R(T )
+ , vt = v̂t ∈ Vt such that λ̂tgt(x, v̂t) = 0 for each t ∈ T . Then

f (x,u)≤ f (x,u) for each u ∈U , which implies that (3.13) holds.
(ii)⇒(iii) Suppose that (ii) holds. Let p ∈ X∗, and let x be a local optimal solution of (RP)p.

Then there exists B(x,ε1)⊆ A such that

max
u∈U

f (x,u)−〈p,x〉 ≤max
u∈U

f (x,u)−〈p,x〉 for each x ∈ B(x,ε1). (4.7)

By (ii), we have that there exists ε2 > 0 such that

f (x,u)+ ∑
t∈T

λ tgt(x,vt)−〈p,x〉 ≥ f (x,u)+ ∑
t∈T

λ tgt(x,vt)−〈p,x〉 (4.8)

holds for each x ∈ B(x,ε2) ⊆ C and (4.6) holds for each (λ ,u,v) ∈ R(T )
+ ×U ×V . Hence, by

using the same process in (ii)⇒(i), we see that (3.12) and (3.13) hold. This together with (4.8)
implies that

f (x,u)+ ∑
t∈T

λ tgt(x,vt)−〈p,x〉 ≥max
u∈U

f (x,u)−〈p,x〉 for each x ∈ B(x,ε2). (4.9)

Let ε := min{ε1,ε2}. It follows by (4.9) and (4.7) that

inf
x∈B(x,ε)

Lp(x,λ ,u,vt) ≥ inf
x∈B(x,ε2)

Lp(x,λ ,u,vt)

≥ max
u∈U

f (x,u)−〈p,x〉

= inf
x∈B(x,ε1)

{max
u∈U

f (x,u)−〈p,x〉}

= inf
x∈B(x,ε)

{max
u∈U

f (x,u)−〈p,x〉}.

Thus,

max
(λ ,u,v)∈R(T )

+ ×U×V
inf

x∈B(x,ε)
Lp(x,λ ,u,v) ≥ inf

x∈B(x,ε)
{max

u∈U
f (x,u)−〈p,x〉}.

Next, we show that

max
(λ ,u,v)∈R(T )

+ ×U×V
inf

x∈B(x,ε)
Lp(x,λ ,u,v) ≤ inf

x∈B(x,ε)
{max

u∈U
f (x,u)−〈p,x〉}. (4.10)
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To do this, note that, for each (x,λ ,u,v) ∈ B(x,ε)×R(T )
+ ×U×V ,

max
u∈U

f (x,u)−〈p,x〉 ≥ f (x,u)−〈p,x〉

≥ f (x,u)+ ∑
t∈T

λtgt(x,vt)−〈p,x〉.

This implies that (4.10) holds. Therefore, (iii) is valid.
(iii)⇒(ii) Suppose that (iii) holds. Let x be a local optimal solution of (RP)p. Then there

exist ε > 0 and (λ ,u,v) ∈ R(T )
+ ×U×V such that B(x,ε)⊆ A and

inf
x∈B(x,ε)

Lp(x,λ ,u,v) = max
u∈U

f (x,u)−〈p,x〉. (4.11)

Thus,
f (x,u)+ ∑

t∈T
λ tgt(x,vt)≥max

u∈U
f (x,u),

which together with λ tgt(x,vt)≤ 0 for each t ∈ T yields that (3.12) and (3.13) hold. Moreover,
we note that, for each (x,λ ,u,v) ∈ B(x,ε)×R(T )

+ ×U×V ,

f (x,u)+ ∑
t∈T

λ tgt(x,vt)−〈p,x〉 ≥ max
u∈U

f (x,u)−〈p,x〉

= f (x,u)+ ∑
t∈T

λ tgt(x,vt)−〈p,x〉

≥ f (x,u)+ ∑
t∈T

λtgt(x,vt)−〈p,x〉,

where the first inequality holds by (4.11) and the first equality is true due to (3.12) and (3.13),
and the last inequality holds by λtgt(x,vt) ≤ 0 for each t ∈ T . This implies that (x,λ ,u,v) is a
local saddle point of Lp. The proof is complete. �

The following example supplies a simple case where Corollary 3.1 and Theorem 4.1 are
applicable.

Example 4.1. Let X = Z = Z :=R, C := [−1,1], U := [0,1], and Vt := [1,1+ t], t ∈ T := [0,1].
Consider the functions

f (x,u) :=
{
−x2−2x−u2, if x≤ 0,
x2−u2, if x > 0

and

gt(x,vt) :=
{
−vtx2−1, if x≤ 0,
t
vt

x−1, if x > 0,

where u ∈U and vt ∈Vt , t ∈ T . Clearly, A = [−1,1], x = 0 is a local optimal solution of (RP).
By simple calculations, Λ(x) = {0},

f ′(·,u)(x;d) = (max
u∈U

(·,u)+δA)
′(x;d) =

{
−2d, if d ≤ 0,
0, if d > 0,

and

g′t(·,vt)(x,d) =
{

0, if d ≤ 0,
t
vt

d, if d > 0.
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Then,
∂

T f (·,u)(x) = ∂
T (max

u∈U
(·,u)+δA)(x) = [−2,0]

and

∂
T gt(·,vt)(x) =

[
0,

t
vt

]
for each t ∈ T.

Note that
NC(x) =

⋃
λ∈Λ(x),v∈V

∑
t∈T

λt∂
T gt(·,vt)(x) = {0}.

It follows that condition (RTCQ) is satisfied at x. Then, by Corollary 3.1, there exists (λ ,u,v)∈
R(T )
+ ×U×V such that (3.12)- (3.14) hold. In fact, let u = λ = 0. It is easy to see that f (x,u) =

max
u∈U

f (x,u), λ tgt(x,vt) = 0 for all v ∈V and

0 ∈ ∂
T f (·,u)(x)+ ∑

t∈T
λ t∂

T gt(·,vt)(x)+NC(x).

Thus, Corollary 3.1 is applicable. Below we illustrate that Theorem 4.1 holds. To do this, we
see that ⋃

(λ ,u,v)∈Λ(x)×U(x)×V

∂
T
(

f (·,u)+ ∑
t∈T

λtgt(·,vt)+δC

)
(x) = [−2,0].

It follow that the condition (WRTCQ) is satisfied at x. Note that

L(x,λ ,u,v) =

 −x2−2x−u2 + ∑
t∈T

λt(−vtx2−1), if x≤ 0,

x2−u2 + ∑
t∈T

λt(
t
vt

x−1), if x > 0.

Let ε = 1
2 , u = 0, λ = 0, and v ∈ V . Then, for each (x,λ ,u,v) ∈ B(x,ε)×R(T )

+ ×U ×V ,
L(x,λ ,u,v) = −u2 + ∑

t∈T
−λt ≤ 0, L(x,λ ,u,v) = 0, and L(x,λ ,u,v) ≥ 0. This implies that

(x,λ ,u,v) is a local saddle point of L. Furthermore,

max
u∈U

f (x,u)−〈p,x〉 = inf
x∈B(x,ε)

{max
u∈U

f (x,u)−〈p,x〉}

= inf
x∈B(x,ε)

Lp(x,λ ,u,v) = 0.

Thus, Theorem 4.1 is applicable.

5. APPLICATIONS TO ROBUST CONIC PROGRAMMING

Throughout this section, let X ,Y,Z, and Z be real locally convex Hausdorff topological vector
spaces. For each p ∈ X∗, we consider the following uncertain conic programming problem:

(UCP)p
inf
{

f (x,u)−〈p,x〉
}

s.t. x ∈C,g(x,v) ∈ −S,

where f is a function from X ×Z to R, g is a function from X ×Z to Y , C ⊆ X is a nonempty
convex set, S ⊆ Y is a nonempty closed convex cone, u and v are uncertain parameters belong
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to the corresponding convex and compact sets U ⊆ Z and V ⊆ Z, respectively. As usual, we
consider the minmax type robust (worst-case) problem:

(RCP)p

inf
{

max
u∈U

f (x,u)−〈p,x〉
}

s.t. g(x,v) ∈ −S,∀v ∈V,
x ∈C,

where the uncertain objective and constraint are enforced for every possible value of the param-
eters within the corresponding uncertainty sets U and V . In this section, we always assume that
f (·,u) and g(·,v) are tangentially convex at each x ∈ X .

For each λ ∈ S⊕, we define

(λg)(x) :=
{
〈λ ,g〉, if x ∈ domg,
+∞, otherwise.

It is easy to see that, for each x ∈C and v∈V , g(x,v)∈−S if and only if (λg)(x,v)≤ 0 for each
λ ∈ S⊕. Moreover, problem (UCP)p can be reformulated as an example of (UP)p by setting

T = S⊕, gλ = (λg) for each λ ∈ T = S⊕.

As before, we use A to denote the solution set:

A := {x ∈C : g(x,v) ∈ −S,∀v ∈V}= {x ∈C : (λg)(x,v)≤ 0,∀v ∈V,λ ∈ S⊕}.

The corresponding Lagrangian function Lp and the dual problem (RCD)p can be expressed
respectively as

Lp(x,λ ,u,v) = f (x,u)+(λg)(x,v)−〈p,x〉 for each (x,λ ,u,v) ∈C×S⊕×U×V

and
(RCD)p max

(λ ,u,v)∈S⊕×U×V
inf
x∈C

Lp(x,λ ,u,v).

Generalizing the corresponding notions in Section 3 to suit the conic programming, we in-
troduce the following constraint qualifications.

(C-RTCQ) ∂
T (max

u∈U
f (·,u)+δA)(x)

=
⋃

u∈U(x)

∂
T f (·,u)(x)+

⋃
λ∈Λ(x),v∈V

∂
T (λg)(·,v)(x)+NC(x),

(C-WRTCQ) ∂
T (max

u∈U
f (·,u)+δA)(x)

=
⋃

(u,λ ,v)∈U(x)×Λ(x)×V

∂
T ( f (·,u)+(λg)(·,v)+δC)(x),

where x ∈ A, Λ(x) := {λ ∈ S⊕ : (λg)(x,v) = 0,∀v ∈V}, and

U(x) := {u ∈U : f (x,u) = max
u∈U

f (x,u)}.

Thus, by Theorems 3.1 and 4.1, we have the following theorems straightforwardly.
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Theorem 5.1. Let x ∈ intA. Then the following statements are equivalent.
(i) The condition (C-RTCQ) holds at x.
(ii) For each p ∈ X∗, x is a local optimal solution of (RCP)p if and only if there exists

(λ ,u,v) ∈ S⊕×U×V such that λg(x,v) = 0, f (x,u) = max
u∈U

f (x,u) and

p ∈ ∂
T f (·,u)(x)+∂

T (λg)(·,v)(x)+NC(x).

Theorem 5.2. Let x ∈ intA. Then the following statements are equivalent.
(i) The condition (C-WRTCQ) holds at x.
(ii) For each p ∈ X∗, if x is a local optimal solution of (RCP)p, then there exists (λ ,u,v) ∈

S⊕×U×V such that (x,λ ,u,v) is a local saddle point of Lp.
(iii) For each p ∈ X∗, if x is a local optimal solution of (RCP)p, then there exists B(x,ε)⊆ A

such that

max
u∈U

f (x,u)−〈p,x〉 = inf
x∈B(x,ε)

{
max
u∈U

f (x,u)−〈p,x〉
}

= max
(λ ,u,v)∈S⊕×U×V

inf
x∈B(x,ε)

L(x,λ ,u,v).
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