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Abstract. In this study, we investigate an uncertain multiobjective optimization problem through a set-
valued optimization problem, and introduce a Newton method to find robust weakly efficient points of
the considered uncertain optimization problem. We assume that the problem under consideration has
uncertainty only in the objective function, and the involved uncertainty set is of finite cardinality. Also,
for each uncertain scenario, the components of the objective function of the problem are assumed to
be twice continuously differentiable and locally strong convex. Utilizing the concept of a partition set
from set optimization, we formulate a class of vector optimization problems to solve the formulated set
optimization problem pertaining to the considered uncertain multiobjective optimization. We derive a
Newton method to solve this class of vector optimization problems that facilitates generating a sequence
of points whose any limit point is a weakly robust efficient solution of the considered problem. The
proposed method is found to have a local superlinear convergence rate under standard hypotheses with a
regularity condition. Additionally, assuming Lipschitz continuity of the Hessian of the objective function
for all scenarios, we show local quadratic convergence of the method. Finally, we provide numerical
examples to discuss and illustrate the performance of the proposed method.

Keywords. Gerstewitz functional; Newton’s method; Partition set; Set optimization; Uncertain opti-
mization; Upper set order relation.

1. INTRODUCTION

Uncertain multi-objective optimization problems (UMOPs) represent a class of optimization
problems that involve multiple conflicting objectives in the presence of uncertain scenarios.
In many real-world problems, the objectives are uncertain due to incomplete information, im-
precise data, or unpredictable factors [1, 2]. Analyzing the effects of uncertain scenarios in
optimization serves several key purposes:

(i) Trade-off analysis: Uncertainties often introduce trade-offs between conflicting objec-
tives. Analyzing the effects of uncertainties helps to understand the compromises and
synergies between different goals, enabling decision-makers to make informed choices
that align with their preferences and priorities.
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(ii) Risk mitigation: By exploring different uncertain scenarios, decision-makers can assess
the potential risks associated with each scenario.

(iii) Decision support: The analysis of uncertain scenarios decisions not only optimize mul-
tiple objectives but also consider the resilience and adaptability of solutions under dif-
ferent uncertain conditions.

(iv) Flexibility and adaptability: Solutions prove effective across a spectrum of uncertain
scenarios demonstrate greater flexibility and adaptability.

The field of uncertain (robust) optimization is expanding rapidly. For a comprehensive un-
derstanding of key concepts and applications, we recommend reviewing the research contri-
butions of Ben-Tal, El Ghaoui, and Nemirovski [3], as well as the work by Kouvelis and Yu
[4]. Kuroiwa and Lee [5] expanded the concept of min-max robustness from single-objective
to multi-objective cases. A solution is called robust if it minimizes the vector of worst-case
outcomes across all components. Ehrgott et al. [6] broadened this definition by replacing the
objective function with a set-valued objective function. Building on this, further extensions
to multi-objective robustness concepts were introduced in [7], providing methods to compute
both strictly and weakly optimal solutions for UMOPs. In [8, 9], new definitions for UMOPs
were proposed based on various set-order relations [10, 11]. Ide et al. [12] extended exist-
ing concepts and introduced new multi-objective robustness concepts. For additional insights,
references [13, 14, 15, 16, 17, 18] offer detailed information on these developments.

This paper addresses UMOPs, which inherently involve non-deterministic parameters. To
render these problems deterministic, commonly min-max counterparts are employed, which
Soyster [19] introduced and rigorously studied by Ben-Tal and Nemirovski [20]. Solving
UMOPs typically involves using optimization algorithms that can handle both multi-objective
and uncertainty nature of the problem.

On the topic of numerical methods to solve UMOPs, the authors in [21] successfully ad-
dressed the UMOPs with a finite uncertainty set. In order to transform an uncertain optimiza-
tion problem into a deterministic one, they employed the concept of an objective-wise robust
counterpart. It is noteworthy that the set of all efficient solutions of the objective-wise robust
counterpart is a very small subset of the whole set of robust optimal solutions of UMOPs. Thus,
in this paper, we aim to derive a Newton method for UMOPs without using the objective-wise
robust counterpart; in fact, we formulate a set optimization problem whose efficient points are
robust efficient points of the considered UMOP. Towards the methods, we relook afresh at the
min-max robust counterpart of UMOPs from the viewpoint of its set-valued optimization re-
formulation. After transforming UMOPs into their min-max counterparts, they resembled set-
valued optimization problems. We solve this set-valued optimization problem by employing
the Newton method with the upper set ordering relation, providing a robust efficient solution
for UMOPs directly. We formulate a sequence of vector optimization problems (VOP) for the
considered UMOPs by applying the concept of the partition set, defined in [22], to solve a set
optimization problem. Our demonstration establishes that the set of weakly efficient solutions
of the VOP family for a UMOP is the set of weakly robust efficient solutions of the UMOP.
To address the optimality conditions of the considered UMOP, we develop a Newton algorithm
that uses the partition set of the maximal elements of the set of all objective values correspond-
ing to each scenario with respect to the ordering cone of the considered UMOP. In essence, we
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endeavor to comprehensively capture robust efficiency by systematically examining and parti-
tioning the maximal elements within the uncertainty set of all objective values corresponding
to each scenario. This approach seeks to provide a more exhaustive exploration of the solution
space, aiming to uncover a broader set of efficient solutions that may have been overlooked in
the previous methodology.

The outline of this paper is as follows. Section 2 introduces efficient solutions for multi-
objective optimization problems and UMOPs. Robust efficient solutions for UMOPs are pre-
sented by using the upper-set order relation. In Section 3, building on the partition set, defined
in [22], a sequence of vector optimization problems is formulated and we establish that the
weakly efficient solution within this VOP family converges to the weakly robust efficient solu-
tion of the UMOP. Section 4 provides a Newton method for UMOPs, exploring its quadratic and
superlinear convergence under specific hypotheses with regularity conditions. Section 5 demon-
strates the method’s performance through numerical examples. Finally, Section 6 concludes by
summarizing the results and suggesting ideas for future research.

2. PRELIMINARIES

A multi-objective optimization problem is a problem that has multiple objectives to be opti-
mized simultaneously. A multi-objective optimization problem is given by

(P)

{
min f (x) = ( f1(x), f2(x), . . . , fm(x))

>

subject to x ∈U ⊆ Rn,
(2.1)

where fi : U → R is a real-valued function, i = 1,2, . . . ,m and U 6= /0 is an open subset of Rn.
For a given y = (y1,y2, . . . ,ym)

> in Rm, we use the following notations throughout:

Rm
= = {y ∈ Rm : y= 0}, the nonnegative orthant of Rm.

Rm
≥ = {y ∈ Rm : y≥ 0}, where y≥ 0 denotes y= 0 but y 6= 0.

Rm
> = {y ∈ Rm : y > 0}, where y > 0 means y j > 0 ∀ j = 1,2, . . . ,m.

Definition 2.1. [23] For a multi-objective optimization problem (P), we call a point x̄ ∈U
(i) efficient if there is no x ∈U \{x̄} such that f (x)≤ f (x̄),

(ii) weakly efficient if there is no x ∈U \{x̄} such that f (x)< f (x̄), and
(iii) strictly efficient if there is no x ∈U \{x̄}, x 6= x̄ such that f (x)5 f (x̄).

In this paper, we deal with the UMOP P(Ω) = {P(ζ ) : ζ ∈Ω} with respect to an ordering
cone C ⊂ Rm, where

P(ζ )

{
min F(x,ζ ) = ( f1(x,ζ ), f2(x,ζ ), . . . , fm(x,ζ ))

>

subject to x ∈U ⊆ Rn,
(2.2)

and Ω is a nonempty subset of Rq. The set Ω represents the set of uncertain (parametric) scenar-
ios for the problem P(Ω). An element in Ω is referred to as a scenario. Note that each element
ζ of Ω gives a multi-objective problem (2.2), and thus elements of Ω, i.e., uncertain scenarios,
are influential for the problem definition of P(Ω).

Throughout the paper, we assume for the class of problems P(Ω) that
(i) uncertainties in the problem formulation are given by finitely many ζ ’s, which constitute

the set Ω⊆ Rq. Precisely, let Ω = {ζ1,ζ2, . . . ,ζp}.
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(ii) The feasible set U is independent of uncertainties, and it is a nonempty open subset of
Rn.

(iii) The cone C ∈ P(Rm) is closed, convex, pointed, and solid; let e ∈ int(C) be a given
element.

(iv) We assume that the vector-valued functions F(·,ζ1), F(·,ζ2), . . ., F(·,ζp) : Rn → Rm

are twice continuously differentiable and locally strong convex.
We use the notation FΩ(x) to denote the set {F(x,ζ ) : ζ ∈Ω}. Note that, for a given P(Ω), FΩ :
U ⇒ Rm is a set-valued function.

Definition 2.2. (Robust efficiency for UMOPs [6]). For a given UMOP P(Ω), we call a feasi-
ble solution x̄ ∈U

(i) robust efficient if there is no x ∈U \{x̄} such that set FΩ(x)⊆ FΩ(x̄)−C, and
(ii) weakly robust efficient if there is no x ∈U \{x̄} such that FΩ(x)⊆ FΩ(x̄)− int(C).

In the next subsection, we give some basic properties of set optimization, and also define
and interrelate robust efficient points of P(Ω) and efficient points of a set-valued optimization
problem with objective function FΩ.

2.1. Basics for set optimization and UMOPs. In this section, we introduce the main notations
used in the paper. The class of all nonempty subsets of Rm is denoted by P(Rm). Furthermore,
all the considered vectors are the column vectors, and we denote the transpose operator with the
symbol>. The notation ‖ ·‖ stands for either the Euclidean norm of a vector or for the standard
spectral norm of a matrix, depending on the context. We also denote the cardinality of a finite
set by |A|. For any p ∈ N, we denote [p] = {1,2, . . . , p}.

Let C be a closed, convex, and pointed cone. Then, it generates a partial order � on Rm (see
[24, 25]), as follows: y� z ⇐⇒ z− y ∈C. Furthermore, if C is a solid cone, one can also find
the strict order ≺, which is defined by y ≺ z ⇐⇒ z− y ∈ int(C). Also, C∗ denotes the polar
cone of C.

In the following definition, we collect the concepts of maximal and weakly maximal elements
of a set with respect to �.

Definition 2.3. (i) The set of maximal elements of A with respect to C is defined as

Max(A,C) = {y ∈ A : (y+C)∩A = {y}}.
(ii) The set of weakly maximal elements of A with respect to C is defined as

WMax(A,C) = {y ∈ A : (y+ int(C))∩A = /0}.

The proof of the following proposition is trivial, we omit the proof here.

Proposition 2.1. Let A ∈ P(Rm) be compact, and C be closed, convex, and pointed cone. Then,
A satisfies the so-called domination property with respect to C, that is, A−C = Max(A,C)−C.

The Gerstewitz scalarizing function also plays an important role in the main results.

Definition 2.4. Let C be closed, convex, pointed, and solid cone. For a given element e∈ int(C),
the Gerstewitz functional associated with e and C is ψe : Rm→ R defined by

ψe(y) = min{t ∈ R : te ∈ y+C}. (2.3)

The useful properties of this function are summarized in the next proposition.
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Proposition 2.2. [26]
(i) ψe is sublinear and Lipschitz on Rm.

(ii) ψe is both monotone and strictly monotone with respect to the partial order �, i.e.,

∀ y,z ∈ Rm : y� z =⇒ ψe(y)≤ ψe(z)

and ∀ y,z ∈ Rm : y≺ z =⇒ ψe(y)< ψe(z),

respectively.
(iii) ψe satisfies the representability property, i.e.,

−C = {y ∈ Rm : ψe(y)≤ 0} and − int(C) = {y ∈ Rm : ψe(y)< 0}.

Definition 2.5. [27] For the given cone C, the upper set less relation �u is the binary relation
defined on P(Rm) as follows, for all A,B ∈ P(Rm),A�u B ⇐⇒ A⊆ B−C. Similarly, the strict
upper set less relation ≺u is the binary relation defined on P(Rm) by, for all A,B ∈ P(Rm),
A≺u B ⇐⇒ A⊆ B− int(C).

Suppose that FΩ : Rn⇒ Rm is the set-valued mapping given by FΩ(x) = {F(x,ζ ) : ζ ∈ Ω}.
Then, with upper set order relation on FΩ, the given UMOP P(Ω) can be viewed as a (deter-
ministic) set-valued optimization problem

(SOP)

{
min FΩ(x)

subject to x ∈ Rn.
(2.4)

Note that a point x̄ ∈Rn is a local weakly efficient solution of (SOP) if there exists a neighbour-
hood U of x̄ such that the following holds:

@x ∈U : FΩ(x)≺u FΩ(x̄), i.e., @x ∈U : FΩ(x)⊆ FΩ(x̄)− int(C).

From Definition 2.2, we see that a (weakly) efficient solution of (SOP) is a (weakly) robust
efficient solution of the problem P(Ω) and vice-versa. Thus, to identify robust weakly efficient
points of the problem P(Ω), one can aim to figure out weakly efficient solutions of the set
optimization problem (SOP). In this paper, to find weakly efficient solutions of (SOP), we derive
a Newton method.

3. OPTIMALITY CONDITIONS FOR SOPS

In this section, we study optimality conditions for weakly efficient solutions of (SOP). These
conditions are the foundation on which the proposed algorithm is built.

Definition 3.1. (i) The active index of maximal elements associated with the set-valued
function FΩ is A : Rn⇒ [p], given by A (x) = {i ∈ [p] : F(x,ζi) ∈Max(FΩ(x),C)}.

(ii) The active index of weakly maximal elements associated with the set-valued function
FΩ is AW : Rn⇒ [p] defined as AW (x) = {i ∈ [p] : F(x,ζi) ∈WMax (FΩ(x),C)}.

(iii) For a vector ϑ ∈ Rm, we define Aϑ : Rn⇒ [p] as Aϑ (x) = {i ∈A (x) : F(x,ζi) = ϑ}.

It follows from the definition that Aϑ (x) = /0 whenever ϑ /∈Max(FΩ(x),C) and that

A (x) =
⋃

ϑ∈Max(FΩ(x),C)

Aϑ (x).

Definition 3.2. The map η : Rn→R is defined as the cardinality of the set of maximal elements
of FΩ, i.e., η(x) = |Max(FΩ(x),C)|. Furthermore, we set η̄ = η(x̄).
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Definition 3.3. Let x∈Rn, and {ϑ x
1 ,ϑ

x
2 , . . . ,ϑ

x
η(x)} be an enumeration of the set Max(FΩ(x),C).

The partition set at x is defined as Px = ∏
η(x)
j=1 Aϑ x

j
(x), where Aϑ x

j
(x) is given in Definition 3.1

(iii).

The optimality conditions for UMOPs that we introduce are based on the following lemma.
From the specific structure of the function FΩ, we formulate a set of vector optimization prob-
lems. Subsequently, we apply optimality conditions to this collection of vector optimization
problems to find weakly efficient points of the UMOP P(Ω). The following lemma is the key
step in this direction.

Lemma 3.1. Let C̃ ∈P(Rmη̄) be the cone C̃ =∏
η̄

j=1C, and let�u
C̃ and≺u

C̃ denote the partial or-
der and the strict order in Rmη̄ induced by C̃, respectively. Furthermore, consider the partition
set Px̄ at x̄ and define, for every α = (α1,α2, . . . ,αη̄) ∈Px̄, the function F̃(·,ζα) : Rn×Ω→
∏

η̄

j=1R
m as F̃(x,ζα) =

(
F(x,ζα1),F(x,ζα2), . . . ,F(x,ζαη̄

)
)>

. Then, x̄ is a local weakly robust
efficient solution to (SOP) if and only if, for every α ∈Px̄, x̄ is a local weakly efficient solution
to the vector optimization problem

(VOP)(ζα)

{
min F̃(x,ζα),

subject to x ∈ Rn.
(3.1)

Proof. We argue by the method of contradiction in both ways. First, assume that x̄ is a local
weakly robust efficient solution for (SOP) and that, for some α ∈Px̄, x̄ is not a local weakly
efficient solution of (VOP)(ζα). Then, we obtain a sequence {xk} ⊆ Rn such that xk→ x̄ and

{F̃(xk,ζα)} ⊆ F̃(x̄,ζα)− int(C̃) for all k ∈ N. (3.2)

From Proposition 2.1, we have

FΩ(xk)⊆ {F(xk,ζα1),F(xk,ζα2), . . . ,F(xk,ζαη̄
)}−C for all k ∈ N

⊆ {F(x̄,ζα1),F(x̄,ζα2), . . . ,F(x̄,ζαη̄
)}− int(C)−C, using (3.2)

⊆ FΩ(x̄)− int(C) for all k ∈ N.
Since xk→ x̄, as k→ ∞, this contradicts the weak robust efficiency of x̄ for (SOP).

Next, suppose that x̄ is a local weakly efficient solution of (VOP)(ζα) for every α ∈Px̄ but
not a local weakly robust efficient solution of (SOP). Then, we obtain a sequence {xk} ⊆ Rn

such that xk→ x̄ and FΩ(xk)⊆FΩ(x̄)−C for all k∈N. Consider an enumeration {ϑ x̄
1 ,ϑ

x̄
2 , . . . ,ϑ

x̄
η̄
}

of the set Max(FΩ(x̄),C). Then,

for all j ∈ [η̄ ],k ∈ N, ∃ i( j,k) ∈ [p] such that {F(xk,ζi( j,k))} ⊆ ϑ
x̄
j −C. (3.3)

Since the indexes i( j,k) are chosen on the finite set [p], we can assume without loss of generality
that i( j,k) is indendent of k, that is, i( j,k) = ī j for every k ∈ N and some ī j ∈ [p]. Hence, taking
the limit in (3.3) when k→ ∞, we have

for all j ∈ [η̄ ] : {F(x̄,ζī j
)} ⊆ ϑ

x̄
j −C. (3.4)

Because ϑ x̄
j ∈Max(FΩ(x̄),C), it follows from (3.4) that F(x̄,ζī j

) = ϑ x̄
j and that ī j ∈ A (x̄) for

every j ∈ [η̄ ]. Consider now the tuple ᾱ = (ī1, ī2, . . . , īη̄). Then, it can be verified that ᾱ ∈Px̄.
Also, from (3.2) we deduce that {F̃(xk,ζᾱ)} ⊆ F̃(x̄,ζᾱ)− int(C̃) for every k ∈N. Since xk→ x̄,
this contradics the weak efficiency of x̄ for (VOP)(ζα) when α = ᾱ . �
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We now establish the necessary optimality condition for UMOPs used in the Newton method.
Since the proof is similar to [22, Theorem 3.1], we omit the proof here.

Theorem 3.1. Suppose that x̄ is a local weakly robust efficient solution for the UMOP P(Ω).
Then,

for all α ∈Px̄, ∃ γ1,γ2, . . . ,γη̄ ∈C∗ :
η̄

∑
j=1

∇F(x̄,ζα j)γ j = 0, (γ1,γ2, . . . ,γη̄) 6= 0. (3.5)

Conversely, assume that F(·,ζi) is C-convex for each i ∈A (x̄), i.e.,

for all i ∈A (x̄), x1,x2 ∈ Rn, t ∈ [0,1] : F(tx1 +(1− t)x2,ζi)� tF(x1,ζi)+(1− t)F(x2,ζi).

Then, condition (3.5) is also sufficient for a local weakly robust efficient point x̄.

Definition 3.4. [22] We say that x̄ is a stationary point for UMOP P(Ω) if there exists a
nonempty set Q ⊆Px̄ such that

for all α ∈Q, ∃ γ1,γ2, . . . ,γη̄ ∈C∗ :
η̄

∑
j=1

∇F(x̄,ζα j)γ j = 0, (γ1,γ2, . . . ,γη̄) 6= 0. (3.6)

If, in addition, we can choose Q = Px̄, we simply call x̄ a strongly stationary point.

Since the proof is the following proposition is similar to [22, Proposition 3.1], we omit the
proof here.

Proposition 3.1. Let Q ⊆Px̄ be given. Then, x̄ is stationary for (SOP) with respect to Q if
and only if

for all α ∈Q,d ∈ Rn, there exists j ∈ [η̄ ] such that ∇F(x̄,ζα j)
>d /∈ −int(C).

Note that if x̄ is a non-stationary point, then, for all j ∈ [η̄ ], there exist α ∈Px̄ and d ∈ Rn

such that

∇F(x̄,ζα j)
>d ∈ −int(C),

i.e., ψe(∇F(x̄,ζα j)
>d)< 0. (3.7)

Definition 3.5. [22] We say that x̄ is a regular point of FΩ in (SOP) if the following conditions
are satisfied:

(i) Max(FΩ(x̄),C) = WMax(FΩ(x̄),C) and
(ii) the cardinality function η , introduced in Definition 3.2, is constant in a neighborhood

of x̄.

4. NEWTON METHOD AND ITS CONVERGENCE ANALYSIS

In this section, we present the solution approach. It is clearly based on the result shown in
Lemma 3.1. At every iteration, an element α in the partition set of the current iterate is selected,
and then, a descent direction for (VOP)(ζα) will be found using ideas from [28, 29]. However,
one must be careful with the selection process of the element α to guarantee convergence. Thus,
we propose a specific way to achieve this. After determining the descent direction, we follow
a classical backtracking procedure of Armijo type to determine a suitable step size and update
the iterate in the desired direction.
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Algorithm 1 Newton Method to Solve P(Ω)

Step 0: Choose x0 ∈ Rn, ρ ∈ (0,1). Set k = 0 and define N = { 1
2n : n = 0,1,2, . . .}.

Step 1: Compute

Rk = Max(FΩ(xk),C), Pk = Pxk , ηk = |Max(FΩ(xk),C)|.
Step 2: Find

(αk,dk) ∈ argmin
(α,d)∈Pk×Rn

max
j∈[ηk]

{
ψe
(
∇F(xk,ζα j)

>d + 1
2d>∇

2F(xk,ζα j)d
)}

Step 3: If dk = 0, stop. Otherwise, go to Step 4.
Step 4: Choose τk as the largest τ ∈N such that

F(xk + τdk,ζαk, j)� F(xk,ζαk, j)+ρτ
(
∇F(xk,ζαk, j)

>dk +
1
2d>k ∇

2F(xk,ζαk, j)dk
)

for all j ∈ [ηk].

Step 5: Set xk+1 = xk + τkdk, k = k+1 and go to Step 2.

For the rest of the analysis, we need to introduce the parametric family of functions {Gx}x∈Rn ,
whose elements Gx : Px×Rn→ R are defined as follows:

for all α ∈Px, d ∈ Rn : Gx(α,d) = max
j∈[η(x)]

{
ψe
(
∇F(x,ζα j)

>d + 1
2d>∇

2F(x,ζα j)d
)}

, (4.1)

where the functional ψe is given by (2.3). It is easy to see from assumption (iv) that, for every
x ∈Rn and α ∈Px, the functional Gx(α, ·) is strongly convex in Rn, i.e., there exists a constant
β > 0 such that the inequality

Gx(α, td +(1− t)d′)+β t(1− t)‖d−d′‖2 ≤ tGx(α,d)+(1− t)Gx(α,d′)

is satisfied for every d,d′ ∈ Rn and t ∈ [0,1]. According to [30], Gx(α, ·) attains its minimum
over Rn, and this minimum is unique.

Taking into account that Px is finite, we also obtain that Gx attains its minimum over the set
Px×Rn. Hence we can consider the function G : Rn→ R given by

G(x) = min
(α,d)∈Px×Rn

Gx(α,d). (4.2)

Now, we examine several properties of the function G and investigate its connection with the
descent direction d and the stationarity of the point x.

Proposition 4.1. Consider the functions Gx̄ and G given in (4.1) and (4.2), respectively. Fur-
thermore, let (ᾱ, d̄) ∈Px̄×Rn be such that G(x̄) = Gx̄(ᾱ, d̄). Then, the following statements
are equivalent:

(i) x̄ is not a stationary point of UMOP P(Ω).
(ii) G(x̄)< 0.

(iii) d̄ 6= 0.

Proof. (i) =⇒ (ii) Let us assume that x̄ is a non-stationary point of UMOP. Then, for all
j ∈ [η̄ ], there exists an α = (α1,α2, . . . ,αη̄) ∈Px̄ and d̄ ∈ Rn with ∇F(x̄,ζα j)

>d̄ ∈ −int(C),
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i.e., ψe(∇F(x̄,ζα j)
>d̄)< 0. Now, we note that

G(x̄)≤ min
(α,d)∈Px̄×Rn

Gx̄(α,d)

≤ Gx̄(α, td̄), for some t > 0

= t max
j∈[η(x̄)]

{
ψe
(
∇F(x̄,ζα j)

>d̄ + t
2 d̄>∇

2F(x̄,ζα j)d̄
)}

.

Therefore, for t > 0, small enough, from assumption (iv), the right-hand side of the above
inequality is negative. Thus (ii) holds.

(ii) =⇒ (iii) Note that G(x̄) is optimal value of Gx̄(α,d), given in (4.1), and Gx̄(α,0) = 0
for any α in Px̄. As G(x̄) is negative, d̄ 6= 0.
(iii) =⇒ (i) Let us assume that x̄ is a stationary point. Then, for any α ∈Px̄ and d ∈

Rn, there exists j ∈ [η̄ ] such that ∇F(x̄,ζα j)
>d /∈ −int(C), i.e., ψe(∇F(x̄,ζα j)

>d) ≥ 0. Also,
since, for all j ∈ [η(x̄)], ∇2F(x̄,ζα j)’s are positive definite matrices, i.e., for any d ∈ Rn,
d>∇2F(x̄,ζα j)d > 0, we obtain

0≤ ψe(∇F(x̄,ζα j)
>d)

< ψe
(
∇F(x̄,ζα j)

>d + 1
2d>∇

2F(x̄,ζα j)d
)

≤ max
j∈[η(x̄)]

{
ψe
(
∇F(x̄,ζα j)

>d + 1
2d>∇

2F(x̄,ζα j)d
)}

= Gx̄(α,d) using (4.1),

i.e., 0≤ Gx̄(α,d)≤ min
(α,d)∈Px̄×Rn

Gx̄(α,d), i.e., 0≤ G(x̄)< 0 by using (4.2).

This is a contradiction, so x̄ is a non-stationary point for the UMOP. �

Theorem 4.1. Let U be a nonempty open subset of Rn. The function G : U → R, defined in
(4.2), is continuous.

Proof. Let {xk} be a sequence which converges to x̄ ∈ Rn. We show that lim
k→∞

G(xk) = G(x̄).

From the definition of G at x̄, we have

G(x̄) ≤ Gx̄(αk,dk)

= max
j∈[η(x)]

ψe
(
∇F(x̄,ζα j)

>dk +
1
2d>k ∇

2F(x̄,ζα j)dk
)

= max
j∈[η(x)]

ψe
(
∇F(x̄,ζα j)

>dk +
1
2d>k ∇

2F(x̄,ζα j)dk−∇F(xk,ζα j)
>dk− 1

2d>k ∇
2F(xk,ζα j)dk

+∇F(xk,ζα j)
>dk +

1
2d>k ∇

2F(xk,ζα j)dk
)

≤ max
j∈[η(x)]

ψe
(
∇F(xk,ζα j)

>dk +
1
2d>k ∇

2F(xk,ζα j)dk
)
+ max

j∈[η(x)]
ψe
(
∇F(x̄,ζα j)

>dk

+ 1
2d>k ∇

2F(x̄,ζα j)dk−∇F(xk,ζα j)
>dk− 1

2d>k ∇
2F(xk,ζα j)dk

)
.

Using properties of the Grestewitz functional ψe, given in Proposition 2.2 (i), with a Lipschitz
constant L, we have

G(x̄) = Gxk(αk,dk)

+L max
j∈[η(x)]

‖∇F(x̄,ζα j)
>dk +

1
2d>k ∇

2F(x̄,ζα j)dk−∇F(xk,ζα j)
>dk− 1

2d>k ∇
2F(xk,ζα j)dk‖



90 D. GHOSH, N. KISHOR, X. ZHAO

≤ Gxk(αk,dk)+L max
j∈[η(x)]

‖∇F(x̄,ζα j)
>dk−∇F(xk,ζα j)

>dk‖

+ L
2 max

j∈[η(x)]
‖d>k ∇

2F(x̄,ζα j)dk−d>k ∇
2F(xk,ζα j)dk‖

≤ Gxk(αk,dk)+L max
j∈[η(x)]

‖∇F(x̄,ζα j)−∇F(xk,ζα j)‖‖dk‖

+ L
2 max

j∈[η(x)]
‖∇2F(x̄,ζα j)−∇

2F(xk,ζα j)‖‖dk‖2.

Taking k→ ∞, we have

G(x̄)≤ lim
k→∞

G (xk). (4.3)

For any k ∈ N, we have G(xk) = min
(αk,dk)∈Pxk×R

n
Gxk(αk,dk)≤ Gxk(αk,dk). Since the function Gxk

is continuous, we obtain

lim
k→∞

G(xk)≤ lim
k→∞

Gxk(αk,dk) = Gx̄(ᾱ, d̄) = min
(α,d)∈Px̄×Rn

Gx̄(α,d) = G(x̄).

We can obtain the required result by combining the last inequality and (4.3). �

The fundamental characteristic of the Newton method in scalar minimization and equation-
solving is its utilization of quadratic and linear approximations, respectively. In the following
lemma, we estimate the errors incurred when approximating F(·,ζ ) and ∇F(·,ζ )by using their
quadratic and linear models, respectively.

Lemma 4.1. [22, 29] Suppose that x̄ is a regular point of FΩ.
(i) Then, there exists a neighborhood U of x̄ such that, for every x ∈U, η(x) = η(x̄).

(ii) Let ε > 0 and δ > 0 be such that, for any x,y ∈U, with ‖y− x‖< δ ,

‖∇2F(y,ζα j)−∇
2F(x,ζα j)‖< ε for all j = 1,2, . . . , [η(x̄)].

Under this assumption, for any x,y ∈U such that ‖y− x‖< δ , we have that
(a)

‖∇F(y,ζα j)− [∇F(x,ζα j)+∇
2F(x,ζα j)(y− x)]‖< ε‖y− x‖

and
(b)

‖F(y,ζα j)− [F(x,ζα j)+∇F(x,ζα j)
>(y− x)+ 1

2(y− x)>∇
2F(x,ζα j)(y− x)]‖< ε

2‖y− x‖2

for all j = 1,2, . . . , [η(x̄)].

(c) If ∇2F(·,ζα j) is Lipschitz continuous on U with constant L for j = 1,2, . . . , [η(x̄)],
then

‖∇F(y,ζα j)− [∇F(x,ζα j)+∇
2F(x,ζα j)(y− x)]‖< L

2‖y− x‖2 for all j = 1,2, . . . , [η(x̄)].

In the next theorem, we aim to prove that the iterative process involved in the line search of
the fourth step in Algorithm 1 terminates within a finite number of steps.

Theorem 4.2. Fix ρ ∈ (0,1) and consider the functions Gx̄ and G given in (4.1) and (4.2),
respectively. Furthermore, let (ᾱ, d̄) ∈Px̄×Rn be such that G(x̄) = Gx̄(ᾱ, d̄) and suppose that
x̄ is not a stationary point of (SOP). Then, the following assertions hold.
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(i) There exists τ̃ > 0 such that

for all τ ∈ (0, τ̃], j ∈ [η̄ ] : F(x̄+ τ d̄,ζᾱ j)� F(x̄,ζᾱ j)+ρτ
(
∇F(x̄,ζᾱ j)

>d̄ + 1
2 d̄>∇

2F(x̄,ζᾱ j)d̄
)
.

(4.4)

(ii) Let τ̃ be the parameter in statement (i). Then,

for all τ ∈ (0, τ̃] : FΩ(x̄+ τ d̄)�u {F(x̄,ζᾱ j)+ρτ
(
∇F(x̄,ζᾱ j)

>d̄ + 1
2 d̄>∇

2F(x̄,ζᾱ j)d̄
)}

j∈[η̄ ]

≺u FΩ(x̄).

Proof. (i) Assume that (i) does not hold. Then, we could find a sequence {τk}k≥1 and
j̄ ∈ [η̄ ] such that τk→ 0 and, for all k ∈ N,

F(x̄+ τkd̄,ζᾱ j) /∈ F(x̄,ζᾱ j)+ρτk
(
∇F(x̄,ζᾱ j)

>d̄ + 1
2 d̄>∇

2F(x̄,ζᾱ j)d̄
)
−C. (4.5)

Multiply both sides by 1
τk

in (4.5) for each k ∈ N to obtain, for all k ∈ N,

F(x̄+ τkd̄,ζᾱ j)−F(x̄,ζᾱ j)

τk
/∈ ρ
(
∇F(x̄,ζᾱ j)

>d̄ + 1
2 d̄>∇

2F(x̄,ζᾱ j)d̄
)
−C.

Now, taking the limit k→ ∞ in the inequality above, we see

∇F(x̄,ζᾱ j)
>d̄−ρ

(
∇F(x̄,ζᾱ j)

>d̄ + 1
2 d̄>∇

2F(x̄,ζᾱ j)d̄
)
/∈ −int(C). (4.6)

Since x̄ is not stationary point, we can apply Proposition 4.1 to obtain that d̄ 6= 0 and
that G(x̄)< 0. Using the continuity of G (see Theorem 4.1), there exists r > 0 such that

G(x)≤ 1
2G(x̄) for all x ∈ B[x̄,r].

From [28, Lemma 3.2], d is bounded in B[x̄,r]. We take a sequence of {dk} in B[x̄,r],
which converges to d̄. Now using Taylor’s expansion, we have

F(x+ τkdk,ζα j) = F(x,ζα j)+ τk∇F(x,ζα j)
>dk +o j(τkdk,x)e for all j ∈ [η(x)],

where e = (1,1, . . . ,1)> and lim
k→∞

o j(τkdk,x)e
τk‖dk‖ = (0,0, . . . ,0)>. Since {dk} is bounded on

B[x̄,r], one has

lim
k→∞

o j(τkdk,x)e
τk

= (0,0, . . . ,0)>.

Observe that ∇F(x,ζα j)
>dk �∇F(x,ζα j)

>d+ 1
2d>∇2F(x,ζα j)d. For all j ∈ [η(x)], we

conclude that

F(x+ τkdk,ζα j)� F(x,ζα j)+ τk
(
∇F(x,ζα j)

>d + 1
2d>∇

2F(x,ζα j)d
)
+o j(τkdk,x)e.

It follows that

F(x+ τkdk,ζα j)−F(x,ζα j)

τk

� ρ
(
∇F(x,ζα j)

>d + 1
2d>∇

2F(x,ζα j)d
)

+ τk
[
(1−ρ)

(
∇F(x,ζα j)

>dk +
1
2d>∇

2F(x,ζα j)d
)
+

o j(τkdk,x)e
τk

]
.
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Taking limit k→ ∞, we have

∇F(x,ζα j)
>d ≺ ρ

(
∇F(x,ζα j)

>d + 1
2d>∇

2F(x,ζα j)d
)
,

i.e., ∇F(x,ζα j)
>d−ρ

(
∇F(x,ζα j)

>d + 1
2d>∇

2F(x,ζα j)d
)
∈ −int(C)

for all x ∈ B[x̄,r] and j ∈ [η(x)].

In particular, for x = x̄, we have a contradiction to (4.6). Hence, statement (i) is proved.

(ii) Since x̄ is not a stationary point, we see from Proposition 4.1 that

G(x̄)< 0,

i.e., Gx̄(ᾱ, d̄)< 0,

i.e., max
j∈[η̄ ]

{
ψe
(
∇F(x̄,ζᾱ j)

>d̄ + 1
2 d̄>∇

2F(x̄,ζᾱ j)d̄
)}

< 0,

i.e., for any j ∈ [η̄ ], ψe
(
∇F(x̄,ζᾱ j)

>d̄ + 1
2 d̄>∇

2F(x̄,ζᾱ j)d̄
)
< 0,

i.e., ∇F(x̄,ζᾱ j)
>d̄ + 1

2 d̄>∇
2F(x̄,ζᾱ j)d̄ ∈ −int(C).

Using this in inequality (4.4), we have

for all τ ∈ (0, τ̃], j ∈ [η̄ ] : F(x̄+ τ d̄,ζᾱ j)

� F(x̄,ζᾱ j)+ρτ
(
∇F(x̄,ζᾱ j)

>d̄ + 1
2 d̄>∇

2F(x̄,ζᾱ j)d̄
)

≺ F(x̄,ζᾱ j).

Then, it follows that

FΩ(x̄+ τ d̄)⊆
{

F(x̄+ τ d̄,ζᾱ j)
}

j∈[η̄ ]
−C

⊆
{

F(x̄,ζᾱ j)+ρτ
(
∇F(x̄,ζᾱ j)

>d̄ + 1
2 d̄>∇

2F(x̄,ζᾱ j)d̄
)}

j∈[η̄ ]
−C

⊆
{

F(x̄,ζᾱ j)
}

j∈[η̄ ]
− int(C)−C

⊆
{

F(x̄,ζᾱ1),F(x̄,ζᾱ2), . . . ,F(x̄,ζᾱη̄
)
}
− int(C)

⊆ FΩ(x̄)− int(C).

Hence, statement (ii) is proved.
�

In the following theorem, we give the convergence of the proposed method.

Theorem 4.3. Suppose that Algorithm 1 generates an infinite sequence for which x̄ is an accu-
mulation point. Furthermore, assume that x̄ is a regular point for FΩ. Then, x̄ is a stationary
point of (SOP).

Proof. Consider the function µ(A) = sup
y∈A

ψe(y). First, we show the following result

for all k ∈ N∪{0} : (µ ◦FΩ)(xk+1)≤ (µ ◦FΩ)(xk)+ρτkG (xk).

Indeed, because of the monotonicity property of ψe in Proposition 2.2 (ii), µ is monotone with
respect to the preorder �u, that is, for all A,B ∈P(Rm), A �u B =⇒ µ(A) ≤ µ(B). For all
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k ∈ N∪{0},
FΩ(xk + τkdk)�

{
F(xk,ζk,α j)+ρτk

(
∇F(xk,ζk,α j)

>dk +
1
2dk
>

∇
2F(xk,ζk,α j)dk

)}
j∈[ηk]

.

Hence, using the monotonicity of µ and the sublinearity of ψe, we obtain for any k ∈ N∪{0}
that

(µ ◦FΩ)(xk+1)

≤ max
j∈[ηk]

{
ψe
(
F(xk,ζk,α j)+ρτk

(
∇F(xk,ζk,α j)

>dk +
1
2dk
>

∇
2F(xk,ζk,α j)dk

))}
≤ max

j∈[ηk]

{
ψe
(
F(xk,ζk,α j)

)
+ρτkψe

(
∇F(xk,ζk,α j)

>dk +
1
2dk
>

∇
2F(xk,ζk,α j)dk

)}
≤ max

j∈[ηk]
ψe
(
F(xk,ζk,α j)

)
+ρτk max

j∈[ηk]
ψe
(
∇F(xk,ζk,α j)

>dk +
1
2dk
>

∇
2F(xk,ζk,α j)dk

)
= (µ ◦FΩ)(xk)+ρτk max

j∈[ηk]
ψe
(
∇F(xk,ζk,α j)

>dk +
1
2dk
>

∇
2F(xk,ζk,α j)dk

)
,

that is,

−ρτk max
j∈[ηk]

ψe
(
∇F(xk,ζk,α j)

>dk +
1
2dk
>

∇
2F(xk,ζk,α j)dk

)
≤ (µ ◦FΩ)(xk)− (µ ◦FΩ)(xk+1).

Adding the above inequality for k = 0,1,2, . . . , k̄, we have

−ρ

k̄

∑
k=0

τk max
j∈[ηk]

ψe
(
∇F(xk,ζk,α j)

>dk +
1
2dk
>

∇
2F(xk,ζk,α j)dk

)
≤ (µ ◦FΩ)(x0)− (µ ◦FΩ)(xk+1).

On the other hand, we have

∇F(xk,ζk,α j)
>dk +

1
2dk
>

∇
2F(xk,ζk,α j)dk ∈ −int(C). (4.7)

In particular, applying Proposition 2.2 in (4.7), we find for all k ∈ N∪{0}, j ∈ [ηk] that

ψe
(
∇F(xk,ζk,α j)

>dk +
1
2dk
>

∇
2F(xk,ζk,α j)dk

)
< 0.

We then have

0 <−
k̄

∑
k=0

τk max
j∈[ηk]

ψe
(
∇F(xk,ζk,α j)

>dk +
1
2dk
>

∇
2F(xk,ζk,α j)dk

)
≤ (µ ◦FΩ)(x0)− (µ ◦FΩ)(xk+1)

ρ
.

Taking now the limit in the previous inequality when k→ ∞, we deduce that

0≤−
k̄

∑
k=0

τk max
j∈[ηk]

ψe
(
∇F(xk,ζk,α j)

>dk +
1
2dk
>

∇
2F(xk,ζk,α j)dk

)
< ∞.

Therefore, in particular, this implies that

lim
k→∞

τk max
j∈[ηk]

ψe
(
∇F(xk,ζk,α j)

>dk +
1
2dk
>

∇
2F(xk,ζk,α j)dk

)
= 0,

i.e., lim
k→∞

τkG (xk) = 0. (4.8)

Since there are only a finite number of subsets of [p] and x̄ is regular for FΩ, we can apply the
Lemma 4.2 of [22], from which, without loss of generality, we see that there exist a subsequence
K in N, Q⊆Px̄ and ᾱ ∈Q such that, for all k ∈K , ηk = η̄ ,Pxk =Q,αk = ᾱ. Furthermore,
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since the sequences {τk} and {dk} are bounded, there exist τ̄ and d̄ such that τk→ τ̄ and dk→ d̄.
Suppose that x̄ is nonstationary, which, by Proposition 4.1, is equivalent to G (x̄)< 0 and d̄ 6= 0.
Using Theorem 4.2 (ii), we conclude that there exists an integer q such that

µ ◦ (FΩ(x̄+2−qd̄)−FΩ(x̄))< ρ2−qG (x̄).

Since G and µ are continuous in their respective domains,

lim
k→∞

dk = d̄ and lim
k→∞

G (xk) = G (x̄)< 0. (4.9)

For k large enough,

(µ ◦FΩ)(xk +2−qdk)− (µ ◦FΩ)(xk)< ρ2−qG (xk).

This, in view of the definition of µ and step 4 of Algorithm 1, implies that τk ≥ 2−q for k large
enough. Hence taking into account the second limit in (4.9), we conclude that liminf

k→∞
τk|G (xk)|>

0, in contradiction with (4.8). Hence, the result follows. �

Theorem 4.4. Let U be a nonempty convex open subset of Rn. Take x ∈U, α ∈Px and 0 < b.
If ∇2F(x,ζα j)≤ bI for all j ∈ [η(x)], then

|G(x)| ≤ L
2b
‖
[η(x)]

∑
j=1

λ j∇F(x,ζα j)‖
2

for all λ j ≥ 0, with ∑
[η(x)]
j=1 λ j = 1, where L is the Lipschitz constant of ψe.

Proof. Let λ j ≥ 0 with ∑
[η(x)]
j=1 λ j = 1 be given. Then, from the definition of G, we have

G(x) = min
(α,d)∈Px×Rn

{
max

j∈[η(x)]
ψe
(
∇F(x,ζα j)

>d + 1
2d>∇

2F(x,ζα j)d
)}

≥ min
(α,d)∈Px×Rn

{ [η(x)]

∑
j=1

ψe

(
∇F(x,ζα j)

>d + 1
2d>∇

2F(x,ζα j)d
)}

≥ min
(α,d)∈Px×Rn

{ [η(x)]

∑
j=1

(
(−L)‖∇F(x,ζα j)

>d‖− L
2‖d

>
∇

2F(x,ζα j)d‖
)}

= min
(α,d)∈Px×Rn

{ [η(x)]

∑
j=1

(−L)‖∇F(x,ζα j)‖‖d‖− L
2

[η(x)]

∑
j=1
‖∇2F(x,ζα j)‖‖d‖

2
}

≥ min
(α,d)∈Px×Rn

{ [η(x)]

∑
j=1

(−L)‖∇F(x,ζα j)‖‖d‖− Lb
2 ‖d‖

2
}
.

Since d 7→ ∑
[η(x)]
j=1 (−L)‖∇F(x,ζα j)‖‖d‖− Lb

2 ‖d‖
2 is a strongly convex function, its minimum

is achieved at the unique point where its gradient vanishes, i.e., ‖d‖=−1
b ∑

[η(x)]
j=1 ‖∇F(x,ζα j)‖.

This implies that G(x) ≥ − L
2b‖∑

[η(x)]
j=1 ∇F(x,ζα j)‖2. Thus |G(x)| ≤ L

2b‖∑
[η(x)]
j=1 λ j∇F(x,ζα j)‖2.

�

In the following theorems, we analyze the convergence rate of the sequence {xk} generated
by the proposed Newton method for UMOPs.
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Theorem 4.5. (Superlinear convergence). Suppose that Algorithm 1 generates an infinite se-
quence for which x̄ is an accumulation point, and x̄ is a regular point for FΩ. Suppose that U is
the neighborhood of x̄ as described in Lemma 4.1, and there exist a,b,δ ,ε > 0 such that

(i) aI ≤ ∇2F(x,ζα j)≤ bI for all j ∈ [η(x)],
(ii) ‖∇2F(x,ζα j)−∇2F(y,ζα j)‖< ε for all x,y ∈U with ‖x− y‖< δ , and

(iii) ε ≤ a(1−ρ).

Then, the step length τk = 1, after sufficiently large k, and {xk} converges to x̄ with superlinear
rate.

Proof. The convergence of sequence {xk} to a stationary point x̄ is guaranteed in Theorem 4.3.
Since F(·,ζα j)’s are twice continuously differentiable, we see, for any ε > 0, that there exists
δε > 0 such that

B(x̄,δε)⊂U, and
∥∥∥∇

2F(x,ζα j)−∇
2F(y,ζα j)

∥∥∥< ε for all x,y ∈ B(x̄,δε).

For x ∈U, λ j ≥ 0 and ∑
[η(x)]
j=1 λ j = 1, suppose

Ψ(d,λ ) =
[η(x)]

∑
j=1

λ j∇F(x,ζα j)
>d + 1

2

[η(x)]

∑
j=1

λ jd>∇
2F(x,ζα j)d.

Using Danskin’s theorem (see [31, Proposition 4.5.1]), Ψ attains minimum value when

[η(x)]

∑
j=1

λ j∇F(x,ζα j)+
[η(x)]

∑
j=1

λ j∇
2F(x,ζα j)d = 0, (4.10)

which implies that

d =−
[ [η(x)]

∑
j=1

λ j∇
2F(x,ζα j)

]−1 [η(x)]

∑
j=1

λ j∇F(x,ζα j)

≤−
[ [η(x)]

∑
j=1

λ j∇
2F(x,ζα j)

]−1

max
j∈[η(x)]

λ j∇F(x,ζα j)

≤−1
a max

j∈[η(x)]
λ j∇F(x,ζα j). (4.11)

Using Lemma 4.1, we have

‖
[η(xk+1)]

∑
j=1

λ j∇F(xk +dk,ζα j)−
[ [η(xk)]

∑
j=1

λ j∇F(xk,ζα j)+
[η(xk)]

∑
j=1

λ j∇
2F(xk,ζα j)dk

]
‖ ≤ ε‖dk‖,

i.e., ‖
[η(xk+1)]

∑
j=1

λ j∇F(xk +dk,ζα j)‖ ≤ ε‖dk‖

i.e., ‖ max
j∈[η(xk+1)]

λ j∇F(xk +dk,ζα j)‖ ≤ ε‖dk‖

i.e., ‖dk+1‖ ≤ ε

a‖dk‖ by using (4.11). (4.12)
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As {xk} converges to x̄, there exists kε ∈N such that, for all k≥ kε , xk,xk +dk ∈ B(x̄,δε). Using
Taylor’s expansion for j = 1,2, . . . , [η(xk)], we have

F(xk +dk,ζα j)≤ F(xk,ζα j)+∇F(xk,ζα j)
>dk +

1
2d>k ∇

2F(xk,ζα j)dk +
ε

2‖dk‖2

≤ F(xk,ζα j)+ρ
(
∇F(xk,ζα j)

>dk +
1
2d>k ∇

2F(xk,ζα j)dk
)

+(1−ρ)
(
∇F(xk,ζα j)

>dk +
1
2d>k ∇

2F(xk,ζα j)dk
)
+ ε

2‖dk‖2

≤ F(xk,ζα j)+ρ
(
∇F(xk,ζα j)

>dk +
1
2d>k ∇

2F(xk,ζα j)dk
)

+(1−ρ)

(
−d>k

( [η(xk)]

∑
j=1

λ j∇
2F(xk,ζα j)

)
dk

+ 1
2d>k

( [η(xk)]

∑
j=1

λ j∇
2F(xk,ζα j)

)
dk

)
+ ε

2‖dk‖2 by using (4.10)

≤ F(xk,ζα j)+ρ
(
∇F(xk,ζα j)

>dk +
1
2d>k ∇

2F(xk,ζα j)dk
)
− a(1−ρ)

2 ‖dk‖2

+ ε

2‖dk‖2 using condition (i)

≤ F(xk,ζα j)+ρ
(
∇F(xk,ζα j)

>dk +
1
2d>k ∇

2F(xk,ζα j)dk
)
+ ε−a(1−ρ)

2 ‖dk‖2.

Now from condition (iii), we have

ε ≤ a(1−ρ) =⇒ ε−a(1−ρ)
2 ≤ 0.

Then, this allows to take τk = 1 for k ≥ kε . Now, for k ≥ kε , we have

‖xk+1− xk+2‖= ‖dk+1‖ ≤ ε

a‖dk‖= ε

a‖xk− xk+1‖ by using (4.12).

Therefore, if k ≥ kε and j ≥ 1, then

‖xk+ j− xk+ j+1‖ ≤ ( ε

a)
j‖xk− xk+1‖. (4.13)

To prove superlinear convergence, we take 0 < τ < 1 and define ε̄ = min{a(1−ρ), τ

1+2τ
a}. If

ε < ε̄ and k ≥ kε , using (4.13) and the convergence of {xk} to x̄, we have

‖x̄− xk+1‖ ≤
∞

∑
j=1
‖xk+ j− xk+ j+1‖ ≤

∞

∑
j=1

( τ

1+2τ
) j‖xk− xk+1‖= τ

1+τ
‖xk− xk+1‖. (4.14)

Hence,

‖x̄− xk‖ ≥ ‖xk− xk+1‖−‖xk+1− x̄‖ ≥ 1
1+τ
‖xk− xk+1‖. (4.15)

Combining the inequalities (4.14) and (4.15), we conclude that if ε < ε̄ and k ≥ kε , then
‖x̄−xk+1‖
‖x̄−xk‖

≤ τ.

As τ is arbitrary in (0,1), we conclude that sequence {xk} converges superlinearly to x̄. �

Theorem 4.6. (Quadratic convergence). Let {xk} be a sequence generated by Algorithm 1 and
x̄ be one of its accumulation points. Suppose that, in addition to all assumptions of Theorem
4.5, ∇2F(·,ζα j), for all j ∈ [η(x)], is Lipschitz continuous on U with Lipschitz constant L. Then,
{xk} converges quadratically to x̄.
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Proof. Using Lemma 4.1, we have

‖
[η(xk+1)]

∑
j=1

λ j∇F(xk +dk,ζα j)−
[ [η(xk)]

∑
j=1

λ j∇F(xk,ζα j)+
[η(xk)]

∑
j=1

λ j∇
2F(xk,ζα j)dk

]
‖ ≤ L

2‖dk‖2

i.e., ‖
[η(xk+1)]

∑
j=1

λ j∇F(xk +dk,ζα j)‖ ≤ L
2‖dk‖2

i.e., ‖ max
j∈[η(xk+1)]

λ j∇F(xk +dk,ζα j)‖ ≤ L
2‖dk‖2

i.e., a‖dk+1‖ ≤
L
2
‖dk‖2 by using(4.11)

i.e., ‖dk+1‖ ≤ L
2a‖dk‖2.

Take τ ∈ (0,1). Since {xk} converges superlinearly to x̄, there exists k0 such that, for k ≥ k0,
‖x̄− xk+1‖ ≤ τ‖x̄− xk‖. Therefore, from the triangle inequality, for l ≥ k0, we obtain

(1− τ)‖x̄− xl‖ ≤ ‖xl− xl+1‖ ≤ (1+ τ)‖x̄− xl‖.

This implies that

(1− τ)‖x̄− xk+1‖ ≤ ‖xk+1− xk+2‖= ‖dk+1‖ ≤ L
2a‖dk‖2 = L

2a‖xk− xk+1‖2

≤ (1+ τ)2 L
2a‖x̄− xk‖2.

Thus, sequence {xk} converges quadratically to x̄. �

5. NUMERICAL ILLUSTRATION

In this section, we execute the proposed Algorithm 1 through some numerical experiments.
The implementation of Algorithm 1, along with the corresponding experimentation, took place
using MATLAB R2020a software. This MATLAB software is installed in a Windows 11 laptop
with an i5 processor label and 8 GB RAM. To initiate the implementation of the algorithm, we
made certain assumptions, outlined as follows.

• We considered the cone C to be a standard ordering cone, that is, C = R2
+ for all test

instances except Example 5.9 and Example 5.10, and the parameter e = (1,1, . . . ,1)> ∈
int(C) for the scalarizing function ψe.
• The parameter ρ in Step 5 for the line search of the Algorithm 1 was chosen ρ = 0.1.
• The stopping criteria ‖dk‖< 0.001 was employed, or a maximum number of 100 itera-

tions was reached.
• To estimate the set Max(FΩ(xk),C) at the k-th iteration in Step 1 of Algorithm 1, we

adopted the common method of comparing the elements in FΩ(xk) with upper set order
relation.
• At the k-th iteration in Step 2 of Algorithm 1, we compute for every α ∈Pk the unique

solution da of the strongly convex problem min
d∈Rn

Gxk(α,d). Then, we find

(αk,dk) = argmin
α∈Pk

Gxk(α,da).

with the help of an inbuilt function fmincon in MATLAB.
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• We formulated and examined various test problems sourced from existing literature of
set optimization, incorporating slight modifications alongside introducing new prob-
lems. We randomly generated 100 initial points in each case and executed the algo-
rithm. Within the context of each experiment, we have provided a table featuring three
columns. The following values have been collected for each test instance:

– Initial points: The value corresponds to the initial column of the table, denoting
the count of initial points utilized in solving Algorithm 1 as proposed.

– Iterations: This is a 6-tuple (Min, Max, Mean, Median, Mode, SD) that indicates
the minimum, maximum, mean, median, mode, and standard deviation of the num-
ber of iterations in those instances reported as solved.

– CPU time: This particular value corresponds to the third column, comprising yet
another 6-tuple (Min, Max, Mean, Median, Mode, SD). This tuple shows the mini-
mum, maximum, mean, median, mode, and standard deviation of the CPU time (in
seconds) consumed by the initial point in attaining the stopping condition.

Furthermore, for clarity, all the numerical values are displayed for up to four decimal places.
In the analysis of each problem, the values of F in (2.2) at every iteration are distinguished by
using black and red colours for the initial and final points, respectively. The intermediate points
are identified with the colour green. Also, we have used cyan, magenta, and green colours to
represent the intermediate points for different initial points.

Example 5.1. Let the uncertainty set be Ω = {0.1,0.2, . . . ,3.0}. Consider the UMOP with the
multi-objective function F : R2×Ω→ R2 defined as

F(x,ζ ) =

(
x2

1 + x2
2 +0.5sin

(2π(10ζ−1)
60

)
cos
(2π(10ζ−1)

60

)
+2e(x1+x2)

2x2
1 +2x2

2 +0.5cos
(2π(10ζ−1)

60

) )
.

In Figure 1, various outcomes of Algorithm 1 are illustrated for a selected starting point within
the set [−0.5,2]× [−0.5,0.5]. Figure 1b and Figure 1a present the sequence of input arguments
{xk} and their corresponding outputs FΩ(xk) produced by Algorithm 1, starting from the initial
point x0 = (1.5,0.5)>. Moreover, for three randomly selected initial points, the sequence of
arguments {xk} and their corresponding outcomes {FΩ(xk)} generated by Algorithm 1 (depicted
with cyan, magenta, and green colors) are shown in Figure 1d and Figure 1c, respectively.

The performance of Algorithm 1 for Example 5.1 is presented in Table 1.

TABLE 1. Performance of Algorithm 1 on Example 5.1

Number of Iterations CPU time
initial points (Min, Max, Mean, Median, Mode, SD) (Min, Max, Mean, Median, Mode, SD)

100 (2, 3, 2.6600, 3, 3, 0.4761) (7.9678, 21.5317, 12.5447, 13.7118, 7.9678, 3.1597)

Below, we introduce three new examples (Example 5.2, Example 5.3, and Example 5.4) in
the following manner.
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(A) The value of FΩ at each itera-
tion generated by Algorithm 1 for
initial point x0 = (1.5,0.5)> for
Example 5.1
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(B) The value of xk at each itera-
tion generated by Algorithm 1 for
initial point x0 = (1.5,0.5)> for
Example 5.1
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(C) The value of FΩ at each it-
eration generated by Algorithm 1
for three different randomly cho-
sen initial points for Example 5.1
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(D) The value of xk at each it-
eration generated by Algorithm 1
for three different randomly cho-
sen initial points for Example 5.1

FIGURE 1. Output of Algorithm 1 for Example 5.1

Example 5.2. Let the uncertainty set be Ω = {0.1,0.2, . . . ,1.0}. Consider the UMOP with the
multi-objective function F : R2×Ω→ R2 defined as

F(x,ζ ) =

sin
(2π(10ζ−1)

30

)
+ e

x2
1(10ζ−1)

30
(
(x1−0.5)3 +(x2−0.5)2)

cos
(2π(10ζ−1)

30

)
+ e

x2
2(10ζ−1)

30
(
(x1−0.5)2 +(x2−0.5)3)

.

In Figure 2, various outcomes of Algorithm 1 are illustrated for a selected starting point
within the set [0.4,2.2]× [0.4,1.1]. Figure 2b and Figure 2a present the sequence of input argu-
ments {xk} and their corresponding outputs FΩ(xk) produced by Algorithm 1, starting from the
initial point x0 = (2.2,1)>. Moreover, for three randomly selected initial points, the sequence
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eration generated by Algorithm 1
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for Example 5.2
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(B) The value of xk at each itera-
tion generated by Algorithm 1 for
initial point x0 = (2.2,1.0)> for
Example 5.2
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(C) The value of FΩ at each it-
eration generated by Algorithm 1
for three different randomly cho-
sen initial points for Example 5.2

(D) The value of xk at each itera-
tion generated by Algorithm 1 for
three different randomly chosen
initial points for Example 5.2

FIGURE 2. Output of Algorithm 1 for Example 5.2

of arguments {xk} and their corresponding outcomes {FΩ(xk)} generated by Algorithm 1 (de-
picted with cyan, magenta, and green colors) are shown in Figure 2d and Figure 2c, respectively.
The performance of Algorithm 1 for Example 5.2 is shown in Table 2.

TABLE 2. Performance of Algorithm 1 on Example 5.2

Number of Iterations CPU time
initial points (Min, Max, Mean, Median, Mode, SD) (Min, Max, Mean, Median, Mode, SD)

100 (1, 13, 12.6200, 13, 13, 0.4878) (54.4112, 344.4673, 122.2917, 74.7120, 54.4112, 83.9129)
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Example 5.3. Let the uncertainty set be Ω = {0.1,0.2, . . . ,2.0}. Consider the UMOP with the
multi-objective function F : R2×Ω→ R2 defined as

F(x,ζ ) =

cos
(2πx1(10ζ−1)

100

)(
1+ x2

1− sin
(

4πx2(10ζ−1)
100

))
sin
(2πx2(10ζ−1)

100

)(
1+ x2

2− cos
(

4πx1(10ζ−1)
100

))
.

In Figure 3, various outcomes of the Algorithm 1 are illustrated for a selected starting point
within the set [1.2,1.8]× [0.9,1.3]. Figure 3a depicts the sequence {FΩ(xk)} generated by
Algorithm 1 for a chosen starting point x0 = (1.5,1.0)>. In Figure 3b, we test our algorithm
for three initial points and depict their corresponding output (marked with green, magenta, and
cyan colors).
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(A) The value of FΩ at each
iteration generated by Algorithm
1 for Example 5.3 for the initial
pointx0 = (1.5,1.0)>

(B) The value of FΩ for three dif-
ferent initial points at each itera-
tion generated by Algorithm 1 of
Example 5.3

FIGURE 3. Output of Algorithm 1 for Example 5.3

The performance of Algorithm 1 for Example 5.3 is shown in Table 3.

TABLE 3. Performance of Algorithm 1 on Example 5.3

Number of Iterations CPU time
initial points (Min, Max, Mean, Median, Mode, SD) (Min, Max, Mean, Median, Mode, SD)

50 (1, 10, 5.8400, 6, 6, 1.5167) (44.0554, 177.0172, 98.3708, 100.6665, 44.0554, 28.1271)

Example 5.4. Let the uncertainty set be Ω = {0.1,0.2, . . . ,10.0}. Consider the UMOP with the
multi-objective function F : R2×Ω→ R2 defined as

F(x,ζ ) =

(
x2

1 + x2
2 +0.5sin

(2π(30ζ−1)
100

)
2x2

1 +2x2
2 +0.5cos

(2π(20ζ−1)
100

)).
In Figure 4, various outcomes of Algorithm 1 are illustrated for a selected starting point within
the set [0,1.8]× [0,1.8]. For three randomly selected initial points, the sequence of arguments
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(A) The value of FΩ for three dif-
ferent initial points at each itera-
tion generated by Algorithm 1 of
Example 5.4

(B) The value of xk at each it-
eration generated by Algorithm 1
for three different randomly cho-
sen initial points for Example 5.4

FIGURE 4. Output of Algorithm 1 for Example 5.4

{xk} and their corresponding outcomes {FΩ(xk)} generated by Algorithm 1 (depicted with cyan,
magenta, and green colors) are shown in Figure 4b and Figure 4a, respectively.
The performance of Algorithm 1 for Example 5.4 is shown in Table 4.

TABLE 4. Performance of Algorithm 1 on Example 5.4

Number of Iterations CPU time
initial points (Min, Max, Mean, Median, Mode, SD) (Min, Max, Mean, Median, Mode, SD)

100 (1, 6, 6, 6, 6, 0) (31.1872, 43.9398, 37.9914, 40.4395, 31.1872, 4.0770)

Example 5.5. Let the uncertainty set be Ω = {0.1,0.2, . . . ,25.0}. Consider the UMOP with the
multi-objective function F : R2×Ω→ R2 defined as

F(x,ζ ) =

(
0.35sin

(2π(20ζ−1)
250

)
cos
(2π(20ζ−1)

250

)
+ x2

0.35cos
(2π(30ζ−1)

250

)
+ 1

(1+e2x)
+ cos2x

)
.

In Figure 5, various outcomes of the Algorithm 1 are illustrated for a selected starting point
within the set [1.87,2]. Figure 5a depicts the sequence {FΩ(xk)} generated by Algorithm 1 for
a chosen starting point x0 = 2. In Figure 5b, we test our algorithm for three initial points and
depict their corresponding output (marked with green, magenta, and cyan colors).
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(A) The value of FΩ at each itera-
tion generated by Algorithm 1 for
Example 5.5 for the initial point
x0 = 2.0

(B) The value of FΩ for three dif-
ferent initial points at each itera-
tion generated by Algorithm 1 of
Example 5.5

FIGURE 5. Output of Algorithm 1 for Example 5.5

The performance of Algorithm 1 for Example 5.5 is shown in Table 5.

TABLE 5. Performance of Algorithm 1 on Example 5.5

Number of Iterations CPU time
initial points (Min, Max, Mean, Median, Mode, SD) (Min, Max, Mean, Median, Mode, SD)

100 (1, 5, 3.5400, 5, 5, 1.8609) (6.5103, 30.8964, 19.9434, 22.4633, 6.5103, 8.9238)

Example 5.6. Let the uncertainty set be Ω = {0.1,0.2, . . . ,1.4}. Consider the UMOP with the
multi-objective function F : R2×Ω→ R2 defined as

F(x,ζ ) =

 x2
1 + x2

2 +0.25sin
(2π(10ζ−1)

14

)
−0.1ζ

2x2
1 +2x2

2 +0.25cos
(2π(10ζ−1)

14

)
+0.2ζ

x2
1 + x2

2 +10ζ

.

In Figure 6, various outcomes of Algorithm 1 are illustrated for a selected starting point within
the set [0,2]× [−0.15,0.30]. Figure 6b and Figure 6a presents the sequence of input arguments
{xk} and their corresponding outputs FΩ(xk) produced by Algorithm 1, starting from the initial
point x0 = (2,0)>. Moreover, for three randomly selected initial points, the sequence of ar-
guments {xk} and their corresponding outcomes {FΩ(xk)} generated by Algorithm 1 (depicted
with cyan, magenta, and green colors) are shown in Figure 6d and Figure 6c, respectively.
The performance of Algorithm 1 for Example 5.6 is shown in Table 6.

TABLE 6. Performance of Algorithm 1 on Example 5.6

Number of Iterations CPU time
initial points (Min, Max, Mean, Median, Mode, SD) (Min, Max, Mean, Median, Mode, SD)

100 (1, 5, 4.8100, 5, 5, 0.3946) (33.3476, 49.2138, 41.8439, 43.4114, 33.3476, 3.8975)
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(A) The value of FΩ at each itera-
tion generated by Algorithm 1 for
Example 5.6 for the initial point
x0 = (2.0,0.0)>
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(B) The value of xk at each itera-
tion generated by Algorithm 1 for
initial point x0 = (2.0,0.0)> for
Example 5.6

(C) The value of FΩ for three dif-
ferent initial points at each itera-
tion generated by Algorithm 1 of
Example 5.6

(D) The value of xk at each it-
eration generated by Algorithm 1
for three different randomly cho-
sen initial points for Example 5.6

FIGURE 6. Output of Algorithm 1 for Example 5.6

Example 5.7. Let the uncertainty set be Ω = {0.1,0.2, . . . ,3.0}. Consider the UMOP with the
multi-objective function F : R2×Ω→ R2 defined as

F(x,ζ ) =

 x2 + (10ζ−1)
30

(x2−4)cos
(
x2−4

)
+ (10ζ−1)

30
x2 (10ζ−1)

30

.

In Figure 7, various outcomes of Algorithm 1 are illustrated for a selected starting point within
the set [2.27,2.47]. Figure 7a depicts the sequence {FΩ(xk)} generated by Algorithm 1 for a
chosen starting point x0 = 2.35. In Figure 7b, we test our algorithm for three initial points and
depict their corresponding output (marked with green, magenta, and cyan colors).
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(A) The value of FΩ at each itera-
tion generated by Algorithm 1 for
Example 5.7 for the initial point
x0 = 2.35

(B) The value of FΩ for three dif-
ferent initial points at each itera-
tion generated by Algorithm 1 of
Example 5.7

FIGURE 7. Output of Algorithm 1 for Example 5.7

The performance of Algorithm 1 for Example 5.7 is shown in Table 7.

TABLE 7. Performance of Algorithm 1 on Example 5.7

Number of Iterations CPU time
initial points (Min, Max, Mean, Median, Mode, SD) (Min, Max, Mean, Median, Mode, SD)

100 (1, 23, 8.2500, 5, 5, 6.0509) (0.5592, 16.1918, 4.9428, 2.1755, 0.5592, 4.4797)

Example 5.8. Consider the UMOP with the multi-objective function F : R2×Ω→ R2 defined
as

F(x,ζ ) = 1
2

‖x− l1−ζ‖2

‖x− l2−ζ‖2

‖x− l3−ζ‖2

,

where l1 =
(

0
8

)
, l2 =

(
0
0

)
and l3 =

(
8
0

)
. We consider a uniform partition set of 10 points of

the interval [−1,1] given by

Ω =
{
−1,−1+ 1

s ,−1+ 2
s , . . . ,−1+ 2s−1

s ,1
}

with s = 4.5.

A scenario ζ = (ζ1,ζ2) is an element of the uncertainty set Ω×Ω. In Figure 8, a total of 70
initial points were generated in the square [−50,50]× [−50,50]. The grey points represent the
set (l1 + ζ )∪ (l2 + ζ )∪ (l3 + ζ ) and the locations of l1, l2, l3 are depicted in blue colour. The
values of the sequence {xk} generated by Algorithm 1 for three different randomly chosen initial
points are given with cyan, magenta, and green colors as shown in Figure 8. The performance
of Algorithm 1 for Example 5.8 is shown in Table 8.
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(A) The value of FΩ for three different initial points
at each iteration generated by Algorithm 1 of Ex-
ample 5.8

FIGURE 8. Output of Algorithm 1 for Example 5.8

TABLE 8. Performance of Algorithm 1 on Example 5.8

Number of Iterations CPU time
initial points (Min, Max, Mean, Median, Mode, SD) (Min, Max, Mean, Median, Mode, SD)

70 (1, 25, 23.3382, 24, 24, 1.0736) (19.3772, 396.0796, 111.0618, 88.6105, 19.3772, 88.4447)

Example 5.9. Let the uncertainty set be Ω = {0.1,0.2,0.3,0.4}. Consider the UMOP with the
multi-objective function F : R2×Ω→ R2 defined as

F(x,ζ ) =

(
2x3 + (10ζ−3)

2 + 4x(10ζ−3)
2

x2

4 cosx− cos2(x) (10ζ−3)
2

)
.

The cone is C∗ given by C∗ = {(z1,z2)
> ∈ R2 : 15z1−100z2 ≥ 0,−9z1 +100z2 ≥ 0}.

In Figure 9, various outcomes of the Algorithm 1 are illustrated for a selected starting point
within the set [4.34,4.7]. Figure 9a depicts the sequence {FΩ(xk)} generated by Algorithm 1 for
a chosen starting point x0 = 4.7. It can seen that the points depicted with red color are optimal
points of FΩ as the set (123.0982,−3.0901)>−C∗ does not contain any element of FΩ(x) other
than (123.0982,−3.0901) for all x ∈ [4.3400,4.7000]. In Figure 9b, we test our algorithm for
three initial points and depict their corresponding output (marked with green, magenta, and
cyan colors).
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(A) The value of FΩ at each itera-
tion generated by Algorithm 1 for
Example 5.9 for the initial point
x0 = 4.7000
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(B) The value of FΩ for three dif-
ferent initial points at each itera-
tion generated by Algorithm 1 of
Example 5.9

FIGURE 9. Output of Algorithm 1 for Example 5.9

The performance of Algorithm 1 for Example 5.9 is shown in Table 9.

TABLE 9. Performance of Algorithm 1 on Example 5.9

Number of Iterations CPU time
initial points (Min, Max, Mean, Median, Mode, SD) (Min, Max, Mean, Median, Mode, SD)

100 (1, 3, 2.9900, 3, 3, 0.1000) (2.2930, 10.6611, 3.6688, 3.2122, 2.2930, 1.5694)

Example 5.10. Let the uncertainty set be Ω = {0.1,0.2, . . . ,1.0}. Consider the UMOP with the
multi-objective function F : R2×Ω→ R2 defined as

F(x,ζ ) =

(
x2

1 + x2
2 +0.1ex1x2 + x2

1 cosx2 +0.7cos
(2π(10ζ−1)

200

)
sin2 (2π(10ζ−1)

200

)
x2

1 + x2
2 +5log(|x1x2|)+ x2

2 cosx1 +25cos2 (2π(10ζ−1)
200

)
sin2 (2π(10ζ−1)

200

)).
In Figure 10, various outcomes of Algorithm 1 are illustrated for a selected starting point

within the set [−0.3,0.5]× [−1.2,0.4]. For three randomly selected initial points, the sequence
of arguments {xk} and their corresponding outcomes {FΩ(xk)} generated by Algorithm 1 (de-
picted with cyan, magenta, and green colors) are shown in Figure 10b and Figure 10a, respec-
tively.
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(A) The value of FΩ for three dif-
ferent initial points at each itera-
tion generated by Algorithm 1 of
Example 5.10

(B) The value of xk at each it-
eration generated by Algorithm 1
for three different randomly cho-
sen initial points for Example 5.10

FIGURE 10. Output of Algorithm 1 for Example 5.10

The performance of Algorithm 1 for Example 5.10 is shown in Table 10.

TABLE 10. Performance of Algorithm 1 on Example 5.10

Number of Iterations CPU time
initial points (Min, Max, Mean, Median, Mode, SD) (Min, Max, Mean, Median, Mode, SD)

25 (1, 4, 4, 4, 4, 0) (190.0765, 234.9737, 210.1367, 209.6842, 190.0765, 9.8043)

6. CONCLUSION

In this paper, we introduced a Newton method to identify weakly robust efficient solutions
for UMOPs with an uncertainty set of finite cardinality. We employed a set-valued optimiza-
tion viewpoint to transform it into a deterministic problem. The deterministic set optimization
problem was defined in such a way that the efficient solutions of this problem under upper set-
order relation are robust efficient solutions of the considered UMOP. Employing the concept of
partition set, we formulated a class of VOPs and we obtained efficient solutions of the set op-
timization problem, thereby capturing robust efficient solutions of the UMOP. By assuming all
vector-valued functions associated with each uncertain scenario to be twice continuously differ-
entiable and locally strong convex, the convergence analysis of the proposed Newton method
was derived. It is found that if the weakly robust efficient point satisfies the regularity condition,
then the sequence provided by the method locally converges superlinearly (Theorem 4.5), and
the Newton step is be a full Newton step. Furthermore, a local quadratic convergence (Theo-
rem 4.6) was identified when the second-order derivatives of the objective functions across all
uncertain scenarios are Lipschitz continuous.

The present investigation inspires us to seek weakly robust efficient solutions for UMOPs
through the application of Newton’s method. Numerous alternative methods (see, e.g., [21, 32,
33, 34, 35]) can be developed for capturing these weakly robust efficient solutions. In future
research, we would like to focus on the following directions:
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• Develop methods to solve UMOP with infinite or continuous uncertainty sets.
• To examine the complete set of strictly robust efficient, weakly efficient, and efficient

solutions for UMOP, one can try to capture a discrete approximation of the complete
set.
• Given the practical applications associated with the problems possessing this particular

structure, there exists a scope for further research in both the general UMOP context
and the extension of our findings to encompass other set order relations.
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