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Abstract. In this paper, we first develop the chain and sum rules of the first-order variational sets of
type 2. Then, by virtue of the variational sets of type 2, we investigate the sensitivity of variational
inequalities. Finally, in terms of these sets, we establish sensitivity results for parametric set-valued
equilibrium problems under the weak efficiency. Several examples are provided to illustrate our main
results.
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1. INTRODUCTION

Sensitivity analysis, which is of great importance in optimization and some related fields in
applied mathematics, mainly concerns derivatives of solution/optimal-valued maps to perturbed
optimization problems, which provides quantitative information as regards the perturbation map
of a parameterized vector optimization problem when it is perturbed. Therefore, the concept of
generalized derivatives plays an essential role in this topic. In set-valued optimization problems,
since the classical derivatives do not exist in some cases, it is particularly important to consider
the generalized derivatives to replace the classical derivatives. Thus some new generalized
derivatives were used to discuss sensitivity. In [1, 2, 3, 4], the sensitivity results for paramet-
ric multi-objective optimization problems were discussed via radial derivatives or contingent
derivatives. By virtue of higher-order adjacent derivatives, Wang and Li [5] obtained some re-
sults on higher-order sensitivity analysis in nonconvex vector optimization. By using variational
sets, Anh and Khanh [6] obtained some results on sensitivity analysis for nonsmooth vector op-
timization. With the aid of the higher-order contingent derivatives and a separation theorem
for convex sets, Xu and Peng [7] obtained some results on higher-order sensitivity analysis in
set-valued optimization. Xue et al. [8] investigated sensitivity analysis for a parametric vector
variational inequality problem by using generalized differentiation. Anh and Thinh [9] estab-
lished sensitivity analysis for the solution map of the parametric inclusion with the help of
higher-order generalized (weak) tangent epiderivatives.
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Variational sets were first introduced and applied in [10]. Since the image of the variational
sets is larger than that of some known generalized derivatives, it is difficult to obtain the neces-
sary optimality conditions through separation technology and more strict than the existing re-
sults; see [10, 11]. Vector equilibrium theory is an important part of nonlinear analysis. Vector
variational inequality, vector optimization, and vector complementarity are special cases of vec-
tor equilibrium. Recently, the vector equilibrium problem has been studied extensively. How-
ever, some important results are mainly about the solution existence (see, e.g., [12, 13, 14, 15]),
stability analysis (see, e.g., [16, 17, 18]), optimality conditions (see, e.g., [19, 20, 21, 22, 23]).
To the best of our knowledge, up to now, few sensitivity analysis results were obtained for vec-
tor equilibrium problems. Anh [24] proposed a parameterized vector equilibrium problem via
the sum of two given set-valued maps and studied sensitivity analysis for this problem in terms
of the second-order contingent derivatives. By using the S-derivative of a set-valued map, Deng
and Zhao [25] investigated the sensitivity analysis in vector equilibrium problems. In view of
rn > 0 in the definition for variational sets of type 2 and rn→ 0+ in the definition for variational
sets of type 1, the existence condition for variational sets of type 2 is weaker than that of type
1. The chain and sum rules for variational sets of type 1 were given in [26]. Observe that the
chain and sum rules for variational sets of type 2 are not perfect, we in this paper establish the
chain and sum rules for variational sets of type 2 from a different perspective (from that in [27]).
This also motivates us to apply these rules to the sensitivity analysis of variational inequalities.
Inspired by [26, 27], we investigate the sensitivity analysis in parametric set-valued equilibrium
problems under the weak efficiency by using variational sets of type 2. We also mention here
that there is a significant difference between this paper and [26, 27] in terms of derivatives,
which further facilitates our research.

The organization of this paper is as follows. Section 2 is devoted to some definitions and con-
cepts needed in the sequel. In Section 3, we obtain the chain and sum rules for variational sets
of type 2. In Section 4, we establish the first-order sensitivity results of variational inequalities.
In Section 5, we study the sensitivity of these sets to parameter set-valued equilibrium problems
in the sense of weak efficient solutions. Some conclusions are discussed in Section 6, the last
section.

2. PRELIMINARIES

Throughout this paper, let X , Y , and Z be three normed spaces, BY be used to denote the
closed unit ball in Y , and 0X , 0Y , and 0Z be used to denote the original points of X , Y , and
Z, respectively. We denote by U (x0) the set of all neighborhoods of x0. For B ⊆ Y , intB and
clB stand for the interior and closure of B, respectively. Let C ⊆ Y be a closed convex cone,
Ĉ ⊆ intC∪{0Y} be a closed convex cone, N be the set of natural numbers, R be the set of real
numbers, and R+ be the set of nonnegative real numbers. A nonempty convex subset E ⊆C is
called a base of C if 0Y /∈ clE and C = coneE := {re | r ≥ 0,e ∈ E}. If E is compact, then C is
said to have a compact base E. Clearly, the cone C has a compact base if and only if C∩∂BY is
compact. If Y is a finite dimensional space, then C has a compact base. If C has a convex base,
then C is convex and pointed. Moreover, we use the following cones,

cone+B := {rb | r > 0,b ∈ B}, C∗ := {y∗ ∈ Y ∗ | 〈y∗,c〉 ≥ 0,∀c ∈C} (dual cone).
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When C is solid (i.e., intC 6= /0),b0 ∈ B is said to be a weak efficient point of B, denoted by
b0 ∈WMinC B, if (B−{b0})∩ (− intC) = /0. Let F and S : X → 2Y be two set-valued maps,
where X is the space of perturbation parameters and Y be an objective space ordered partially
by a closed convex cone C. A nonempty subset B is said to have the weak domination property
(see [6]) if B⊆WMinCB+ intC∪{0Y}. For a set-valued map F : X→ 2Y , the domain and graph
of F are defined by domF := {x ∈ X | F(x) 6= /0} and grF := {(x,y) ∈ X ×Y | y ∈ F(x)}. The
so-called profile map of F is the map (F +C)(x) := F(x)+C. The so-called closure map of F is
the map clF defined by gr(clF) := cl(grF). B has the weak domination property around x0 ∈ X
with respect to Ĉ iff there exists a neighborhood V of x0 ∈ X such that F(x)⊆WMinCF(x)+Ĉ.
The Painlevé-Kuratowski upper limit is defined by

Limsup
x F→x0

F(x) := {y ∈ Y | ∃xn ∈ domF, yn ∈ F(xn) s.t. xn→ x0, yn→ y, ∀n ∈ N},

where x F→ x0 means that x ∈ domF and x→ x0. The Painlevé-Kuratowski lower limit is

Liminf
x F→x0

F(x) := {y ∈ Y | ∀xn ∈ domF, yn ∈ F(xn) s.t. xn→ x0, yn→ y, ∀n ∈ N}.

If Limsup
x F→x0

F(x) = Liminf
x F→x0

F(x), then this value is called the Painlevé-Kuratowski limit of F at x0

and denoted by Lim
x F→x0

F(x).

Definition 2.1. [28] Let H be a nonempty subset of X , x ∈ H, and u ∈ X . The contingent cone
of H at x is defined by T (H,x) := {u ∈ X | ∃rn→ 0+, ∃un→ u, s.t. x+ rnun ∈ H, ∀n ∈ N} .

Definition 2.2. [29] Let H be a nonempty subset of X , x ∈ H, and u ∈ X . The radial cone of H
at x is defined by R(H,x) := {u ∈ X | ∃rn > 0, ∃un→ u, s.t. x+ rnun ∈ H, ∀n ∈ N} .

Definition 2.3. [4] Let F : X → 2Y be a set-valued map and (x0,y0) ∈ grF . The first-order
radial derivative of F at (x0,y0) is a set-valued map DRF (x0,y0) : X → 2Y defined by

DRF(x0,y0)(u) := {v ∈ Y | ∃rn > 0, ∃(un,vn)→ (u,v),s.t. y0 + rnvn ∈ F(x0 + rnun), ∀n ∈ N}.

According to Definition 2.3, one has 0Y ∈ DRF (x0,y0)(0X).

Definition 2.4. [10] Let F : X → 2Y be a set-valued map and (x0,y0) ∈ grF.

(i) The first-order variational set of type 2 of F at (x0,y0) is defined by

W (F,(x0,y0)) := Limsup
x F→x0

(cone+(F(x)− y0)).

(ii) The first-order lower variational set of type 2 of F at (x0,y0) is defined by

W (F,(x0,y0)) := Liminf
x F→x0

(cone+(F(x)− y0)).

F is said to have the first-order proto-variational set of type 2 at (x0,y0) iff

W (F,(x0,y0)) =W (F,(x0,y0)).
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(iii) The first-order variational set of type 1 of F at (x0,y0) is defined by

V (F,(x0,y0)) := Limsup
x F→x0,
r→0+

1
r
(F(x)− y0) ,

where x F→ x0 means x ∈ domF and x→ x0.

According to Definition 2.4, one has 0Y ∈W (F,(x0,y0)) .

Remark 2.1. Definition 2.4 can be also expressed equivalently as follows:
(i) W (F,(x0,y0)) = {v ∈ Y | ∃rn > 0, ∃(xn,vn)→ (x0,v),s.t. y0 + rnvn ∈ F(xn), ∀n ∈ N};

(ii) W (F,(x0,y0)) = {v ∈ Y | ∀rn > 0, ∃(xn,vn)→ (x0,v),s.t. y0 + rnvn ∈ F(xn), ∀n ∈ N};
(iii) V (F,(x0,y0)) = {v ∈ Y | ∃rn→ 0+, ∃(xn,vn)→ (x0,v),s.t. y0 + rnvn ∈ F(xn), ∀n ∈ N}.

It is clear that W (F,(x0,y0))⊆V (F,(x0,y0))⊆W (F,(x0,y0)) .
However, the reverse conclusion not necessarily hold; see the following example.

Example 2.1. Let X = Y = R,C = R+, and F : X → 2Y be defined by F(x) = {x2}. Tak-
ing (x0,y0) = (0,0), one has W (F,(x0,y0)) = {0} and V (F,(x0,y0)) = R, which imply that
V (F,(x0,y0)) 6⊆W (F,(x0,y0)). Taking (x0,y0) = (1,0), one sees that V (F,(x0,y0)) = /0 and
W (F,(x0,y0)) = R+, which imply that W (F,(x0,y0)) 6⊆V (F,(x0,y0)).

Definition 2.5. [30] Let M ⊆ X be a convex subset and C be a closed convex cone. The map
P : M→ 2Y is said to be C-convex on M if, for all x1,x2 ∈M and λ ∈ (0,1) ,

λP(x1)+(1−λ )P(x2)⊆ P(λx1 +(1−λ )x2)+C.

Inspired by [24], we propose the following definition.

Definition 2.6. Let F and S : X → 2Y be two set-valued maps. F is said to be C-dominated by
S near x0 iff F(x)⊆ S(x)+C for all x ∈ X in some X ∈U (x0).

Let y0 ∈ S(x0) and F be C-dominated by S near x0. Since S(x) ⊆ F(x) for all x ∈U , then
S(x)+C = F(x)+C for all x ∈U . Thus W (F +C,(x0,y0)) =W (S+C,(x0,y0)).

Definition 2.7. [6] Let F : X → 2Y be a set-valued map and (x0,y0) ∈ grF. The first-order
singular variational set of type 2 of F at (x0,y0) is defined by

W ∞(1) (F,(x0,y0)) : =
∞(1)

Limsup
x F→x0

cone+(F(x)− y0)

= {y ∈ Y | ∃xn
F→ x0, ∃λn→ 0+,

∃yn ∈ cone+ (F (xn)− y0), s.t. λnyn→ y, ∀n ∈ N} .

Lemma 2.1. [6] Let x0 ∈ S and y0 ∈ S (x0) . Let Ĉ ⊆ intC∪{0Y} be a closed convex cone with
a compact convex base, and F fulfill the weak domination property around x0 with respect to Ĉ.
Then W

(
S+Ĉ,(x0,y0)

)
=W

(
F +Ĉ,(x0,y0)

)
.

Lemma 2.2. [6] Let Ĉ ⊆ intC∪{0Y} be a closed convex cone with a compact convex base.
Then

WMinC W
(
F +Ĉ,(x0,y0)

)
⊆W (F,(x0,y0)) . (2.1)
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Lemma 2.3. [6] Let Ĉ ⊆ intC∪{0Y} be a closed convex cone with a compact convex base.
Suppose that either of the following conditions holds:

(i) W
(
F +Ĉ,(x0,y0)

)
has the weak domination property;

(ii) W ∞(1) (F,(x0,y0))∩ (−Ĉ) = {0Y}.
Then WMinC W

(
F +Ĉ,(x0,y0)

)
= WMinC W (F,(x0,y0)) .

Now we illustrate the relation between the variational set of type 2 of F and that of S.

Proposition 2.1. Let (x0,y0) ∈ grS, Ĉ ⊆ intC∪{0Y} be a closed convex cone with a compact
base, and F have the weak domination property around x0 with respect to Ĉ. Suppose that
either of the following two conditions holds:

(i) W (F +Ĉ,(x0,y0)) has the weak domination property;
(ii) W ∞(1)(F,(x0,y0))∩ (−Ĉ) = {0Y}.

Then
WMinC W (F,(x0,y0))⊆W (S,(x0,y0)) . (2.2)

Proof. From Lemma 2.3, we have WMinC W (F,(x0,y0)) = WMinC W
(
F +Ĉ,(x0,y0)

)
, which

together with Lemma 2.1 yields WMinC W (F,(x0,y0)) = WMinC W
(
S+Ĉ,(x0,y0)

)
. In view

of (2.1), we find from Lemma 2.2 that WMinC W (F,(x0,y0))⊆W (S,(x0,y0)) . This completes
the proof. �

Under the conditions of Proposition 2.1, the inverse inclusion relation of (2.2) may not nec-
essarily hold, which can be seen via the following example.

Example 2.2. Let X = R, Y = R2, C = R2
+, and F : X → 2Y be defined by

F(x) =

{
({0}×R)∪ (R×{0})∪

{
(x0,y0) ∈ Y | x2

0 + y2
0 = 1

}
, if x = 0,

/0, if x 6= 0.

Then

S(x) =


((−∞,−1)×{0})∪ ({0}× (−∞,−1))∪
{(x0,y0) ∈ Y | x2

0 + y2
0 = 1,x≤ 0,y≤ 0}, if x = 0,

/0, if x 6= 0.

Since W (F,(0,(−1,0))) = (R+×R)∪ (R−×{0}) ,
WMinCW (F,(0,(−1,0))) = ({0}×R−)∪ (R−×{0}) .

However, we have

W (S,(0,(−1,0))) = (R−×{0})∪{(x0,y0) ∈ Y | y0 ≤−x0,x0 ≥ 0}.
Hence, W (S,(0,(−1,0)))* WMinC W (F,(0,(−1,0))).

To see the inverse inclusion relation of (2.2) in Proposition 2.1, we impose three conditions
as follows.

Proposition 2.2. Let (x0,y0) ∈ grF, let C have a compact convex base. Assume that the follow-
ing conditions are satisfied:

(i) F is C-dominated by S near x0;
(ii) F has the first-order proto-variational set of type 2 at (x0,y0);
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(iii) for all x ∈ X in some X ∈U (x0), m− e ∈ intC∪ (−intC), ∀m,e ∈ F(x), m 6= e.

Then

W (S,(x0,y0))⊆WMinC W (F,(x0,y0)). (2.3)

If, additionally, the conditions in Proposition 2.1 are fulfilled, then (2.3) becomes an equality.

Proof. First, we prove that S(x) is a single point set for all x ∈ X in some X ∈U (x0). Indeed,
if m,e ∈ S(x), then m,e ∈ F(x). Suppose that S(x) is not a single point set. Then, for any
m,e ∈ S(x)⊆ F(x) with e 6= m, according to assumption (iii), one has m− e ∈ intC∪ (−intC),
that is, m− e ∈ intC or m− e ∈ −intC. It is clear that m− e 6= 0Y .

To prove that S(x) is a single point set, we divide m− e into two cases.
Case I. If m− e ∈ intC, then (S(x)−{m})∩ (−intC) 6= /0, which contradicts m ∈ S(x).
Case II. If m− e ∈ −intC, then (S(x)−{e})∩ (−intC) 6= /0, which contradicts e ∈ S(x). So,

it is obvious that S(x) is a single point set for all x ∈ X in some X ∈U (x0).
Next, we prove inclusion relation (2.3). Let v ∈W (S,(x0,y0)). Then, there exist sequences
{rn} with rn > 0 and {(xn,vn)} with (xn,vn)→ (x0,v) such that

y0 + rnvn ∈ S(xn)⊆ F(xn), ∀n ∈ N. (2.4)

Suppose to the contrary that v /∈WMinC W (F,(x0,y0)). Then, (W (F,(x0,y0))−{v})∩(−intC) 6=
/0. It follows that there exists v ∈W (F,(x0,y0)) such that v−v ∈ intC. Since S has the first-order
proto-variational set of type 2 at (x0,y0), for the preceding sequences {rn} and {xn}, there exists
a sequence {vn} with vn→ v such that

y0 + rnvn ∈ F(xn), ∀n ∈ N. (2.5)

Since F is C-dominated by S near x0, one sees that there exists X ′ ⊆U (x0) such that

F(x)⊆ S(x)+C, ∀x ∈ X ′. (2.6)

It is easily seen that there exists a natural number N > 0 such that xn ∈ X ∩X ′, ∀n > N. Thus
it follows from (2.5) and (2.6) that y0 + rnvn ∈ S(xn)+C for all n > N. Since S(x) is a single
point set, it follows from (2.4) that y0+rnvn−(y0+rnvn) = rn(vn−vn)∈C for all n > N. Since
vn− vn→ v− v and C has a convex base, one obtains v− v ∈C, which contradicts v− v ∈ intC.
Thus v ∈WMinC W (F,(x0,y0)) and (2.3) holds. The rest of the proof follows from Proposition
2.1. Hence, this completes the proof. �

To explain Proposition 2.2, we provide the following example.

Example 2.3. Let X = Y = R and C = Ĉ = R+. Let F : X → 2Y be defined by F(x) = {x2} if
x≥ 0; F(x) = /0 if x < 0. Then S(x) = {0} if x≥ 0; S(x) = /0 if x < 0. Let (x0,y0) = (0,0)∈ grF.
It is easy to see that W (F,(0,0)) = R+. Thus WMinC W (F,(0,0)) = {0}. We also have

W (S,(0,0)) = {0}, W (F +Ĉ,(0,0)) = R+,

W ∞(1)(F,(0,0)) = R+, WMinC W (F +Ĉ,(0,0)) = {0},

W ∞(1)(F,(0,0))∩ (−Ĉ) = {0}.

Thus W (S,(0,0)) = WMinC W (F,(0,0)), and Proposition 2.2 holds.
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3. CHAIN AND SUM RULES

In this section, we establish the chain and sum rules of variational sets of type 2. We first
recall some definitions from [19, 27].

Definition 3.1. [19] Let I : X→ 2Y be a set-valued map and x ∈ dom I. I is said to be closed at x
if I(x) = (cl I)(x). I is said to be compact with respect to its domain if any sequence {(xn,yn)}⊆
gr I has a convergent subsequence as soon as {xn} is a convergent sequence.

Definition 3.2. [27] Let L : X ×Z→ 2Y be a set-valued map, ((x0,z0) ,y0) ∈ grL, and w ∈ Z.
The first-order quasi-variational set of the set-valued map L of type 1 at (x0,z0) with respect to
w is the set

Vq(L,(x0,z0[w]),y0) := {v ∈ Y | ∃hn→ 0+, ∃(xn,vn,wn)→ (x0,v,w),

s.t. y0 +hnvn ∈ L(xn,z0 +hnwn), ∀n ∈ N}.

Inspired by the radial cone in [29], we propose the following definition.

Definition 3.3. Let L : X×Z→ 2Y be a set-valued map, ((x0,z0) ,y0) ∈ grL, and w ∈ Z.
(i) The first-order radial-variational set of the set-valued map L at (x0,z0) with respect to w is

the set
W (L,(x0,z0[w]),y0) := {v ∈ Y | ∃rn > 0, ∃(xn,wn,vn)→ (x0,w,v),

s.t. y0 + rnvn ∈ L(xn,z0 + rnwn), ∀n ∈ N}.
(ii) The map L is said to have the first-order semi-radial-variational set with respect to w if

Wsrv(L,(x0,z0[w]),y0) := {v ∈ Y | ∀rn > 0, ∀(xn,wn)→ (x0,w), ∃vn→ v,

s.t. y0 + rnvn ∈ L(xn,z0 + rnwn), ∀n ∈ N}.

Let F : X → 2Y and G−1 : Z → 2Y be two set-valued maps. For a chain rule, we define a
resultant set-valued map C : X×Z→ 2Y as follows:

C(x,z) := F(x)∩G−1(z). (3.1)

Then, domC = grG◦F .

Proposition 3.1. Let (x0,z0) ∈ grG ◦F, w ∈ Z, C defined by (3.1) be closed at (x0,z0), and
DRG(x,y)[T ] be defined by

⋃
t∈T DRG(x,y)(t) for all x ∈ X, y ∈Y , and T ⊆ X. Suppose that the

following condition is satisfied, for all y0 ∈C(x0,z0),

W (F,(x0,y0))∩DRG−1 (z0,y0)(w)⊆W (C,(x0,z0[w]) ,y0) . (3.2)

Then ⋃
y0∈C(x0,z0)

DRG(y0,z0) [W (F,(x0,y0))]⊆W (G◦F,(x0,z0)) . (3.3)

If, additionally, Y is finite dimensional, G and F are compact with respect to their domains, and
the following assumption is satisfied, for every y0 ∈C (x0,z0),

Vq(C,(x0,z0[0Z]),y0) = {0Y}, (3.4)

then ⋃
y0∈C(x0,z0)

DRG(y0,z0)
[
W (F,(x0,y0))

]
=W (G◦F,(x0,z0)) . (3.5)
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Proof. First, we prove (3.3). Let w ∈
⋃

y0∈C(x0,z0)DRG(y0,z0)
[
W (F,(x0,y0))

]
. Then there ex-

ists y0 ∈C (x0,z0) such that w ∈DRG(y0,z0)
[
W (F,(x0,y0))

]
. It follows that v ∈W (F,(x0,y0))

with w ∈ DRG(y0,z0)(v). We see that there exist sequences {rn} with rn > 0 and {(vn,wn)}
with (vn,wn) → (v,w) such that z0 + rnwn ∈ G(y0 + rnvn) , which implies that y0 + rnvn ∈
G−1 (z0 + rnwn), i.e., v∈DRG−1 (z0,y0)(w). It follows from (3.2) that v∈W (C,(x0,z0[w]) ,y0) .
In view of Definition 3.3, one sees that there exist sequences {(xn,vn,wn)} with (xn,vn,wn)→
(x0,v,w) and {tn} with tn > 0 such that y0 + tnvn ∈C (xn,z0 + tnwn) , which implies that

z0 + tnwn ∈ G(tnvn + y0)⊆ (G◦F)(xn) ,

i.e., w ∈W (G◦F,(x0,z0)) . So (3.3) holds.
Next we prove the inverse inclusion relation of (3.3). Let w ∈W (G◦F,(x0,z0)). To prove

w ∈
⋃

y0∈C(x0,z0)DRG(y0,z0)
[
W (F,(x0,y0))

]
, we divide w into two cases.

(i) If w = 0Z , then 0Z ∈
⋃

y0∈C(x0,z0)DRG(y0,z0)
[
W (F,(x0,y0))

]
.

(ii) If w 6= 0Z , then there exist sequences {rn} with rn > 0 and {(xn,wn)} with (xn,wn)→
(x0,w) such that z0 + rnwn ∈ (G◦F)(xn) ,, that is, there exists a sequence {yn} with yn ∈ F(xn)
such that z0 + rnwn ∈ G(yn). Since F and G are compact with respect to their domains and
xn→ x0, {yn} has a subsequence (denoted by the same notion yn) converging to some y, which
implies that {zn}, zn = z0 + rnwn, also has a convergent subsequence (denoted by zn) with the
limit point z. Since rn > 0, zn→ z, and wn→ w 6= 0Z , we see that rn converges to some k ≥ 0.

To prove w ∈
⋃

y0∈C(x0,z0)DRG(y0,z0)
[
W (F,(x0,y0))

]
, we divide k into two cases.

Case I. Let y0 ∈C(x0,z0) and set vn =
yn−y0

rn
with vn→ y−y0

k . If k > 0, then y0 + rnvn ∈ F(xn)

and z0+rnwn ∈G(y0+rnvn), which means that y−y0
k ∈W (F,(x0,y0)) and w∈DRG(y0,z0)(

y−y0
k ).

Thus, w ∈
⋃

y0∈C(x0,z0)DRG(y0,z0)
[
W (F,(x0,y0))

]
.

Case II. If k = 0, we see that yn ∈ C(xn,z0 + rnwn), i.e., (xn,z0 + rnwn,yn) ∈ grC, which
implies that (x0,z0,y)∈ cl(grC) = gr(clC). Hence, y∈ clC(x0,z0) =C(x0,z0), since C is closed
at (x0,z0). Suppose that yn = y for all n ∈N. Then 0Y ∈W (F,(x0,y)) and w ∈DRG(y,z0)(0Y ).
This demonstrates w ∈

⋃
y0∈C(x0,z0)DRG(y0,z0)

[
W (F,(x0,y0))

]
. Suppose that yn 6= y for all

n ∈ N. Setting sn = ‖yn− y‖ and vn =
yn−y

sn
, one obtains that sn→ 0+ and the sequence {vn} or

some subsequence has a limit v with ‖v‖ = 1, since Y is finite dimensional and ‖vn‖ = 1. We
can conclude that { rn

sn
} does not converge to 0. In fact, if { rn

sn
} converges to 0, then y+ snvn =

yn ∈C(xn,z0+ sn(
rn
sn

wn)), which yields that v ∈Vq(C,(x0,z0[0Z]),y), a contradiction with (3.4).
Thus { sn

rn
} is bounded and then { sn

rn
} (taking a subsequence if necessary) has a limit q≥ 0. For

all n ∈ N, one has

y+ rn

(
sn

rn
vn

)
= yn ∈C (xn,z0 + rnwn) .

Therefore, qv ∈W (C,(x0,z0[w]) ,y) . It follows from the definition of W (C,(x0,z0[w]) ,y) that
qv ∈W (F,(x0,y)) and w ∈ DRG(y,z0)(qv) . Then

w ∈
⋃

y0∈C(x0,z0)

DRG(y0,z0)
[
W (F,(x0,y0))

]
.

From (i) and (ii), we know that the inverse inclusion relation of (3.3) holds. Hence, (3.5) holds,
and the proof is complete. �
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We remark here that [27, Proposition 3.8] demonstrates the chain rule with inclusion rela-
tions, while Proposition 3.1 demonstrates the chain rule with equality relations. Furthermore,
the conditions of Proposition 3.1 are different from those in [27, Proposition 3.8]. To explain
Proposition 3.1, we provide the following example.

Example 3.1. Let X =Y = Z =R, w ∈Y, F : X → 2Y , and G : Y → 2Z be two set-valued maps
defined by

F(x) =

{
{0}, if x 6= 0,
{1}, if x = 0,

G(y) =

{
[0,1], if y 6= 0,
{0}, if y = 0.

For the chain rule G◦F, we obtain

(G◦F)(x) =

{
{0}, if x 6= 0,
[0,1], if x = 0;

G−1(z) =


R\{0}, if z ∈ (0,1],
R, if z = 0,
/0, otherwise;

and

C(x,z) =


{0}, if x 6= 0 and z = 0,
{1}, if x = 0 and z ∈ [0,1],
/0, otherwise.

Let (x0,z0) = (0,0) ∈ gr(G◦F). Then C (x0,z0) = {1}. For any y0 ∈C(x0,z0), we have

W (F,(x0,y0)) = R−, DRG−1 (z0,y0)(w) = R,
W (C,(x0,z0[w]) ,y0) = R−, Vq(C,(x0,z0[0]),y0) = {0},
W (G◦F,(x0,z0)) = R+, DRG(y0,z0)

[
W (F,(x0,y0))

]
= R+.

It is obvious that conditions (3.2) and (3.4) hold in Proposition 3.1, and⋃
y0∈C(x0,z0)

DRG(y0,z0)
[
W (F,(x0,y0))

]
=W (G◦F,(x0,z0)) .

Thus Proposition 3.1 holds.

We now discuss the sum rule of two set-valued maps M, N : X → 2Y . For (x,z) ∈ X ×Y ,
setting S(x,z) := M(x)∩ (z−N(x)), one has domS = gr(M+N).

Proposition 3.2. Let (x0,z0) ∈ gr(M +N), v ∈ Y and S be closed at (x0,z0). Suppose that the
following condition is satisfied, for all y0 ∈ S (x0,z0),

W (M,(x0,y0))∩
[
v−W (N,(x0,z0− y0))

]
⊆W (S,(x0,z0[v]) ,y0) . (3.6)

Then ⋃
y0∈S(x0,z0)

(
W (M,(x0,y0))+W (N,(x0,z0− y0))

)
⊆W (M+N,(x0,z0)) . (3.7)

If, additionally, Y is finite dimensional, M and N are compact with respect to their domains,
and the following assumption is satisfied, for every y0 ∈ S (x0,z0),

Vq(S,(x0,z0[0Y ]),y0) = {0Y}, (3.8)

then ⋃
y0∈S(x0,z0)

(
W (M,(x0,y0))+W (N,(x0,z0− y0))

)
=W (M+N,(x0,z0)) . (3.9)
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Proof. We first prove (3.7). Let v ∈
⋃

y0∈S(x0,z0)

(
W (M,(x0,y0))+W (N,(x0,z0− y0))

)
. Then

there exists y0 ∈ S (x0,z0) such that v ∈ (W (M,(x0,y0))+W (N,(x0,z0− y0))). It follows from
(3.6) that there exists some w ∈W (M,(x0,y0)) such that w ∈W (S,(x0,z0[v]) ,y0) . Then, there
are sequences {rn} with rn > 0 and {(xn,vn,wn)} with (xn,vn,wn)→ (x0,v,w) such that y0 +
rnwn ∈ S (xn,z0 + rnvn) , which implies that z0+rnvn ∈ (M+N)(xn) , i.e., v∈W (M+N,(x0,z0)).
So (3.7) holds.

Next we prove the inverse inclusion relation of (3.7). Let v ∈W (M+N,(x0,z0)) . To prove
v ∈

⋃
y0∈S(x0,z0)(W (M,(x0,y0))+W (N,(x0,z0− y0))), we divide v into two cases.

(i) If v = 0Y , one has 0Y ∈
⋃

y0∈S(x0,z0)

(
W (M,(x0,y0))+W (N,(x0,z0− y0))

)
.

(ii) If v 6= 0Y , then there exist sequences {(xn,vn)}with (xn,vn)→ (x0,v) and {rn}with rn > 0
such that z0+rnvn ∈ (M+N)(xn) . Therefore, there exist y1n ∈M(xn) and y2n ∈N(xn) such that

z0 + rnvn = y1n + y2n. (3.10)

Since M and N are compact with respect to their domains and xn → x0, {yin}(i = 1,2) have
subsequences denoted by the same notions yin converging to yi(i = 1,2). Since rn > 0, yin→
yi(i = 1,2) and vn→ v 6= 0Y , we see from (3.10) that rn converges to some g≥ 0. To prove

v ∈
⋃

y0∈S(x0,z0)

(
W (M,(x0,y0))+W (N,(x0,z0− y0))

)
, (3.11)

we divide g into two cases.
Case I. g > 0. Let y0 ∈ S(x0,z0). Setting v1n =

y1n−y0
rn

with v1n→ y1−y0
g and v2n =

y2n−(z0−y0)
rn

with v2n→ y2−(z0−y0)
g , one has y0 + rnv1n ∈M(xn) and z0− y0 + rnv2n ∈ N(xn), which together

with (3.10) yields vn = v1n + v2n. Thus

y1− y0

g
∈W (M,(x0,y0)),

y2− (z0− y0)

g
∈W (N,(x0,z0− y0))

and

v =
y1− y0 + y2− (z0− y0)

g
.

Thus (3.11) holds when g > 0.
Case II. If g = 0, then y1n ∈ S(xn,z0 + rnvn), i.e., (xn,z0 + rnvn,y1n) ∈ grS, which implies

that (x0,z0,y1) ∈ cl(grS) = gr(clS). Hence, y1 ∈ clS(x0,z0) = S(x0,z0), since S is closed at
(x0,z0). If y1n = y1 for all n ∈ N, then 0Y ∈W (M,(x0,y1)) and v ∈W (N,(x0,z0− y1)). Thus
(3.11) holds. Suppose y1n 6= y1 for all n ∈ N. Setting sn = ‖y1n− y1‖ and kn =

y1n−y1
sn

, one sees
that sn→ 0+ and the sequence kn or some subsequence has a limit k with ‖k‖ = 1, since Y is
finite dimensional and ‖kn‖ = 1. We can conclude that { rn

sn
} does not converge to 0. In fact, if

{ rn
sn
} converges to 0, then y1 + snkn = y1n ∈ S(xn,z0 + sn(

rn
sn

vn)). Since rn
sn

vn→ 0Y , one obtains
k ∈Vq(S,(x0,z0[0Y ]),y1), which contradicts (3.8). Thus { sn

rn
} is bounded, and then { sn

rn
} (taking

a subsequence if necessary) has a limit q≥ 0. It follows that, for all n ∈ N,

y1 + rn

(
sn

rn
kn

)
= y1n ∈ S (xn,z0 + rnvn) .

Hence, qk ∈W (S,(x0,z0[v]) ,y1) . It follows from the definition of W (S,(x0,z0[v]) ,y1) that qk ∈
W (M,(x0,y1)) and v− qk ∈W (N,(x0,z0− y1)) . Then, (3.11) holds. Thus (3.11) holds when
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g = 0. From (i) and (ii), it is easy to see that the inverse inclusion relation of (3.7) holds. Thus
(3.9) holds, and the proof is complete. �

Remark 3.1. Since the result of Proposition 3.2 is that the sum of the variational set is in the
variational set of the sum, while the result in [27, Proposition 3.4] is that the variational set of
the sum is in the sum of the variational set. In addition, Proposition 3.2 presentes the sum rule
with an equality relation.

Remark 3.2. Condition (3.8) is essential to Proposition 3.2.

The following example explains Remark 3.2.

Example 3.2. Let X = Y = Z = R and M,N : X → 2Y be two set-valued maps defined by

M(x) =

{
{0}, if x = 0,
[−1,0], if x 6= 0.

N(x) =

{
{−1}, if x = 0,
{0,−1}, if x 6= 0.

Then

(M+N)(x) =

{
{−1}, if x = 0,
[−2,0], if x 6= 0;

S(x,z) = M(x)∩ (z−N(x)) =



{0}, if x = 0 and z =−1,
{z}, if x ∈ R\{0} and z ∈ (−1,0],
{z+1}, if x ∈ R\{0} and z ∈ [−2,−1),
{0,1}, if x ∈ R\{0} and z =−1,
/0, otherwise .

Let (x0,z0) = (1,−1)∈ gr(M+N). Then S(x0,z0) = {−1,0} and, for any y0 ∈ S(x0,z0), (3.8)
does not hold. In fact, taking xn = 1→ 1, wn =

1
n → 0, vn = −1→−1, and rn =

1
n → 0, one

has y0 + rnvn ∈ S(xn,z0 + rnwn), i.e., −1 ∈Vq(S,(x0,z0[0]),y0). Observe

W (M,(x0,y0)) = R+, W (N,(x0,z0− y0)) = {0},
W (M+N,(x0,z0)) = R, W (S,(x0,z0[v]) ,y0) = R.

Theus (3.6) and (3.7) hold, but (3.9) does not hold. This demonstrates that condition (3.8) is
essential to Proposition 3.2.

4. SENSITIVITY ANALYSIS OF THE VARIATIONAL INEQUALITY

Let X , W , and Z be three normed spaces, F : W ×X → 2Z and N : X → 2Z be two set-valued
maps, and K be a subset of X . Consider the set-valued map defined by

MK(w,z) := {x ∈ K | z ∈ F(w,x)+N(x)}. (4.1)

When K is convex, N(x) is the normal cone to K at x, and w is a parameter, M is the solution
map of a parameterized variational inequality. The map M is equivalently expressed by

MK(w,z) := {x ∈ X | z ∈ QK(w,x)}.
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Then M is related to the sum map QK(w,x) := F(w,x)+NK(w,x) and

NK(w,x) :=

{
N(x), if (w,x) ∈W ×X ,

/0, if (w,x) ∈W × (X\K).

Inspired by [26], we propose the following definition.

Definition 4.1. The first-order Studniarski-variational set of the set-valued map Q : W ×X→ Z
of type 1 at (w0,x0) with u ∈ X is the set defined by

VS(Q,(w0,x0[u]),z0) := {z ∈ Z | ∃bn→ 0+, ∃(wn,zn,un)→ (w0,z,u),

s.t. z0 +bnzn ∈ Q(wn,x0 +bnun), ∀n ∈ N}.

Now, we recall some concepts and a property from [27] which are needed for calculating the
variational set of type 2 of M.

Definition 4.2. [27] Let A and B be linear spaces, and let E ⊆ A.

(i) E is said to be star-shaped at a0 ∈ E, if for all a ∈ E and β ∈ [0,1], (1−β )a0 +βa ∈ E.
(ii) Let E be a star-shaped set at a0 ∈ E. The set-valued map T : A→ 2B is said to be star-

shaped at a0 on E if, for all a ∈ E and β ∈ [0,1], (1−β )T (a0)+βT (a)⊆ T ((1−β )a0 +
βa).

Lemma 4.1. [27] Let E be a star-shaped set at x0 ∈ E, and let F be star-shaped at x0 on E.
Then W (F,(x0,y0)) =V (F,(x0,y0)).

Proposition 4.1. Let Z be a finite dimensional space, ((w0,z0) ,x0) ∈ grM, and u ∈ X . (i) If

Vs(Q,(w0,x0[0X ]),z0) = {0Z}, (4.2)

then

W (M,((w0,z0) ,x0))⊆ {u ∈ X |W (Q,(w0,x0[u]) ,z0) 6= /0} . (4.3)

(ii) If M is star-shaped at (w0,z0) and convex, then

W (M,((w0,z0) ,x0)) = {u ∈ X |W (Q,(w0,x0[u]) ,z0) 6= /0} . (4.4)

Proof. We first prove (4.3). Let u ∈W (M,((w0,z0) ,x0)) . Then there exist {(wn,zn,un)} with
(wn,zn,un)→ (w0,z0,u) and {rn} with rn > 0 such that x0 + rnun ∈M (wn,zn) , which implies
that zn ∈ Q(wn,x0 + rnun). Setting sn = ‖zn− z0‖(sn→ 0+) and dn =

zn−z0
sn

, we see that {dn}
has a convergent subsequence with a limit d satisfying ‖d‖ = 1, since Z is finite dimensional
and ‖dn‖ = 1. We conclude that { rn

sn
} does not converge to 0. In fact, if { rn

sn
} converges to

0, then z0 + sndn = zn ∈ Q(wn,x0 + sn(
rn
sn

un)). Thus d ∈ Vs(Q,(w0,x0[0X ]),z0), which contra-
dicts (4.2), so { sn

rn
} is bounded and { sn

rn
} (taking a subsequence if necessary) has a limit q≥ 0.

Observe that z0 + rn

(
sn
rn

dn

)
= zn ∈ Q(wn,x0 + rnun) , so qd ∈W (Q,(w0,x0[u]) ,z0) and then

(4.3) holds. Next we prove the inverse inclusion relation of (4.3) for equation (4.4). Let
d ∈W (Q,(w0,x0[u]) ,z0) . Then there exist sequences {rn} with rn > 0 and {(wn,un,dn)} with
(wn,un,dn)→ (w0,u,d) such that z0 + rndn ∈ Q(wn,x0 + rnun) , which implies that x0 + rnun ∈
M (wn,z0 + rndn) . It is clear that one can choose a sequence {λn} with λn → 0+ such that
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λn
rn
→ 0+. Then, for n large enough, we have λn

rn
≤ 1 and

x0 +λnun ∈M(wn,z0)+
λn

rn
(M(wn,z0 + rndn)−M(wn,z0))

⊆M(wn,z0 +λndn) := M(wn,zn).

Thus u ∈V (M,((w0,z0),x0)). Since

V (M,((w0,z0),x0))⊆W (M,((w0,z0),x0)),

u ∈W (M,((w0,z0),x0)), then

{u ∈ X |W (Q,(w0,x0[u]) ,z0) 6= /0} ⊆W (M,((w0,z0)) ,x0) .

Combining this with (4.3), we see that (4.4) holds and the proof is complete. �

Now we give an example to demonstrate Proposition 4.1.

Example 4.1. Let W = X = Z =R, u ∈ X , Q : W ×X→ 2Z, M : W ×Z→ 2X be two set-valued
maps, and Q be defined by Q(w,x) = [0, |2wx|] for all w ∈ R and x ∈ R. Then

M(w,z) =

{
R+, if w ∈ R+ and z ∈ R−,
/0, otherwise.

Let ((w0,z0),x0) = ((1,0),0) ∈ grM. Thus Vs(Q,(w0,x0[0]),z0) = {0}. Observe that

W (Q,(w0,x0[u]),z0) = R+, W (M,((w0,z0),x0)) = R+,

{u ∈ X |W (Q,(w0,x0[u]) ,z0) 6= /0}= R+.

Thus {u ∈ X |W (Q,(w0,x0[u]) ,z0) 6= /0}=W (M,((w0,z0)) ,x0) , and Proposition 4.1 holds.

In the following proposition, we show the sum rule of the first-order radial-variational sets,
which is needed for Theorem 4.1.

Proposition 4.2. Let ((w0,x0),z0) ∈ gr(F +NK) and v ∈ Y . Let S be closed at (x0,z0). If
W (F,(w0,x0[u]) ,y0) ∩ [v−W (NK,(w0,x0[u]) ,z0− y0)] ⊆ W (S,((w0,x0[u]),z0[v]),y0), for all
y0 ∈ S ((w0,x0) ,z0), where S((w,x),z) = F(w,x)∩ (z−NK(w,x)) , then⋃
y0∈S((w0,x0),z0)

(W (F,(w0,x0[u]) ,y0)+W (NK,(w0,x0[u]) ,z0− y0))⊆W (F +NK,(w0,x0[u]) ,z0) .

If, additionally, Z is finite dimensional, F and NK are compact with respect to their domains
and, for every S((w0,x0),z0), Vq(S,((w0,x0[0X ]),z0[0Z]),y0) = {0Z}, then⋃
y0∈S((w0,x0),z0)

(W (F,(w0,x0[u]) ,y0)+W (NK,(w0,x0[u]) ,z0− y0))=W (F +NK,(w0,x0[u]) ,z0) .

Since the proof is similar to Proposition 4.2, we omit the proof here. Since the solution
map (4.1) was studied in terms of the variational sets of type 1 and contingent derivatives in
[31, 32], we now apply the sum rule of the first-order radial-variational sets to have the first-
order sensitivity analysis in terms of the variational sets of type 2 for (4.1).
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Theorem 4.1. Let u ∈ X and ((w0,x0) ,z0) ∈ grM. Let all the conditions in Propositions 4.1
and 4.2 are satisfied. Then

W (M,((w0,z0)) ,x0) ={u ∈ X |
⋃

y0∈S((w0,x0),z0)

(W (F,(w0,x0[u]) ,y0) +

W (NK,(w0,x0[u]) ,z0− y0)) 6= /0}.
(4.5)

Proof. By using Proposition 4.1, we have

W (M,((w0,z0)) ,x0) = {u ∈ X |W (Q,(w0,x0[u]) ,z0) 6= /0} . (4.6)

Since the sum map Q(w,x) = F(w,x)+NK(w,x), one has

{u ∈ X |W (Q,(w0,x0[u]) ,z0) 6= /0}= {u ∈ X |W (F +NK,(w0,x0[u]) ,z0) 6= /0} . (4.7)

It follows from Proposition 4.2 that

W (F +NK,(w0,x0[u]) ,z0) =
⋃

y0∈S((w0,x0),z0)

(W (F,(w0,x0[u]),y0)+

W (NK,(w0,x0[u]),z0− y0)).

(4.8)

In view of (4.6), (4.7), and (4.8), we see that (4.5) holds, and this completes the proof. �

The following example illustrates Theorem 4.1.

Example 4.2. Consider the set-valued map (4.1) with X =W = Z =R. Let K be a subset of X ,
F : W ×X → 2Z, M : W ×Z→ 2X , NK : X → 2Z be three set-valued maps, F and NK be defined
by

F(w,x) =

{
[0,wx], if wx≥ 0,
/0, if wx < 0

and NK(w,x) =


[−wx,0], if wx < 0,
{0}, if wx = 0,
/0, if wx > 0.

Then

Q(w,x) = (F +NK)(w,x) =

{
[0,wx], if wx = 0,
/0, if wx 6= 0,

and

S((w,x),z) = F(w,x)∩ (z−NK(w,x)) =

{
{z}, if wx = 0 and z ∈ [0,wx],
/0, otherwise.

Since M(w,z) = {x ∈ X | z ∈ Q(w,x)},

M(w,z) =


R, if z = 0 and w = 0,
{0}, if z = 0 and w ∈ R\{0},
/0, otherwise.

If ((w0,x0),z0) = ((0,0),0) ∈ gr(F +NK) , then S((w0,x0),z0) = {0}. It follows that, for any
y0 ∈ S((w0,x0),z0) = {0},

W (F,(w0,x0[u]),y0) = R+, W (NK,(w0,x0[u]),z0− y0) = R−,
W (M,((w0,z0),x0)) = R
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and

{u ∈ X |
⋃

y0∈S((w0,x0),z0)

(W (F,(w0,x0[u]),y0)+W (NK,(w0,x0[u]),z0− y0)) 6= /0}= R.

Thus
W (M,((w0,z0)) ,x0) ={u ∈ X |

⋃
y0∈S((w0,x0),z0)

(W (F,(w0,x0[u]) ,y0) +

W (NK,(w0,x0[u]) ,z0− y0)) 6= /0},
and Theorem 4.1 holds.

5. SENSITIVITY ANALYSIS

Let X , Y , and Z be three normed spaces whose norms are all denoted by ‖ · ‖. Let C ⊆ Y be
a closed convex cone, F : X ×X ×Z→ 2Y , and K : Z→ 2X be two set-valued maps. Consider
the following parametric weakly set-valued equilibrium problem (PWSEP):

find x ∈ K(w) such that F(x,y,w)∩ (− intC) = /0, ∀y ∈ K(w). (5.1)

For each w ∈ Z, the set

S(w) := {x ∈ K(w) | F(x,y,w)∩ (− intC) = /0,∀y ∈ K(w)}

stands for the solution map of problem (PWSEP). For x ∈ X and w ∈ Z, the map S can be
expressed by

S(w) = {x ∈ K(w) | 0Y ∈ J(w,x)}, (5.2)

where J(w,x) = WMinC G(w,x), G(w,x) =
⋃

y∈K(w)F(x,y,w)∪{0Y}, and S(w) is defined by
the generalized equation 0Y ∈ J(w,x).

In this section, for a subset H ⊆ X , we define the distance from x ∈ X to H by d(x,H) :=
infh∈H ‖x− h‖ with the convention that d(x, /0) = ∞. The closed ball centered at w0 ∈ Z with
radius λ and centered at x0 ∈ X with radius λ are denoted by BZ (w0,λ ) and BX(x0,λ ), respec-
tively. First, we recall the following concept, which is important for this paper.

Definition 5.1. [33] The map S is said to be Robinson metrically regular around (w0,x0) ∈
grS if there exist µ > 0,γ > 0, and neighborhoods U of w0,V of x0 such that d(x,S(w)) ≤
µd(0,J(w,x)) for all w ∈U,x ∈V satisfying d(0,J(w,x))< γ.

Inspired by [33], we propose the following definition.

Definition 5.2. Let (w0,x0) ∈ grS. S is said to be directionally Robinson metrically reg-
ular of order 1 along K around (w0,x0) if there exist µ > 0,γ > 0, and λ > 0 such that
d (x0 + tx′,S (w′))≤ µd (0,J (w′,x0 + tx′)) , for any t ∈ (0,λ ),w′ ∈BZ (w0,λ ) , and x′ ∈BX(x0,λ )
satisfying x0 + tx′ ∈ K (w′) and d (0,J (w′,x0 + tx′))< γ.

Remark 5.1. If S is Robinson metrically regular around (w0,x0), then S is directionally Robin-
son metrically regular of order 1 around (w0,x0) in the direction x for all x ∈ X . Since the
converse may not hold, one has that Definition 5.2 is a generalization of Definition 5.1. We give
the following example to illustrate this remark.
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Example 5.1. Let X =Y = Z =R,C =R+, (w0,x0)∈ grS, K : Z→ 2X , and F : X×X×Z→ 2Y

be defined by

F(x,y,w) = x(y+w) and K(w) =

{
[−w,w], if w> 0,
[w,−w], if w < 0.

Then, we can easily see that

G(w,x) =
⋃

y∈K(w)

{x(y+w)}∪{0}, J(w,x) =

{
{0}, if wx> 0,
{2wx}, if wx < 0

and S(w) =

{
[0,w], if w> 0,
[w,0], if w < 0.

For µ = 1, γ = 2, and λ = 5, we take w0 = 0, x0 = −2, w′ =

−1
4 , x′ = 1

2 , and t = 4. Then, K(w′) = [−1
4 ,

1
4 ], x0 + tx′ = 0, J(w′,x0 + tx′) = 0, J(w′,x′) =−1

4 ,
and S(w′) = [−1

4 ,0]. Thus, when t ∈ (0,λ ),w′ ∈ BZ (w0,λ ) ,x′ ∈ BX(x0,λ ),

x0 + tx′ ∈ K
(
w′
)

and d
(
0,J
(
w′,x0 + tx′

))
< γ,

there exist µ > 0, γ > 0 and λ > 0 such that d (x0 + tx′,S (w′))≤ µd (0,J (w′,x0 + tx′)) . How-
ever, when w′ ∈U(w0), x′ ∈ V (x0), d (0,J (w′,x′)) < γ, there does not exist µ > 0,γ > 0 such
that d(x′,S(w′)) ≤ µd(0,J(w′,x′)). Thus we verify that S is directionally Robinson metrically
regular of order 1 around (w0,x0) in the direction x for all x∈X , but S is not Robinson metrically
regular.

Proposition 5.1. If (w0,x0) ∈ grS, then

W (S,(w0,x0))⊆
{

x ∈W (K,(w0,x0)) | 0Y ∈W (J,(w0,x0[x]) ,0Y )
}
. (5.3)

If, additionally, S is directionally Robinson metrically regular of order 1 along K around
(w0,x0) in all directions x ∈ M, where M := {x | 0Y ∈W (J,(w0,x0[x]),0Y )}, and J has the
first-order semi-radial-variational set at (w0,x0) with respect to x, then

W (S,(w0,x0)) =
{

x ∈W (K,(w0,x0)) | 0Y ∈W (J,(w0,x0[x]) ,0Y )
}
. (5.4)

Proof. We first prove (5.3). Let x∈W (S,(w0,x0)) . Then there exist sequences {rn}with rn > 0
and {(wn,xn)} with (wn,xn)→ (w0,x) such that x0 + rnxn ∈ S (wn) . From the definition of S,
we have x0 + rnxn ∈ K (wn) and 0Y ∈ J (wn,x0 + rnxn) , which implies that x ∈W (K,(w0,x0))
and 0Y ∈W (J,(w0,x0[x]) ,0Y ). Thus (5.3) holds.

Next we prove the inverse inclusion relation of (5.3) for equation (5.4). Let x∈W (K,(w0,x0))
with 0Y ∈ W (J,(w0,x0[x]) ,0Y ). Then, for x, there exist sequences {rn} with rn > 0 and
{(wn,xn)} with (wn,xn)→ (w0,x) such that x0 + rnxn ∈ K (wn) . It follows from the first-order
semi-radial-variation property of J that, with sequences {rn} and {(wn,xn)} above, there exists a
sequence {zn} with zn→ 0Y such that rnzn ∈ J (wn,x0 + rnxn) . Since S is directionally Robinson
metrically regular of order 1 along K around (w0,x0), there exist λ > 0, µ > 0, and γ > 0 such
that, for n large enough, xn ∈ BX(x,λ ),wn ∈ BZ (w0,λ ), d (0,J (wn,x0 + rnxn)) ≤ rn ‖zn‖ < γ ,
and

d (x0 + rnxn,S (wn))≤ µd (0,J (wn,x0 + rnxn))≤ µrn ‖zn‖ .
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Thus, for n large enough, there exists {yn} with yn ∈ S (wn) such that ‖x0 + rnxn− yn‖ <
µrn ‖zn‖ , which implies that

∥∥∥yn−x0
rn
− xn

∥∥∥ < µ ‖zn‖ . Setting x̂n = yn−x0
rn

, it is obvious that

x̂n→ x. Hence, x ∈W (S,(w0,x0)) . It follows that{
x ∈W (K,(w0,x0)) | 0Y ∈W (J,(w0,x0[x]) ,0Y )

}
⊆W (S,(w0,x0)) ,

which together with (5.3) yields that (5.4) holds and the proof is complete. �

Next, we give an example to illustrate Proposition 5.1.

Example 5.2. From Example 5.1, one obtains W (S,(w0,x0)) = R+, W (K,(w0,x0)) = R+, and
W (J,(w0,x0[x]),0)=R−. Then W (S,(w0,x0))=

{
x ∈W (K,(w0,x0)) | 0 ∈W (J,(w0,x0[x]) ,0)

}
.

It is easy to check that the conditions of Proposition 5.1 hold. Thus Proposition 5.1 holds.

To see Proposition 5.2, we propose the following definition.

Definition 5.3. Let F : X × X × Z → 2Y be a set-valued map, ((x0,y0,w0) ,k0) ∈ grF , and
(x,y,k) ∈ X×X×Y. The first-order proto-radial-variational set at (x0,y0,w0) is the set

W (F,(x0[x],y0[y],w0) ,k0) := {v ∈ Y | ∃rn > 0, ∃(xn,yn,wn,vn)→ (x,y,w0,v) ,

s.t. k0 + rnvn ∈ F (x0 + rnxn,y0 + rnyn,wn) , ∀n ∈ N} .

Example 5.3. Let X =Y = Z =R+, and let F : X×X×Z→ 2Y be defined by F(x,y,w) := xw.
Taking k0 = w0 = x0 = y0 = 0, we obtain W (F,(x0[x],y0[y],w0) ,k0) = {0}.

Proposition 5.2. Let X be finite dimensional and (w0,x0) ∈ grS. Let K be compact (i.e., grK is
a compact set) and, for each y0 ∈ K (w0) ,

VS (H,(w0,x0[0X ]) ,y0) = {0X}, (5.5)

where H(w,x) = {y ∈ X | y ∈ K(w),F(x,y,w) 6= /0}. Then

W (G,(w0,x0[x]) ,0Y )⊆
⋃

y0∈K(w0)

⋃
y∈W (K,(w0,y0))

W (F,(x0[x],y0[y],w0),0Y )∪{0Y}. (5.6)

If, additionally, F has the first-order semi-radial-variational set at ((x0,y0,w0) ,0) with respect
to (x,y), then

W (G,(w0,x0[x]) ,0Y ) =
⋃

y0∈K(w0)

⋃
y∈W (K,(w0,y0))

W (F,(x0[x],y0[y],w0),0Y )∪{0Y}. (5.7)

Proof. We first prove (5.6). Let v ∈W (G,(w0,x0[x]) ,0Y ). There are only two cases for v as
follows:

Case I. If v = 0Y , then it is trivial.
Case II. If v 6= 0Y , then there exist sequences {rn} with rn > 0 and {(wn,xn,vn)} with

(wn,xn,vn)→ (w0,x,v) such that rnvn ∈ G(wn,x0 + rnxn) . From the definition of G, one sees
that there exists a sequence {yn} with yn ∈ K (wn) such that rnvn ∈ F (x0 + rnxn,yn,wn) . It fol-
lows from the compactness of K that {yn} has a subsequence converging to y0 ∈ K (w0).

We now prove that { yn−y0
rn
} is bounded. Without loss of generality, suppose to the contrary

that ‖yn−y0‖
rn
→+∞. It follows that yn ∈ H(wn,x0 + rnxn). Then,

y0 +‖yn− y0‖
(

yn− y0

‖yn− y0‖

)
∈ H

(
wn,x0 +‖yn− y0‖1/2

(
rn

‖yn− y0‖1/2 xn

))
.
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Since X is finite dimensional, then yn−y0
‖yn−y0‖ has a subsequence converging to ŷ with ‖ŷ‖ =

1. It is easy to see that rn

‖yn−y0‖1/2 xn → 0X . Since sn =
√
‖yn− y0‖ → 0+, we obtain ŷ ∈

VS (H,(w0,x0[0X ]) ,y0), which contradicts (5.5). Thus { yn−y0
rn
} is bounded. Let ȳn = yn−y0

rn
.

Without loss of generality, we assume that ȳn→ ȳ. Thus y0 + rnȳn ∈ K (wn) and

rnvn ∈ F (x0 + rnxn,y0 + rnȳn,wn) ,

which implies that ȳ ∈W (K,(w0,y0)) and v ∈W (F,(x0[x],y0[ȳ],w0) ,0Y ). Hence, (5.6) holds.
Next, we prove the inverse inclusion relation of (5.6). Let

v ∈
⋃

y0∈K(w0)

⋃
y∈W (K,(w0,y0))

W (F,(x0[x],y0[y],w0),0Y )∪{0Y}.

To prove
v ∈W (G,(w0,x0[x]) ,0Y ) , (5.8)

we divide v into two cases.
Case I. If v = 0Y , then, for any sequences {rn} with rn > 0 and {(wn,xn)} with (wn,xn)→

(w0,x), we have 0Y ∈ G(wn,x0 + rnxn) , which implies that (5.8) holds.
Case II. If v 6= 0Y , then one sees that there exist y0 ∈ K(w0) and y ∈ W (K,(w0,y0)) such

that v ∈W (F,(x0[x],y0[y],w0),0Y ). For y, there exist sequences {rn} with rn > 0 and {(wn,yn)}
with (wn,yn)→ (w0,y) such that y0 + rnyn ∈ K (wn) . Since F has the first-order semi-radial-
variational set at ((x0,y0,w0) ,0) with respect to (x,y), with sequences {rn}, {wn} and {yn}
above, for v, one has a sequence {(wn,vn)} with rnvn ∈ F (x0 + rnxn,y0 + rnyn,wn) , which im-
plies that rnvn ∈ G(wn,x0 + rnxn) . Then, (5.8) holds,⋃

y0∈K(w0)

⋃
y∈W (K,(w0,y0))

W (F,(x0[x],y0[y],w0),0Y )∪{0Y} ⊆W (G,(w0,x0[x]) ,0Y ) ,

which together with (5.6) yields that (5.7) holds. Hence, the proof is complete. �

We now give an example to illustrate Proposition 5.2.

Example 5.4. Let X =Y = Z =R,C =R+, K : Z→ 2X , and F : X×X×Z→ 2Y be defined by

F(x,y,w) =

{
xw
2 , if x> 0, y> 0 and w> 0,
/0, otherwise

and

K(w) =

{
[−w,w], if w> 0,
[w,−w], if w < 0.

Then,

G(w,x) =

{
{ xw

2 ,0}, if x> 0 and w> 0,
/0, otherwise

and
H(w,x) = [0,w], ∀w> 0, x> 0.

Let (w0,x0) = (0,0) ∈ grS. Then K(w0) = {0}. In fact, for any y0 = 0, we have

VS (H,(w0,x0[0]) ,y0) = {0}, W (G,(w0,x0[x]) ,0) = {0},
W (K,(w0,y0)) = R, W (F,(x0[x],y0[y],w0) ,0) = {0}
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and ⋃
y0∈K(w0)

⋃
y∈W (K,(w0,y0))

W (F,(x0[x],y0[y],w0),0)∪{0}= {0}.

We see that the conditions in Proposition 5.2 hold. Thus

W (G,(w0,x0[x]) ,0) =
⋃

y0∈K(w0)

⋃
y∈W (K,(w0,y0))

W (F,(x0[x],y0[y],w0),0)∪{0},

and Proposition 5.2 holds.

Theorem 5.1. Let F : X × X × Z → 2Y and G,J : X × Z → 2Y . Let the parametric weakly
set-valued equilibrium problem (5.1) with (w0,x0) ∈ grS. Assume that all the conditions of
Propositions 5.1 and 5.2 are satisfied. Assume further that the following conditions are satis-
fied:

(i) F is C-dominated by S near x0;
(ii) F has the first-order proto-variational set of type 2 at (x0,y0);

(iii) for all x ∈ X in some X ∈U (x0), m− e ∈ intC∪ (−intC), ∀m,e ∈ F(x), m 6= e.

Then
W (S,(w0,x0)) =

{
x ∈W (K,(w0,x0)) |W (F,(x0[x],y0[y],w0) ,0Y ) ∩(

− intC) = /0, ∀y0 ∈ K(w0), ∀y ∈W (K,(w0,y0))
}
.

(5.9)

Proof. Using Proposition (2.2), we obtain W (J,(w0,x0)) = WMinC W (G,(w0,x0)) . Proposi-
tion (5.1) yields

W (S,(w0,x0)) =
{

x ∈W (K,(w0,x0)) | 0Y ∈W (J,(w0,x0[x]) ,0Y )
}
.

Moreover, it follows from Proposition 5.2 that

W (G,(w0,x0[x]) ,0Y ) =
⋃

y0∈K(w0)

⋃
y∈W (K,(w0,y0))

W (F,(x0[x],y0[y],w0),0Y )∪{0Y},

and then

W (S,(w0,x0)) =
{

x ∈W (K,(w0,x0)) |W (F,(x0[x],y0[y],w0) ,0Y ) ∩(
− intC) = /0, ∀y0 ∈ K(w0), ∀y ∈W (K,(w0,y0))

}
.

Thus the proof is complete. �

Now we consider the following example to illustrate Theorem 5.1.

Example 5.5. Let X = Y = Z = R, C = R+, K : Z→ 2X , and F : X ×X ×Z→ 2Y be defined

by F(x,y,w) = xw
9 and K(w) = [−|w|3 , |w|3 ]. Then S(w) =

{
[0, w

3 ], if w≥ 0,
[−|w|3 ,0), if w < 0.

Let (w0,x0) =

(0,0) ∈ grS. Then K(w0) = {0}. Note that W (S,(w0,x0)) = R and W (K,(w0,x0)) = R. For
all y0 ∈ K(w0), W (K,(w0,y0)) = R and W (F,(x0[x],y0[y],w0) ,0) = {0}. The assumptions in
Theorem 5.1 are satisfied, so (5.9) is fulfilled, and Theorem 5.1 holds.
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6. CONCLUDING REMARKS

In this paper, we first proposed the chain and sum rules of variational sets of type 2 from a
different perspective, which is different from [27]. Next, we investigated the sensitivity analysis
of variational inequalities. Finally, we discussed the first-order sensitivity analysis of parametric
weakly set-valued equilibrium problems in terms of variational sets of type 2. The results
presented in this paper mainly improve or generalize the corresponding ones in [26, 27].
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