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Abstract. The general tensor variational inequalities are highly valuable for analyzing equilibrium prob-
lems in oligopolistic markets. In this paper, we begin by reviewing current conclusions related to the
solutions of tensor variational inequality problems. Then, a new algorithm is proposed, which merges
the inertial contraction projection method with the Mann-type method to tackle tensor variational in-
equalities under mild conditions. Finally, we investigate the equilibrium problem in dynamic (i.e., time-
dependent) oligopolistic markets characterized by excess supply and demand. A numerical example is
given to verify the effectiveness of the proposed algorithm.
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1. INTRODUCTION

Variational inequalities (VIs) have received extensive attention in recent decades with estab-
lished results on solution existence, uniqueness, and regularity. To our knowledge, the VIs serve
as a vital tool in optimization theory and find applications in various areas, including partial dif-
ferential equations, optimal control, and mathematical programming. On the other hand, in the
era of big data, tensors have attracted extensive attention as one of an effective forms for high-
order multidimensional data. Since polynomials can be expressed easily by high-order tensors,
a novel development on VI was introduced by Wang et al. [34], named tensor variational in-
equality (TVI). Then, Barbagallo et al. [4, 5, 6] studied TVIs in tensor Hilbert spaces, and
presented some results on solution existence and uniqueness. When the feasible set is bounded
and closed, the TVI problem has at least one solution if the function is continuous. Moreover,
if the function is K-pseudomonotone and lower hemicontinuous along a line segment, the so-
lution exists. When the feasible set is unbounded, a unique solution exists if the function is
strongly monotone. However, if the function satisfies monotonicity or strict monotonicity only,
the existence of solution is not guaranteed.
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From an application perspective, the VIs have been seen a crucial tool for analyzing gen-
eral oligopolistic market equilibrium problems. Note that there are fruitful and long history
for equilibrium problems. Cournot [14] initially delved into the realm of noncooperative be-
havior between two producers, namely, the duopoly problem. Nash [25, 26] later expanded
upon this by generalizing the duopoly problem into the noncooperative game problem with n
players. Numerous scholars investigated the existence and uniqueness of outcomes in nonco-
operative games with various assumptions [18, 19, 29]. Dafermos and Nagurney focused on
equilibrium conditions for static oligopoly market problems by using a finite-dimensional vari-
ational approach [15]. Barbagallo et al. [2] extended this analysis to dynamic oligopoly market
equilibrium problems, and explored the equivalence between Nash equilibrium conditions and
the variational inequality. Building upon this foundation, they further generalized the problem
to accommodate excess production and excess demand [10, 11]. They also introduced the ini-
tial model for oligopolistic markets, allowing firms to produce multiple goods, and employ the
tensor variational inequality to find the equilibrium solution [11]. Considering unpredictable
events, Barbagallo et al. [8, 9] studied the random time-dependent oligopolistic market equilib-
rium problem with both production and demand excesses from the firms’ perspective.

From an algorithm perspective, to our knowledge, the regularization method and the projec-
tion method are two fundamental approaches for solving VIs. The authors in [1, 35] introduced
the projective gradient method and provided rigorous proofs of the algorithm’s convergence.
However, the convergence was proved under very strong conditions. In response to the limita-
tion, Korpelevich [21] introduced an alternative approach known as the extragradient method
(EGM). Nevertheless, the efficiency of the EGM is compromised in cases where the feasible set
is generally closed and convex due to the requirement of two projections in each iteration. To
mitigate this challenge, Censor et al. [13] proposed the subgradient extragradient method. To
expedite convergence of gradient-based algorithms, inertial technique was extensively studied;
see, e.g., [17, 20, 28, 31, 32]. Bot and Csetnek [12] developed the inertial hybrid proximal
extragradient algorithm. Dong et al. [16] introduced the inertial contraction projection method
(ICPM) and established the weak convergence under appropriate conditions. Nadezhkina and
Takahashi [24] applied two widely recognized hybrid extragradient methods for tackling the
variational inequality problem, and they also demonstrated the algorithms’ strong convergence.

In this paper, we propose a new algorithm in the optimization point of view, which merges
the inertial contraction projection method with the Mann-type method to tackle tensor varia-
tional inequalities under mild conditions. As an application of the algorithm, we investigate
the equilibrium problem in dynamic (i.e. time-dependent) oligopolistic markets characterized
by excess supply and demand. A numerical example is given to verify the effectiveness of the
proposed algorithm. The remaining parts of this paper are organized as follows. In Section 2,
we review some basic preliminaries of tensors and notations used in the paper. In Section 3, an
alternative algorithm is given, which combines the inertial contraction projection method with
the Mann-type method to calculate tensor variational inequalities. Furthermore, the strong con-
vergence of this algorithm is proved, subject to standard assumptions imposed on the operator.
In Section 4, we study the dynamic oligopolistic market equilibrium problem with production
and demand excesses. Finally, a practical numerical example is provided in Section 5, the last
section.
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2. PRELIMINARIES

In this section, we recall some useful preliminaries. For positive integer n, denote [n] =
{1,2, · · · ,n}. Scalars in R are denoted by unbold lowercase letters such as a,b, · · · , and vectors
in Rn are denoted by bold lowercase letters such as x,y. Tensors are denoted by capital upper-
case letters such as X ,Y . Denote X = (xi1i2···iM), where (i1, i2, · · · , iM) ∈ Rn1 ×Rn2 ×·· ·×
RnM is a tensor with order M and dimension n1×n2×·· ·×nM. X is an order M dimension n
tensor when i1, · · · , iM ∈ [n]. Let Tn1n2···nM denote the set including all tensors with order M and
dimension n1× n2×·· ·× nM. The set of all order M dimension n tensors is denoted by TM,n.
O represents the tensor in which all elements are equal to 0.

To move on, we recall the definition of inner product on TM,n as follows.

Definition 2.1. [27] For any two tensors X ,Y ∈TM,n, the inner product of X and Y , denoted
as 〈X ,Y 〉, is defined as

〈X ,Y 〉=
n

∑
i1,i2,··· ,iM=1

xi1i2···iM yi1i2···iM .

Similar to the matrix case, the induced norm ‖X ‖ =
√
〈X ,X 〉 is called the Frobenius

norm. Clearly, (TM,n,〈·, ·〉) is a Hilbert space.
Next, we recall the definition of infinite dimensional tensor variational inequalities and evo-

lutionary tensor variational inequalities.

Definition 2.2. [7] In the Hilbert space L2([0,T ],TM,n), 〈〈X ,Y 〉〉 :=
∫ T

0 〈X (t),Y (t)〉dt, is its
duality mapping, where X ∈ (L2([0,T ],TM,n))

∗ = L2([0,T ],Rk) and Y ∈ L2([0,T ],TM,n).

Definition 2.3. [7] Let K ⊂ L2([0,T ],TM,n) be a nonempty, convex, and closed subset, and
let F : [0,T ]×K→ L2([0,T ],TM,n) be a function. The infinite dimensional tensor variational
inequality problems involves determining X ∈K such that

〈〈F(X ),Y −X 〉〉 ≥ 0, ∀ Y ∈K. (2.1)

According to Definitions 2.2 and 2.3, the evolutionary tensor variational inequality aims to
find X (t) ∈K(t) such that∫ T

0
〈F(t,X (t)),Y (t)−X (t)〉dt≥ 0, ∀ Y ∈K(t),

where K(t)⊂TM,n is a nonempty, convex, and closed subset and F : [0,T ]×K(t)→TM,n.
To proceed, we initially revisit the notion of monotonicity for tensor functions in infinite

dimensional spaces.

Definition 2.4. [7] Let K be a nonempty subset of L2([0,T ],TM,n). A tensor function F :
[0,T ]×K→ L2([0,T ],TM,n) is said to be

• monotone on K if, for each X ,Y ∈K, 〈〈F(X )−F(Y ),X −Y 〉〉 ≥ 0;
• strictly monotone on K if, for each X ,Y ∈K with X 6= Y ,

〈〈F(X )−F(Y ),X −Y 〉〉> 0;

• strongly monotone on K if, for each X ,Y ∈K, there exists a constant v > 0 such that

〈〈F(X )−F(Y ),X −Y 〉〉 ≥ v‖X −Y ‖2.
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• pseudomonotone in the sense of Karamardian (K-pseudomotone) on K if, for each
X ,Y ∈K,

〈〈F(X ),Y −X 〉〉 ≥ 0⇒ 〈〈F(Y ),Y −X 〉〉 ≥ 0.

• strong K-pseudomonotone on K if, for each X ,Y ∈K, with X 6= Y ,

〈〈F(X ),Y −X 〉〉 ≥ 0⇒ 〈〈F(Y ),Y −X 〉〉> 0.

3. ALGORITHM

In this section, we introduce a novel algorithm that integrates the inertial projection con-
traction method with the Mann-type method to address finite dimensional tensor variational
inequalities

〈F(X ),Y −X 〉. (3.1)
Suppose that S(K,F) is the solution set of (3.1). To prove the convergence of our algorithm,
we first recall some properties of the tensor function in finite dimensional space.

Definition 3.1. Let K be a nonempty subset of TM,n. A tensor function F : [0,T ]×K→ TM,n
is said to be

• sequentially weakly continuous if, for each sequence {X k} ⊂K converging weakly to
a point X ∈K, {F(X k)} converges weakly to F(X );
• [4] pseudomonotone in the sense of Karamardian (K-pseudomotone) on K if, for each

X ,Y ∈K,

〈F(X ),Y −X 〉 ≥ 0⇒ 〈F(Y ),Y −X 〉 ≥ 0.

To move on, the following assumptions are needed:
(i) The feasible set K⊂TM,n is nonempty, closed and convex.

(ii) The function F : TM,n→TM,n is Lipschitz continuous with constant L and K-pseudomonotone
on TM,n and sequentially weakly continuous on K.

(iii) The solution set S(K,F) is nonempty.

Remark 3.1. By the definition of αr, it holds clearly that αr‖X r −X r−1‖ ≤ τr for r ≥ 1.
Combining this with lim

r→∞

τr
βr

= 0, it follows that

lim
r→∞

αr

βr
‖X r−X r−1‖ ≤ lim

r→∞

τr

βr
= 0,

which implies that
lim
r→∞

αr

βr
‖X r−X r−1‖= 0.

To continue, we recall the following preliminary lemmas.

Lemma 3.1. [6] If K is a nonempty, convex, and closed subset of TM,n for any X , Y ∈ TM,n
and any Z ∈K, then

〈X −PK(X ),Z −PK(X )〉 ≤ 0, (3.2)
‖PK(X )−PK(Y )‖2 ≤ ‖X −Y ‖2−‖PK(X )−X +Y −PK(Y )‖2. (3.3)

Lemma 3.2. Let assumptions (i)-(iii) hold. If Y r = W r or dr = 0 for all r ≥ 1 in Algorithm 1,
then Y r ∈ S(K,F).
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Algorithm 1 The inertial contraction projection method with the Mann-type method

Iterative Steps: Let λ ∈ (0,1/L), γ ∈ (0,2), α > 0, and X 0,X 1 ∈ TM,n. Choose three
positive sequences {τr} ⊂ (0,∞), {βr} ⊂ (0,1), {θr} ⊂ (a,1−βr) for some a > 0, satisfying

lim
r→∞

βr = 0,
∞

∑
r=1

βr = ∞, τr = ◦(βr), lim
r→∞

τr

βr
= 0.

Substep 1. For X r and X r−1 (r ≥ 1), take αr satifying 0≤ αr ≤ αr, where

αr :=

{
min

{
α, τr
‖X r−X r−1‖

}
, if X r 6= X r−1,

α, otherwise.

Set
W r = X r +αr(X

r−X r−1), Y r = PK(W
r−λF(W r)).

If Y r = W r or F(Y r) = O , then stop (indicating Y r as a solution of problem (3.1)). Other-
wise, proceed to Substep 2.
Substep 2. Calculate Z r = W r− γηrdr, where

dr = (W r−Y r)−λ (F(W r)−F(Y r)), ϕ(W r,Y r) := 〈W r−Y r,dr〉,
and

ηr :=

{
ϕ(W r,Y r)
‖dr‖2 , if dr 6= O,

0, if dr = O.

Substep 3. Calculate
X r+1 = (1−θr−βr)X

r +θrZ
r.

Set r := r+1 and go to Substep 1.

Proof. To prove the main result, we first prove that W r = Y r if and only if dr = 0. According
to the Lipschitz continuity property of F , for each r ≥ 1, we know that

‖dr‖ ≥ ‖W r−Y r‖−λ‖F(W r)−F(Y r)‖
≥ (1−λL)‖W r−Y r‖,

which together with the following inequality

‖dr‖ ≤ ‖W r−Y r‖+λ‖F(W r)−F(Y r)‖ ≤ (1+λL)‖W r−Y r‖, ∀r ≥ 1,

yields
(1−λL)‖W r−Y r‖ ≤ ‖dr‖ ≤ (1+λL)‖W r−Y r‖, ∀r ≥ 1.

Thus W r = Y r if and only if dr = 0. Therefore, if Y r = W r or dr = 0 for each r ≥ 1, it holds
that Y r = PK(Y

r−λF(Y r)). By (3.2), for any Z ∈K, we know that

〈Y r−λF(Y r)−Y r,Z −Y r〉=−λ 〈F(Y r),Z −Y r〉 ≤ 0,

which implies 〈F(Y r),Z −Y r〉 ≥ 0. Hence Y r ∈ S(K,F), and the desired results hold. �

Lemma 3.3. Suppose that assumptions (i)-(iii) hold. Then X ∈K is a solution to

〈F(X ),Y −X 〉 ≥ 0, ∀ Y ∈K, (3.4)
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if and only if
〈F(Y ),Y −X 〉 ≥ 0, ∀ Y ∈K. (3.5)

Proof. To prove the sufficiency, we assume that X ∈ K is a solution to (3.5). For any Y ∈ K
and 0 < λ ≤ 1, let

Xλ = λY +(1−λ )X .

Since K is a convex set, Xλ ∈K. From (3.5), we obtain that

〈F(Xλ ),Xλ −X 〉= 〈F(Xλ ),λY +(1−λ )X −X 〉= λ 〈F(Xλ ),Y −X 〉 ≥ 0.

Thus
〈F(Xλ ),Y −X 〉 ≥ 0, (3.6)

and Xλ →X if λ → 0. By the continuity of F , it follows that F(Xλ )→ F(X ) as λ → 0.
Combining this with (3.6), it holds that

〈F(X ),Y −X 〉 ≥ 0,

and X is a solution to (3.4).
Conversely, let X ∈K be a solution to (3.4). Since F is K-pseudomonotone, then

〈F(X ),Y −X 〉 ≥ 0⇒ 〈F(Y ),Y −X 〉 ≥ 0, ∀ Y ∈K.

Thus equation (3.5) holds and the desired results hold. �

Note that the following result plays a crucial role to guarantee the strong convergence of the
proposed algorithm.

Lemma 3.4. Suppose {W r} is a sequence generated by Algorithm 1 and that assumptions
(i)− (iii) hold. If there exists a subsequence {W rn} of {W r} that converges weakly to a point
X ∈TM,n and lim

n→∞
‖W rn−Y rn‖= 0, then X ∈ S(K,F).

Proof. Firstly, we prove that liminf
n→∞

〈F(Y rn),Z −Y rn〉 ≥ 0. Clearly,

〈F(Y rn),Z −Y rn〉
= 〈F(Y rn)−F(W rn),Z −W rn〉+ 〈F(W rn),Z −W rn〉+ 〈F(Y rn),W rn−Y rn〉.

(3.7)

By Lemma 3.1, for any Z ∈K, we obtain that

〈W rn−λF(W rn)−PK(W rn−λF(W rn)),Z −PK(W rn−λF(W rn))〉
=〈W rn−λF(W rn)−Y rn,Z −Y rn〉 ≤ 0,

(3.8)

which is equivalent to 1
λ
〈W rn−Y rn,Z −Y rn〉 ≤ 〈F(W rn),Z −Y rn〉. Thus

1
λ
〈W rn−Y rn,Z −Y rn〉+ 〈F(W rn),Y rn−W rn〉 ≤ 〈F(W rn),Z −W rn〉. (3.9)

From the conditions that {W rn} of {W r} weakly converges to the point X ∈ TM,n, we know
that {W rn} is bounded. By the Lipschitz continuity of F , it implies the boundedness of {F(W rn)}.
Furthermore, the boundedness of {Y rn} is guaranteed since ‖W rn −Y rn‖ → 0. As n→ ∞ in
(3.9), it follows that

liminf
n→∞

〈F(W rn),Z −W rn〉 ≥ 0, Z ∈K. (3.10)
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From the Lipschitz continuity of F again and lim
n→∞
‖W rn−Y rn‖= 0, it holds that

lim
n→∞
‖F(W rn)−F(Y rn)‖= 0,

which, together with (3.7) and (3.10), implies that liminf
n→∞

〈F(Y rn),Z −Y rn〉 ≥ 0.

We now prove that X ∈ S(K,F). Suppose that {εn} is a decreasing positive sequence satis-
fying lim

n→∞
εn = 0. For each n≥ 1, we define Rn as the smallest positive integer such that

〈F(Y r j),Z −Y r j〉+ εn ≥ 0, ∀ j ≥ Rn. (3.11)

The decreasing of {εn} implies that {Rn} is increasing. Furthermore, for each n≥ 1, {Y Rn} ⊂
K, considering the case where F(Y Rn) 6= 0 and setting

VRn =
F(Y Rn)

‖F(Y Rn)‖2 ,

it follows that 〈F(Y Rn),V Rn〉= 1. Thus, by (3.11), we have

〈F(Y Rn),Z + εnVRn−Y Rn〉 ≥ 0, ∀n≥ 1,

Since F is K-pseudomonotone on K, we have

〈F(Z + εnV
Rn),Z + εnV

Rn−Y Rn〉 ≥ 0.

It follows that
〈F(Z + εnV

Rn),Z + εnV
Rn−Y Rn〉+ 〈F(Z ),Z + εnV

Rn−Y Rn〉
−〈F(Z ),Z + εnV

Rn−Y Rn〉
=〈F(Z ),Z −Y Rn〉+ 〈F(Z ),εnV

Rn〉+ 〈F(Z + εnV
Rn)−F(Z ),Z + εnV

Rn−Y Rn〉 ≥ 0,

and then

〈F(Z ),Z −Y Rn〉 ≥ 〈F(Z )−F(Z +εnV
Rn),Z +εnV

Rn−Y Rn〉−εn〈F(Z ),V Rn〉. (3.12)

Finally, we show that lim
n→∞

εnV Rn = 0. As W rn ⇀ X and lim
n→∞
‖W rn −Y rn‖ = 0, we have

Y rn ⇀ X as n→ ∞. By the fact that {Y r} ⊂ K, it follows that X ∈ K. The sequentially
weakly continuity of F implies lim

n→∞
F(Y rn) ⇀ F(X ). Suppose F(X ) 6= 0, otherwise X

would be a solution. Since the norm mapping is sequentially weakly lower semi-continuous,
we have

0 < ‖F(X )‖ ≤ liminf
n→∞

‖F(Y rn)‖.

Given that {Y Rn} ⊂ {Y rn} and limn→∞ εn = 0, we can derive

0≤ limsup
n→∞

‖εnV
Rn‖= limsup

n→∞

(
εn

‖F(Y rn)‖

)
≤ limsupn→∞ εn

liminfn→∞ ‖F(Y rn)‖
= 0,

which implies that limn→∞ εnV Rn = 0. Due to the uniform continuity of F , {V Rn} is bounded
and limn→∞ εnV Rn = 0. Consequently, the right-hand side of (3.12) tends to 0 as n→ ∞. Thus

liminf
n→∞

〈F(Z ),Z −Y Rn〉 ≥ 0.

Then, for all X ∈K, we have

〈F(Z ),Z −X 〉= lim
n→∞
〈F(Z ),Z −Y Rn〉= liminf

n→∞
〈F(Z ),Z −Y Rn〉 ≥ 0.
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By Lemma 3.3, it follows that 〈F(X ),Z −X 〉 ≥ 0. Thus X ∈ S(K,F). The proof is done.
�

Lemma 3.5. [30] Let {sr} be a sequence of nonnegative real numbers, {αr} be a sequence in

(0,1) such that
∞

∑
r=1

αr = ∞, and {tr} be a sequence of real numbers. Suppose

sr+1 ≤ (1−αr)sr +αrtr, ∀r ≥ 1.

If, for every subsequence {srn} of {sr} that satisfies liminf
n→∞

(srn+1 − srn) ≥ 0, it holds that
limsup

n→∞

trn ≤ 0 , then lim
r→∞

sr = 0.

Lemma 3.6. Assume conditions (i)− (iii) hold. Let {Z r} be a sequence generated by Algo-
rithm 1. Then, for any X ∗ ∈ S(K,F), the following inequality holds

‖Z r−X ∗‖2 ≤ ‖W r−X ∗‖2− 2− γ

γ
‖W r−Z r‖2.

Proof. To prove the result, it is clear that

〈W r−X ∗,dr〉= 〈W r−Y r,dr〉+ 〈Y r−X ∗,W r−Y r−λ (F(W r)−F(Y r))〉. (3.13)

By the fact that Y r = PK(W r−λF(W r)) and (3.2), we can derive

〈Y r−W r +λF(W r),Y r−X ∗〉 ≤ 0. (3.14)

By the K-pseudomonotonicity of F and X ∗ ∈ S(K,F), we have that

〈F(X ∗),Y r−X ∗〉 ≥ 0⇒ 〈F(Y r),Y r−X ∗〉 ≥ 0. (3.15)

Performing operations on (3.14) and (3.15), it follows that

〈W r−Y r−λ (F(W r)−F(Y r)),Y r−X ∗〉 ≥ 0. (3.16)

Combining (3.13) and (3.16), we obtain 〈W r−X ∗,dr〉 ≥ 〈W r−Y r,dr〉. Clearly,

‖Z r−X ∗‖2 = ‖W r−X ∗‖2−2γηr〈W r−X ∗,dr〉+ γ
2
η

2
r ‖dr‖2

≤ ‖W r−X ∗‖2−2γηr〈W r−Y r,dr〉+ γ
2
η

2
r ‖dr‖2.

(3.17)

By the definition of ηr, we have

ηr‖dr‖2 = 〈W r−Y r,dr〉. (3.18)

Substituting (3.18) into (3.17), we can derive

‖Z r−X ∗‖2 ≤ ‖W r−X ∗‖2− 2− γ

γ
‖γηrdr‖2.

According to the definition of the sequence {Z r}, we have Z r = W r− γηrdr. Thus, γηrdr =
W r−Z r, which implies that

‖Z r−X ∗‖2 ≤ ‖W r−X ∗‖2− 2− γ

γ
‖W r−Z r‖2. (3.19)

�

Lemma 3.7. Let {βr} ⊂ (0,1), θr ⊂ (a,1−βr) for some a > 0 and X ∗ ∈ S(K,F). Then the
sequence {X r} generated by Algorithm 1 is bounded.
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Proof. By (3.19), it can be derived that ‖Z r−X ∗‖≤ ‖W r−X ∗‖. Furthermore, by the notion
of W r, we obtain

‖W r−X ∗‖ ≤ ‖X r−X ∗‖+αr‖X r−X r−1‖

= ‖X r−X ∗‖+βr ·
αr

βr
‖X r−X r−1‖.

From the fact lim
r→∞

αr
βr
‖X r−X r−1‖ = 0 in Remark 3.1, it can be inferred that there exists a

constant C1 > 0 satisfying αr
βr
‖X r−X r−1‖ ≤C1 for all r ≥ 1. It follows that

‖Z r−X ∗‖ ≤ ‖W r−X ∗‖ ≤ ‖X r−X ∗‖+βrC1. (3.20)

In addition, we know that

‖X r+1−X ∗‖= ‖(1−θr−βr)(X
r−X ∗)+θr(Z

r−X ∗)−βrX
∗‖

≤ ‖(1−θr−βr)(X
r−X ∗)+θr(Z

r−X ∗)‖+βr‖X ∗‖
(3.21)

and

‖(1−θr−βr)(X
r−X ∗)+θr(Z

r−X ∗)‖2

≤ (1−θr−βr)
2‖X r−X ∗‖2 +2(1−θr−βr)θr‖X r−X ∗‖‖Z r−X ∗‖

+θ
2
r ‖Z r−X ∗‖2

≤ (1−θr−βr)(1−βr)‖X r−X ∗‖2 +(1−βr)θr‖Z r−X ∗‖2.

(3.22)

Substituting (3.20) to (3.22), we have

‖(1−θr−βr)(X
r−X ∗)+θr(Z

r−X ∗)‖2

≤ (1−θr−βr)(1−βr)‖X r−X ∗‖2 +(1−βr)θr(‖X r−X ∗‖+βrC1)
2

≤ (1−θr−βr)(1−βr)‖X r−X ∗‖2 +(1−βr)θr‖X r−X ∗‖2

+2(1−βr)θrβr‖X r−X ∗‖C1 +β
2
r C2

1

≤ [(1−βr)‖X r−X ∗‖+βrC1]
2.

Therefore, it concludes that

‖(1−θr−βr)(X
r−X ∗)+θr(Z

r−X ∗)‖ ≤ (1−βr)‖X r−X ∗‖+βrC1. (3.23)

Based on (3.21) and (3.23), for each r ≥ r0, we have

‖X r+1−X ∗‖ ≤ (1−βr)‖X r−X ∗‖+βr(C1 +‖X ∗‖)
≤max{‖X r−X ∗‖,C1 +‖X ∗‖}.

By induction, we find that {X r} is bounded, so are {Z r} and {W r}. �

Lemma 3.8. Let {βr} ⊂ (0,1), θr ⊂ (a,1−βr) for some a > 0 and X ∗ ∈ S(K,F). Then the
sequence {X r} generated by Algorithm 1 satisfies the following inequality

(1−βr)θr
2− γ

γ
‖W r−Z r‖2 ≤ |X r−X ∗‖2−|X r+1−X ∗‖2 +βrC4,

for some constants C4 > 0.
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Proof. First of all, by setting−2〈(1−θr−βr)(X r−X ∗)+θr(Z r−X ∗),X ∗〉+βr‖X ∗‖2≤
C2, for some constants C2 > 0, one has that

‖X r+1−X ∗‖2 = ‖(1−θr−βr)(X
r−X ∗)+θr(Z

r−X ∗)−βrX
∗‖2

= ‖(1−θr−βr)(X
r−X ∗)+θr(Z

r−X ∗)‖2

−2βr〈(1−θr−βr)(X
r−X ∗)+θr(Z

r−X ∗),X ∗〉+β
2
r ‖X ∗‖2

≤ ‖(1−θr−βr)(X
r−X ∗)+θr(Z

r−X ∗)‖2 +βrC2,
(3.24)

Substituting (3.22) into (3.24) yields

‖X r+1−X ∗‖2 ≤ (1−θr−βr)(1−βr)‖X r−X ∗‖2 +(1−βr)θr‖Z r−X ∗‖2 +βrC2.
(3.25)

Combining (3.19) with (3.25), we arrive at

‖X r+1−X ∗‖2 ≤ (1−θr−βr)(1−βr)‖X r−X ∗‖2 +(1−βr)θr‖W r−X ∗‖2

− (1−βr)θr
2− γ

γ
‖W r−Z r‖2 +βrC2.

(3.26)

Due to the boundness of {X r} and ‖W r−X ∗‖ ≤ ‖X r−X ∗‖+βrC1, we have

‖W r−X ∗‖2 ≤ ‖X r−X ∗‖2 +βrC3, (3.27)

for some constants C3 > 0. Combining (3.26) with (3.27), it can be concluded that

‖X r+1−X ∗‖2 ≤ (1−θr−βr)(1−βr)‖X r−X ∗‖2 +(1−βr)θr‖X r−X ∗‖2

+(1−βr)θrβrC3− (1−βr)θr
2− γ

γ
‖W r−Z r‖2 +βrC2

= (1−βr)
2‖X r−X ∗‖2− (1−βr)θr

2− γ

γ
‖W r−Z r‖2

+βr [(1−βr)θrC3 +C2]

≤ ‖X r−X ∗‖2− (1−βr)θr
2− γ

γ
‖W r−Z r‖2 +βrC4,

for some constants C4 > 0. Thus, the desired results hold due to

(1−βr)θr
2− γ

γ
‖W r−Z r‖2 ≤ |X r−X ∗‖2−|X r+1−X ∗‖2 +βrC4. (3.28)

�

Lemma 3.9. Let {βr} ⊂ (0,1), θr ⊂ (a,1−βr) for some a > 0, and X ∗ ∈ S(K,F). Then the
sequence {X r} generated by Algorithm 1 satisfies the following inequality

‖X r+1−X ∗‖2 ≤(1−βr)‖X r−X ∗‖2 +βr

[
αr

βr
‖X r−X r−1‖(1−βr)C5

+2θr‖X r−Z r‖‖X ∗−X r+1‖+2〈X ∗,X ∗−X r+1〉

]
,

(3.29)

for some constants C5 > 0.
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Proof. Observe that

X r+1 = (1−θr−βr)X
r +θrZ

r = (1−θr)X
r +θrZ

r−βrX
r.

Setting J r = (1−θr)X r +θrZ r, we have

‖J r−X ∗‖2

= ‖(1−θr)(X
r−X ∗)+θr(Z

r−X ∗)‖2

≤ (1−θr)
2‖X r−X ∗‖2 +θ

2
r ‖Z r−X ∗‖2 +2(1−θr)θr‖X r−X ∗‖‖Z r−X ∗‖

≤ (1−θr)‖X r−X ∗‖2 +θr‖Z r−X ∗‖2

≤ (1−θr)‖X r−X ∗‖2 +θr‖W r−X ∗‖2.

(3.30)

In addition, it can be deduced that

‖W r−X ∗‖2 = ‖(X r−X ∗)+αr(X
r−X r−1)‖2

= ‖(X r−X ∗)‖2 +2αr〈X r−X ∗,X r−X r−1〉+α
2
r ‖X r−X r−1‖2

≤ ‖(X r−X ∗)‖2 +αr‖X r−X r−1‖
[
2‖X r−X ∗‖+αr‖X r−X r−1‖

]
≤ ‖(X r−X ∗)‖2 +αr‖X r−X r−1‖C5,

(3.31)
where the last inequality holds by setting 2‖X r−X ∗‖+αr‖X r−X r−1‖ ≤ C5, for some
constants C5 > 0. Combining (3.30) with (3.31), we obtain that

‖J r−X ∗‖2 ≤ (1−θr)‖X r−X ∗‖2 +θr‖X r−X ∗‖2 +αrθr‖X r−X r−1‖C5

≤ ‖X r−X ∗‖2 +αr‖X r−X r−1‖C5.
(3.32)

By the definition of J r, we know that X r−J r = θr(X r−Z r). Thus

X r+1 = J r−βrX
r = (1−βr)J

r−βr(X
r−J r)

= (1−βr)J
r−βrθr(X

r−Z r),

which implies that

‖X r+1−X ∗‖2

= ‖(1−βr)(J
r−X ∗)− (βrθr(X

r−Z r)+βrX
∗)‖2

≤ (1−βr)
2‖J r−X ∗‖2−2〈βrθr(X

r−Z r)+βrX
∗,J r−X ∗〉

+2‖βrθr(X
r−Z r)+βrX

∗‖2

= (1−βr)
2‖J r−X ∗‖2−2〈βrθr(X

r−Z r)+βrX
∗,X r+1−X ∗〉

≤ (1−βr)‖J r−X ∗‖2 +2βrθr‖X r−Z r‖‖X ∗−X r+1‖

+2βr〈X ∗,X ∗−X r+1〉.

(3.33)
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Moreover, combining (3.32) with (3.33), we have

‖X r+1−X ∗‖2 ≤ (1−βr)‖X r−X ∗‖2 +(1−βr)αr‖X r−X r−1‖C5

+2βrθr‖X r−Z r‖‖X ∗−X r+1‖+2βr〈X ∗,X ∗−X r+1〉

= (1−βr)‖X r−X ∗‖2 +βr

[
αr

βr
‖X r−X r−1‖(1−βr)C5

+2θr‖X r−Z r‖‖X ∗−X r+1‖+2〈X ∗,X ∗−X r+1〉

]
.

�

By Lemmas 3.4-3.9, we now show that the proposed algorithm converges strongly to the
solution with the least norm.

Theorem 3.1. Let assumptions (i)− (iii) hold. Then the sequence {X r} generated by Algo-
rithm 1 converges strongly to X ∗ ∈ S(K,F), where

‖X ∗‖= min{‖X ‖ : X ∈ S(K,F)}. (3.34)

Proof. To prove the desired result, it is sufficient to show that {‖X r−X ∗‖2} converges to
zero. To do that, we assume that {‖X rn−X ∗‖} is a subsequence of {‖X r−X ∗‖} such that

liminf
n→∞

(‖X rn+1−X ∗‖−‖X rn−X ∗‖)≥ 0.

By Lemma 3.5 and Lemma 3.9, it is sufficient to show that

limsup
n→∞

(
αrn

βrn

‖X rn−X rn−1‖(1−βrn)C5 +2θrn‖X rn−Z rn‖‖X ∗−X rn+1‖

+2〈X ∗,X ∗−X rn+1〉
)
≤ 0.

Observe that

liminf
n→∞

(‖X rn+1−X ∗‖2−‖X rn−X ∗‖2)

= liminf
n→∞

[
(‖X rn+1−X ∗‖−‖X rn−X ∗‖)(‖X rn+1−X ∗‖+‖X rn−X ∗‖)

]
≥ 0.

By (3.28), we have

limsup
n→∞

[
(1−βrn)θrn

2− γ

γ
‖W rn−Z rn‖2

]
≤ limsup

n→∞

[
‖X rn−X ∗‖2−‖X rn+1−X ∗‖2 +βrnC4

]
≤ limsup

n→∞

[
‖X rn−X ∗‖2−‖X rn+1−X ∗‖2]+ limsup

n→∞

βrnC4

=− liminf
n→∞

[
‖X rn+1−X ∗‖2−‖X rn−X ∗‖2]≤ 0,

which implies that
lim
n→∞
‖W rn−Z rn‖= 0. (3.35)
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On the other hand, we prove that lim
n→∞
‖W rn −Y rn‖ = 0. By the definition of dr and the

Lipschitz continuity of F , it can be deduced that

‖dr‖= ‖W r−Y r−λ (F(W r)−F(Y r))‖
≤ ‖W r−Y r‖+λ‖F(W r)−F(Y r)‖
≤ (1+λL)‖W r−Y r‖.

Then
1
‖dr‖

≥ 1
(1+λL)‖W r−Y r‖

. (3.36)

Furthermore,

〈W r−Y r,dr〉= ‖W r−Y r‖2−〈W r−Y r,λ (F(W r)−F(Y r))〉

≥ (1−λL)‖W r−Y r‖2.
(3.37)

Thus, due to the definition of Z r and ηr and equations (3.36) and (3.37), we have

‖Z r−W r‖= γηr‖dr‖= γ
〈W r−Y r,dr〉

‖dr‖
≥ γ

1−λL
1+λL

‖W r−Y r‖. (3.38)

Combining (3.35) with (3.38), we obtain that

lim
n→∞
‖W rn−Y rn‖= 0. (3.39)

Next, we aims to prove ‖X rn+1 −X rn‖ → 0, as n → ∞. By the definition of W r and
lim
r→∞

αr
βr
‖X r−X r−1‖= 0, we have

‖X rn−W rn‖= αrn‖X rn−X rn−1‖= βrn ·
αrn

βrn

‖X rn−X rn−1‖→ 0, (3.40)

as n→ ∞. Therefore, by (3.35) and (3.40), we have ‖X rn −Z rn‖ → 0. From definitions of
X r+1 and {βr}, one has

‖X rn+1−X rn‖ ≤ θrn‖X rn−Z rn‖+βrn‖X rn‖→ 0.

Finally, we prove limsup
n→∞

〈X ∗,X ∗−X rn+1〉 ≤ 0. Since {X rn} is bounded, one sees that

there exists a subsequence {X rn j} of {X rn}, which converges weakly to some X ′ ∈ TM,n,
such that

limsup
n→∞

〈X ∗,X ∗−X rn〉= lim
j→∞
〈X ∗,X ∗−X

rn j 〉= 〈X ∗,X ∗−X ′〉.

According to X
rn j ⇀ X ′ and ‖X rn−W rn‖→ 0, we know that W

rn j ⇀ X ′. By Lemma 3.4,
it follows that

‖W rn−Y rn‖= ‖W rn−PK(W rn−λF(W rn))‖→ 0,
and X ′ ∈ S(K,F). From ‖X ∗‖= min{‖X ‖ : X ∈ S(K,F)} and the properties of projection,
we can derive X ∗ = PS(K,F)(0). By (3.2), we have

limsup
n→∞

〈X ∗,X ∗−X rn〉= 〈X ∗,X ∗−X ′〉 ≤ 0.

By ‖X rn+1−X rn‖→ 0, it holds that

limsup
n→∞

〈X ∗,X ∗−X rn+1〉 ≤ 0. (3.41)
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Thus

limsup
n→∞

(
αrn

βrn

‖X rn−X rn−1‖(1−βrn)C5 +2θrn‖X rn−Z rn‖‖X ∗−X rn+1‖

+2〈X ∗,X ∗−X rn+1〉
)
≤ 0.

Combining this with Lemma 3.5, we obtain that

lim
r→∞
‖X r−X ∗‖2 = lim

r→∞
‖X r−X ∗‖= 0,

which implies that {X r} converges strongly to X ∗. The desired results hold. �

4. DYNAMIC OLIGOPOLISTIC MARKET EQUILIBRIUM

In this section, we consider an economic model comprising m firms Si(i ∈ [m]) producing
k ∈ [l] different commodities, and n demand markets D j( j ∈ [n]), typically spatially separated.
Suppose that, within a time period [0,T ],T > 0, commodities produced by firm Si are consumed
by demand market D j. For the sake of simplicity, for i ∈ [m], j ∈ [n], and k ∈ [l], we introduce
the following notations:

• xk
i j(t) denotes the nonnegative shipment quantity of commodity k from supplier Si to

demand market D j at time t ∈ [0,T ].
• εk

i (t) represents the surplus production of commodity k by producer Si at time t ∈ [0,T ].
• δ k

j (t) represents the excess demand for commodity k by demand market D j at time
t ∈ [0,T ].
• pk

i (t) indicates the production quantity of commodity k by producer Si at time t ∈ [0,T ].
• qk

j(t) indicates the demand quantity of commodity k by demand market D j at time t ∈
[0,T ].

We organize the production output into a matrix-function P : [0,T ]→ Rml
+ , the demand out-

put into a matrix-function Q : [0,T ]→ Rnl
+ , the commodity shipments into a tensor-function

X : [0,T ]→ Tmnl , the production surplus into a matrix-function ε : [0,T ]→ Rml
+ , and the de-

mand excess into a matrix-function δ : [0,T ]→ Rnl
+ . Moreover, we assume that the following

feasibility conditions hold:

pk
i (t) =

n

∑
j=1

xk
i j(t)+ ε

k
i (t),∀i ∈ [m]; ∀k ∈ [l], a.e. in [0,T],

qk
j(t) =

m

∑
i=1

xk
i j(t)+δ

k
j (t),∀ j ∈ [n]; ∀k ∈ [l], a.e. in [0,T].

(4.1)

Therefore, at time t ∈ [0,T ], the quantity produced by each firm Si of type k must equal the
commodity shipments of that type from the firm to all demand markets plus the production
surplus. Similarly, the quantity demanded by each demand market D j of type k must equal the
shipments of that type from all firms to the demand market plus the demand excess, at time
t ∈ [0,T ]. Consequently, the total production pi of firm Si and the total demand q j of demand
market D j are given by

pi =
l

∑
k=1

[
n

∑
j=1

xk
i j(t)+ ε

k
i (t)

]
,∀i ∈ [m], q j =

l

∑
k=1

[
m

∑
i=1

xk
i j(t)+δ

k
j (t)

]
,∀ j ∈ [n], (4.2)
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respectively.
For analytical convenience, we make the following assumptions

ε ∈ L2([0,T ],Rml
+ ), δ ∈ L2([0,T ],Rnl

+), P ∈ L2([0,T ],Rml
+ ), Q ∈ L2([0,T ],Rnl

+).

Therefore, the feasible set is defined as

K̃=

{
(X ,ε,δ ) ∈ L2([0,T ],Tmnl×Rml×Rnl) :

xk
i j(t)≤ xk

i j(t)≤ xk
i j(t), ∀i ∈ [m], ∀ j ∈ [n], ∀k ∈ [l], a.e. in [0,T ],

ε
k
i (t)≥ 0, ∀i ∈ [m], ∀k ∈ [l], a.e. in [0,T ],

pk
i (t) =

n

∑
j=1

xk
i j(t)+ ε

k
i (t), ∀i ∈ [m], ∀k ∈ [l], a.e. in [0,T ],

δ
k
j (t)≥ 0, ∀ j ∈ [n], ∀k ∈ [l], a.e. in [0,T ],

qk
j(t) =

m

∑
i=1

xk
i j(t)+δ

k
j (t), ∀ j ∈ [n], ∀k ∈ [l], a.e. in [0,T ]

}
,

where xk
i j(t), xk

i j(t) are nonnegative bounds. It is evident that K̃ is a convex closed and bounded
subset of Tmnl . Furthermore, we define the following concepts, where i ∈ [m], j ∈ [n],k ∈ [l]:

• f̃ k
i represents the production cost for firm Si to produce the k-th commodity. We assume

that the production cost for firm Si depends on the entire production pattern, as follows:

f̃ k
i = f̃ k

i (t,X (t),ε(t)); (4.3)

• d̃k
j represents the unit demand price for the k-th commodity at demand market D j. We

assume that the demand price for demand market D j depends on the entire consumption
pattern, as follows:

d̃k
j = d̃k

j (t,X (t),δ (t)); (4.4)

• g̃k
i represents the cost for firm Si to store the k-th commodity. We assumed that this cost

depends on the entire production pattern, as follows:

g̃k
i = g̃k

i (t,X (t),ε(t)); (4.5)

• c̃k
i j represents the cost to transport the k-th commodity from producer Si to demander D j.

We assume that the transaction cost depends on the entire shipment pattern, as follows:

c̃k
i j = c̃k

i j(t,X (t)). (4.6)

The profit ṽi(t,X (t),ε(t),δ (t)), i ∈ [m] of the firm Si at the time t ∈ [0,T ], is given by

ṽi(t,X (t),ε(t),δ (t)) =
l

∑
k=1

[
n

∑
j=1

d̃k
j (t,X (t),δ (t))xk

i j(t)− f̃ k
i (t,X (t),ε(t))

− g̃k
i (t,X (t),ε(t))−

n

∑
j=1

c̃k
i j(t,X (t))xk

i j(t)

]
.



148 M. LI, H. CHEN, G. ZHOU, D.Z. DU

Now, we rewrite K̃ equivalently. According to (4.1), we can express εk
i (t) in terms of pk

i (t)
and xk

i j(t), and δ k
j (t) in terms of qk

j(t) and xk
i j(t), namely:

ε
k
i (t) = pk

i (t)−
n

∑
j=1

xk
i j(t), i ∈ [m], a.e.in [0,T ],

δ
k
j (t) = qk

j(t)−
m

∑
i=1

xk
i j(t), j ∈ [n], a.e.in [0,T ].

(4.7)

Then, the equivalent feasible set K is obtained by substituting these expressions into K̃,

K=

{
X ∈ L2([0,T ],Tmnl) :

xk
i j(t)≤ xk

i j(t)≤ xk
i j(t), ∀i ∈ [m], ∀ j ∈ [n], ∀k ∈ [l], a.e. in [0,T ],

n

∑
j=1

xk
i j(t)≤ pk

i (t), ∀i ∈ [m], ∀k ∈ [l], a.e. in [0,T ],

m

∑
i=1

xk
i j(t)≤ qk

j(t), ∀ j ∈ [n], ∀k ∈ [l], a.e. in [0,T ]
}
.

It can be observed that K encompasses the production and demand surpluses outlined by K̃.
Subsequently, considering (4.7) along with (4.3)-(4.5), the costs of production, demand, and
storage are formulated, as follows,

f k
i = f k

i (t,X (t)) = f̃ k
i (t,X (t),ε(t)), dk

j = dk
j (t,X (t)) = d̃k

j (t,X (t),δ (t)),

gk
i = gk

i (t,X (t)) = g̃k
i (t,X (t),ε(t)).

Similarly, the profit function is

vi(t,X (t)) = ṽi(t,X (t),ε(t),δ (t))

=
l

∑
k=1

[
n

∑
j=1

dk
j (t,X (t))xk

i j(t)− f k
i (t,X (t))−gk

i (t,X (t))−
n

∑
j=1

ck
i j(t,X (t))xk

i j(t)

]
.

In the dynamic oligopoly market model, each company supplies goods in a non-cooperative
manner at time t ∈ [0,T ], and they all aim to maximize their profit function within the optimal
allocation model of other companies. Our objective is to determine a non-negative commod-
ity distribution tensor function X , where m producers and n demand markets will be in an
equilibrium state defined by a generalization of the Cournot-Nash equilibrium principle.

Definition 4.1. A feasible tensor function X ∗ ∈ K is a dynamic oligopolistic market equilib-
rium if and only if, for each i = 1, · · · ,m and a.e. in [0,T],

vi(t,X ∗(t))≥ vi(t,Xi(t),X̂ ∗
i (t)), (4.8)

where X̂ ∗
i (t) = (X∗1 (t), · · · ,X∗i−1(t),X

∗
i+1(t), · · · ,X∗m(t)), Xi(t) is a slice of dimension nl.

To obtain an equivalent formulation of Definition 4.1 characterized by tensor variational in-
equality, we suppose that the following conditions hold on the profit function vi and the tensor-

function ∇Dv =
(

∂vi
∂xk

i j

)
i jk

, where i = 1 ∈ [m], j ∈ [n], and k ∈ [l]:
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(i) vi(t,X (t)) is continuously differentiable for each i ∈ [m], a.e. in [0,T],
(ii) ∇Dv is a Carathéodory function such that

∃ h ∈ L2([0,T ],R) : ‖∇Dv(t,X (t))‖ ≤ h(t)‖X (t)‖, a.e. in [0,T], (4.9)

(iii) vi(t,X (t)) is pseudoconcave with respect to the variable X ∈ Tmnl , i ∈ [m], namely
the following condition holds a.e. in [0,T]:〈

∂vi

∂Xi
(t,X1, · · · ,Xi, · · · ,Xm),Xi−Yi

〉
≥ 0⇒ vi(t,X1, · · · ,Xi, · · · ,Xm)≥ vi(t,X1, · · · ,Yi, · · · ,Xm).

Theorem 4.1. Let the assumptions (i)− (iii) hold. Then X ∗ ∈ K is a dynamic oligopolistic
market equilibrium if and only if it satisfies the evolutionary variational inequality

〈〈−∇Dv(t,X ∗(t)),X −X ∗〉〉 ≥ 0, ∀X ∈K. (4.10)

Proof. First of all, we prove the equivalence between (4.10) and

〈−∇Dv(t,X ∗(t)),X (t)−X ∗(t)〉=−
m

∑
i=1

n

∑
j=1

l

∑
k=1

∂vi(t,X ∗(t))
∂xk

i j(t)
(xk

i j(t)− (xk
i j(t))

∗)≥ 0,

(4.11)
∀X (t) ∈K(t),a.e. in [0,T], where

K(t) =
{

X (t) ∈Tmnl : xk
i j(t)≤ xk

i j(t)≤ xk
i j(t), ∀i ∈ [m], ∀ j ∈ [n], ∀k ∈ [l],

n

∑
j=1

xk
i j(t)≤ pk

i (t), ∀i ∈ [m], ∀k ∈ [l],
m

∑
i=1

xk
i j(t)≤ qk

j(t), ∀ j ∈ [n], ∀k ∈ [l]
}
.

(4.12)

Indeed, if (4.11) is not true, then, for any −∇Dv(t,X ∗(t)) ∈ Tmnl , there exist X1(t) ∈ K(t)
and a measurable set J ⊆ [0,T ] with Lebesgue measure µ(J)> 0 such that

〈−∇Dv(t,X ∗(t)),X1(t)−X ∗(t)〉< 0, ∀t ∈ J.

Let

X̃ (t) =

{
X ∗(t) in [0,T]\ J,
X1(t) in J.

Then

〈〈−∇Dv(t,X ∗(t)),X̃ (t)−X ∗〉〉=
∫
[0,T ]\J

〈−∇Dv(t,X ∗(t)),X ∗(t)−X ∗(t)〉dt

+
∫

J
〈−∇Dv(t,X ∗(t)),X1(t)−X ∗(t)〉dt < 0.

Thus we have the equivalence between (4.10) and (4.11). This equivalence is crucial for con-
structing discretization schemes aimed at computing numerical solutions to the equilibrium
problem in dynamic oligopolistic markets. Next, we proceed to prove this theorem further.

To move on, we suppose that X ∗(t) is a solution of (4.8). We now prove that X ∗(t) is a
solution to (4.10). By the equivalence between (4.10) and (4.11), we subsequently demon-
strate the validity of (4.11). Since ∇Dv(t,X ∗(t)) is a Carathéodory function, (4.9) holds and
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X ,X ∗ ∈ L2([0,T ],Tmnl), we have that t 7→ 〈∇Dv(t,X ∗(t)),X −X ∗〉 ∈ L2([0,T ],R) and

〈−∇Dv(t,X ∗(t)),X (t)−X ∗(t)〉=
m

∑
i=1

〈
−∂vi(t,X ∗(t))

∂X∗i (t)
,Xi(t)−X∗i (t)

〉
=−

m

∑
i=1

n

∑
j=1

l

∑
k=1

∂vi(t,X ∗(t))
∂xk

i j(t)
(xk

i j(t)− (xk
i j(t))

∗)≥ 0,

which yields (4.10).
Conversely, we assume that X ∗(t) is a solution of (4.10) but not a solution to (4.8). This

means that there exists i such that vi(t,X
∗(t)) < vi(t,Xi(t),X̂

∗
i (t)). Since that vi(t,X (t)) is

pseudoconcave, it follows that

〈−∇Dv(t,X ∗(t)),X (t)−X ∗(t)〉< 0, a.e. in [0,T ].

Thus
〈〈−∇Dv(t,X ∗(t)),X −X ∗〉〉< 0, ∀X ∈K,

which contradicts the assumed conditions, and the desired results hold. �

In what follows, we present the conditions under which the solution to the dynamic oligopolis-
tic market with both production and demand excess remain continuous over time. Before that,
we revisit the classical concept of convergence for subsets of a given metric space (X ,d), intro-
duced in [22, 23].

Let {Kn}n∈N denote a sequence of subsets in X , where sequences are indexed by the elements
of N, the set of positive integers. Recall that

d− limnKn :=
{

x ∈ X : ∃{xn}n∈N eventually in Kn such that xn
d−→ x

}
,

d− limnKn :=
{

x ∈ X : ∃{xn}n∈N frequently in Kn such that xn
d−→ x

}
,

where eventually denotes that there exists δ ∈N such that xn ∈Kn for any n≥ δ , and frequently
denotes the existence of an infinite subset N ⊆ N such that xn ∈ Kn for any n ∈ N (in the latter
case, according to the notation provided above, we also state the existence of a subsequence
{xkn}n∈N ⊆ {xn}n∈N such that xkn ∈ Kkn). Next, we review the Kuratowski’s convergence of
sets.

Definition 4.2. [22, 23] The sequence {Kn}n∈N converges to some subset K ⊆ X in Kura-
towski’s sense, briefly write Kn→ K, if and only if d− limnKn = d− limnKn = K.

Thus, in order to verify that Kn→ K, it suffices to check that
(i) K ⊂ d− limnKn, i.e., for any x ∈ K, there exists a sequence {xn}n∈N eventually in Kn

such that xn
d−→ x;

(ii) d− limnKn ⊆ K, i.e., for any sequence {xn}n∈N frequently in Kn such that xn
d−→ x for

some x ∈ Kn, then x ∈ K.
Moreover, Definition 4.2 can also be expressed as follows.

Remark 4.1. [11] Let (X ,d) be a metric space and K be a nonempty, closed and convex subset
of X . A sequence of nonempty, closed and convex sets Kn of X converges to K in Kuratowski’s
sense, as n→+∞, that is, Kn→ K, if and only if
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(M1) for any x ∈ K, there exists a sequence {xn}n∈N converging to x ∈ X such that xn lies in
Kn for all n ∈ N;

(M2) for any subsequence {xn}n∈N converging to x ∈ X such that xn lies in Kn for all n ∈ N,
x ∈ K.

The following Lemma demonstrates that the feasible set K of the dynamic oligopolistic mar-
ket problem satisfies the property of set convergence in the Kuratowski’s sense in the case of
excess production and demand.

Lemma 4.1. Let X ,X ∈ C0([0,T ],Tmnl), P ∈ C0([0,T ],Rml
+ ), Q ∈ C0([0,T ],Rnl

+) and let
{tr}r∈N be a sequence such that tr ∈ [0,T ], for all r ∈ N and tr→ t, with t ∈ [0,T ], as r→+∞.
Then the sequence of sets

K(tr) =
{

X (tr) ∈Tmnl : xk
i j(tr)≤ xk

i j(tr)≤ xk
i j(tr), ∀i ∈ [m], ∀ j ∈ [n], ∀k ∈ [l],

n

∑
j=1

xk
i j(tr)≤ pk

i (tr), ∀i ∈ [m],
m

∑
i=1

xk
i j(tr)≤ qk

j(tr), ∀ j ∈ [n]
}
,

for all r ∈ N, converges to (4.12).

Proof. To show (M1) holds, we let {tr}r∈N be a sequence such that tr → t, with t ∈ [0,T ], as
r→+∞. Due to the continuity of X , X , P, Q, it follows that X (tr)→X (t), X (tr)→X (t),
P(tr)→ P(t), and Q(tr)→Q(t) as r→+∞, respectively. Let X (t)∈K(t) be fixed. For i∈ [m],
j ∈ [n] and k ∈ [l], if

ak
i j(tr) = xk

i j(t)− xk
i j(tr)+

mpk
i (tr)+nqk

j(tr)

mn
−

mpk
i (t)+nqk

j(t)

mn
,

then

lim
r→+∞

ak
i j(tr) = xk

i j(t)− xk
i j(t)≥ 0. (4.13)

Thus, there exists an index w1 such that, for r > w1,

ak
i j(tr)≥ 0, ∀ i ∈ [m], j ∈ [n], k ∈ [l]. (4.14)

Then, we have

lim
r→+∞

[
1
m

n

∑
j=1

qk
j(tr)−

1
m

n

∑
j=1

qk
j(t)− ε

k
i (t)

]
=−ε

k
i (t)≤ 0, ∀ i ∈ [m], k ∈ [l],

where ε is the production excess function. Therefore, there exists an index w2 satisfying r > w2
and

1
m

n

∑
j=1

qk
j(tr)−

1
m

n

∑
j=1

qk
j(t)− ε

k
i (t)≤ 0. (4.15)

Similarly, we have

lim
r→+∞

[
1
n

m

∑
i=1

pk
i (tr)−

1
n

m

∑
i=1

pk
i (t)−δ

k
j (t)

]
=−δ

k
j (t)≤ 0, ∀ j ∈ [n], k ∈ [l],
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where δ is the demand excess function. Therefore, there exists an index w3 satisfying r > w3
and

1
n

m

∑
i=1

pk
i (tr)−

1
n

m

∑
i=1

pk
i (t)−δ

k
j (t)≤ 0. (4.16)

As a consequence, we consider the sequence {X (tr)}r∈N with entries satisfying the following
two properties:

(i) for r > w = max{w1,w2,w3}, ∀ i ∈ [m], j ∈ [n], k ∈ [l],

xk
i j(tr) = xk

i j(tr)+min
{

xk
i j(t)− xk

i j(t),x
k
i j(tr)− xk

i j(tr),a
k
i j(tr)

}
, (4.17)

(ii) for r ≤ w, ∀ i ∈ [m], j ∈ [n], k ∈ [l], xk
i j(tr) = PK(tr)(x

k
i j(t)), where PK(tr)(·) denotes the

Hilbertian projection on K(tr).

Apparently, if r ≤ w, then X (tr) ∈K(tr). If r > w, by the definition of X , X and (4.14), it is
evident that

min
{

xk
i j(t)− xk

i j(t),x
k
i j(tr)− xk

i j(tr),a
k
i j(tr)

}
≥ 0.

From (4.17), we have xk
i j(tr) ≤ xk

i j(tr) for all i ∈ [m], j ∈ [n], and k ∈ [l]. In addition, since

min
{

xk
i j(t)− xk

i j(t),x
k
i j(tr)− xk

i j(tr),a
k
i j(tr)

}
≤ xk

i j(tr)− xk
i j(tr), ∀ i ∈ [m], j ∈ [n], k ∈ [l], we

have xk
i j(tr)≤ xk

i j(tr). Moreover, it is clear that

min
{

xk
i j(t)− xk

i j(t),x
k
i j(tr)− xk

i j(tr),a
k
i j(tr)

}
≤ ak

i j(tr)

= xk
i j(t)− xk

i j(tr)+
mpk

i (tr)+nqk
j(tr)

mn
−

mpk
i (t)+nqk

j(t)

mn
.

Combining this with (4.17), we obtain that

xk
i j(tr)≤ xk

i j(t)+
mpk

i (tr)+nqk
j(tr)

mn
−

mpk
i (t)+nqk

j(t)

mn
, ∀ i ∈ [m], j ∈ [n], k ∈ [l].

Taking into account (4.15) and the definition of pk
i (t), it results that

n

∑
j=1

xk
i j(tr)≤

n

∑
j=1

xk
i j(t)+ pk

i (tr)+
1
m

n

∑
j=1

qk
j(tr)− pk

i (t)−
1
m

n

∑
j=1

qk
j(t)

≤
n

∑
j=1

xk
i j(t)+ pk

i (tr)− pk
i (t)+ ε

k
i (t)

=
n

∑
j=1

xk
i j(t)+ pk

i (tr)−
n

∑
j=1

xk
i j(t)− ε

k
i (t)+ ε

k
i (t)

= pk
i (tr), ∀i = 1, · · · ,m, k = 1, · · · , l.
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Similarly, by (4.16) and the definition of qk
j(t), we obtain that

m

∑
i=1

xk
i j(tr)≤

m

∑
i=1

xk
i j(t)+

1
n

m

∑
i=1

pk
i (tr)+qk

j(tr)−
1
n

m

∑
i=1

pk
i (t)−qk

j(t)

≤
m

∑
i=1

xk
i j(t)+qk

j(tr)−qk
j(t)+δ

k
j (t)

=
m

∑
i=1

xk
i j(t)+qk

j(tr)−
m

∑
i=1

xk
i j(t)−δ

k
j (t)+δ

k
j (t)

= qk
j(tr), ∀ j = 1, · · · ,n, k = 1, · · · , l.

Above all, for all r ∈ N, X (tr) ∈K(tr). In view of (4.13), it follows that

lim
r→+∞

xk
i j(tr) = xk

i j(t)+min
{

xk
i j(t)− xk

i j(t),x
k
i j(t)− xk

i j(t),x
k
i j(t)− xk

i j(t)
}
= xk

i j(t).

In conclusion, the proof of condition (M1) is completed.
In the following, we show that (M2) holds. Let {tr}r∈N be a sequence such that tr→ t (r→

+∞), with t ∈ [0,T ]. Let {X (tr)}r∈N be a sequence such that X (tr) ∈ K(tr), and X (tr)→
X (t) (r→ +∞). We now prove that X (t) ∈ K(t). As X (tr) ∈ K(tr), for all r ∈ N, it results
in

xk
i j(tr)≤ xk

i j(tr)≤ xk
i j(tr), ∀i = 1, · · · ,m, ∀ j = 1, · · · ,n, ∀k = 1, · · · , l,

n

∑
j=1

xk
i j(tr)≤ pk

i (tr), ∀i = 1, · · · ,m, ∀k = 1, · · · , l,

m

∑
i=1

xk
i j(tr)≤ qk

j(tr), ∀ j = 1, · · · ,n, ∀k = 1, · · · , l.

From the continuity of X ,X ,P,Q, for r→+∞, it holds that

xk
i j(t)≤ xk

i j(t)≤ xk
i j(t), ∀i = 1, · · · ,m, ∀ j = 1, · · · ,n, ∀k = 1, · · · , l,

n

∑
j=1

xk
i j(t)≤ pk

i (t), ∀i = 1, · · · ,m, ∀k = 1, · · · , l,

m

∑
i=1

xk
i j(t)≤ qk

j(t), ∀ j = 1, · · · ,n, ∀k = 1, · · · , l.

Therefore, X (t) ∈K(t) and the condition (M2) is proven. �

Combining Theorem 4.2 in [3] and Lemma 4.1, we have the following result.

Theorem 4.2. Let the production function P, the demand function Q, and the capacity con-
straints X , X be continuous in [0,T ]. Furthermore, let −∇Dv be strictly pseudomonotone
and continuous on [0,T ]. Then, the unique dynamic market equilibrium distribution in the
presence of production and demand excesses X ∗ ∈K is continuous on [0,T ].
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5. NUMERICAL EXAMPLE

In order to obtain the solution of the dynamic market equilibrium problem, by discretizing the
time interval, we first obtain finite-dimensional tensor variational inequalities (i.e., static tensor
variational inequalities). Then, we solve finite-dimensional tensor variational inequalities by
Algorithm 1.

The following example was also studied in [2]. The difference between the example in this
section and the example in [2] is that, for each firm, we consider the case with more than one
productions while only one production is considered in [2]. In detail, we consider the case
with both production and demand excesses, involving two firms and two demand markets, as
illustrated in Figure 1, over the time interval [0,1].

FIGURE 1. Network structure of the numerical dynamic spatial oligopoly problem.

Let X ,X ∈ L2([0,1],T222) be the capacity constraints, and Xk
,Xk ∈ L2([0,1],R2×2

+ )(k =
1,2) represent the maximum and minimum production of the k-th commodity, respectively:

X1
(t) =

[
10t +1 4t
7t + 1

2 10t + 1
5

]
,X2

(t) =
[

4t +2 5t +2
2t +1 t + 1

2

]
,X1(t) =

[
0 1

5t
0 0

]
,

X2(t) =
[

t 0
1
20t 0

]
.

Let P ∈ L2([0,1],R2×2
+ ) and Q ∈ L2([0,1],R2×2

+ ) be the production and demand function, re-
spectively, a.e. in [0,1]

P =

[
7t +2 6t +2
8t +3 11t +5

]
, Q =

[
10t +3 8t +2
9t +1 6t +3

]
.

Hence, the feasible set is

K =

{
X ∈ L2([0,1],T222) :

xk
i j(t)≤ xk

i j(t)≤ xk
i j(t), ∀i = 1,2, ∀ j = 1,2, ∀k = 1,2, a.e. in [0,1],

2

∑
j=1

xk
i j(t)≤ pk

i (t), ∀i = 1,2 ∀k = 1,2, a.e. in [0,1],

2

∑
i=1

xk
i j(t)≤ qk

j(t), ∀ j = 1,2 ∀k = 1,2, a.e. in [0,1]
}
.
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Consider the profit functions vi defined as follows,

v1(t,X (t)) =− (t +4)(x1
11)

2(t)− 5
2
(x1

12)
2(t)− (3t +2)(x2

11)
2(t)−4(2t +1)(x2

12)
2(t)

− 1
2

x1
11(t)x

2
22(t)+(t +2)x1

11(t)+2tx1
12(t)+2x2

11(t)+3tx2
12(t),

v2(t,X (t)) =− (x1
21)

2(t)− (3t +1)(x1
22)

2(t)−2(x2
21)

2(t)− (t +2)(x2
22)

2(t)

+4(
t
2
+1)x1

21(t)+7tx1
22(t)+(1+

t
5
)x2

21(t))+ tx2
22(t).

Then the components of ∇Dv are given by

∂v1

∂x1
11

=−2(t +4)x1
11(t)−

1
2
(t +1)x2

22(t)+ t +2,
∂v1

∂x1
12

=−5x1
12(t)+2t,

∂v1

∂x2
11

=−2(3t +2)x2
11(t)+2,

∂v1

∂x2
12

=−8(2t +1)x2
12(t)+3t,

∂v2

∂x1
21

=−2x1
21(t)+2t +4,

∂v2

∂x1
22

=−2(3t +1)x1
22(t)+7t,

∂v2

∂x2
21

=−4x2
21(t)+

t
5
+1,

∂v2

∂x2
22

=−2(t +2)x2
22(t)+ t.

Note that−∇Dv is Lipschitz continuous. Furthermore, we now confirm that−∇Dv is a strongly
monotone operator, a.e. in [0,1]

〈−∇Dv(t,X (t))+∇Dv(t,Y (t)),X (t)−Y (t)〉

= (2t +8)[x1
11(t)− y1

11(t)][x
1
11(t)− y1

11(t)]+5[x1
12(t)− y1

12(t)][x
1
12(t)− y1

12(t)]

+(6t +4)[x2
11(t)− y2

11(t)][x
2
11(t)− y2

11(t)]+(16t +8)[x2
12(t)− y2

12(t)][x
2
12(t)− y2

12(t)]

+(6t +2)[x1
22(t)− y1

22(t)][x
1
22(t)− y1

22(t)]+2[x1
21(t)− y1

21(t)][x
1
21(t)− y1

21(t)]

+4[x2
21(t)− y2

21(t)][x
2
21(t)− y2

21(t)]+(
5
2

t +
9
2
)[x2

22(t)− y2
22(t)][x

2
22(t)− y2

22(t)]

≥ ‖X (t)−Y (t)‖2.

By Theorem 4.2, we know that the unique dynamic market equilibrium solution is continuous
on [0,1]. We consider the point-to-point variational inequality (4.11) for each t ∈ [0,1] and
provide a partition of [0,1] such that 0 = t0 < t1 < .. . < tu < .. . < t20 = 1. For each point tu, the
finite-dimensional variational inequality can be formulated as follows:

〈−∇Dv(tu,X ∗(tu)),X (tu)−X ∗(tu)〉 ≥ 0, ∀X (tu) ∈K(tu),a.e. in [0,1], (5.1)

where

K(tu) =
{

X (tu) ∈Tmnl : xk
i j(tu)≤ xk

i j(tu)≤ xk
i j(tu), ∀i ∈ [2], ∀ j ∈ [2], ∀k ∈ [2],

2

∑
j=1

xk
i j(tu)≤ pk

i (tu), ∀i ∈ [2], ∀k ∈ [2],
2

∑
i=1

xk
i j(tu)≤ qk

j(tu), ∀ j ∈ [2], ∀k ∈ [2]
}
.

To continue, let L= 30, λ = 0.9/L, γ = 0.5, βr = 1/200(r+1), θr = 0.8−βr, τr = 1/(r+1)2,
αr = αr, α = 0.5 for all r ≥ 1 and set the stopping criterion to E(X ∗r(tu)) = ‖X ∗r+1(tu)−
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X ∗r(tu)‖ ≤ 10−5. Then we choose the suitable initial points X ∗0(tu) and X ∗1(tu):

(X1(tu))∗0 =
[1

3tu 1
3tu

1
3tu 1

3tu

]
,(X2(tu))∗0 =

[ 1
10tu tu
1
10tu 1

10tu

]
,

(X1(tu))∗1 =
[1

5tu +1 1
5tu +5

1
5tu +3 1

5tu +2

]
,(X2(tu))∗1 =

[6
5tu +10 1

20tu +1
1
20tu +6 1

20tu +2

]
.

By Algorithm 1, we obtain the equilibrium curves (depicted in Figure 2), as well as the curves
representing production and demand excesses (shown in Figure 3 and Figure 4, respectively).
Additionally, we illustrate the convergence behavior of the sequences generated by Algorithm
1 at tu = 0,0.25,0.5,0.75,1 in Figure 5.

FIGURE 2. Curves of equilibria. FIGURE 3. Curves of produc-
tion excess.

FIGURE 4. Curves of demand excess.
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(a) t0 = 0 (b) t5 = 0.25 (c) t10 = 0.5

(d) t15 = 0.75 (e) t20 = 1

FIGURE 5. The error plotting of Algorithm 1.

To verify the performance of the algorithm according to different parameters λ , α and γ , we
first fix α = 0.5, γ = 0.5, and set λ = 1/50, 1/100, 1/150. The corresponding iteration steps
of the algorithm are 75, 142, and 209. Then, we fix λ = 1/50, γ = 0.5, and set α = 0.1, 1, 5.
The corresponding iteration steps of the algorithm are 76, 75, and 84. Finally, we fix λ = 1/50,
α = 0.5, and set γ = 0.5, 1, 1.5. The corresponding iteration steps of the algorithm are 75, 36,
and 24. The iteration diagrams of the algorithm are shown in Figure 6. It can be observed that
different values of λ , α , and γ does not affect the convergence of the algorithm, but it affects
the number of iterations.

6. CONCLUSIONS

In this paper, we investigated the TVI and its applications. An alternative algorithm was pro-
posed to tackle TVIs with certain monotonicity or continuity conditions. Then the equilibrium
problems from dynamic (i.e., time-dependent) oligopolistic markets were investigated, and nu-
merical experiments were given to verify the effectiveness of the proposed algorithm. We also
mention here that the study on TVIs only in its early stage, and there are challenging prob-
lems, which need to be investigated. For example, as an efficient tool for multi-dimensional
data, can we consider more applications of TVIs? Can we consider the dynamic (i.e., time-
dependent) oligopolistic markets with stochastic productions and demanding markets? Maybe
those problems are hard to answer, however it is really interesting and meaningful for practical
applications.
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(a) α = 0.5, γ = 0.5, and λ =

1/50
(b) α = 0.5, γ = 0.5, and λ =

1/100
(c) α = 0.5, γ = 0.5, and λ =

1/150

(d) λ = 1/50, γ = 0.5, and α =

0.1
(e) λ = 1/50, γ = 0.5, and α = 1 (f) λ = 1/50, γ = 0.5, and α = 5

(g) λ = 1/50, α = 0.5, and γ =

0.5
(h) λ = 1/50, α = 0.5, and γ = 1 (i) λ = 1/50, α = 0.5, and γ = 1.5

FIGURE 6. The error plotting of Algorithm 1 with varying parameters λ , α , and γ .
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