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BP 11201 Zitoune, Meknes, Morocco

Abstract. The existence of a bilateral solution at a given height to the strongly nonlinear and degenerate
problem A(u) = ρ(u)|∇ϕ|2, div(ρ(u)∇ϕ) = 0 in Ω, u = 0 and ϕ = ϕ0 on ∂Ω, where A is a Leray-Lions
operator, is proved in the framework of anisotropic Sobolev space. The bilateral solution is obtained
through a double approximation process, with the first one being a penalization technique.
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1. INTRODUCTION

We consider a nonlinear coupled system of elliptic type in the framework of anisotropic
Sobolev spaces. This system is given as follows.

A(u) = ρ(u)|∇ϕ|2 in Ω,
div(ρ(u)∇ϕ) = 0 in Ω,

u = 0 on ∂Ω,
ϕ = ϕ0 on ∂Ω,

(1.1)

where A is a strongly nonlinear operator in divergence form, namely,

A(u) =−div(a(x,u,∇u)). (1.2)

As a model example, operator (1.2) includes the particular case of the ~p-Laplacian,

−∆~pu =−
N

∑
ν=1

∂ν(|∂νu|pν−2
∂νu), (∂ν = ∂/∂xν).

Notice that system (1.1) is a generalized model of the well-known thermistor problem. In that
setting, u stands for the temperature, ϕ is the electric potential, ρ(u) is the temperature depen-
dent electric conductivity, Ω ⊂ RN is the region in the space occupied by the semiconductor
device (thermistor), and N ≥ 1 is the space dimension. The first equation of (1.1) expresses the
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diffusion of heat inside the semiconductor which is generated from the source term ρ(u)|∇ϕ|2,
which is Joule’s effect. The second equation describes the conservation of electric charges.

The difficulty in the mathematical analysis of a problem like (1.1) does not only come from
the nonlinearities appearing in both partial differential equations but from the nonuniformly
elliptic character of the second equation as well. Indeed, in most practical situations, one has
ρ ∈C(R) is such that ρ(s)> 0 with ρ(s)→ 0 as s→+∞. In order to deal with this difficulty,
Xu ([1]) introduced the notion of capacity solutions to the thermistor problem (evolution case)
in the framework of Sobolev spaces with p = 2. He proved the existence of a capacity solution.
Afterwards, other existence results were obtained by many authors, In particular, the authors in
[2, 3] proved an existence result of a capacity solution to a nonstationary thermistor problem
in the classical Sobolev spaces W 1,p(Ω) for any p ≥ 2. Also, the authors in [4, 5] studied the
existence of a solution for both the steady-state and the evolution thermistor problem in the
context of Orlicz-Sobolev spaces.

In [6, 7], Ortegón Gallego, Rhoudaf and Talbi analyzed the existence of a capacity solution to
a coupled nonlinear elliptic or parabolic-elliptic systems in the context of anisotropic Sobolev
spaces. This result was generalized to the anisotropic Orlicz-Sobolev space by Ortegón Gallego,
Ouyahya and Rhoudaf in [8]. In all these results, the authors have just considered the case of
a Sobolev space with p ≥ 2 or the Orlicz-Sobolev space with an equivalent condition, that
is, the N-function M admits the representation M(s) =

∫ |s|
0 m(t)dt with m(t) ≥ t for all t ≥ 0.

Due to this assumption, we may deduce that the right-hand side of our first equation lies in a
‘good’ dual space. Moreover, by considering ρ(u)∇ϕ as a single function, we may derive a new
variational formulation and the solution to this new formulation is called a capacity solution.
For the other cases, namely 1 < p < 2, or m(t)< t in the context of the Orlicz spaces, the right
hand side of the first equation does not belong to the adequate dual space, even for capacity
solutions. The introduction of the notion of bilateral solutions may deal with these situations so
that this analysis fills the gap 1 < p < 2 or m(t)< t.

The notion of bilateral solutions to problem (1.1) was recently introduced by the authors
in [9] in the context of isotropic Sobolev spaces, W 1,p(Ω), 1 < p < ∞. In this paper, under
more restrictive assumptions on the data, we demonstrate the existence of a bilateral solution to
problem (1.1) in the framework of anisotropic Sobolev spaces. In order to prove an existence
result of a solution for a certain approximate problem, we make use of the so-called penaliza-
tion technique, which was firstly introduced by Boccardo and Murat in [10]. These authors
approximated the following variational inequality{

To find u ∈K such that,
〈A(u),v−u〉 ≥ 〈 f ,v−u〉, for all v ∈K ,

where the convex set K is defined by K = {v ∈W 1,p
0 (Ω) : |v(x)| ≤ 1 a.e. in Ω}, the mapping

A is given by A(u) = −∆pu = −div(|∇u|p−2∇u) and f ∈W−1,p′(Ω), and by the sequence of
problems {

A(un)+ |un|n−2un= f in D ′(Ω),
un=0 on ∂Ω.

Inspired by this approach, we investigate certain bilateral solutions to system (1.1) at a given
height M > 0 in the sense of the Definition 3.1 given below. Notice that the existence, in the
framework of anisotropic Sobolev spaces of order r and exponent ~p := (p0, . . . , pN), W r,~p

0 (Ω),
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with rp0 > N, p0 = min1≤ν≤N{pν}, of weak solutions to the following problem{
A(u)+g(x,u)= f in Ω,

u=0 on ∂Ω.
(1.3)

where A is a strongly nonlinear operator satisfying the monotonicity, coerciveness, and growth
conditions, and where the nonlinear perturbation term g is a Carathéodory function and satisfies
the sign condition g(x, t)t ≥ 0, for all t ∈R, but without any restriction on its growth, was proved
in [11] in the following sense u ∈W 1,~p

0 (Ω),g(x,u) ∈ L1(Ω) and g(x,u)u ∈ L1(Ω)

〈A(u),v〉+
∫

Ω

g(x,u)vdx = 〈 f ,v〉, for all v ∈W 1,~p
0 (Ω)∩L∞(Ω).

(1.4)

If rp0 > N, we have W r,~p
0 (Ω) ⊂ L∞(Ω) and the test functions in (1.4) run the whole space

W r,~p
0 (Ω). Problem (1.3) was also considered in [12, 13] for r = 1, ~p being an admissible vector

and with a less restrictive assumption on the domain Ω. In these works, the authors proved, by
using the Hedberg-type’s approximation, that the solution, u, of (1.3) could be taken as a test
function in (1.4), and then problem (1.3) has a solution in the following sense u ∈W 1,~p

0 (Ω), g(x,u) ∈ L1(Ω) and g(x,u)u ∈ L1(Ω)

〈A(u),u− v〉+
∫

Ω

g(x,u)(u− v)dx = 〈 f ,u− v〉, for all v ∈W 1,~p
0 (Ω)∩L∞(Ω).

(1.5)

In this paper, we focus on r = 1 and any exponents ~p such that 1 < pν < ∞, for all ν =
0, . . . ,N. In particular, this covers the case 1 < pν < 2 for at least one ν ∈ {0, . . . ,N}, so
that the required condition above p0 > N, which may not be satisfied, is included as well. In
fact, without assuming that p0 > N, we will show that problem (1.3) still has a solution in the
sense (1.5), for any f ∈W−1,~p′(Ω). For the particular case when pν = p for all ν = 1, . . . ,N, we
refer to [14]. The case 0 < r < 1, where fractional derivatives spaces are involved ([15]), may
be the subject of future works.

In [16], where the dependence of the solution with respect to different choices of the three
exponents p1, p2, and p3 was remarked, we can find some 3D numerical simulations of prob-
lem (1.1). Moreover, these numerical simulations seem to infer that the problem may have
multiple solutions when one the exponents is close enough to 1 while the others two are kept
constant. Thus the question of the uniqueness of the solution is still open.

In order to study the problem (1.1) under the assumptions given below, we adopt the following
organization. In Section 2, we introduce the definition of the anisotropic Sobolev spaces, recall
some of their properties, and give some technical lemmas. In Section 3, we enumerate the
assumptions on the data and introduce the notion of bilateral solutions adapted to our context.
In Section 4, we present our main results. In the last section, Section 5, we present the proof of
the main results.

2. PRELIMINARIES

In this section, we begin by recalling the definition of the anisotropic Sobolev spaces, and
giving some of their properties.
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Let Ω be an open bounded domain in RN (N ≥ 2) with boundary ∂Ω. We denote by ~p :=
(p1, . . . , pN) and by p0 = min1≤ν≤N{pν}, and we introduce the anisotropic Sobolev space of
exponent ~p, denoted by W 1,~p(Ω), as

W 1,~p(Ω) =
{

u ∈ Lp0(Ω)/ ∂νu ∈ Lpν (Ω), for all ν = 1, . . . ,N
}
.

The space W 1,~p(Ω) is a Banach space equipped with the norm ‖u‖~p = ∑
N
ν=0 ‖∂νu‖pν

, where
∂0u = u,∂νu = ∂u

∂xν
, and ‖ ·‖pν

is the standard norm in Lpν (Ω). Since we will consider homoge-

nous Dirichlet boundary conditions, we use the functional space W 1,~p
0 (Ω) defined as the closure

of D(Ω) in W 1,~p(Ω).

Both spaces W 1,~p(Ω) and W 1,~p
0 (Ω) are separable when 1≤ pν < ∞ for all ν = 1, . . . ,N, and

reflexive when 1 < pν < ∞ for all ν = 1, . . . ,N (the proof is an adaptation from Adams [17]).
When ~p ∈ [1,+∞)N , the dual of W 1,~p

0 (Ω) is denoted by W−1,~p′(Ω), ~p ′ := (p′1, . . . , p′N), p′ν ∈
(1,+∞)∪ {+∞} being the conjugate of pν , i.e., 1/p′ν + 1/pν = 1 for all ν = 1, . . . ,N. In
W 1,~p

0 (Ω), the seminorm |·|~p defined as |u|~p =∑
N
ν=1 ‖∂νu‖pν

, u∈W 1,~p
0 (Ω), is a norm in W 1,~p

0 (Ω),
which is equivalent to the norm ‖ · ‖~p, that is, there exists a constant C0 =C0(Ω,~p) such that

|u|~p ≤ ‖u‖~p ≤C0|u|~p, for all u ∈W 1,~p
0 (Ω). (2.1)

Lemma 2.1. Let Ω be a bounded open set of RN . Then, the natural injection W 1,~p
0 (Ω) ↪→

Lp0(Ω) is compact.

The proof of this lemma follows immediately from the classical embedding theorems of
Sobolev spaces and the fact that W 1,~p

0 (Ω) ↪→W 1,p0
0 (Ω) with continuous injection. In particular,

since W 1,p0
0 (Ω) ⊂ Lq(Ω) with q = p∗0 = N p0/(N− p0) if p0 < N, any q ∈ [1,∞) if p0 = N, or

q = ∞ if p0 > N, the same is true for W 1,~p
0 (Ω). The next result tells us that we may improve this

Lq-regularity for the functions in W 1,~p
0 (Ω).

Lemma 2.2 ([18, 19, 20]). Let p1, . . . , pN ∈R such that p0 = min1≤ν≤N{pν}> 1. Let p̄ be the
harmonic mean of these numbers, that is 1/p̄ = 1/N ∑

N
ν=1 1/pν . Then, there exists a constant

C > 0 such that

‖u‖q ≤C
N

∏
ν=1
‖∂νu‖1/N

pν
, for all u ∈W 1,~p

0 (Ω), (2.2)

where q = p̄∗ = N p̄/(N− p̄) if p̄ < N, any q ∈ [1,∞) if p̄≥ N.

A straightforward consequence of Lemma 2.2 is the continuous injection W 1,~p
0 (Ω) ⊂ Lq(Ω)

where q means the same as in this last result. Indeed, this is due to (2.2) together with the
celebrated inequality relating the geometric mean and the arithmetic mean, namely,

N

∏
ν=1

a1/N
ν ≤ 1

N

N

∑
ν=1

aν , for all a1, . . . ,aN ∈ [0,+∞).

The next lemma is useful in combination with the assumption (3.4) below.

Lemma 2.3. Let p1, . . . , pN ,a1, . . . ,aN be 2N real numbers such that p0 = min1≤ν≤N{pν} ≥ 1
and min1≤ν≤N{aν} ≥ 0. Then,

ap1
1 + · · ·+apN

N ≥
1

N p0−1 (a1 + · · ·+aN)
p0− (N−1).
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Proof. Since p0 ≥ 1, we see that s ∈ [0,+∞) 7→ sp0 is convex. Thus(
a1 + · · ·+aN

N

)p0

≤ 1
N
(ap0

1 + · · ·+ap0
N ),

and

ap0
1 + · · ·+ap0

N ≥
1

N p0−1 (a1 + · · ·+aN)
p0.

On the other hand, the following inequalities hold

apν

ν +1≥ ap0
ν , for all ν = 1, . . . ,N,

with apν

ν = ap0
ν for at least one ν ∈ {1, . . . ,N}. Summing up these inequalities, we obtain

ap1
1 + · · ·+apN

N ≥ ap0
1 + · · ·+ap0

N − (N−1)≥ 1
N p0−1 (a1 + · · ·+aN)

p0− (N−1).

�

Corollary 2.1. Let ~p = (p1, . . . , pN) ∈ RN such that p0 = min1≤ν≤N{pν} ≥ 1. Then,
N

∑
ν=1

∫
Ω

|∂νu|pν ≥ 1
Cp0

0 N p0−1‖u‖
p0
~p − (N−1), for all u ∈W 1,~p

0 (Ω),

where C0 > 0 is the constant appearing in (2.1).

Proof. Let u ∈W 1,~p
0 (Ω) and put aν = ‖∂νu‖pν

= (
∫

Ω
|∂νu|pν )1/pν for ν = 1, . . . ,N. According

to Lemma 2.3, we have
N

∑
ν=1

∫
Ω

|∂νu|pν = ap1
1 + · · ·+apN

N ≥
1

N p0−1 (a1 + · · ·+aN)
p0− (N−1) =

1
N p0−1 |u|

p0
~p − (N−1).

Using (2.1) we obtain the desired result immediately. �

For the sake of completeness, we recall the definition of some useful concepts in abstract
Banach spaces. In these definitions, X stands for a reflexive Banach space with norm ‖ · ‖X and
X∗ its dual space ([21]).

Definition 2.1. Let G : X 7→ X∗ be a mapping.
(1) G is bounded if it transforms any bounded set of X in a bounded set of X∗.
(2) G is said to be coercive if

lim
‖u‖X→∞

〈G(u),u〉X∗,X
‖u‖X

=+∞,

where 〈·, ·〉X∗,X is the duality product between X∗ and X .
(3) G is monotone if

〈G(u)−G(v),u− v〉X∗,X ≥ 0 for any u,v ∈ X . (2.3)

and strictly monotone if inequality (2.3) is strict whenever u 6= v.
(4) G is said to be hemicontinuous if, for all u,v,w ∈ X , limt→0+〈G(u + tv),w〉X∗,X =
〈G(u),w〉X∗,X .

Another important concept in this context is the notion of a pseudo-monotone mapping. This
can be done through two equivalent definitions.



816 F. ORTEGÓN GALLEGO, M. RHOUDAF, H. TALBI

Theorem/Definition 2.1. Let G : X 7→ X∗ be a bounded mapping. We say that G is pseudo-
monotone if it satisfies one of the two following equivalent conditions:
(PM1) For any sequence (un) ⊂ X such that un→ u weakly in X and limsupn→∞〈G(un),un−

u〉X∗,X ≤ 0, it follows that liminfn→∞〈G(un),un− v〉X∗,X ≥ 〈G(u),u− v〉X∗,X for all v ∈
X .

(PM2) For any sequence (un)⊂ X such that un→ u weakly in X , G(un)→ χ weakly in X∗ and
limsupn→∞〈G(un),un− u〉X∗,X ≤ 0, it follows that G(u) = χ and limn→∞〈G(un),un−
u〉X∗,X = 0.

Proof. (PM1)⇒ (PM2) Let (un)⊂X , u∈X , and χ ∈X∗ such that un→ u weakly in X , G(un)→
χ weakly in X∗, and limsupn→∞〈G(un),un−u〉X∗,X ≤ 0. Letting v ∈ X , we have

〈G(un),un− v〉X∗,X = 〈G(un),un−u〉X∗,X + 〈G(un),u− v〉X∗,X .
Using this identity and (PM1) yields

〈G(u),u− v〉X∗,X≤ liminf
n→∞

〈G(un),un− v〉X∗,X
= liminf

n→∞
〈G(un),un−u〉X∗,X + 〈χ,u− v〉X∗,X

≤ limsup
n→∞

〈G(un),un−u〉X∗,X + 〈χ,u− v〉X∗,X ≤ 〈χ,u− v〉X∗,X .
(2.4)

Consequently, 〈G(u)−χ,u−v〉X∗,X ≤ 0 for any v ∈ X . Hence G(u) = χ and all the inequalities
in (2.4) are in fact equalities. In particular, 〈G(u),u− v〉X∗,X = liminfn→∞〈G(un),un− v〉X∗,X
for all v ∈ X . Taking v = u, we deduce

liminf
n→∞

〈G(un),un−u〉X∗,X = 0≥ limsup
n→∞

〈G(un),un−u〉X∗,X ,

which implies that limn→∞〈G(un),un−u〉X∗,X = 0.

(PM2)⇒ (PM1) Let (un)⊂X , u∈X such that un→ u weakly in X and limsupn→∞〈G(un),un−
u〉X∗,X ≤ 0. Since (un)⊂ X is bounded and G is a bounded mapping, one has that (G(un))⊂ X∗

is bounded. Due to the reflexivity of X , one deduce thats, for some subsequence (G(uk)) ⊂
(G(un)), there exists χ ∈ X∗ such that G(uk)→ χ weakly in X∗. From (PM2), we obtain
that χ = G(u) and that it is the whole sequence (G(un)), which is weakly convergent to G(u).
Moreover, limn→∞〈G(un),un− u〉X∗,X = 0. Now, letting v ∈ X , we have 〈G(un),un− v〉X∗,X =
〈G(un),un−u〉X∗,X + 〈G(un),u− v〉X∗,X . Thus limn→∞〈G(un),un− v〉X∗,X = 〈G(u),u− v〉X∗,X .

�

Remark 2.1. The definition of a pseudo-monotone mapping given in (PM1) is used in [11, 21]
and the equivalent condition (PM2) appears in [14]. The advantage of (PM2) is that, under these
assumptions, one can readily identify the weak limit of the sequence (G(un)) as G(u).

A well-known result relates the concepts of monotonicity and pseudo-monotonicity under
certain conditions.

Lemma 2.4. Let G : X 7→ X∗ be a bounded, hemicontinuous, and monotone mapping. Then, G
is pseudo-monotone.

Proof. Let (un) ⊂ X , u ∈ X , and χ ∈ X∗ such that un→ u weakly in X , G(un)→ χ weakly in
X∗ and limsupn→∞〈G(un),un−u〉X∗,X ≤ 0. Then, for any v ∈ X ,

0≤ 〈G(un)−G(v),un−v〉X∗,X = 〈G(un),un−u〉X∗,X + 〈G(un),u−v〉X∗,X −〈G(v),un−v〉X∗,X .
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Thus
0≤ limsup

n→∞

〈G(un),un−u〉X∗,X + 〈χ,u− v〉X∗,X −〈G(v),u− v〉X∗,X , (2.5)

which yields 0 ≤ 〈χ −G(v),u− v〉X∗,X , for all v ∈ X . Taking v = u+ tw for t ∈ (0,1) and
w ∈ X in this last inequality, we obtain 0≤ 〈χ−G(u+ tw),w〉X∗,X for any t ∈ (0,1) and w ∈ X .
Making t → 0+, and using the hemicontinuity of G, we have 0 ≤ 〈χ −G(u),w〉X∗,X for all
w ∈ X . Consequently, χ = G(u). Owing to (2.5), we see that

limsup
n→∞

〈G(un),un−u〉X∗,X = 0. (2.6)

On the other hand, we have

0≤ 〈G(un)−G(u),un−u〉X∗,X = 〈G(un),un−u〉X∗,X −〈G(u),un−u〉X∗,X .
Taking the liminf in this inequality, we readily obtain liminfn→∞〈G(un),un−u〉X∗,X ≥ 0, which,
together with (2.6), leads to limn→∞〈G(un),un−u〉X∗,X = 0. �

The most interesting result on pseudo-monotone mappings is that, under certain assumptions,
they are surjective.

Theorem 2.1 ([21]). Let X be a real reflexive Banach space and suppose G : X 7→ X∗ is con-
tinuous, coercive and pseudo-monotone. Then, for every f ∈ X∗ there exists a solution u ∈ X of
the equation G(u) = f . Moreover, if G is strictly monotone, then this solution is unique.

The following lemma involves a sequence of monotone operators. In fact, it is a generaliza-
tion of the so-called monotonicity trick.

Lemma 2.5 ([22]). Let X be a Banach space, X∗ its dual and A j : X 7→ X∗, j ≥ 1, a sequence
of mappings. Assume that the sequences (A j) and (u j)⊂ X fulfill the following conditions:

(a) A j is monotone for each j ≥ 1;
(b) u j→ u weakly in X, for some u ∈ X;
(c) A j(u j)→ χ weakly in X∗, for some χ ∈ X∗;
(d) 〈A j(u j),u j〉 → 〈χ,u〉;
(e) there exists a mapping A : X 7→ X∗ such that 〈A j(v),u j〉 → 〈A (v),u〉 for all v ∈ X ;
(f) A is hemicontinuous.

Then, A (u) = χ .

We go back to the framework of anisotropic Sobolev spaces. Let ~p = (p1, . . . , pN) ∈ RN and
assume p0 = min1≤ν≤N{pν} > 1. We then consider the reflexive Banach space X = W 1,~p

0 (Ω)

and denote by 〈·, ·〉 the duality product between W−1,~p′(Ω) and W 1,~p
0 (Ω). Let A : W 1,~p

0 (Ω) 7→
W−1,~p′(Ω) be a continuous, coercive and pseudo-monotone operator, and let g : Ω×R 7→
R be a Carathédorory function such that, for any s > 0, there exists hs ∈ L1(Ω) such that
sup|t|≤s |g(x, t)| ≤ hs(x) a.e. in Ω. We assume also the sign condition on g, namely,

g(x, t)t ≥ 0, for a.e. x ∈Ω and for all t ∈ R.

Lemma 2.6. For every f ∈W−1,~p′(Ω), there exists u ∈W 1,~p
0 (Ω) solution to{

A(u)+g(x,u) = f in Ω,

u = 0 on ∂Ω
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in the sense of (1.5).

Proof. We follow the same arguments as in [13, 14]. Let gk(x,u) = Tk(g(x,u)), where Tk(s) is
the truncation function at height k, Tk(s) = min(k,max(s,−k)), for all s ∈ R. For a given k > 0
and a function u ∈W 1,~p

0 (Ω), we associate the element Gku ∈W−1,~p′(Ω) defined as

Gku : W 1,~p
0 (Ω) 7→ R

v 7→
∫

Ω

gk(x,u)vdx.

It is easy to check that Gk : W 1,~p
0 (Ω) 7→W−1,~p′(Ω) is continuous. Due to the coerciveness of

A and the sign condition on g, it is clear that A+Gk is also coercive. Moreover, since, for
any sequence (un) ⊂W 1,~p

0 (Ω), un → u weakly in W 1,~p
0 (Ω), we have limn→∞〈Gkun,un− u〉 =

0, which is straightforward to show that A+Gk is pseudo-monotone. Thus, we may apply
Theorem 2.1 to deduce the existence of a function uk ∈W 1,~p

0 (Ω) such that A(uk)+gk(x,uk) = f
or in its variational formulation,

〈A(uk),v〉+
∫

Ω

gk(x,uk)vdx = 〈 f ,v〉 for all v ∈W 1,~p
0 (Ω). (2.7)

Due to the assumptions on A and g, by taking v = uk, we may deduce that (uk) is bounded
in W 1,~p

0 (Ω) and (A(uk)) is bounded in W−1,~p′(Ω). Thus, there exist some u ∈W 1,~p
0 (Ω) and

χ ∈W−1,~p′(Ω), and a subsequence still denoted in the same way such that

uk→ u weakly in W 1,~p
0 (Ω), A(uk)→ χ weakly in W−1,~p′(Ω).

On the other hand, we have that
∫

Ω
gk(x,uk)uk dx ≤ C for all k ≥ 1, where C is a constant not

depending on k. Then, we can also deduce that ([14])

g(x,u) ∈ L1(Ω), g(x,u)u ∈ L1(Ω) and gk(x,uk)→ g(x,u) in L1(Ω).

Consequently, by passing to the limit in (2.7), we obtain

〈χ,v〉+
∫

Ω

g(x,u)vdx = 〈 f ,v〉 for all v ∈W 1,~p
0 (Ω)∩L∞(Ω). (2.8)

Taking v = Tk(u) as a test function in the last equation, we have

〈χ,Tk(u)〉+
∫

Ω

g(x,u)Tk(u)dx = 〈 f ,Tk(u)〉.

It is clear that
〈χ,Tk(u)〉 → 〈χ,u〉 and 〈 f ,Tk(u)〉 → 〈 f ,u〉 (2.9)

On the other hand, we have g(x,u)Tk(u)→ g(x,u)u a.e. in Ω and 0≤ g(x,u)Tk(u)≤ g(x,u)u ∈
L1(Ω). Thus, by the Lebesgue dominated convergence theorem, we obtain

g(x,u)Tk(u)→ g(x,u)u in L1(Ω). (2.10)

By (2.9) and (2.10), we conclude that equation (2.8) is still valid for v = u. It remains to prove
that χ = A(u). Indeed, by using Fatou’s lemma, we have

limsup
k→∞

〈A(uk),uk−u〉= limsup
k→∞

〈A(uk),uk〉−〈χ,u〉 ≤ 〈 f ,u〉−
∫

Ω

g(x,u)udx−〈χ,u〉= 0.
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Since A is pseudo-monotone, we obtain χ = A(u). Thus,

〈A(u),u− v〉+
∫

Ω

g(x,u)(u− v)dx = 〈 f ,u− v〉 for all v ∈W 1,~p
0 (Ω)∩L∞(Ω).

�

3. ASSUMPTIONS AND DEFINITIONS

We consider the following nonlinear elliptic coupled system
−diva(x,u,∇u)=ρ(u)|∇ϕ|2 in Ω,

div(ρ(u)∇ϕ)=0 in Ω,
u=0 on ∂Ω,
ϕ =ϕ0 on ∂Ω,

(3.1)

where Ω is an open, bounded, connected and smooth enough set of RN with N ≥ 2 being an
integer. Let ~p = (p1, . . . , pN) ∈ (1,+∞)N , p′ν = pν

pν−1 , and ν = 1, . . . ,N. The assumptions on
the data are the following.

(A1) The vector field a : Ω×R×RN 7→ RN , a(x,u,∇u) = (a1(x,u,∇u), . . . ,aN(x,u,∇u)), is
a Carathéodory vector function and such that, for all ξ ,η ∈ RN , ξ 6= η , s ∈ R, and for
a.e. x ∈Ω,

N

∑
ν=1

(
aν(x,s,ξ )−aν(x,s,η)

)
(ξν −ην)> 0, (3.2)

|aν(x,s,ξ )| ≤ β

[
cν(x)+ |s|p0/p′ν + |ξν |pν−1

]
, for all ν = 1, . . . ,N, (3.3)

N

∑
ν=1

aν(x,s,ξ )ξν ≥ α

N

∑
ν=1
|ξν |pν , (3.4)

where ξ = (ξ1, . . . ,ξN), η = (η1, . . . ,ηN), α and β are positive constants, and cν ∈
Lp′ν (Ω), ν = 1, . . . ,N are nonnegative functions.

(A2) ρ ∈C(R) and
0 < ρ(s) for all s ∈ R. (3.5)

(A3) ϕ0 ∈ H1(Ω) and it is not a constant function on ∂Ω.

For any M > 0, we denote by KM the closed and convex set in W 1,~p
0 (Ω) is given as

KM := {v ∈W 1,~p
0 (Ω)/ |v(x)| ≤M a.e. in Ω}.

Now we introduce the definition of a bilateral solution to problem (3.1).

Definition 3.1. Let M be a positive real number. A pair (u,ϕ) is called a bilateral solution to
problem (3.1) at height M if the following conditions are fulfilled
(C1) u ∈KM and ϕ−ϕ0 ∈ H1

0 (Ω).
(C2) For all v ∈KM,

N

∑
ν=1

∫
Ω

aν(x,u,∇u)∂ν(u− v)≤
∫

Ω

ρ(u)|∇ϕ|2(u− v). (3.6)

(C3) ∫
Ω

ρ(u)∇ϕ∇ψ = 0, ∀ψ ∈ H1
0 (Ω).
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Remark 3.1. Assume that (u,ϕ) is a bilateral solution at a certain height M > 0 such that, for
some constant γ > 0, |u(x)| ≤ γ < M for almost everywhere x ∈ Ω. Then, (u,ϕ) is a weak
solution to problem (3.1), that is,

u ∈W 1,~p
0 (Ω), ϕ−ϕ0 ∈ H1

0 (Ω),

N

∑
ν=1

∫
Ω

aν(x,u,∇u)∂νv =
∫

Ω

ρ(u)|∇ϕ|2v, for all v ∈W 1,~p
0 (Ω)∩L∞(Ω),

∫
Ω

ρ(u)∇ϕ∇ψ = 0, for all ψ ∈ H1
0 (Ω).

(3.7)

Indeed, if w ∈W 1,~p
0 (Ω)∩L∞(Ω), then, for δ = (M− γ)/(1+ ‖w‖∞), v± = u± δw belong to

KM. Plugging v± in (3.6), we readily obtain (3.7).
Conversely, any weak solution (u,ϕ) with u ∈ L∞(Ω) is readily a bilateral solution at any

height M > ‖u‖∞. In the case p0 = min1≤ν≤N pν ≥ 2, where the existence of a capacity solution
was shown ([6]), any u ∈ L∞(Ω) leads to a weak solution as well. Thus, in this case, the notions
of weak, capacity, and bilateral solution coincide.

Remark 3.2. In general, we cannot assure that if (u,ϕ) is a weak solution, then u is bounded.
Thus, we may interpret a bilateral solution at a given height M as the solution of the projection
problem on the convex set KM given by conditions (C1)-(C3).

4. MAIN RESULTS

The nature of a bilateral solution (u,ϕ) is by approximation. This means that (u,ϕ) is ob-
tained as the limit of the solutions of certain approximate problems. To do so, for any two
integers n≥ 1 and m≥ 1, we first consider the following problem

−diva(x,un
m,∇un

m)+

∣∣∣∣un
m

M

∣∣∣∣n−2 un
m

M
=Tm(ρm(un

m)|∇ϕn
m|2) in Ω,

div(ρm(un
m)∇ϕn

m)=0 in Ω,
un

m=0, on ∂Ω,
ϕn

m=ϕ0 on ∂Ω,

(4.1)

where the regularized function, ρm(s), is given by

ρm(s) = ρ(Tm(s)) for all s ∈ R. (4.2)

The existence of a solution (un
m,ϕ

n
m) to this approximate problem is guaranteed by the fol-

lowing result, which is proved in the next section.

Lemma 4.1. There exists (un
m,ϕ

n
m) solution to problem (4.1) in the following sense

un
m ∈W 1,~p

0 (Ω)∩L∞(Ω), ϕn
m−ϕ0 ∈ H1

0 (Ω) and
N

∑
ν=1

∫
Ω

aν(x,un
m,∇un

m)∂ν(un
m− v)+

∫
Ω

∣∣∣∣un
m

M

∣∣∣∣n−2 un
m

M
(un

m− v)

=
∫

Ω

Tm(ρm(un
m)|∇ϕ

n
m|2)(un

m− v), for all v ∈W 1,~p
0 (Ω),

(4.3)

and ∫
Ω

ρm(un
m)∇ϕ

n
m∇ψ = 0 for all ψ ∈ H1

0 (Ω). (4.4)
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Now, we fix m ≥ 1 and consider the sequences (un
m)n≥1 ⊂W 1,~p

0 (Ω) and (ϕn
m)n≥1 ⊂ H1

0 (Ω).
We also show in the next section the following result.

Lemma 4.2. Let (un
m,ϕ

n
m) ∈W 1,~p

0 (Ω)×H1(Ω) be a solution to (4.3)-(4.4). Then, there exist
um ∈KM and ϕm ∈ H1(Ω) with ϕm|∂Ω = ϕ0, and subsequences, still denoted in the same way,

such that un
m→ um weakly in W 1,~p

0 (Ω) and ϕn
m→ ϕm in H1(Ω) as n→∞, and (um,ϕm) satisfies

the approximate bilateral problem
N

∑
ν=1

∫
Ω

aν(x,um,∇um)∂ν(um− v)≤
∫

Ω

Tm(ρm(um)|∇ϕm|2)(um− v), for all v ∈KM, (4.5)

∫
Ω

ρm(um)∇ϕm∇ψ = 0, for all ψ ∈ H1
0 (Ω). (4.6)

The main result of this work now follows.

Theorem 4.1. Assume (A1)-(A3) and let (um,ϕm) be a solution to (4.5)-(4.6). Then, there exists
a subsequence of (um,ϕm) that converges to a bilateral solution (u,ϕ) of the problem (3.1).

5. PROOF OF THE MAIN RESULTS

This section is devoted to the proof of lemmas 4.1 and 4.2 and Theorem 4.1.

Remark 5.1. From now on, we denote by C (respectively, Cm) any positive constant, which
may depend on the data of our problem but not on n or m (respectively, on n), and whose value
may differ from one occurrence to another.

Proof of Lemma 4.1. The proof is based on Schauder’s fixed point theorem. Let ωn
m ∈ Lp0(Ω),

and consider the following elliptic problem{
div(ρm(ω

n
m)∇ϕn

m)=0 in Ω,
ϕn

m=ϕ0 on ∂Ω.
(5.1)

Since 0 < min|s|≤m ρ(s) ≤ ρm(ω
n
m) ≤ max|s|≤m ρ(s), we find by Lax-Milgram’s theorem that

(5.1) has a unique solution ϕn
m ∈ H1(Ω).

Now we consider the following monotone elliptic problem −diva(x,ωn
m,∇un

m)+

∣∣∣∣un
m

M

∣∣∣∣n−2 un
m

M
=Tm(ρm(ω

n
m)|∇ϕn

m|2) in Ω,

un
m=0 on ∂Ω.

(5.2)

By the definition of the truncation function, Tm, it is clear that the right hand side of (5.2)
belongs to L∞(Ω) ⊂ W−1,~p′(Ω). Also, the mapping A : W 1,~p

0 (Ω) 7→ W−1,~p′(Ω) defined by
A(u) = −diva(x,u,∇u) is (i) bounded and continuous, thanks to (3.3); (ii) strictly monotone,
thanks to (3.2); and (iii) coercive, by a direct application of (3.4) and Corollary 2.1 since p0 > 1.
In view of Lemma 2.4, A is a pseudo-monotone mapping. Thus Lemma 2.6 implies that there
exists at least a solution un

m ∈W 1,~p
0 (Ω)∩Ln(Ω) to (5.2) in the following sense

N

∑
ν=1

∫
Ω

aν(x,ωn
m,∇un

m)∂ν(un
m− v)+

∫
Ω

∣∣∣∣un
m

M

∣∣∣∣n−2 un
m

M
(un

m− v)

=
∫

Ω

Tm(ρm(ω
n
m)|∇ϕ

n
m|2)(un

m− v), for all v ∈W 1,~p
0 (Ω)∩L∞(Ω).

(5.3)
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Since t 7→ |t|s−2t is non-decreasing, it follows from condition (3.2) that this solution to (5.2)
is unique. It remains to show the regularity un

m ∈ L∞(Ω) and then the test functions v in (5.3)
may be taken in the whole space W 1,~p

0 (Ω). In order to show that u is bounded in Ω ,we use the
Stampacchia method of truncations. This is based in the following result due to Stampacchia
([23, Lemma 4.1]).

Lemma 5.1. Let k0 ∈ R and Φ : [k0,+∞) 7→ [0,+∞) be a non-increasing function such that

Φ(h)≤ ccc
(h− k)ααα

(
Φ(k)

)βββ for all h > k ≥ k0,

where ccc and ααα are positive constants and βββ > 1. Then,

Φ(k0 +d) = 0, (5.4)

where dααα = ccc
(
Φ(k0)

)βββ−12αααβββ/(βββ−1).

The original result of Stampacchia in [23] also gives estimates for Φ when βββ = 1 and βββ < 1
(in this case, with k0 > 0), but we do not use them in this presentation. Obviously, condi-
tion (5.4) implies that Φ(k) = 0 for all k ≥ k0 +d.

Now, let h> k> 0 and take v= un
m−Th−k(Rk(un

m)) in (5.3), where Rk(s)= s−Tk(s) ([18, 23]).
This yields the estimate

N

∑
ν=1

∫
Ω

aν(x,ωn
m,∇un

m)∂νTh−k(Rk(un
m))≤

∫
Ω

Tm(ρm(ω
n
m)|∇ϕ

n
m|2)Th−k(Rk(un

m)).

Hence,
N

∑
ν=1

∫
Ω

aν(x,ωn
m,∇Th−k(Rk(un

m)))∂νTh−k(Rk(un
m))≤ m(h− k)|Ak|,

where Ak = {|un
m|> k} and |Ak|=

∫
Ak

dx is the Lebesgue measure of the set Ak. From (3.4), we
obtain

α

∫
Ω

|∂ jTh−k(Rk(un
m))|p j ≤α

N

∑
ν=1

∫
Ω

|∂νTh−k(Rk(un
m))|pν ≤m(h−k)|Ak|, for each j∈{1, . . . ,N}.

Therefore,

α
1/ p̄

N

∏
j=1
‖∂ jTh−k(Rk(un

m))‖
1/N
p j ≤ m1/ p̄(h− k)1/ p̄|Ak|1/ p̄.

In view (2.2), we deduce the existence of q > p̄ and a constant Cm > 0 such that

‖Th−k(Rk(un
m))‖q ≤Cm(h− k)1/ p̄|Ak|1/ p̄.

Since

‖Th−k(Rk(un
m))‖q

q =
∫

Ω

|Th−k(Rk(un
m))|q ≥

∫
{|un

m|>h}
|Th−k(Rk(un

m))|q = (h− k)q|Ah|,

we finally deduce

|Ah| ≤
Cq

m

(h− k)q(1−1/ p̄)
|Ak|q/ p̄ for all h > k > 0.
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Putting Φ(k) = |Ak|, k0 = 0, ccc =Cq
m, ααα = q(1−1/ p̄), and βββ = q/p̄, we see that this function Φ

satisfies the assumptions of Lemma 5.1. Consequently, there exists Km > 0 such that Φ(s) = 0
for all s≥ Km and this means that |un

m| ≤ Km a.e. in Ω. Thus un
m ∈ L∞(Ω) and

‖un
m‖∞ ≤ Km for all m,n≥ 1. (5.5)

Now we introduce a mapping G from Lp0(Ω) into itself, namely,

G : ω
n
m ∈ Lp0(Ω) 7−→ G(ωn

m) = un
m ∈W 1,~p

0 (Ω)∩L∞(Ω)⊂ Lp0(Ω),

with un
m being the unique solution to (5.3). We have the following lemma which is proved in

the Appendix below.

Lemma 5.2. The mapping G satisfies the hypotheses of Schauder’s fixed point theorem.

By Lemma 5.2 and the Schauder’s fixed point theorem, we conclude that G has at least one
fixed point un

m = G(un
m), which means that

−diva(x,un
m,∇un

m)+

∣∣∣∣un
m

M

∣∣∣∣n−2 un
m

M
= Tm(ρm(un

m)|∇ϕ
n
m|2) in Ω. (5.6)

Thus we have the existence of a solution (un
m,ϕ

n
m) to the approximate problem (4.1), where un

m

belongs to the Sobolev space W 1,~p
0 (Ω) with the extra regularity un

m ∈ L∞(Ω), ϕn
m−ϕ0 belongs

to H1
0 (Ω) and div(ρm(un

m)∇ϕn
m) = 0 in Ω. �

Proof of Lemma 4.2. We first deduce some estimates on the sequences (un
m)n≥1 and (ϕn

m)n≥1.
By taking ϕn

m−ϕ0 ∈ H1
0 (Ω) as a test function in (4.4) and using (A2), we have∫

Ω

ρm(un
m)|∇ϕ

n
m|2 =

∫
Ω

ρm(un
m)∇ϕ

n
m∇ϕ0 ≤

1
2

∫
Ω

ρm(un
m)|∇ϕ

n
m|2 +

1
2

∫
Ω

ρm(un
m)|∇ϕ0|2.

Since ρ is continuous, we see from the definition of ρm given in (4.2) that

min
|s|≤m

ρ(s)
∫

Ω

|∇ϕ
n
m|2 ≤

∫
Ω

ρm(un
m) |∇ϕ

n
m|

2 ≤ max
|s|≤m

ρ(s)
∫

Ω

|∇ϕ0|2.

Thus, we deduce the estimate ∫
Ω

|∇ϕ
n
m|2 ≤C (m,ϕ0) =Cm, (5.7)

where Cm does not depends on n.
On the other hand, it is known that if Γ⊂ Ω̄ is a smooth enough hypersurface, then the norm

‖ϕ‖Γ =

(∫
Ω

|∇ϕ|2 +
∫

Γ

ϕ
2
)1/2

, ϕ ∈ H1(Ω), (5.8)

is equivalent to the usual norm of H1(Ω). In particular, taking Γ = ∂Ω, we deduce from (5.7)
that ‖ϕn

m‖2
∂Ω
≤Cm+

∫
∂Ω

ϕ2
0 for all m,n≥ 1. Consequently, for every m≥ 1, (ϕn

m)n≥1 is bounded
in H1(Ω). Hence, there exists a function ϕm ∈ H1(Ω) and a subsequence, still denoted in the
same way, such that

ϕ
n
m→ ϕm weakly in H1(Ω) and strongly in L2(Ω) as n→ ∞. (5.9)
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As for (un
m)n≥1, taking v = 0 as a test function in (4.3), we obtain

N

∑
ν=1

∫
Ω

aν(x,un
m,∇un

m)∂νun
m +

∫
Ω

M
∣∣∣∣un

m
M

∣∣∣∣n = ∫
Ω

Tm(ρm(un
m)|∇ϕ

n
m|2)un

m.

Using (3.4) yields

α

N

∑
ν=1

∫
Ω

|∂νun
m|pν +

∫
Ω

M
∣∣∣∣un

m
M

∣∣∣∣n ≤ m
∫

Ω

|un
m|.

In view of Corollary 2.1, we deduce α0‖un
m‖

p0
~p +

∫
Ω

M
∣∣∣un

m
M

∣∣∣n ≤m
∫

Ω
|un

m|+α1, for some positive
constants α0 and α1. From Young’s inequality, we obtain

α0‖un
m‖

p0
~p +

∫
Ω

M
∣∣∣∣un

m
M

∣∣∣∣n ≤ α0

2

∫
Ω

|un
m|p0 +Cm.

Consequently, we have the following estimates, for all m,n≥ 1,

‖un
m‖~p ≤Cm, (5.10)

and 0≤
∫

Ω

∣∣∣un
m

M

∣∣∣n ≤Cm. By (5.10), we may extract a subsequence, still denoted in the same way,
such that

un
m→ um weakly in W 1,~p

0 (Ω), strongly in Lp0(Ω) and a.e. in Ω, as n→ ∞. (5.11)

Moreover, we have the following lemma, whose proof can be found in [9].

Lemma 5.3. The weak limit um appearing in (5.11) verifies |um| ≤M almost everywhere in Ω.

From (4.4), (5.9) and the almost everywhere convergence of (un
m)n≥1 to um, we readily obtain

the equation for ϕm, namely,∫
Ω

ρm(um)∇ϕm∇ψ = 0, for all ψ ∈ H1
0 (Ω). (5.12)

Now, it is easy to deduce that the convergence of (ϕn
m)n≥1 to ϕm in H1(Ω) is, in fact, strongly.

Indeed, from (4.4) and (4.6), we have, for all m,n≥ 1,∫
Ω

ρm(un
m)∇ϕ

n
m∇ψ =

∫
Ω

ρm(um)∇ϕm∇ψ, for all ψ ∈ H1
0 (Ω).

Taking ψ = ϕn
m−ϕm in the last equality, we obtain∫

Ω

ρm(un
m)∇ϕ

n
m∇(ϕn

m−ϕm) =
∫

Ω

ρm(um)∇ϕm∇(ϕn
m−ϕm).

Inserting −ρm(un
m)∇ϕm∇(ϕn

m−ϕm) in the integral above, we have∫
Ω

ρm(un
m)|∇(ϕn

m−ϕm)|2 =
∫

Ω

(ρm(um)−ρm(un
m))∇ϕm∇(ϕn

m−ϕm).

Using Hölder’s inequality yields
∫

Ω
|∇(ϕn

m−ϕm)|2 ≤Cm
∫

Ω
|ρm(um)−ρm(un

m)|2|∇ϕm|2. By the
continuity of ρ , we have ρm(un

m)−ρm(um)→ 0 a.e. in Ω, and

|ρm(um)−ρm(un
m)|2|∇ϕm|2 ≤Cm|∇ϕm|2.

Since ∇ϕm ∈ L2(Ω), then we conclude by the Lebesgue convergence theorem that∫
Ω

|ρm(um)−ρm(un
m)|2|∇ϕm|2→ 0 as n→ ∞.
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Thus
∫

Ω
|∇(ϕn

m−ϕm)|2→ 0 as n→ ∞, that is, ∇ϕn
m→ ∇ϕm strongly in L2(Ω).

Now, it remains to show that um satisfies variational inequatity (4.5). To do so, we take θv as
a test function in (5.6), with v ∈KM and θ is a real number such that 0 < θ < 1. This yields

N

∑
ν=1

∫
Ω

aν(x,un
m,∇un

m)∂ν(un
m−θv)+

∫
Ω

∣∣∣∣un
m

M

∣∣∣∣n−2 un
m

M
(un

m−θv)

=
∫

Ω

Tm(ρm(un
m)|∇ϕ

n
m|2)(un

m−θv).

(5.13)

For the right hand side, using (5.11) again, since Tm(ρm(un
m)|∇ϕn

m|2) is bounded in L∞(Ω) and
|∇ϕn

m|2→ |∇ϕm|2 strongly in L1(Ω) and a.e. in Ω (modulo a subsequence), one has

Tm(ρm(un
m)|∇ϕ

n
m|2)→ Tm(ρm(um)|∇ϕm|2) in Lq(Ω) for all 1≤ q < ∞.

Thus, bearing in mind that un
m converges to um weakly in W 1,~p

0 (Ω) yields∫
Ω

Tm(ρm(un
m)|∇ϕ

n
m|2)(un

m−θv)→
∫

Ω

Tm(ρm(um)|∇ϕm|2)(um−θv) as n→ ∞. (5.14)

For the second term in the left hand side of (5.13), we observe that un
m(u

n
m−θv) ≥ 0 in the set

P defined by P = {un
m ≥ 0 and un

m ≥ θv}∪{un
m ≤ 0 and un

m ≤ θv}. The complimentary set of P,
P̄, is given by

P̄ = {un
m < 0 and un

m > θv}∪{un
m > 0 and un

m < θv}
= {0 < un

m < θv}∪{θv < un
m < 0}.

Thus
∫

Ω

∣∣∣∣un
m

M

∣∣∣∣n−2 un
m

M
(un

m−θv)≥
∫
{0<un

m<θv}

∣∣∣∣un
m

M

∣∣∣∣n−2 un
m

M
(un

m−θv)

+
∫
{θv<un

m<0}

∣∣∣∣un
m

M

∣∣∣∣n−2 un
m

M
(un

m−θv) = I1
m,n + I2

m,n.

(5.15)

Notice that
∣∣∣un

m
M

∣∣∣ ≤ θ in both sets {0 < un
m < θv} and {θv < un

m < 0}. Hence, bearing in mind
that 0 < θ < 1 and v ∈KM, one has

0≥ I1
m,n =

∫
{0<un

m<θv}
M
∣∣∣∣un

m
M

∣∣∣∣n−∫{0<un
m<θv}

∣∣∣∣un
m

M

∣∣∣∣n−1

θv

≥−
∫
{0<un

m<θv}

∣∣∣∣un
m

M

∣∣∣∣n−1

θv≥−
∫
{0<un

m<θv}
θ

nv≥−θ
n
∫

Ω

v,

and

0≥ I2
m,n =

∫
{θv<un

m<0}
M
∣∣∣∣un

m
M

∣∣∣∣n +∫{θv<un
m<0}

∣∣∣∣un
m

M

∣∣∣∣n−1

θv

≥
∫
{θv<un

m<0}

∣∣∣∣un
m

M

∣∣∣∣n−1

θv≥
∫
{θv<un

m<0}
|θ |nv≥ θ

n
∫

Ω

v.

Thus limn→∞ I1
m,n = 0 and limn→∞ I2

m,n = 0. Consequently, owing to (5.15),

liminf
n→∞

∫
Ω

∣∣∣∣un
m

M

∣∣∣∣n−2 un
m

M
(un

m−θv)≥ 0 (5.16)
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For the first term in the left hand side of (5.13), by (3.3) and (5.10), we see that there exist
δ m

ν ∈ Lp′ν (Ω) for each ν = 1, . . . ,N such that

aν(x,un
m,∇un

m)→ δ
m
ν weakly in Lp′ν (Ω), as n→ ∞, for each ν = 1, . . . ,N. (5.17)

Let δ m = (δ m
1 , . . . ,δ m

N ). Then, (5.17) implies that A(un
m)→−divδ m weakly in W−1,~p′(Ω) as

n→ ∞. We next prove that

−divδ
m = A(um). (5.18)

Indeed, taking v = um in (4.3), we see that

N

∑
ν=1

∫
Ω

aν(x,un
m,∇un

m)∂ν(un
m−um)+

∫
Ω

∣∣∣∣un
m

M

∣∣∣∣n−2 un
m

M
(un

m−um)=
∫

Ω

Tm(ρm(un
m)|∇ϕ

n
m|2)(un

m−um).

For the second term and the right hand side, by a similar argument as in (5.14) and (5.16), one
can prove that

liminf
n→∞

∫
Ω

∣∣∣∣un
m

M

∣∣∣∣n−2 un
m

M
(un

m−um)≥ 0

and

lim
n→∞

∫
Ω

Tm(ρm(un
m)|∇ϕ

n
m|2)(un

m−um) = 0.

Thus

limsup
n→∞

〈A(un
m),u

n
m−um〉= limsup

n→∞

N

∑
ν=1

∫
Ω

aν(x,un
m,∇un

m)∂ν(un
m−um)≤ 0.

Since the mapping A is pseudo-monotone, we deduce in particular that A(un
m)→ A(um) weakly

in W−1,~p′(Ω), that is, (5.18). Returning to (5.13), in view of (5.14) and (5.16), we have, for all
v ∈KM and θ ∈ (0,1),

limsup
n→∞

N

∑
ν=1

∫
Ω

aν(x,un
m,∇un

m)∂ν(un
m−θv)≤

∫
Ω

Tm(ρm(um)|∇ϕm|2)(um−θv). (5.19)

Using again the pseudo-monotonicity of A, we have

〈A(um),um−θv〉 ≤ liminf
n→∞

〈A(un
m),u

n
m−θv〉 ≤ limsup

n→∞

〈A(un
m),u

n
m−θv〉

Combining this last expression with (5.19), we find that
For all v ∈KM,
N

∑
ν=1

∫
Ω

aν(x,um,∇um)∂ν(um−θv)≤
∫

Ω

Tm(ρm(um)|∇ϕm|2)(um−θv).

Finally, letting θ tend to 1, we readily obtain that, for all v ∈KM,

N

∑
ν=1

∫
Ω

aν(x,um,∇um)∂ν(um− v)≤
∫

Ω

Tm(ρm(um)|∇ϕm|2)(um− v). (5.20)

This ends the proof of Lemma 4.2. �
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Proof of Theorem 4.1. We begin with the derivation of some a priori estimates for (um) and
(ϕm), and then we show that (um,ϕm) converges, up to a subsequence, to a bilateral solu-
tion to problem (3.1). Notice that ρm(um) = ρ(um) for m ≥ M. From now on, we assume
that m ≥ M. By taking ψ = ϕm−ϕ0 as a test function in (4.6), we obtain

∫
Ω

ρ(um)|∇ϕm|2 =∫
Ω

ρ(um)∇ϕm∇ϕ0. Since ρ is continuous, then Lemma 5.3 yields

min
|s|≤M

ρ(s)
∫

Ω

|∇ϕm|2 ≤
∫

Ω

ρ(um)|∇ϕm|2 ≤ max
|s|≤M

ρ(s)
∫

Ω

|∇ϕm||∇ϕ0|.

Hence, ∫
Ω

|∇ϕm|2 ≤C, for all m≥ 1, (5.21)

where C does not depend on m. Observe that ϕm|∂Ω = ϕ0 for all m≥ 1. From (5.8) and (5.21),
we deduce that (ϕm) is bounded in H1(Ω). Consequently, there exist a function ϕ ∈H1(Ω) and
a subsequence, still denoted in the same way, such that ϕm→ ϕ weakly in H1(Ω), ϕ|∂Ω = ϕ0.
In fact, once we establish the almost everywhere convergence, for some suitable subsequence,
of (um), we obtain

ϕm→ ϕ strongly in H1(Ω). (5.22)

Taking v = 0 in (5.20) yields
N

∑
ν=1

∫
Ω

aν(x,um,∇um)∂νum ≤
∫

Ω

Tm(ρ(um)|∇ϕm|2)um.

Thus, using Lemma 5.3, one arrives at
N

∑
ν=1

∫
Ω

aν(x,um,∇um)∂νum ≤M
∫

Ω

Tm(ρ(um)|∇ϕm|2).

From (3.4) and the definition of the truncation function, we further obtain

α

N

∑
ν=1

∫
Ω

|∂νum|pν ≤M
∫

Ω

ρ(um)|∇ϕm|2.

Therefore, from Corollary 2.1 and (5.21), we have ‖um‖~p ≤C for all m≥ 1. Hence, there exist
u ∈W 1,~p

0 (Ω) and a subsequence, still denoted in the same way, such that

um→ u weakly in W 1,~p
0 (Ω), strongly in Lp0(Ω) and a.e. in Ω. (5.23)

Now, we are going to pass to the limit in (5.20). Using (5.23) and the fact that ρ is continu-
ous, we have ρ(um)→ ρ(u) a.e. in Ω. Using (3.5) and the Lebesgue theorem yields ρ(um)→
ρ(u) in Lq(Ω) for all q < ∞. Hence, it follows from (5.22) that

ρ(um)|∇ϕm|2→ ρ(u)|∇ϕ|2 strongly in L1(Ω),

and
Tm(ρ(um)|∇ϕm|2)→ ρ(u)|∇ϕ|2 strongly in L1(Ω). (5.24)

Using (5.24), having in mind that |um| ≤M a.e in Ω and that um→ u a.e in Ω, we can pass to
the limit in the right hand side of (5.20) to obtain∫

Ω

Tm(ρ(um)|∇ϕm|2)(um− v)→
∫

Ω

ρ(u)|∇ϕ|2(u− v). (5.25)
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In particular, combining (5.20) and (5.25), for v = u, we have

limsup
m→∞

N

∑
ν=1

∫
Ω

aν(x,um,∇um)∂ν(um−u)≤ 0.

Since A is a pseudo-monotone mapping, we conclude that A(um)→ A(u) weakly in W−1,~p′(Ω)
and also ∑

N
ν=1

∫
Ω

aν(x,um,∇um)∂ν(um−u)→ 0 as m→ ∞. In particular,

lim
n→∞

N

∑
ν=1

∫
Ω

aν(x,um,∇um)∂νum =
N

∑
ν=1

∫
Ω

aν(x,u,∇u)∂νu,

and, for all v ∈KM,

lim
n→∞

N

∑
ν=1

∫
Ω

aν(x,um,∇um)∂ν(um− v) =
N

∑
ν=1

∫
Ω

aν(x,u,∇u)∂ν(u− v). (5.26)

Consequently, from (5.25) and (5.26), we can pass to the limit in inequality (5.20). This yields

N

∑
ν=1

∫
Ω

aν(x,u,∇u)∂ν(u− v)≤
∫

Ω

ρ(u)|∇ϕ|2(u− v) for all v ∈KM.

Finally, using (5.22) and (5.23), we can pass to the limit in (5.12) and obtain
∫

Ω
ρ(u)∇ϕ∇ψ = 0

for all ψ ∈ H1
0 (Ω). This completes the proof of Theorem 4.1. �

APPENDIX

Proof of Lemma 5.2. Here, m and n are two fixed positive integers. We will write u instead of
un

m and we put G(ω) = u. First of all, we show that G has an invariant convex, closed, and
bounded set. Indeed, let us consider v = 0 as a test function in (5.3). Note that

N

∑
ν=1

∫
Ω

aν(x,ω,∇u)∂νu+
∫

Ω

∣∣∣ u
M

∣∣∣n−2 u
M

u =
∫

Ω

Tm(ρm(ω)|∇ϕ
n
m|2)u.

Thus, by the definition of Tm, one has

N

∑
ν=1

∫
Ω

aν(x,ω,∇u)∂νu+
∫

Ω

M
∣∣∣ u
M

∣∣∣n ≤ m
∫

Ω

|u|.

By repeating the same steps as in the proof of the Lemma 4.2, we deduce that

‖u‖~p ≤Cm. (5.27)

In view of (5.5), we have ‖u‖L∞(Ω) ≤ Km. Let Cm > 0 be the constant appearing in (5.27) and
consider the closed ball Bm⊂ Lp0(Ω) given by Bm =

{
v ∈ Lp0(Ω)/‖v‖p0 ≤Cm

}
. Since ‖u‖p0 ≤

‖u‖~p for all u ∈W 1,~p
0 (Ω), from (5.27), we have G(Bm) ⊂ Bm and Bm is bounded, closed, and

convex. On the other hand, due to the estimate (5.27) together with the compact embedding
W 1,~p

0 (Ω) ↪→ Lp0(Ω), we deduce that G is compact. It remains to show that G is continuous. To
this end, let

(
ω j
)
⊂ Bm such that

ω j→ ω strongly in Lp0(Ω) (5.28)
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and consider the corresponding functions to ω and ω j, that is, u = G(ω), u j = G
(
ω j
)
, ϕ j and

ϕ , i.e., the couple (u j,ϕ j) verifies the following system
−diva(x,ω j,∇u j)+

∣∣∣u j

M

∣∣∣n−2u j

M
=Tm(ρm(ω j)|∇ϕ j|2) in Ω,

div(ρm(ω j)∇ϕ j)=0 in Ω,
u j = 0, ϕ j=ϕ0, on ∂Ω,

(5.29)

whereas (u,ϕ) is the unique solution to
−diva(x,ω,∇u)+

∣∣∣ u
M

∣∣∣n−2 u
M

=Tm(ρm(ω)|∇ϕ|2) in Ω,

div(ρm(ω)∇ϕ)=0 in Ω,
u = 0, ϕ =ϕ0, on ∂Ω,

(5.30)

We want to show that u j→ u strongly in Lp0(Ω). Let A j, for each j ≥ 1, and A : W 1,~p
0 (Ω) 7→

W−1,~p′(Ω) be the mappings defined as follows

〈A j(v),w〉=
N

∑
ν=1

∫
Ω

aν(x,ω j,∇v)∇wdx, 〈A (v),w〉=
N

∑
ν=1

∫
Ω

aν(x,ω,∇v)∇wdx.

Now, we want to check that the sequences (A j) and (u j), together with A , verify the conditions
(a)-(f) of the Lemma 2.5.
(a) From (3.2), A j is monotone for each j ≥ 1.
(b) The variational formulation of the first equation of (5.29) is as follows

To find u j ∈W 1,~p∩L∞(Ω) such that

〈A j(u j),v〉+
∫

Ω

∣∣∣u j

M

∣∣∣n−2 u j

M
v =

∫
Ω

Tm(ρm(ω j)|ϕ j|2)v for all v ∈W 1,~p
0 (Ω).

(5.31)

According to the estimates already derived, we know that

‖u j‖~p ≤Cm, for all j ≥ 1, ‖u j‖∞ ≤ Km, for all j ≥ 1, (5.32)

where Cm and Km do not depend on j. Hence, for a suitable subsequence, there exists
ũ ∈W 1,~p

0 (Ω) such that

u j→ ũ weakly in W 1,~p
0 (Ω), strongly in Lq(Ω) for all q <+∞ and a.e. in Ω. (5.33)

(c) Using (5.33), we obtain∣∣∣u j

M

∣∣∣n−2 u j

M
→
∣∣∣∣ ũ
M

∣∣∣∣n−2 ũ
M

in Lq(Ω) for all q <+∞.

As in the proof of Theorem 4.1, we can show that, for some subsequence, still denoted in
the way,

ρm(ω j)|∇ϕ j|2→ ρm(ω)|∇ϕ|2 strongly in L1(Ω), (5.34)

where ϕ ∈ H1(Ω) verifies the second equation of (5.30) together with the boundary condi-
tion ϕ|∂Ω = ϕ0. From (3.3), (5.28), and (5.32), we deduce that (aν(·,ω j,u j)) is bounded in
Lpν (Ω) for every ν = 1, . . . ,N. Thus, A j(u j) =−diva(·,ω j,u j) is bounded in W−1,~p′(Ω).
Consequently, there exists a subsequence, still denoted in the same way, and there exists
χ ∈W−1,~p′(Ω) such that A j(u j)→ χ weakly in W−1,~p′(Ω).
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(d) Putting v = u j in (5.31) and using (5.33)-(5.34), we obtain

〈A j(u j),u j〉 →
∫

Ω

Tm(ρm(ω)|∇ϕ|2)ũ−
∫

Ω

M
∣∣∣∣ ũ
M

∣∣∣∣n .
On the other hand, passing to the limit as j→ ∞ in (5.31), we deduce that

〈χ,v〉=
∫

Ω

Tm(ρm(ω)|∇ϕ|2)v−
∫

Ω

∣∣∣∣ ũ
M

∣∣∣∣n−2 ũ
M

v, for all v ∈W 1,~p
0 .

B taking v = ũ, we infer that 〈A j(u j),u j〉 → 〈χ, ũ〉.
(e) Let v ∈W 1,~p

0 . Then, from (3.3), there exists a subsequence, still denoted in the say, such
that aν(·,ω j,∇v)→ aν(·,ω,∇v) strongly in Lp′ν (Ω) for all ν = 1, . . . ,N. Consequently,

〈A j(v),u j〉=
N

∑
ν=1

∫
Ω

aν(x,ω j,∇v)∇u j dx→
N

∑
ν=1

∫
Ω

aν(x,ω,∇v)∇ũdx = 〈A (v), ũ〉.

(f) Finally, thanks to (3.3), we see that A is continuous and. In particular, it is hemicontinuous.
Therefore, we can apply Lemma 2.5 to deduce that A (ũ) = χ , which means that (ũ,ϕ) is

also a solution to problem (5.30). Since the solution is unique, we deduce that ũ = u and it is the
whole sequence G(ω j) = u j that converges to u = G(ω). This shows that G is continuous. �

CONCLUSIONS

In this paper, we studied a strongly coupled, nonlinear and nonuniformly elliptic problem
in the framework of reflexive anisotropic Sobolev spaces, W 1,~p

0 (Ω). In fact, in this setting, the
search for weak solutions, or even capacity solutions if one of the exponents pν belongs to the
interval (1,2), is not well suited. Here we presented another approach by using the concept of
bilateral solutions at a given height. The main result of this work establishes the existence of
a bilateral solution to this strongly coupled nonlinear system. The problem may be regarded
as a generalization of the well-known thermistor problem. The proof of this result is based on
a penalization technique combined with a fixed point argument. Indeed, this kind of solution
(u,ϕ) was obtained as the limit of solutions to certain approximate problems. The analysis relies
in the theory of monotone and pseudo-monotone mappings from a reflexive Banach space onto
its dual space. This work generalizes the results obtained in [9] in the isotropic case to the
anisotropic case.
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