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Abstract. In this paper a fast algorithm is presented for numerically solving a two-dimensional fractional
mobile/immobile convection-diffusion model, where the second-order time scheme of the integer deriv-
ative and the .# L2-1, formula of the time Caputo fractional derivative are used in the time direction, and
the local discontinuous Galerkin (LDG) method is developed to approximate the space direction. The
stability of the fully discrete LDG scheme is proven, and the a priori error result with O(At? + K1 4 ¢)
is derived, where € is the tolerance error. Finally, some numerical results with Qk(k =0,1,2) elements
are given to verify our theoretical results.

Keywords. A priori error result; .#L2-1, formula; stability; LDG method; two-dimensional fractional
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1. INTRODUCTION

In this paper, we consider the two-dimensional fractional mobile/immobile convection-diffusion
model

(6, 3,1) + G DFu(x,,0) +7- Vu(x,y,1) = Aulx,y, 1) = f(x,0,8),  (x,08) € Qx(0,T], (1.1
with the periodic boundary condition and the initial condition

u(x,y,O) :I/t()(X,y), (X,y) Eﬁa (12)

where Q C R?,0 < T < oo, Y= (171,72)7, with y1, 7% being given positive constants, the smooth
function f(x,y,t) is the source term, and the OCD Zu is the Caputo time fractional derivative with
o € (0,1), which is given by

1 "du(s) ds
Frl—a)lo ds (t—s)%
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Among fractional partial differential equations, the fractional mobile/immobile convection-
diffusion model is a very important mathematical model, which can describe numerous physi-
cal phenomena such as solute migration in fractured porous media. Therefore, more and more
researchers paid attention to numerical methods for solving the model. Schumer et al. [1] de-
veloped the fractional mobile/immobile model for the total concentration. In [2], Zhang et al.
proposed an implicit Euler numerical method for the fractional mobile/immobile advection-
dispersion model with time variable. In [3], Liu et al. presented the fully discrete characteristic
finite element scheme for the model, where the characteristic technique was used to handle
the domination of advection. In [4], Yu et al. studied the numerical identification of frac-
tional parameters in the fractional mobile/immobile advection-diffusion model. In [5], Wang
et al. studied the mixed finite element scheme for a nonlinear convection-diffusion equation
with time fractional derivative. In [6], Chen et al. proposed a fully discrete two-grid modi-
fied method of characteristics (MMOC) scheme for a two-dimensional nonlinear variable order
time fractional advection-diffusion equation. In [7], based on a weighted and shifted Griinwald-
Letnikov difference (WSGD) Legendre spectral method, Zhang et al. numerically solved the
two-dimensional nonlinear time fractional mobile/immobile advection-diffusion equation. Be-
cause of the existence of fractional orders and convection terms, the analytical solution of the
model is difficult to obtain. Therefore, finding a feasible and effective numerical algorithm is
very important.

As far as we know, the local discontinuous Galerkin (LDG) method proposed by Cockburn
and Shu in [8] can effectively solve fractional order partial differential equations and has grad-
ually become the current research focus. In [9], Liu et al. proposed the LDG method combined
with WSGD approximation and discussed a Caputo-type time-fractional diffusion equation.
In [10], Li et al. numerically studied three typical Caputo-type partial differential equations by
using the finite difference method and the local discontinuous Galerkin finite element analysis.
In [11], based on some second-order 6 approximation formulas in time, Zhang et al. gave the
LDG numerical scheme of the two-dimensional nonlinear fractional diffusion equation. In [12],
Niu et al. solved the one-dimensional fractional mobile/immobile convection-diffusion equa-
tion by using the LDG method combined with the generalized second-order backward differ-
ence formula with a shifted parameter 8 (BDF2-0). For more results on LDG solving fractional
order model, we refer to [13-23].

In [24], Alikhanov constructed L2-14 formula with approximate order O(Ar3~%), and studied
some basic properties of the formula. On this basis, some difference schemes of time-fractional
diffusion equations with variable coefficients were considered, and their stability and conver-
gence were proved. According to the above work, Sun et al. [25] further developed some
properties of the L2-15 formula and the second-order time approximation scheme, and pro-
posed some difference schemes for one-dimensional and two-dimensional time fractional wave
equations. In [26], Huang et al. solved a time-fractional reaction diffusion with discontinuous
diffusion coefficient by using the L2-15 formula on the graded meshes and the LDG method
in space. In [27], Wang et al. used the nonuniform L1 formula and the nonuniform L2-14 for-
mula combined with the LDG method to obtain a numerical algorithm for the time-fractional
Allen-Cahn equation with a weak singularity solution.

In the process of computing fractional derivative by numerical techniques, the value of some
time layer needs to use the value of all previous time layers, leading to a large amount of
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computation. Therefore, it is very meaningful to study effective and fast algorithms. Recently,
Jiang et al. [28] studied a fast algorithm for approximating the Caputo fractional derivative
based on the L1 formula and sum-of-exponentials (SOE) approximation. In this algorithm, the
computation of each layer is reduced by exponential summation and approximate kernel :~%
without reducing the accuracy of the L1 formula. In [29], Yan et al. developed the .# L2-14
formula by using the L2-15 formula and SOE approximation, solved the fractional diffusion
equation effectively, and increased the calculation speed. In [30], Liang et al. proposed a
fast high-order difference algorithm for time fractional telegraph equation based on .# L2-14
formula of Caputo fractional derivative. For more details on the SOE approximation, we refer
to [31-34].

In this paper, we combine the second-order time approximation scheme with the .% L.2-1 for-
mula to approximate the time-fractional derivative and develop the LDG method in spaces and
to solve two-dimensional fractional mobile/immobile convection-diffusion model (1.1). The
main contributions of this paper are as follows.

e A fully discrete LDG scheme based on the second-order time approximation scheme and
FL2-14 formula is given;

e The stability of the LDG scheme is proven. Then, the a priori error estimates with second-
order temporal convergence rate and high-order spatial convergence rate are obtained;

e Numerical tests based on Q¥ (k = 0,1,2) elements in space to verify the theoretical results,
and the convergence accuracy and computation speed of .%# L2-14 scheme and L2-14 scheme
are compared.

The organization of this paper is as follows. In Section 2, a fully discrete LDG numerical
scheme is proposed. The stability of the scheme is proved in Section 3. In Section 4, the error
estimate of the fully discrete scheme is confirmed. In Section 5, the results of the theoretical
analysis are verified by some numerical results. In Section 6, the last section, some conclusions
are given.

2. FULLY DISCRETE SCHEME

Symbols commonly used in the LDG method are introduced. To divide space domain Q, x
Oy = [Lq,Lp] X [L¢,Ly), we define the mesh I;; = I; @ J;, where I; = [xl.f%,xi%] and J; =
[yj_%,yﬁ%], fori=1,--- ,Nyand j=1,---,Ny. The cell lengths are denoted by Ax; =Xl
X;_1 and Ay; = Yiel =Y with # = max; j{Ax;,Ay;}. The jump value of u on each element

. — oyt ol _ + 0y _
boundary is defined as [[u(xiJr%,y)]] = u(xi+%,y) u(xi+%,y) and [[u(x,yﬁ%)]] = u(x,ijr%)
u(x,y;+%).
First, we split problem (1.1) to the following coupled system by introducing two auxiliary

variables g = uy and p = u,,

q = MX7

p = uy:

us + OCDI(XM+’}/1ux+YZuy_CIx_py :f(x7y,t)'

To solve our problem, we insert node 7, = nAt in the time interval [0, 7], where 0 =1y < t; <
------ <ty =T, Ar =T /M with some integer M > 0. For simplicity, we define " = x(t,) for
a smooth function x on [0,T]. Then, we provide two lemmas about and time integer derivative.
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Lemma 2.1. (See [25]) Let o =1 — %. At time ty o, the following formula holds,

o+ 1)V —d0v' + (20 — 1)V !

O(AF?

vt(tn+0) = 1 0

vV =V
O(At

éaganrl_i_{

Lemma 2.2. At time t,,. o, the following important relationship holds

V(twio) = 0V 4 (1 — o)V +O(AF%) V"0 4 O(AF).

O(A?),n > 1,
O(A1),n =0,

Proof. It can be proved by Taylor’s formula and simple calculation. 0J
To provide .% L2-15 formula, we first review L2-14 formula.

Lemma 2.3. (See [24]) Let v(t) € C3[0,T). Then, the following time approximation formula at
fime t,+ holds, for o € (0,1),

S0 o) = o Y AT O ) 0(ar ),
re-ao)5"
2 DHV) 4 0(Ar %),
where, forn > 1,
a(()a,c) +b§a’6)7 5=0,
r§n+1) _ aga,o) —|—b§j‘_’]c) B b§a7o')’ l<s<n_l,
a’ga,c) +b,(1a’6), s=n,

forn=0, r(()a’c) = a(()a’o) and

a(()a,o) = ol 4{®) = (m+o) % —(m—1+0)"%m>1,
1 1
b = s (m+ )"~ (m— 140+ S [(m+0)"* ~(m—140)""“,m>1.
Next, we review the core idea of SOE, which is to effectively approximate the kernel =% by
summing exponentially.

Lemma 2.4. (See [28,29]) For the given o € (0,1), tolerance error €, cut-off time step size &

and final time T, there exist positive real numbers s, and wy, (m=1,--- ,Nexp) satisfy
Nexp
% — Z wme | <eg, teld,T),
m=1

where

1 1 T 1 1 1
Nexp =0 <log o (loglog s +log 3> +log 35 (loglog s +log g> ) .
Then, we simply introduce the .# L2-15 formula, as detailed in [29]. The Caputo fractional
derivative { Dv(t,+¢) is divided into the historical part and the local part. The kernel 1~ is
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approximated by SOE in the history part, and v'(s) is treated by linear interpolation in the local
part, to arrive at

1 o /()
Crho
D v(t, = d

_ ! ( / ") g [T W) ds)

I(l—a) \Jo (tr+o—5)* o (thro—s$)*
Nex il o

~ 1 / Z:)W osmlineo— S)ds-i- V" /f+ ds
I'l—o) At n (tito—5)%
Nexp

~~ Wmvnr; +7La0(v”+1 _ vn) — :/Dtavn-i-o’
m=1

where A = F(Azt:‘;) My = ﬁwm, ap = o'7%, and the iteration for the history part of the

integral is
V= syl g (1 -y 4 B, (VT =)
withV2 =0 (m=1,--+ ,Nexp),
A, — /1 (§ _g)e Aot g g /l(s _ l)efsmAt(GnLlfs)ds‘
0 0 2

To facilitate the theoretical analysis, we present the following equivalent form of .# L2-1 for-
mula

n
ﬁf‘DlaanrG _ Z ﬁgl(n+1)(vl+l ),

=0
where
( Nexp
Z Wme_(n_l)smAtAm, | = 0,
m=1
o~ Nexp
,/gl("Jrl) _ Wm(e—("_l—l)smAfAm _}_e_(”_l)smA’Bm)’ 1<I<n—1,
m=1
Nexp
Z WmBm‘*‘)LaOv [=n.
\ m=1

Further, based on the above .% L2-15 formula, we have the following lemma.

Lemma 2.5. (See [29]) Suppose the function v(t) € C3[0,T]. For a € (0,1), it holds
CD*(ty16) = DMV +O(AP % +€), n=0,---,M—1.

According to the above formulas, we see that

n—+o n+o __ pn+o
q — Uy - R] )
n+o n+o __ pn+o
P - uy =R )

0 +1 ﬂ‘ o n+o +0o +0o +0 +0 +o +o +o +o
o'+ DU + Uy T iy — gy = piTe = T+ RYTO 4+ R+ RSO,

(2.1)
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where

R =40 — gltn10) = (1 — waltnso)) = O(A),

Ry =p"*% — plinio) = (1" —y(tn15)) = O(AF%),

RETC =DM —E DM u(tyso) = O(AP ™% +¢),

Rn+6 X,unﬂ — U (thyo) = {O(Aﬂ)) n>l, (2.2)
O(At), n=0,
RSO =(u" = tx(tnr0)) + (1" —y(tnio)) — (45 = gx(tnto))

— Py = py(tns)) = (f"7° = fltnss)) = O(AF).

To further obtain the fully discrete scheme, we define the finite element space V,f as follows
V/f = {V - LZ(Q) . V|Iij (- Qk(Il]),l: 1, e 7Nx,j - 1,' o 7Ny}7

where QX(I;;) = PX(I;) ® P¥(J;) and P*(L;) is a set of local orthogonal polynomials of up to
degree k in ;. The inner product and corresponding L?>-norm on Q are defined by (u,v) =
[quvdxdy and ||u||* = (u,u).

Multiplying (2.1) by the test functions w, @, v, we have the following weak formulation of

2.1)
'/gzq”+°wdxdy+;j’/li.j W' Cwydxdy — /Q”Ng [(u’“rcy (x,»+%,y) w (ﬁlg)’)) 03
(e (3 y)w (xi% v))|ar= /QR’{*"wdxdy, vw € L2(1;),
/Q p"*“(dederg, /[ } u"t e gydxdy — /szii"] (7 (eyiy) 0 (o ﬂ%)) 0.4)
(w0 (v, ) 0 (. y;%))] dx = /Q RY odxdy, Vo € LA(I;;),

and

/BAG,u”Hvdxdy—i—/ ﬁD,au"Jerdxa’y—y]Z/ u"+6vxdxdy—}/22/ W' vydxdy

Q Q = JI, = JI,

+ZZJ‘,/1U q”+6vxdxdy+2£ ‘P"+6Vydxdy+7’1 /Q‘i [(u”“’ (xi+%,y) v (x;%,y>)
)y ))]dﬁ%/ L (e (o) v (v5,,)

_ (un+6 (xvy/ 1>v(x,y il ) dx / Z n+6 X, ,y) < )) (2.5)
)

(s ) [ E 67 () oo0)
(o)

+ / RIMOvdxdy + / R Cvdxdy, v € L*(I;;).
Q Q

(x,yJ.r 1) dx:/ng"+°vdxdy+/ngg’+Gvdxdy

J72
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Let ¢/, it w1 € V¥ be the approximation of ¢!, p"*1, u"1, respectively. The fully
discrete scheme at time f, ¢ is given as follows

Ny
/ n+0wdxdy+2/ O wydxdy — /Q),;{ [(ﬁzﬂf (xi+%,y>w (x;yY))
(ﬁ’;ﬁ"( i_é,y)w(x:“i,y)>]dy:0, Yw € VF,
/ ”*"(pdxdyth/ uy " pydxdy — / K 7o <x,yj+%) (0] (x,yH%))
XJ 1

(MZ-FG <x7yj%>(p(x,y;r_é)>}dxzo, V(pEV,f,
/ Gtu’;lﬂvdxdy—k/ fDa "+Gvdxdy—y12/ uz+6vxdxdy—}/22/ uz+avydxdy
Q ij i ij i

N
+Z/ ”+vadxdy+2/ phovydxdy + 3’1/Q )3 K”ZM( i+§’y>v<xi_+i’y)>

v i=1

s oren Bl o)
(oo L (s )

(o) L E [ (o)
(e o)

:/f”+6vdxdy, Vv e VK.
Q

(2.6)

2.7)

and

(2.8)
To ensure the stability of the LDG scheme, we choose the numerical fluxes as

+0o +o +0o 4o [ +
MZ ( i+%’y> - ”Z ( ’y) CIZ ( i+%7y) —C[Z (XH—;’y) )
n+o n+o =n-+0 n+o +
uh (xayj_i_%) _uh <X7yj+ ) ph <x7yj+%> ph (x7yj_‘_;) .

(2.9)

3. STABILITY ANALYSIS

In this section, we derive the stability of the LDG numerical scheme. Before that, we need to
introduce the following lemmas.
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Lemma 3.1. (See [25]) For series {V"}, the following equality and inequality holds

AWV — Vv
A , n>1,
/ag’vn“Vﬁad)“lyZ V12— t0||2 G-
Q vi|c—|v
LRGN I | -0
a0 T

where [V = 20 + 1)|vV7HY? — 20 — D)|V> + (20 — 1) (1 + o) ||y —v"||? and

1
A = [V (32)

Lemma 3.2. (See [24,29]) For 7g"™)(0 <1 <n,n=0,--- \M 1), it holds

gg’(anrl) > g;n_+1) > gElnnLl) S gg§n+1) > yg(()n+1) > Cﬂ‘ >0, 53
where 7 g(f;r D_ 0, and C7 is a positive constant. Then, for series {V"}, the following inequal-
ity holds

1 n
/Q ZJ@‘ n+1 O gy > 3 Zygl(nH) (HleHz _ Hvl”2> . (3.4)
=0

Lemma 3.3. (See [30]) For g™ (0 <1 <n,n=0,--- ,M—1), it holds

- QD) _ 7 4D < 9¢(n—1) 4-3a 1 I—a
E( 80 )_4F(1—a)+AtO‘F(3—o¢)(n +o),
and
e En=1) -1+ o) e
O “Trl-a) ATQ2-a)

Theorem 3.1. With the periodic or compactly supported boundary conditions and numerical
fluxes (2.9), the following stability for the fully discrete LDG system (2.6)-(2.8) holds

<o 11,0 ). n=1.2-M,
It < (1l + o 1)

where C is a positive constant independent of At and h.

Proof. Adding the three equations (2.6)-(2.8), we have
/8& ”+1vdxdy+/ 7 D> "+Gvdxdy+/ ”+°wdxdy+/ Py pdxdy

—7 Z / uyy " Ovydxdy — Yzz / uh+6"dedy+Z / uy " wdxdy +Z/ i Oy
Nx
. Z/ "+vadxdy+ Z/ "+"vydxdy+ h /Q Z [(”Z+G ( i+%’y> Y (x;;,)’))

y =1
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Ny
~n-+ + ~n+0 -
0 (g () ) e [ X (87 () v (7))

(s
(e o) (o)) Jor [ B[ (5 G (50))
(e () (30)

(s

-(a

)
)
)

(e (o)
(1))
)

+0
X
7yj 1

Ny
~n+o + . - n+o _
x- 7y V(Xi_é,y) dy /Q Z |:(Ph <X,yj+§>v(x,yj+%
(ﬁz+c x7yj_% v (x;er_é))} dx = /anjLGVdXdy‘

Choosing w = ¢/ %, ¢ = p/"®, and v = u} ", we can obtain

/a n+1u2+0dxdy+/ ,/Doc n+0uz+0dxdy+/ n+cr 2dxa’y+/ n+o dedy
_r}/IZ/ n+0'uz)-€i-6dxdy YZZ/ n+o ;_GdXdy—f—Z/ n+ao ;—dedy

—I—Z/ "+Gp’;l;r"dxdy—l—2/ q"Jr‘y jcdxdy%—Z/ nroy ;dedy

enf, 2 [(@e Gur) i (5000))

v i=1
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According to the Newton-Leibniz formula, we have

/ g O dxdy + / T DO U dxdy + / (¢ 2dxdy + / (0)2dxdy
Q Q Q Q

n+o _ n+o n+o,  n+o
—%E / u, " uy! dxdy—yzz / wy " dxdy
ij ij ij i

Ny
e [ 3 (7 (o) (5:40) )

y =1

Ny
~Nn+0 n+o -+ ~n+0 n+o -
- (”h (xi—%d’) u, (Xié,y>)>dy+y2/ng; ((“h <x>yj+%) uy (xaijr;))
Ny
~n+o n+o + n+o n+o
— (“h (x,yj_%>uh (x,yji>))dx+/gyl.; (‘P <uh (xl-%,y) ydp (xl,r%,)’))
Ny
w7 ()i ) [, T (00 () b 1)
)CJ:
Ny
. n+o n+o n+o n+o
@ (47 (x0;-y) o7 (x’yj;)))d”/gy 20 (7 (5m9) i (s5-y9) )
B2 () (e )t [
(3.5)
(7 (5013) 7 s))
_,nt - + - ~n+ + -
=u, " ° (xiJr%aY) " <xi+§’y> —it, " (xi+%,y) @ ° (xi+§’y)
_qurG (xj+%7y> MZ+O- (XH_EJ) )
3.6
0 i (5) 1 (11)) 69
_, ot - + - ~n+ + -
=u, " ° (xiJréaY) @' <xl~+é=)’> —it,"° (xi+%’y) @ ° (xi+§’y)
~n+0 +o [ ,— +o [ .+ +o [+
—q, (m%,y) ), (xi+%,y) —uj, (xi+;,y) ) <xi+5,y>

nt +o [+ n+ +o [+
+ i, ° (x,-+%,y> a,° (x%,y) +q,"° (x,%,y) wy " ° (x,.+l ,y> :
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@ (0 (030 ) 7 (53,04))
=ut° (x,yj+é> Pite (x,ijr;) —ite (x,ijr%) ek (x,yﬂé)

_p~2+6 <x7yj+%) uz+6 (x7y;+é> , and
= (1570 (5i419) 257 (3149)) (3.7)
=t (x,y;+é) e (x,y];é) — i (x,yﬁ%) /o (x,y;é)

A (o) 7 (e03) =7 (07 ) 7 (1)

£ (e o7 (05 ) 07 (o) 7 (],

In view of the numerical fluxes (2.9), we easily find that

© (157 (504:9) 57 (103:9) ) = 0 B (57 (o) i (s10309)

Ny
+ + ~n+ + _
-—N ;/Ill uz GuZx dedy+'}/1 /Q Z ((uz o (xi+%’y> “Z o (xi+ 7y>

1
y i=1 2

() o))

1
2

)
)=0, 338
)

Ny 5
=7 Jo X[l (sg) ] vz 0, ana
Y i=1 " (39)
~nY [ ey [ Y (@7 (o) d (v,
i,j V1 x j=1

_ | pnto n+o +
(uh (x,yj_%>uh (x,yjé)))dx

_r i [[uzﬂf (x’yj—%>ﬂ 2a,’x > 0.

2 Qy j:l

With the help of the periodic or compactly supported boundary condition, we have

Ny
/Q

O G G R O ) B A CRE A CRE ) S

v i=1

Ny
+0c +0o +0o +0 —
/Q]_Zl (@ (7 (rvjag) i (v501)) = @ (77 (rvyoy ) b0 (x34) ) =0

(3.10)
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First, we discuss the case for n > 1. Using Lemma 3.1 and (3.4) and substituting (3.6)-(3.10)
into (3.5), we have
1

u” 1 ¢ n+1)
o (G = ) + 5 Y g

a2 = D 12) + gt 1P+ P

Ny

{
Bl ol Lo )

S /(an+GuZ+GdXdy'

By further calculation, we have

1.07 +1) I\ (7 (1 +1)
e LRl T RS 3 (o R e | P
| | I=1 (3.11)
S@%[”Z]JF;Z (n+1) H h||2+/fn+GMZ+GdXdy

Summing (3.11) from n =1 to M — 1 and multiplying 4A¢, we conclude

n
(n+1) Z (1) _ 7 (n+]
A 120y T zmz):( Y= Fel )l 2
n=1 n=1Il=

M—1
<Ilup) + 2At Z "H Hu2H2+4At Y /ng”+6uz+6dxdy.
n=

n=1

Using Cauchy-Schwarz inequality and Young inequality, we obtain

M
a7 (M n
A 248 Y ZeM) )2
n=2

M—1
<) +280 Y (Te" = Tgl Y uh P 42 2 o g2
n=1

M—1 M—1
+CAr Y P +Can Y (R
n=0 n=0
Using (3.3) and Lemma 3.3, we have

M
A +2C7 At Y Jlup?
n=2

(3.12)

B l—a
<)+ (o + 3T )||uz||2

2eT 2T~ )
CAI n+112 CAt n+1/2
e e LI WL S WAl
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Next, we analyze the case for n = 0. Using Lemma 3.1, (3.4), Cauchy-Schwarz inequality and
Young inequality, we can write (3.5) as

1 lz
—— (I = 11?) + 578" (lupl® = 1hl?) + [l 12+ 1pg 12
241 2

N, N, ,

LN [ZACREY)| ISRy M [EACEY]|
+2 Qy;[[uh x| v+ 3 Q]; uf (vy;y)]] ax (3.13)
S/fcugdxdy.

Q

Multiplying (3.13) by 2At, and using Cauchy-Schwarz inequality and Young inequality, we
have

ey +C7 At |
7z (1

< [l + 78 At |2+ CAr (£ + (1 1P) + CAr ([l + uah ).

Using the discrete Gronwall inequality, we have
iy |1+ €7 Aty ||* < Cllu]|> +Car (£ + 11 17)- (3.14)
Noting that J“i”[u,ﬂ < C||u,11||2, and substituting (3.14) into (3.12), we have
M - 2 0112 o 2 ¢ 2
Ay | +2C7 At Y [l ||* < Cllug|* +CAr Y |1 f7I17 +CAr Y flugl|*

n=2 n=0 n=0
Using (3.2) and the discrete Gronwall inequality for sufficiently small Az, we have

M
! ||* < Cllud||>+CAr Y || 7]

n=0
Finally, we have the proof of stability. 0

4. ERROR ANALYSIS

To derive the error estimate of our LDG scheme, we first consider the projection operator in
the one-dimensional case. We introduce the standard L?-projection of a function @ (x) € L*(I;)
with continuous derivative of k+ 1 into finite element space V¥, denoted by 2, i.e., for each i,

/ (Pw(x) —w(x))v(x)dx=0,Yv € P(I)),
I
and special projection 2 into V,f, i.e., for each [,

/ (QZJ“w(x) —w(x))v(x) dx =0,Yv e P! (), 2% w ()C.Jr 1) =w (xl._%) ,

I; )

2

/Ii(@w(x) —w(x))v(x)dx=0,Yv e P, 2w (xi%) :w(xl.JrL) :

Based on the above projections, we give the projections in [35] to prove the error estimates of
two-dimensional problems in Cartesian meshes. On the spatial domain Q. x Q,, we define

Po = 2, @ Zy0,P o =22 P} o,
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where the subscripts indicate the application of the one-dimensional operators & or 2+ with
respect to the corresponding variable. The projections P* satisfy

/I'/J'(]P’ia)(x,y) — (x)(x,y))v(x7y)dydx =0,

4.1)
Yv e (P1(L) @ PA(J;) U (P (L) @ PE1())).
Projection P also satisfies
/J (Pro(x) ,y) =0 | ) ydy =0, Wed o),
j 4.2)
[ oty! )= oly! lny! )dr=0. Ve g o))
I; J72 J72 )

Projection P~ also satisfies

[ B0t )06 e )dy =0, We 0 @),

J ’ ’ (4.3)

/(]P’a)(x,y.1)—a)(x,y.1))v(x,y,l)dx:O, W e QK@ J)).
I; J—2 J—3 J—2

For the projection operators above, we can see the following approximation result [35]
|0° (| Al|0° [|oo + 12 [|0°|r, < CH<H, (4.4)

where ©° = Pw(x) — ®(x) or ©° = P*®(x) — @(x). The positive constant C is independent of
h. I';, denotes the set of boundary points of all elements /; ® J;.
To simplify error analysis, we write the error as

Z_H — un—i—l Z—H P—un+1 _”Z+1 +un+1 _P—un—b—l — én—H +773+17
n+1 _q qz+1 P+qn+1 _qZJrl +qn+1 ]P)+ n+1 _ §n+1 _}_ranrl7 (4.5)
n+1 — p pZJrl P+pn+1 _pZJrl +pn+l _P+pn+l n+1 +nz+1.

Subtracting (2.6)—(2.8) with (2.3)-(2.5), and using the numerical ﬂuxes (29) att =ty 4o, We
have the error equation

Nx
/£2e2+°wdxdy+ZAleZJrwadxdy—/Q Z {(eﬁ“’( l,y) ( ;;,y))
1] LI :

v i=1 (46)

(e (g ) (ot o) )= fo R

N,
/e”+6(pdxdy+2/ "9 dxdy—/ i ente xy oxy
o’ =i " Q, ita

Xj:l

— (e"+c (x vy, 1) [0) <x,yj,' ))} dx = / RS odxdy,
—2 -3

(4.7)
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/86 ”+1vdxdy+/ TD%" O vdxdy — }/12/ e oy dxdy — }/22/ el Ovydxdy

Ny
n+o n+o n+o — —
+izj;/1ijeq vxdxdy%—iz;/li‘jep vydxdy + yl/g Z [(eu <xl_+;,y) v (xi+;,y>>

v i=1

n+o \ we N -
(o (540 (,.l,y))]dwyz W[(eu (:554)+(=771))
" _ n—+ + -
+ + u * .
(4 “(x,-_;»y%(xz )} o J(eﬁ CIEC)
B G ) A R
_7

(4.8)

Theorem 4.1. Suppose problem (1.1)-(1.2) has a unique smooth solution. Let u" and u) be the
exact and numerical solutions to system (2.3)-(2.5) and fully discrete LDG numerical scheme
(2.6)-(2.8), respectively. Then ||u" — MZH <C (thrl + Af? +8), where the constant C is inde-

pendent of h and At.

Proof. Substituting (4.5) into (4.6)-(4.8), we have

Ny
n+6dd / VH-Gxdd_/ |:<n+6( ,) (-)))
& wdsdy+ L | & owdsdy= [ 3| (& y)wl
(e (o o)l 1))
i—5 i—
/n”*"wdxdy Z/ n"+6wxdxdy+/ {(m’f%( .+1,y)W(x;1,)’))
Qyi= 1 2 2
(n,:”r" (x. 1,)’) w (x,+ l,y)>} dy—l—/ R’1’+Gwdxdy,
=3 =2 Q
N,
[&rooaa+ ¥ [ gropany- [ Y (& (v, )o(x
o’ R/ SR @ = L\ ity it
(o Jolo D
n+o n+o n+o — _
- s, B[ o )oe)
_ (nb’ffc (x Vi ) (0] (x yh ))] dx—l—/QRg”LG(pdxdy,

8=

¥
S]

(4.10)
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and

[ ogertvady+ [ TDrer vaxdy-n Y, [ & vdsdy -} [ & vddy
Q Q ij 7 1ij i,j /i

Ny
+Z/ é;*cvxdxdy%—Z/ ENOvydxdy + yl/ ) {(éb’ﬁc (xprl’y> v (xﬂrl,)’>)
i Mij i ij Qy = 2 2

v i=1

(& () (f-;’y))}w L (e (o) o)
SCMCAECN)IESS: 1[ 61 () (5200)
(& (o) () - [ X K o (21 (070))
(oo o ]

/8Atn”+1vdxdy /fo‘n;’+Gvdxdy+ylz/ n”+6vxdxdy+}/22/ Ny vydxdy

Ny
- Z/ nn+GdeXdy Z/ nn+ovyd‘Xdy_ ’YI /Q Z |:(n1;l+o- (xl_-l—é’y> v (xl__'_éay>)

Yy i=1

Ny

o n+o — + o n+o — —
oo ) o)
o n+o — n+o + —

(17 (o) (o) e [ B [0 (s2) (5220))
) oo E (oo )
— <n2+6 (x,yJ.r ) ( ))] dx—i—/ R§l+6vdxdy+/ RZJ“Gvdxdy—i-/ R vdxdy.

]75 Q Q Q

(4.11)

Adding (4.9)-(4.11) together, taking w = /7%, @ = £)7°, v = £/7, and using properties of
the projections (4.1)-(4.3), we can obtain

/ OgEEtOdndy+ | FDREIOE Cdxdy+ [ (&) dxdy+ [ (&0 dxdy
Q Q Q Q

0Ll Gogo) o B 2 5 (o)

=1

=

=
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—— [ ogmitigredvdy— [ Fopmrtogrodudy— [ mytog;oduy
Q Q Q
— [ mptogytodsdy+ [ RYOE Cdxay+ [ RYFOEL Cdxdy

+ [ RoErCandy+ | RYOENCdndy+ | ROENdxdy

=11+ o+ 13+ Y4
Now we discuss the case for n > 1. For Y, using Cauchy-Schwarz inequality and Young
inequality, we have

C In+1
Ti=- [ogneeddy < g [T ImaPas e Clg R @)
n—1

To estimate Y5, we first have

OCD;X (”(tnﬂf) - Pi”(thF))
1

(4.12)

Intc
Sm/o |us(x,y,s)—]P’_us(x,y,s)’ (tnyo —s) %ds
1 _ Into _ (4.14)
_mtoﬁr?gt):w !us(x,y, s) — P ug(x,y, S)‘ /0 (tnro —s) %ds
-«
tn+c

_mtoér?§3:+c ’Ms(x;)’a s) — P ug(x,y, S)‘ .

Then using (4.4) and (4.14), we have

-«

_ t _
o7 12 st < s e )~ i <

(4.15)
For Y», using (4.14), (4.15), Cauchy-Schwarz inequality, and Young inequality, we have
Y, = —/ (OCDtO‘ o _ O(ArP +8)> EMtOdxdy
Q
2
<c (HSD:" (ultrso) =P ultns)) | +4207% 74 ||5,:’+"||2) (4.16)
< C(h2(k+1) _|_At2(37a) —|-82 + Hg;+6H2>7
For Y3, using (4.4), Cauchy-Schwarz inequality and Young inequality, we can get
Y3 — _/erg—i_oééﬁ—adx‘ly_ /gzn;+oég+GdXdy
1
<l I*+lmp el + 5 (1712 +185717) 4.17)

1
< CRE 1 (I + 185 ).
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For Y4, using (2.2), Cauchy-Schwarz inequality and Young inequality, we have

Ty _/ R"+G§”+dedy+/ RyTCEN O dxdy
+ /Q RIFOEMS iy 1 /Q RIFOEMO iy 1 /Q RIFOEMO iy

1
<C (At 4+ 16 °)1%) + 7 (&P +11E,+1?) -
Substituting (4. 13)-(4.18) into (4.12), and using Lemma 3.1, (3.4) and (3.9), we have

n 10“ n+1 n 1 ! n+1 n+1
e a7 e - 2 Y (e - el el
=1

< a7 IER 5 [ I Pas

+CH§;+GH2+C (hz(k+1) JFAl4+£2) '

Summing with respect to n from 1 to M — 1, and multiplying (4.19) by 4At, we have

1 1 ¢ 1
HEM) +2Ar25“ 0 ent P oar Y Z( = e g

n=1 I=

4At

M—1
<+ Y %6 OIENRC [ I maPas
n=1
M—-1
+CAt Y (| EXTOYP +CAr Z <h2 D LAt e >

n=1

After further calculation, we have

M
A 20 Y. T M e
n=2

1 S (n+1) 94‘ n+1 2 N 7 (n+1))1 202
< Al +280 Y (Tel =T Il P 420 Y Zef D)

n=1 =
M M-1 M—1
+C/ [(na)lPds+car Y &P +car Y (R 4ot 4g?).
0 n=1 n=1

Using (3.3) and Lemmas 3.3, we have

M . -«
e+ 2070 LB < e+ (g g ) TP

2eT 7! 012 ™ 2
" <F(1 —) + F(2—a)) 15211 +C/zo | (Mu)e||"ds

M M—1
+ean Y EnP+ea Y (h2<’<+1> +At4+82>.
n=1 n=1

(4.18)

(4.19)

(4.20)
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In (4.12), we take n = 0 to obtain

[ osgiesardy+ | Fpreseoasay+ [ (67 Pdxdy+ [ (67 dxdy

S0 IO PSS o OO

2 Qy =]
—— [ ogiegaxdy~ [ FDngEsardy— [ ngEddudy
Q Q Q
— | ngegasay+ [ RYETaxdy+ | RSETdxdy

+ /Q RSEC dxdy + /Q ROE® dxdy + /Q RIESdxdy.
Using (3.1), (3.4), and multiplying both sides by 2A¢, we have
z (1
IEN2 + a7 1 E112 + 200 | £2)% + 240 | £C |2

7 (1
< 1012+ a7 6012~ 20 | gmigTdxdy—2ar | FDfNIE dxdy
~2a | mgEgddy—2ar | ngEgdxdy+ 241 [ RYETdrdy+2ar | REESdvdy
Q Q Q Q

24 / RSECdxdy + 24t / RIECdxdy + 24t / REEC dxdy.
Q Q Q
Using (4.4), Cauchy inequality and Young inequality, we have
&1 +C7Ar|| 011> +2A0(|E7 > + 247 | &5 |1

1
<R 4 (G + CATET |+ Ar||E7 1P + Ar |67 17 + C(ar* + A=)+ £2),

Further, we have ||E}[|?> < C(h2*+1) + Ar* + €2), which together with (4.20) yields

M M M

HEN 4207 MY, GNP <cary EP+Car Y (R0 a4 e2).
n=2 n=2 n=0

Using (3.2) and the discrete Gronwall inequality, we have ||EM|?> < C (hz(k“) + At +82> :

Using triangle inequality, we obtain

" = = &2+ il < g0+ Imill < € (W + A 4e).

5. NUMERICAL RESULTS

To verify the effectiveness of our numerical scheme, we give the numerical results based on

the L2-1, formula and the .% L2-1, formula respectively. Now, we take ' = (y1,7) = (1,1),

€= AI’S—(;(?, the space domain Q = [0,2] x [0,2] and the time interval [0,7] = [0, 1]. The source

function is
2t2—OC

f(x,y,t) = (2t+ m

and the exact solution is u(x,y,t) = > sin(7x) sin(7y).

+ 27t2t2) sin(7rx) sin(7wy) 4 712 (cos(mx) sin(7y) + sin(7x) cos(my))
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5.1. Tests on the CFL condition. First, we provide the general form of the CFL condition
for the convection-diffusion equation as follows % + }Al—é < Ncrr, where Ncrp, is CFL number.
Next, we will examine the impact of the CFL condition on the error stability by implementing
numerical simulations. The CFL condition requires selecting an appropriate step ratio to ensure
the stability and convergence of the numerical scheme. In Table 1, taking Nepp = % + ;A,_zta
we provide the CFL numbers with different space-time step length sizes Ar and h. In Figs.
1-3, based on the CFL numbers in Tablel, we plot the relationship between the error and the
CFL number with different o = 0.2,0.4,0.6,0.8 in Q%(k = 0,1,2) elements. In Figs. 1-3, the
error curves under different parameters & have almost the same trend with changed spatial step
length sizes h = 0.4,0.2,0.1. In Fig. 1, with different spatial step length sizes h = 0.4,0.2,0.1,
the error curves exhibit similar trends for different parameters . Specifically, for 4 = 0.4, the
errors tend to be stable when CFL numbers are less than 0.1367. For h = 0.2, the errors tend
to be stable when CFL numbers are less than 0.4688. For & = 0.1, the errors tend to be stable
when CFL numbers are less than 0.8594. As h decreases, the necessary CFL number needed to
maintain the stable error increases. Therefore, for any spatial step length size A, it is sufficient
to select At such that CFL numbers are less than 0.1367 in order to ensure error stability in
the numerical simulation using Q" element. Figs. 2-3 further support this phenomenon, which
exhibit a similar trend. Thus, for any spatial step size h, selecting the temporal step Ar that
ensures CFL numbers are less than 2.1875 and 0.1367, we can keep the stability of error in Q!
and Q? elements.

TABLE 1. The CFL number with 7 = -, At = 5

At 1 1 1 1 1 1 1 1 1 1

h 2 4 8 16 32 64 128 256 512 1024
0.4 4375 2.1875 1.0938 0.5469 0.2734 0.1367 0.0684 0.0342 0.0171 0.0085
0.2 15 7.5 3.75 1.875 0.9375 0.4688 0.2344 0.1172 0.0586 0.0293
0.1 55 27.5 13775 6.875 34375 1.7188 0.8594 0.4297 0.2148 0.1074

QO element
0! h=04

4375 2.1875 1.0938 0.5469 0.2734 0.1367 0.0684 0.0342 0.0171 0.0085

a=08[-
55 275 1375 6.875 3.4375 1.7188 0.8594 0.4297 0.2148 0.1074

FIGURE 1. The relationship between the error and the CFL number with o =
0.2,0.4,0.6,0.8 in Q° element
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1
Q" element
2 h=04
46 %10
—%—a=02
—%—a=04
459, =06
5 —*—a=084
]
A.EBM.\A —
u57 \ \ \ \ \ \ \ \
4375 21875 1.0938 0.5469 0.2734 0.1367 0.0684 0.0342 0.0171 0.0085
NCFL
2 h=02
11822 T T T
—%—a=02
117 i
8 —¥*—a=04
1176 =06+
5 —+—a=08
51174 =
1172 / —y
117 =
| | | | | | | |
15 75 375 1875 0.9375 0.4688 0.2344 0.1172 0.0586 0.0293
NCFL
3 h=01
30420 I I I
—%—a=02 L
—¥*—a=04
0=06] |
—¥—a=08
# 3+ + 4 4 * +
1375 6.875 34375 17188 0.8594 0.4297 0.2148 0.1074
NCFL
FIGURE 2. The relationship between the error and the CFL number with o =
0l
0.2,0.4,0.6,0.8 in Q" element
2
Q° element
L x10° h=04
> I I I
—%—a=02 L
498 ——az04
a=06
5496 —t—oo0sl
0494 e, —
so— -
-
49 \ + t -t \ \ \ \
4375 21875 1.0938 0.5469 0.2734 0.1367 0.0684 0.0342 0.0171 0.0085
I
—%—a=02
—¥—a=04
a=06[]
—4*—a=08
L & 4 -
15 75 375 1875 0.9375 0.4688 0.2344 0.1172 0.0586 0.0293
NCFL
x10* h=01
° I
—%—a=02
—%—q =04
a=06["
—*—0=08
T T T
55 215 1375 6.875 34375 17188 0.8594 0.4297 0.2148 0.1074
NCFL

FIGURE 3. The relationship between the error and the CFL number with o =

0.2,0.4,0.6,0.8 in Q? element
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5.2. Convergence results. In Table 2, to compare the accuracy of the L2-15 scheme and the
FL2-15 scheme, we show the L?>-norm error and the temporal convergence orders with dif-
ferent parameters o and changed space-time mesh parameters in Q' element. Their orders
of convergence are close to 2. It is easy to verify that CFL numbers in Table 2 is Ncrp =
0.875,1.5,2.75,5.25. From Fig. 2, one can be seen that CFL numbers in Table 2 are all
within the stable range. In Tables 3-5, fixing the time parameter M = 1000 and choosing spa-
tial mesh parameters N = N, x N, = 100,225,400,625, we get the spatial convergence accu-
racy with different parameters @ = 0.2,0.4,0.6,0.8 in Q¥(k = 0,1,2) elements for the L2-1,
scheme and the .# L2-1, scheme. From Table 3, taking kK = 0, we get the first-order spatial
convergence accuracy, which is consistent with our theoretical results O(h). From Table 4,
taking k = 1, we get the second-order spatial convergence accuracy, which is consistent with
our theoretical results O(h?). From Table 5, taking k = 2, we get the third-order spatial con-
vergence accuracy, which is consistent with our theoretical results O(h?). The results show
that the accuracy of the two schemes is the same. In Table 6, taking o = 0.5, N = 25 and
M = 2000,4000,6000,8000, 10000, we present the CPU time in seconds, which shows that the
FL2-15 scheme is more efficient than the L2-15 scheme.

To observe the effect of numerical simulation more clearly, we provide some numerical solu-
tion images based on .% L2-14 scheme. In Fig. 4, we get images of numerical solution u;, with
N =400, M = 40. In Fig. 5, we plot the error contours of u — u, with & = 0.2,0.4,0.6,0.8. In
Fig. 6, we can obtain similar temporal convergence order in L>-norm with the different frac-
tional parameters o = 0.2,0.4,0.6,0.8. In Fig. 7, we also show the spatial convergence orders
in L?-norm based on the Q¥(k = 0,1,2) elements.

TABLE 2. The temporal convergence results in L2-norm

12-14 FL2-14
o (N,M) Error Order Error Order
(25,10) 4.5866E-02 - 4.5907E-02 -
0.2 (100,20) 1.1722E-02 1.9682 1.1753E-02 1.9657
(400,40) 2.9394E-03  1.9956 2.9630E-03  1.9878
(1600,80)  7.3535E-04  1.9990 7.4084E-04  1.9999
(25,10) 4.5842E-02 - 4.5907E-02 -
0.4 (100,20) 1.1720E-02 1.9677 1.1770E-02 1.9636
(400,40) 2.9393E-03  1.9955 2.9820E-03  1.9808
(1600,80)  7.3535E-04  1.9990 7.4546E-04  2.0001
(25,10) 4.5816E-02 - 4.5878E-02 -
0.6 (100,20) 1.1719E-02 1.9670 1.1765E-02 1.9633
(400,40) 2.9392E-03  1.9953 2.9786E-03  1.9818
(1600,80)  7.3535E-04  1.9989 7.4595E-04  1.9975
(25,10) 4.5790E-02 - 4.5828E-02 -
0.8 (100,20) 1.1717E-02 1.9664 1.1743E-02 1.9644
(400,40) 2.9391E-03  1.9952 2.9605E-03  1.9879

(1600,80) 7.3534E-04 1.9989 7.4092E-04 1.9984




TABLE 3. The spatial convergence results in L2-norm with M = 1000, k = 0

LDG METHOD WITH FAST TIME TECHNIQUE

L2-14 FL2-14
a N Error Order Error Order
100 6.1541E-02 - 6.1541E-02 -
225 4.1783E-02 0.9550 4.1783E-02 0.9550
0.2 400 3.1599E-02 0.9711 3.1599E-02 0.9711
625 2.5399E-02 0.9788 2.5399E-02 0.9788
100 6.1519E-02 - 6.1519E-02 -
225 4.1763E-02 0.9553 4.1762E-02 0.9553
0.4 400 3.1581E-02 0.9714 3.1581E-02 0.9714
625 2.5383E-02 0.9790 2.5383E-02 0.9790
100 6.1496E-02 - 6.1495E-02 -
225 4.1741E-02 0.9557 4.1741E-02 0.9557
0.6 400 3.1562E-02 0.9717 3.1562E-02 0.9717
625 2.5367E-02 0.9793 2.5366E-02 0.9793
100 6.1471E-02 - 6.1471E-02 -
225 4.1718E-02 0.9560 4.1718E-02 0.9560
0.8 400 3.1542E-02 0.9720 3.1541E-02 0.9720
625 2.5349E-02 0.9795 2.5348E-02 0.9796
TABLE 4. The spatial convergence results in L2-norm with M = 1000, k = 1
L2-14 FL2-15
a N Error Order Error Order
100 1.1721E-02 - 1.1722E-02 -
225 5.2218E-03 1.9942 5.2219E-03 1.9942
0.2 400 2.9394E-03 1.9975 2.9394E-03 1.9975
625 1.8818E-03 1.9986 1.8818E-03 1.9985
100 1.1720E-02 - 1.1720E-02 -
225 5.2216E-03 1.9940 5.2216E-03 1.9940
0.4 400 2.9393E-03 1.9974 2.9393E-03 1.9974
625 1.8818E-03 1.9985 1.8818E-03 1.9985
100 1.1718E-02 - 1.1719E-02 -
225 5.2213E-03 1.9938 5.2214E-03 1.9938
0.6 400 2.9392E-03 1.9974 2.9393E-03 1.9973
625 1.8817E-03 1.9985 1.8818E-03 1.9984
100 1.1717E-02 - 1.1717E-02 -
225 5.2210E-03 1.9937 5.2213E-03 1.9936
0.8 400 2.9391E-03 1.9973 2.9394E-03 1.9972
625 1.8817E-03 1.9984 1.8819E-03 1.9982

855
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TABLE 5. The spatial convergence results in L2-norm with M = 1000, k = 2

L2-15 FL2-14

a N Error Order Error Order

100 4.8170E-04 - 4.8169E-04 -
225 1.3466E-04 3.1435 1.3465E-04 3.1436
0.2 400 5.5712E-05 3.0677 5.5711E-05 3.0677
625 2.8309E-05 3.0339 2.8313E-05 3.0333

100 4.8280E-04 - 4.8278E-04 -
225 1.3491E-04 3.1445 1.3490E-04 3.1445
0.4 400 5.5822E-05 3.0674 5.5825E-05 3.0671
625 2.8401E-05 3.0283 2.8413E-05 3.0267

100 4.8403E-04 - 4.8400E-04 -
225 1.3524E-04 3.1448 1.3523E-04 3.1447
0.6 400 5.6013E-05 3.0640 5.6026E-05 3.0631
625 2.8582E-05 3.0151 2.8617E-05 3.0107

100 4.8539E-04 - 4.8531E-04 -
225 1.3566E-04 3.1440 1.3567E-04 3.1434
0.8 400 5.6313E-05 3.0563 5.6422E-05 3.0498
625 2.8885E-05 2.9918 2.9126E-05 2.9632

TABLE 6. CPU time in seconds with o« = 0.5, N =25

CPU time(s)

M L2-14 FL2-14
2000 28.55 6.79
4000 184.55 13.37
6000 603.51 20.16
8000 1357.18 27.08

10000 2559.32 34.10
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FIGURE 5. The error contours of u — u, with a = 0.2,0.4,0.6,0.8
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FIGURE 6. The temporal convergence orders in L?-norm with & = 0.2,0.4,0.6,0.8
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FIGURE 7. The spatial convergence orders in L>-norm with o = 0.2,0.4,0.6,0.8

5.3. Sensitivity of the tolerance error. In this subsection, we verify the sensitivity of the tol-
erance error € on numerical results. For this purpose, we only show the numerical performance
in Q! element. In Table 7, fixing the temporal parameter M = 1000, taking spatial mesh pa-
rameters N = N, x N, = 25,100, and choosing different parameters o« = 0.2,0.4,0.6,0.8, we
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. . . _ _ _ 3—a 3—a 3—a
obtain the error results with different parameters € = 1072, 1074, 1079, Atlo , Aioo , AltOOO )

Table 7 shows that changes of € have less impact on error and convergence results. In Table 8,
fixing the temporal parameter M = 4000 and changing the different parameters £ = 1072,10~4,
1070, Atf(; iy Aﬁ; , A{g&g , we have the number of exponentials N, and CPU time with different
parameters o = 0.2,0.4,0.6,0.8. Table 8 shows that as € decreases, both Ny, and CPU time

increase. In Fig. 8, fixing the temporal parameter M = 1000 and the spatial mesh parame-

ter N = 1000, we get Error(s_go) with different parameters € = 1072,1074,1079, A‘fg * , Af%,

where Error(,_) =Errorg—Errorg,, Errore is the L?-norm error of numerical solution u;, and

exact solution u with different parameters €. We use & = Al% as a reference standard to test
the difference between Error, and Errorg,. Fig. 8 clearly illustrates that decreasing € leads to a
decrease of error. In summary, the choice of € should balance accuracy and computational cost.
Furthermore, one can be seen from the convergence results in Table 7 that the sensitivity of €
on numerical results is not significant.

TABLE 7. Error, with M = 1000

a | NI 107 104 10 s S N
5 | 4.5880E-02 4.58641E-02 4.58639E-02 4.58639E-02 4.58639E-02 4.58639E-02
02| 10 |1.1728E-02 1.17216E-02 1.17215E-02 1.17215E-02 1.17215E-02 1.17215E-02
Order |  1.9679 1.9682 1.9682 1.9682 1.9682 1.9682
5 | 4.5847E-02 4.58303E-02 4.58392E-02 4.58392E-02 4.58392E-02 4.58392E-02
04| 10 |1.1723E-02 1.17201E-02 1.17200E-02 1.17200E-02 1.17200E-02 1.17200E-02
Order | 1.9674 1.9676 1.9676 1.9676 1.9676 1.9676
5 | 45819E-02 4.58140E-02 4.58140E-02 4.58140E-02 4.58140E-02 4.58140E-02
0.6| 10 |1.1721E-02 1.17186E-02 1.17185E-02 1.17185E-02 1.17185E-02 1.17185E-02
Order | 1.9669 1.9670 1.9670 1.9670 1.9670 1.9670
5 | 4.5792E02 4.57897E-02 4.57897E-02 4.57897E-02 4.57897E-02 4.57897E-02
0.8| 10 |11718B-02 1.17173E-02 L.17173E-02 1.17173E-02 1.17173E-02 1.17173E-02
Order |  1.9663 1.9664 1.9664 1.9664 1.9664 1.9664

TABLE 8. N,y and CPU time in seconds with M = 4000, N = 100

SNTERNTERNTENE

a=0.2 Nexp 16 25 35 59 64 69
CPU time(s) 50.71 59.12 65.06 8499 88.86 91.80

a=0.4 Nexp 16 25 35 56 61 66
CPU time(s) 53.02 59.67 67.27 8244 87.86 90.30

a=0.6 Nexp 16 25 35 52 57 63
CPU time(s) 57.57 59.86 65.71 7850 81.73 88.32

a=0.8 Nexp 16 26 35 49 54 59
CPU time(s) 50.58 60.36 70.71 81.41 88.05 92.12
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FIGURE 8. Error(g,go) with ¢ =0.2,0.4,0.6,0.8

6. CONCLUDING REMARKS

In this article, the spatial LDG method with the second-order time approximation scheme
combined with the .#L2-15 formula for the two-dimensional fractional mobile / immobile
convection-diffusion model was presented. The detailed proofs of stability and errors O(Af? +
R+ 4 €) in L2-norm were presented. The validity and feasibility of the algorithm in solving
the two-dimensional time-fractional convection-diffusion model were illustrated by the numer-
ical results calculated by the LDG method. Specifically, the CFL condition was provided and
the relationship between the CFL number and the error in numerical simulations was analyzed.
In addition, the comparison of CPU time between the .% L2-15 scheme and the L2-14 scheme
confirmed that the .#L2-15 scheme was more efficient. Finally, by changing the parameter €
for the .%# L2-15 scheme, the sensitivity of € on numerical results was analyzed.
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