
J. Nonlinear Var. Anal. 9 (2025), No. 6, pp. 885-906
Available online at http://jnva.biemdas.com
https://doi.org/10.23952/jnva.9.2025.6.04

AN EFFICIENT CGA ADMM FOR THE METRIC NEARNESS PROBLEM

BO JIANG1, PEIPEI TANG1,∗, CHENGJING WANG2, YANGKAI WU3

1School of Computer and Computing Science, Hangzhou City University, Hangzhou, China
2School of Mathematics, Southwest Jiaotong University, Chengdu, China

3Hangzhou Maida Intelligence Technology Co., Ltd, Hangzhou, China

Abstract. The metric nearness problem aims to find a metric matrix nearest to a given dissimilarity
matrix with the triangle inequalities valid. In this paper, we consider the metric nearness problem with
the distance measured by the vector `p (p = 1,2,∞) norm. Due to the O(n3) constraints and O(n2)
variables, the main difficulty of solving this kind of large scale problems is the high memory requirement.
We design a constraint generation based alternating direction method of multipliers (CGA ADMM) and
take full advantage of the special structure of the constraint matrix so that the memory requirement of the
CGA ADMM is moderate. Numerical experiments of the real world graph data sets involving up to 108

variables and 1012 constraints demonstrate that our algorithm has a better performance than the current
state-of-the-art algorithms.

Keywords. Alternating direction method of multipliers; Constraint generation algorithm; Metric near-
ness problem.

1. INTRODUCTION

As we know, clustering is one of the most fundamental tasks in machine learning. Among
various kinds of clustering algorithms, an indispensable step is to get the metric distances of
the corresponding clustering objects, which shows the pairwise dissimilarity of every two ob-
jects. Other applications including image processing, metric-based indexing of databases and
computer vision show that quantities satisfying the metric property should be given for further
purpose (see, e.g., [1, 2]). However the measurements usually do not represent the actual dis-
tance due to the noise of the input data or errors of the measurements. Although it is easy to
obtain pairwise dissimilarities of every two objects, the metric distance should satisfy the spe-
cific feature of the triangular inequality. A given matrix M = (mi j) is called a metric matrix if
mi j ≤ mik +m jk holds for every triple (i, j,k). We denote n as the number of given nodes and
Mn as the set of all the metric matrices of order n.

A natural idea is to get the dissimilarity matrix first and then try to find a metric matrix nearest
to the dissimilarity matrix. Given a dissimilarity matrix D =

(
di j
)

n×n, the metric nearness prob-
lem, which dates back to [3], aims to find a metric matrix X =

(
xi j
)

n×n nearest to D. A weight
matrix is usually used to capture the confidence in individual dissimilarity measures. Recently,
∗Corresponding author.

E-mail address: tangpp@hzcu.edu.cn (P. Tang).
Received 14 April 2024; Accepted 21 February 2025; Published online 10 August 2025.

c©2025 Journal of Nonlinear and Variational Analysis

885

886 B. JIANG, P. TANG, C. WANG, Y. WU

The work of [4] and [5] reformulated the problem as the metric violation distance problem and
the sparse metric repair problem, respectively. For a given distance matrix, they tried to modify
as few entries as possible so that the derived solution satisfies a metric. Furthermore, for a given
weighted graph [6] proposed to find the smallest number of modifications to the weights so that
the resulting weighted graph distances satisfy a metric. Another kind of metric learning aims to
find a tree metric which minimizes the given error (see, e.g., [7, 8]).

The metric nearness problem is also a branch of matrix nearness problem (see, e.g., [9]),
whose main purpose is to find a nearest matrix of the given matrix with some properties such as
symmetry, positive definiteness, and normality. There are various kinds of measurements such
as the vector `p (p ≥ 1) norms and Kullback-Leibler divergence to qualify the approximation
error, which is also known as the nearness. The classical correlation clustering problem (see,
e.g., [10]) aims to cluster the nodes in a way that minimizes the total quantity of mistakes.
The mistake at the pair (i, j) is w+

i j if the i-th and j-th nodes are separated but w−i j if the i-th
and j-th nodes are clustered together. It can be written formally as the following integer linear
programming problem

min
X∈Mn

∑
1≤i< j≤n

(
w+

i jxi j +w−i j(1− xi j)
)

(1.1)

s.t. xi j ∈ {0,1}, ∀ 1≤ i < j ≤ n.

As mentioned in [11], the correlation clusting problem (1.1) can be relaxed as an `1 norm based
metric nearness problem. In this paper, we consider the weighted `p norm based metric nearness
problem, that is, we solve the following optimization problem

min
X∈Mn

(
∑

1≤i< j≤n
|w̄i j(xi j−di j)|p

)1/p

. (1.2)

We deal with the problem by stacking the columns of the strict upper triangular part of the
matrix to a long column vector.

General algorithms for solving the metric nearness problem are to reformulate them as a
linear programming problem or a quadratic programming problem, which is confronted with
the difficulty of memory exhaustion due to O(n3) constraints when dealing with large graphs.
During the last decades, researchers designed specific algorithms to solve the metric nearness
problem. [12] designed a triangle-fixing algorithm based on the inherit specific structure of the
metric constraints. Several years later, [13] presented the implementation details of the triangle-
fixing algorithm for the `1, `2 and `∞ norms based metric nearness problem. Furthermore, by
adding a proximal term to the objective function, [11] applied Dykstra’s projection method to
solve the corresponding quadratic programming problem, which is closely related to the original
`1 norm based metric nearness problem. Due to the specific structure of the triangle inequalities,
the Dykstra’s projection method has moderate memory requirement and it can be used to solve
the metric nearness problem with variables up to 6× 107 as shown in [11]. [14] presented a
parallel version of Dykstra’s projection method, coded the algorithm in Julia and tested the
algorithm using matrices with variables up to 1.6×108. Although Dykstra’s projection method
converges rapidly for small scale data problems and it has a linear convergence rate (see e.g.,
[15]), we need to slightly modify the objective function by adding a proximal term with an extra
parameter, which is not known in advance, when dealing with `1 and `∞ norms based metric

AN EFFICIENT CGA ADMM FOR THE METRIC NEARNESS PROBLEM 887

nearness problems. For each iteration, the computation cost of Dykstra’s projection method is
O(n3), which results in high time cost when solving large scale problems. [16] proposed an
active set algorithm, PROJECT AND FORGET, based on Floyd’s Shortest path algorithm and
Bregman projections.

Although metric nearness problem (1.2) is convex, it involves n(n− 1)/2 variables, n(n−
1)(n−2)/2 constraints and its objective function is nonsmooth. It is still of great challenge to
obtain an approximate solution with moderate accuracy efficiently. For the `1, `∞ norms based
metric nearness problems, we can reformulate (1.2) to a linear programming problem and solve
it by classical interior point solvers such as Gurobi and Mosek when n is not too large. However,
the memory cost becomes unacceptable when n is larger than 103 due to the O(n3) constraints.
As we know, Dykstra’s projection method is a well known algorithm that can solve problem
(1.2) , but the accuracy of the obtained solution depends on the proximal term which is hard to
determine. An alternative approach is the alternating direction method of multipliers (ADMM)
(see e.g., [17, 18]) which deals with the corresponding block variables alternatively in each
iteration. One may see [19] for the history of the ADMM.

In this paper, we design a constraint generation algorithm based ADMM named by CGA A
DMM to solve problem (1.2). The main difficulty of applying the ADMM to solve the metric
nearness problem lies in the high memory requirement due to the O(n3) constraints and O(n2)
variables. If we apply the ADMM directly, it will run out of memory for large scale problems.
The basic idea of the constraint generation algorithm, also known as the cutting plane algorithm
(see, e.g., [20, 21]), is that the feasible set is approximated by using only a subset of constraints
and more constraints are added if the desired solution is infeasible. Since the number of active
constraints at the solution point is at most n(n− 1)/2, we combine the ADMM with the con-
straint generation strategy and design the CGA ADMM so that the storage requirement of each
iteration is much lower than that of the problem with whole constraints. Furthermore, we also
take full advantage of the special structure of the constraint matrix such that it does not need
to be stored in memory and the corresponding subproblem of the ADMM can be solved effi-
ciently. Thus we can solve practical problems with n up to 105 and the memory requirement is
acceptable. Numerical experiments demonstrate that our algorithm is efficient and has a better
performance than the current state-of-the-art algorithms.

2. PRELIMINARIES

In this section, we first give some basic preliminaries for further use.
Let X be a finite dimensional Hilbert space equipped with an inner product 〈·, ·〉 and the

corresponding induced norm ‖ · ‖, and let f : X −→ [−∞,+∞] be an extended real valued
function with its conjugate function f ∗ defined as f ∗(x) := supu∈dom(f)

{
〈x,u〉− f (u)

}
, where

dom(f) = {x | f (x) < +∞}. The extended real valued function f is said to be proper if there
exists at least one x′ ∈ X such that f (x′) < +∞ and f (x) > −∞ for all x ∈ X , otherwise
f is improper. For a proper lower semicontinuous function f , the proximal mapping Proxσ f
associated with f at x for a given σ > 0 is defined by

Proxσ f (x) := argmin
u∈X

{
f (u)+

1
2σ
‖u− x‖2

}
.

888 B. JIANG, P. TANG, C. WANG, Y. WU

The proximal mapping Proxσ f is single-valued and continuous. According to Moreau’s identity
(see, e.g., [22, Theorem 31.5]),

Proxσ f (x)+σProxσ−1 f ∗(σ
−1x) = x, ∀ x ∈X .

For a given vector v ∈ Rn, we denote vi as the ith component of the vector v, Diag(v)
as the diagonal matrix whose diagonal vector is v, S n as the space of symmetric matrices
of order n, and In as the identity matrix of order n. Let C be a subset of X . We define
the indicator function δC of C as δC(x) = 0 if x ∈ C and otherwise δC(x) = +∞, and de-
note the Euclidean projection of x onto C by ΠC(x) := argminy∈C ‖y− x‖. For simplicity, let
n1 = n(n− 1)/2, n2 = n(n− 1)(n− 2)/2 and trivec : S n −→ Rn1 be a function that stacks
the columns of the strict upper triangular part of an input matrix to a column vector with
trivec(X) := [x12,x13,x23, . . . ,x1n,x2n, . . . ,xn−1,n]

T for any X ∈S n. By introducing a slack vari-
able y = trivec(X −D), metric nearness problem (1.2) is equivalent to the following composite
optimization problem

min
y∈Rn1

{
h(Ay−b)+q(Wy)

}
, (2.1)

where h(·) = δR
n2
−
(·), q(·) = ‖ · ‖p, A is the constraint matrix corresponding to the triangle in-

equalities, b=−Atrivec(D), W =Diag(trivec(W)) with W =(w̄i j) and Rn2
− is an n2-dimensional

negative half quadrant cone. Furthermore, we can rewrite problem (2.1) equivalently as

min
ξ∈Rn2 ,y,η∈Rn1

{
h(ξ)+q(η)

∣∣∣ Ay−ξ = b, Wy−η = 0
}
. (2.2)

The dual problem related to problem (2.2) takes the following form

max
u∈Rn2 ,v∈Rn1

{
−h∗(u)−q∗(v)−〈u,b〉

∣∣∣ AT u+W T v = 0
}
. (2.3)

We can also write out the Lagrangian function related to problem (2.2) as

L(y,ξ ,η ;u,v) = h(ξ)+q(η)+ 〈Ay−ξ −b,u〉+ 〈Wy−η ,v〉.

The Karush-Kuhn-Tucker (KKT) condition associated with problem (2.2) is as follows

Ay−ξ −b = 0, Wy−η = 0, AT u+W T v = 0, u ∈ ∂h(ξ), v ∈ ∂q(η).

3. THE CONSTRAINT GENERATION BASED ADMM

In this section, we introduce the constraint generation algorithm based ADMM to solve pri-
mal problem (2.2). The ADMM is a classical algorithm for solving many large scale convex
optimization problems derived from machine learning. It solves the two blocks of variables
alternatively so that the difficulty for solving the subproblem is reduced. However, the compu-
tation cost related to each iteration of the ADMM is still very huge and unacceptable, especially
when n is large. Therefore we have to take full advantage of the special structure of the con-
straint matrix and adopt the strategy of constraint generation to reduce both the time complexity
and memory requirement at each iteration of the ADMM in the CGA ADMM. On the other
hand, we add a part of the violated constraints into the constraint set successively so that the
number of the outer iterations of the CGA ADMM is small, which guarantees the high effi-
ciency of our algorithm.

AN EFFICIENT CGA ADMM FOR THE METRIC NEARNESS PROBLEM 889

3.1. The ADMM for solving problem (2.2). As the subproblems we consider below (see
Subsection 3.2) are all of the same type of problem (2.2), we only introduce the ADMM for
problem (2.2) in this subsection. Given σ > 0, the augmented Lagrangian function of problem
(2.2) can be written as

Lσ (y,ξ ,η ;u,v) = h(ξ)+q(η)+
σ

2
‖Wy−η +σ

−1v‖2− 1
2σ
‖v‖2

+
σ

2
‖Ay−ξ −b+σ

−1u‖2− 1
2σ
‖u‖2.

Now we list the details of the ADMM in Algorithm 1. In the implementation of the ADMM,
it is important to solve the corresponding subproblem efficiently. We can see that the main idea
of the ADMM is to update the two blocks of variables alternately. At the kth iteration, it is easy
to show that

ξ
k+1 = Proxσ−1h(Ayk−b+σ

−1uk) = ΠR
n2
−
(Ayk−b+σ

−1uk),

η
k+1 = Proxσ−1q(Wyk +σ

−1vk),

yk+1 ≈ (AT A+W TW)−1
(

AT (ξ k+1 +b−σ
−1uk)+W T (ηk+1−σ

−1vk)
)
.

Based on Moreau’s identity and the result of [23], we can compute the proximal mapping of
σ−1q as Proxσ−1q(z) = z−Π

C1/σ
p

(z), ∀ z ∈Rn1 , where

C1/σ
p :=

{
z
∣∣∣∣ ‖z‖p′ ≤

1
σ

}
,

1
p
+

1
p′

= 1.

The details of Π
C1/σ

p
for q(·) = ‖ · ‖p with p = 1,2,∞ are listed below.

(1) q(·) = ‖ · ‖1, we have(
Π

C1/σ

1
(z)
)

i
=

{
zi, if |zi| ≤ 1/σ ,
sign(zi)/σ , otherwise.

(2) q(·) = ‖ · ‖2, we have

Π
C1/σ

2
(z) =

{
z, if ‖z‖2 ≤ 1/σ ,

z
σ‖z‖2

, otherwise.

(3) q(·) = ‖ · ‖∞, we have

Π
C1/σ

∞

(z) =
{

z, if ‖z‖1 ≤ 1/σ ,
PzΠ4(Pzz), otherwise,

where Pz =Diag(sign(z)),4= {z | z1+ . . .+zn1 = 1/σ} and Π4(Pzz) can be computed
in O(n1 logn1) operations. One may see [23] for more details.

In order to update the variable y, we need to solve a large scale linear system of equations.
We apply the Sherman-Morrison-Woodbury formula [24] if it is necessary, i.e.,

(B+Y TY)−1 = B−1−B−1Y T (It +Y B−1Y T)−1Y B−1,

where B ∈Rs×s and Y ∈Rt×s are given matrices. We solve the corresponding linear system by
an iterative solver such as the preconditioned conjugate gradient (PCG) method.

890 B. JIANG, P. TANG, C. WANG, Y. WU

Algorithm 1 The ADMM for problem (2.2)

Given ρ ∈ (0, 1+
√

5
2), σ > 0 and {εk}k≥0 be a summable sequence of nonnegative numbers,

choose (y0,u0,v0) ∈Rn1×Rn2×Rn1 . Set k = 0.
repeat

Compute

(ξ k+1,ηk+1) = argmin
ξ ,η

Lσ (yk,ξ ,η ;uk,vk),

yk+1 ≈ argmin
y

{
φk(y) := Lσ (y,ξ k+1,ηk+1;uk,vk)

}
,

with M := σ(AT A+W TW) and dk ∈ ∂φk(yk+1) such that ‖M− 1
2 dk‖ ≤ εk.

Update the variables u and v

uk+1 = uk +ρσ(Ayk+1−ξ
k+1−b), vk+1 = vk +ρσ(Wyk+1−η

k+1)

and set k := k+1.
until A desired stopping criterion is satisfied.

The ADMM in algorithm 1 is an inexact version. For more details about the exact version of
ADMM, one refer to [17, 25]. We give a brief proof to the convergence results of Algorithm 1
in the Appendix. One refer to [26] for more details.

Theorem 3.1. Assume that all elements of the weight matrix W are positive and the solution
sets of primal problem (2.2) and dual problem (2.3) are nonempty. Let {(yk,ξ k,ηk,uk,vk)}
be the sequence generated by Algorithm 1. Then the sequence {(yk,ξ k,ηk)} converges to an
optimal solution of primal problem (2.2) and {(uk,vk)} converges to an optimal solution of dual
problem (2.3).

Theorem 3.2. Suppose the same assumption as that of Theorem 3.1 holds. Let {(ξ k,ηk,yk,uk,vk)}
be the sequence generated by the ADMM and (ξ̄ , η̄ , ȳ, ū, v̄) be a solution of the corresponding
KKT system. Let r(ξ ,η ,y,u,v) = dist2(0,∂h(ξ)−u)+dist2(0,∂q(η)− v)+‖AT u+W T v‖2 +
‖Ay−ξ −b‖2 +‖Wy−η‖2. Then there exists a constant κ > 0 such that

min
1≤k≤T

{r(ξ k+1,ηk+1,yk+1,uk+1,vk+1)} ≤ κ/T,

lim
T→∞
{T min

1≤k≤T
{r(ξ k+1,ηk+1,yk+1,uk+1,vk+1)}}= 0.

3.2. The constraint generation algorithm. In this subsection, we introduce the constraint
generation algorithm. We adopt the strategy of solving the related problem with a subset of
constraints and then adding the violated constraints successively until all the constraints satisfy
a given stopping criterion. For each iteration of the constraint generation algorithm, we apply
Algorithm 1 to solve the corresponding subproblem. The implementation details are presented
in Algorithm 2.

In the implementation of the constraint generation algorithm, we need to update the con-
straint set so that a desired stopping criterion is satisfied. Let S̄ be the complement set of S. In
each iteration of Algorithm 2, we set ξS̄ = Π

R
|S̄|
−
(AS̄ŷ−bS̄), uS̄ = 0 and then check the desired

stopping criterion for the whole problem. During the iterations, we need to add a subset of

AN EFFICIENT CGA ADMM FOR THE METRIC NEARNESS PROBLEM 891

Algorithm 2 CGA ADMM: A constraint generation algorithm based ADMM

Choose a subset S of {1,2, . . . ,n2} with at least one element j ∈ S such that b j < 0.
repeat

Apply Algorithm 1 to obtain an approximate solution ŷ of the following problem

min
y∈Rn1

{
h(ASy−bS)+q(Wy)

}
.

Let S′ = { j | A jŷ−b j > 0, j ∈ {1,2, . . . ,n2}\S}. If S′ 6= /0, then set S := S
⋃

subset of S′.
until A desired stopping criterion is satisfied.

the violated constraints to the constraint set. The strategy needs to balance the cost of solving
each subproblem and the number of constraint generation iterations. Adding too few violated
constraints may lead to too many of outer iterations and increase the total cost of computa-
tion. As mentioned in [20], we can also take an idea of dropping some of the elements of S,
i.e., we can drop some of those constraints that are not active. In our implementation, we add
min{|S|, |S′|} violated constraints, which are among the first min{|S|, |S′|} largest values of the
violated constraints, into the constraint set at each iteration.

During the constraint generation of Algorithm 2, the desired stopping criterion of the whole
problem (defined in Section 4) is also satisfied if S′ = /0, which indicates that the constraint
generation algorithm can be terminated in finite iterations.

Based on the fact that y = 0 is the unique optimal solution of problem (2.2) if −b ≤ 0
holds, a natural choice of the initial value of y is the zero vector. In the implementation of
the CGA ADMM, we set the initial constraints set S = {i | bi < 0}. Furthermore, let J be the
set of nonzero column indices of AS with its complement set as J̄, we only need to consider the
variables yJ and yJ̄ = 0. Therefore, the actual number of variables related to each subproblem
is |J|, which may be less than n1 if |S| � n2. As the number of constraints at each iteration is
much less than n2, the computation cost of each iteration is lower than that of applying ADMM
to the original problem directly, and the running time of our algorithm will not grow too fast
when n grows, especially when the number of the active constraints is much less than n1. We
use the solution (y,u,v) of the previous iteration to warm start the next iteration, which reduces
the iteration number of the ADMM.

Now we give a brief summary of the efficiency of our algorithm. We have taken a deep
consideration of the special structure of the problem. The zero vector (a natural guess solution)
is used to generate a violated constraint set, which is also considered as the initial constraint
set. Although O(n3) cost is needed in the step of computing S′, numerical experiments show
that the number of the constraint generation iterations is usually small, hence the computing
cost is entirely acceptable. Since the constraint matrix is highly sparse, that is, each row has
only 3 nonzero values, the number of the variables related to the constraints, especially for
the first few iterations, may be less than the number of columns of the constraint matrix. The
values of the variables not related to the constraints are all zeros because of the special structure
of this problem. Furthermore, we can also apply the Sherman-Morrison-Woodbury formula
so that the dimension of the linear system of equations that needs to be solved is less than n1
when the number of the constraints is less than n1. Therefore, the cost of each iteration for the

892 B. JIANG, P. TANG, C. WANG, Y. WU

ADMM drops rapidly and the memory requirement is acceptable, which is demonstrated by the
numerical experiments in Section 4.

4. NUMERICAL EXPERIMENTS

In this section, we test numerical experiments for our algorithm. The experiments are imple-
mented on a Windows workstation (two 16-core, Intel Xeon E5-2667 @3.20GHz CPU, 64GB
RAM) with all the algorithms written in C++ language except the PROJECT AND FORGET
algorithm1, which is originally written in Julia language.

In the implementation of our algorithm CGA ADMM, we normalize each row of the con-
straint matrix A. Let Rp, Rd , Rc and Rg be the relative primal infeasibility, the relative dual
infeasibility, the relative complementarity and the relative gap, respectively, which are defined
as

Rp := max
{
‖Ay−ξ −b‖

1+‖ξ‖
,
‖Wy−η‖
1+‖η‖

}
, Rd :=

‖AT u+W T v‖
1+‖W T v‖

,

Rg :=
|pobj−dobj|

1+dobj
, Rc := max

{
‖ξ −Proxh(ξ +u)‖

1+‖ξ‖
,
‖η−Proxq(η + v)‖

1+‖η‖

}
with pobj and dobj as the primal and dual objective values, respectively. The relative KKT
residual is defined by θkkt := max{Rp,Rd,Rc}.

We adopt the relative KKT residual θkkt and the relative gap Rg to measure the accuracy of
our algorithm. For each iteration of the constraint generation algorithm, we stop the ADMM
with both θkkt and Rg of the inner subproblem being less than 10−3 or the number of the it-
erations reaching the maximum of 10000. The outer iteration of the constraint generation is
stopped if the relative KKT residual of the whole problem is less than 10−3. For the ADMM
without constrain generation, it is terminated if both the relative KKT residual θkkt < 10−3 and
the relative gap Rg < 10−3 or its number of iterations reaches the maximum of 10000. The
parameter ρ = 1.618.

In the numerical experiments of the `p (p = 1,∞) norm based metric nearness problem, we
first reformulate the problem to a linear programming problem and then compare our algorithm
with Dykstra’s projection method, the Gurobi software and the PROJECT AND FORGET al-
gorithm (p = 1). As for Dykstra’s projection method, we adopt the same stopping criterion as
that used in [11] with the same tolerance. We also use the parallelization technology mentioned
in [14] to improve the efficiency of the projection method. As the original version of Dyk-
stra’s projection method2 is written in Julia, we rewrite it in C++ and compare the efficiency
of both versions. In all of the following tables, we report the name of the dataset (Graph), the
number of vertices (|V |), the number of edges (|E|), the performing time (time) in the format
of hours:minutes:seconds and the objective function value (obj). For the CGA ADMM and
CGA Gurobi we also report the number of iterations of constraint generation (iter). The com-
parison between C++ and Julia is listed in Table 1. Table 1 shows that the C++ version of
Dykstra’s Projection method runs faster than the Julia version for almost all datasets. The paral-
lelization strategy of the C++ version differs from the Julia version. This difference may cause
extra iterations in some datasets, such as caGrQc, but in most cases it makes the algorithm more

1https://www.dropbox.com/sh/lq5nnhi4je2lh89/AABUUW7k5z3lXTSm8x1hhN1Da?dl=0
2https://github.com/nveldt/ParallelDykstras

AN EFFICIENT CGA ADMM FOR THE METRIC NEARNESS PROBLEM 893

TABLE 1. The performances of Dykstra’s
projection method written by Julia and
C++ for the `1 norm based metric near-
ness problem.

Graph |V | |E| time
Julia C++

minnesota 2640 3302 0:12:01 0:06:26
caGrQc 4158 13422 0:54:59 1:13:15
power 4941 6594 2:10:44 1:03:24
p2p-Gnutella08 6299 20776 8:19:28 3:11:34
caHepTh 8638 24806 30:50:28 14:25:46

efficient in each single loop. Thus in the following experiments when comparing with Dykstra’s
projection method, we use the C++ version and all of these algorithms are written in C++.

The Gurobi software is an efficient software package for solving linear programming prob-
lems. In the comparison, we apply the same strategy of constraint generation for the triangle
inequalities constraints as that used in our algorithm to improve the efficiency of the Gurobi
(CGA Gurobi), while the constraints related to the reformulations of the `1 or `∞ norm are
always in the constraint set. The iteration is stopped if the relative KKT residual of the corre-
sponding linear programming problem is less than 10−3. For each subproblem of the constraint
generation algorithm, we use the barrier algorithm of the Gurobi and set 10−3 for both the
tolerances BarConvTol and FeasibilityTol as the stop criterion for the Gurobi package. While
applying Gurobi without constraint generation, the corresponding parameters are set the same
as that used in the constraint generation version.

In the implementation of Dykstra’s projection method, we adopt the same stopping criterion
as that in [11], that is,

max
{
|pobj−dobj|
|dobj|

, max{Ay−b}
}
< 10−2.

Although the stopping criterion for Dykstra’s projection method seems stricter than that in our
algorithm, the accuracy is lower, which can be seen from the objective values listed in the
numerical experiments. The reason lies in that Dykstra’s projection method can only be applied
to solve an approximate problem with an additional proximal term for the `1 and `∞ norms
based metric nearness problems.

We implement the comparisons on some real world graph data sets from SuiteSparse Matrix
Collection [27] including collaboration networks, web-based graphs and others. The same ap-
proach as that used in [11] is adopted to generate the input dissimilarity matrix and the weight
matrix for our problem. For all the graphs, we remove the weights and directions of all edges
to ensure that they are undirected and unweighted.

4.1. Numerical experiments for the `1 norm based metric nearness problem. In this sec-
tion, we perform our numerical experiments for the `1 norm based metric nearness problem. We
compare our CGA ADMM algorithm with Dykstra’s projection method, the Gurobi software
and the PROJECT AND FORGET algorithm. We run the experiments of the PROJECT AND

894 B. JIANG, P. TANG, C. WANG, Y. WU

FORGET algorithm with the default parameters. All of the following experiments achieve the
specified accuracy requirements unless being out of memory.

In order to apply Dykstra’s projection method and Gurobi to solve the `1 norm based metric
nearness problem, we need to rewrite the problem as a linear programming problem. By intro-
ducing some slack variables, we first reformulate the `1 norm based metric nearness problem
(2.1) as the following form:

min
z∈R2n1

{
〈c,z〉

∣∣∣ Ãz≤ b̃
}
, (4.1)

where c is a column vector with c = [0n1; trivec(W)] and

Ã =

 A On2×n1

In1 −In1

−In1 −In1

 , b̃ =

 b
0n1

0n1

 .
The Lagrangian function of problem (4.1) takes the form

l(z;u) = 〈c,z〉+ 〈u, Ãz− b̃〉

and the related KKT condition is

ÃT u+ c = 0, u ∈R2n1+n2
+ (Ãz− b̃).

Then we can apply the constraint generation based algorithm with each subproblem solved
by the Gurobi package to obtain an approximate solution of the linear programming problem
(4.1). For each iteration of the constraint generation, we set uS̄ = 0. The constraint generation
algorithm is stopped if the relative KKT residual of problem (4.1)

max

 ‖ÃT u+ c‖
1+‖u‖+‖c‖

,
‖u−Π

R
2n1+n2
+

(u+ Ãz− b̃)‖

1+‖u‖+‖Ãz‖+‖b̃‖

< 10−3.

As for Dijkstra’s projection method, we need to add an extra proximal term to the objec-
tive function of problem (4.1) to get the corresponding quadratic programming problem in the
following form:

min
z∈R2n1

{
〈c,z〉+ 1

2γ
zTW̃ z

∣∣∣∣ Ãz≤ b̃
}
, (4.2)

where W̃ is a diagonal matrix defined as W̃ := Diag([trivec(W); trivec(W)]), which is the same
as that in [11]. Though it has been proved in [28] that there exists γ0 > 0 such that for all
γ > γ0 the optimal solution of problem (4.2) is also an optimal solution of problem (4.1) when
W̃ = I2n1 . However, it is unknown how to determine γ0 exactly for these problems and Dykstra’s
projection method converges more slowly when γ grows larger. In numerical experiments of
the `1 norm based metric nearness problem, we set γ = 1, which is the same as the setting in
[11].

As for the ADMM and Gurobi, we first compare them with their constraint generation ver-
sions CGA ADMM and CGA Gurobi for the `1 norm based metric nearness problem and the
results are listed in Table 2.

Table 2 demonstrates that the stopping criterion applied in the CGA ADMM is appropri-
ate to obtain an approximate solution of the problem with the whole constraints. The gaps of

AN EFFICIENT CGA ADMM FOR THE METRIC NEARNESS PROBLEM 895

TABLE 2. The performances of the ADMM,
CGA ADMM, Gurobi, CGA Gurobi for the `1 norm
based metric nearness problem.

Graph ADMM CGA ADMM Gurobi CGA Gurobi
(|V |, |E|) time obj time(iter) obj time obj time(iter) obj
jazz

0:03:12 2.46e+02 0:00:22(2) 2.46e+02 0:07:44 2.46e+02 0:01:02(2) 2.46e+02
(198,2742)
SmallW

0:06:37 7.89e+02 0:06:02(4) 7.88e+02 0:14:45 7.87e+02 0:05:49(4) 7.88e+02
(233,994)
celegansneural

0:09:01 7.15e+02 0:03:14(2) 7.15e+02 0:54:33 7.14e+02 0:10:50(2) 7.14e+02
(297,2148)
USAir97

0:13:13 7.33e+02 0:03:22(3) 7.33e+02 0:43:34 7.32e+02 0:11:11(3) 7.32e+02
(332,2126)

the objective values between ADMM and CGA ADMM, Gurobi and CGA Gurobi are small.
We can also see from Table 2 that both of the constraint generation versions are more effi-
cient. Therefore, in the following numerical experiments, we only adopt the CGA ADMM and
CGA Gurobi for further comparisons.

TABLE 3. The performances of Dykstra’s projection method,
CGA ADMM, CGA Gurobi and PROJECT AND FORGET for
the `1 norm based metric nearness problem.

Graph Dykstra CGA ADMM CGA Gurobi PROJECT AND FORGET
(|V |,|E|) time obj time(iter) obj time(iter) obj time(iter) obj
minnesota

0:06:26 1.01e+03 0:00:39(2) 9.53e+02 0:00:14(2) 9.54e+02 0:03:31(11) 1.11e+03
(2640,3302)
caGrQc

1:13:15 3.07e+03 0:08:42(1) 2.82e+03 out of memory 1:28:23(99) 4.04e+03
(4158,13422)
power

1:03:24 2.15e+03 0:01:39(1) 1.94e+03 0:01:03(1) 1.94e+03 0:39:30(26) 2.59e+03
(4941,6594)
caHepTh

14:25:46 7.39e+03 0:25:57(1) 6.97e+03 out of memory out of memory
(8638,24806)
caHepPh

34:26:56 1.39e+04 5:23:58(2) 1.39e+04 out of memory out of memory
(11204,117619)
caAstroPh

180:15:39 3.11e+04 6:01:23(1) 2.87e+04 out of memory out of memory
(17903,196972)

We perform the comparisons for several real data sets and list the results in Table 3. The
experiments show that the Gurobi package runs out of memory when the number of vertices is
large, especially larger than 6000. For Dykstra’s projection method, though it works well for
the data sets with n small, the running time grows quickly as n grows larger due to the O(n3)
cost of each iteration. For a given γ , the KKT condition for the original problem is unknown.
Though the stopping criteria for these algorithms have some differences, the function value
obtained by our algorithm is more accurate comparing with Dykstra’s projection method and
the PROJECT AND FORGET algorithm. And the PROJECT and FORGET algorithm does not
obtain the desired results for the data sets with the number of vertices larger than 8000 due to
the limitation of memory. For each data set, it is interesting that the constraint generation stops
after one or two iterations and the constraints involved in each iteration are much less than the
original problem, which may explain the high efficiency of our algorithm.

4.2. Numerical experiments for the `2 norm based metric nearness problem. In this sec-
tion we present the numerical experiments for the `2 norm based metric nearness problem. To

896 B. JIANG, P. TANG, C. WANG, Y. WU

obtain the same primal infeasibility level as that of Dykstra’s projection method, we add an
extra stopping criterion max{Ay−b}< 10−2 to the constraint generation method.

TABLE 4. The performances of the
ADMM, CGA ADMM for the `2 norm
based metric nearness problem.

Graph
ADMM CGA ADMM

time obj time(iter) obj
jazz 0:02:38 1.19e+01 0:00:26(2) 1.19e+01
SmallW 0:03:18 1.74e+01 0:00:44(2) 1.74e+01
celegansneural 0:24:08 1.73e+01 0:00:50(1) 1.73e+01
USAir97 0:07:56 1.80e+01 0:01:10(2) 1.80e+01

As shown in Table 4, the CGA ADMM is more efficient than the ADMM and therefore we
only list the results of the CGA ADMM for large scale data sets. We first square the objec-
tive function and reformulate it as a quadratic programming problem, then we apply Dykstra’s
projection method and Gurobi. All of the following experiments achieve the specified accuracy
requirements unless it runs out of memory.

We can see from Table 5 that the CGA ADMM can solve the `2 norm based metric nearness
problem efficiently. It can obtain a desired solution with the given accuracy and the number of
iterations of the constraint generation is less than 5. The constraint generation strategy and the
efficiency of the ADMM guarantee the high efficiency of our algorithm.

TABLE 5. The performances of Dykstra’s projection method,
CGA ADMM and CGA Gurobi for the `2 norm based metric
nearness problem.

Graph
Dykstra CGA ADMM CGA Gurobi

time obj time(iter) obj time(iter) obj
minnesota 0:01:24 1.90e+01 0:00:23(3) 1.90e+01 0:00:11(3) 1.89e+01
caGrQc 0:14:43 3.65e+01 0:02:56(3) 3.65e+01 out of memory
power 0:16:46 2.92e+01 0:01:54(3) 2.92e+01 0:01:16(3) 2.91e+01
caHepTh 2:48:32 5.68e+01 0:14:33(3) 5.68e+01 out of memory
caHepPh 8:12:45 8.35e+01 2:06:05(4) 8.32e+01 out of memory
caAstroPh 66:43:53 1.20e+02 3:37:07(3) 1.20e+02 out of memory

4.3. Numerical experiments for the `∞ norm based metric nearness problem. In this sec-
tion we present the numerical experiments for the `∞ norm based metric nearness problem. All
of the following experiments achieve the specified accuracy requirements unless being out of
memory.

In order to apply Dykstra’s projection method and Gurobi to solve the `∞ norm based metric
nearness problem, we first rewrite it as a linear programming problem. By introducing slack
variables, we can transform the `∞ norm based metric nearness problem as the following opti-
mization problem.

min
z∈Rn1+1

{
〈ĉ,z〉

∣∣∣ Âz≤ b̂
}
, (4.3)

AN EFFICIENT CGA ADMM FOR THE METRIC NEARNESS PROBLEM 897

where ĉ = [0n1;1] and

Â =

 A 0n2

Diag(trivec(W)) −1n1

−Diag(trivec(W)) −1n1

 , b̂ =

 b
0n1

0n1

 ,
and 1n1 is an n1-dimensional column vector with all elements 1.

Therefore, we can define the corresponding Lagrangian function and the relative KKT resid-
ual in a similar way to that of problem (4.1). The constraint generation algorithm can also be
applied with each subproblem solved by the Gurobi package. The stopping criterion is the same
as that used in the `1 norm based problem.

Similar to the approach for problem (4.1), an extra proximal term is added to the objective
function when we apply Dykstra’s projection method to solve (4.3). The corresponding problem
takes the following form

min
z∈Rn1+1

{
〈ĉ,z〉+ 1

2γ
zTŴ z

∣∣∣∣ Âz≤ b̂
}
, (4.4)

where Ŵ is a diagonal matrix defined as Ŵ := Diag([trivec(W);1]).

TABLE 6. The performances of the ADMM,
CGA ADMM, Gurobi, CGA Gurobi for the `∞ norm
based metric nearness problem.

Graph
ADMM CGA ADMM Gurobi CGA Gurobi

time obj time(iter) obj time obj time(iter) obj
jazz 0:23:02 7.52e-02 0:02:32(3) 7.53e-02 0:05:30 7.45e-02 0:03:03(3) 7.50e-02
SmallW 0:17:31 8.33e-02 0:01:58(2) 8.32e-02 0:08:41 8.29e-02 0:02:17(2) 8.31e-02
celegansneural 0:58:37 7.62e-02 0:08:03(2) 7.59e-02 0:23:43 7.57e-02 0:07:32(2) 7.60e-02
USAir97 0:53:35 8.36e-02 0:27:07(3) 8.35e-02 0:39:49 8.30e-02 0:14:21(3) 8.33e-02

We first test the efficiency of the constraint generation algorithm for the ADMM and Gurobi
in some small scale data sets. The results in Table 6 show that the constraint generation based
algorithms are much more efficient. Then in the following implementation, the constraint gen-
eration versions are used for further comparisons.

We implement the Gurobi package which is based on the same constraint generation strategy
of the `1 norm based metric nearness problem to solve the corresponding linear programming
problem with the related relative KKT residual small enough as the stopping criterion. Sim-
ilarly, an extra proximal term with a parameter γ is added to the objective function when we
apply Dykstra’s projection method. In order to get an appropriate value of parameter γ of the
corresponding quadratic programming problem so that the approximate optimal objective value
is not larger than 1.5 times of the actual value, we test a list of values of γ and obtain the cor-
responding objective values of problem (2.1) in some data sets. We report the objective value
obtained by the Gurobi package (Gurobi obj), γ , the objective value obtained by Dykstra’s pro-
jection method (obj), the ratio of these objective values (ratio), the number of iterations (iter)
and the running time (time) with the format of “seconds” for Dykstra’s projection method. The
results are listed in Table 7.

Table 7 shows that we need to choose a relatively larger value of γ (at least 500) so that the
objective value obtained by Dykstra’s projection method is relatively close to the actual optimal
value. However, the number of iterations grows rapidly when γ increasing and so does the time

898 B. JIANG, P. TANG, C. WANG, Y. WU

TABLE 7. The performances of Dykstra’s projec-
tion method for the `∞ norm based metric nearness
problem with different γ .

Graph Gurobi obj γ obj ratio iter time(s)

8.23e-02

1 7.00e-01 849.74% 55 9
Harvard500 10 5.77e-01 700.62% 115 19
|V | = 500 100 3.97e-01 482.19% 1555 257
|E| = 2043 200 3.20e-01 388.40% 3175 490

500 2.60e-01 316.23% 10560 1539

8.29e-02

1 3.02e-01 364.62% 40 43
email 10 2.59e-01 312.34% 165 174
|V | = 1133 100 2.02e-01 244.12% 1460 1537
|E| = 5451 200 1.76e-01 212.76% 4530 4678

500 1.44e-01 174.11% 15575 15863

TABLE 8. The performances of Dykstra’s projection method,
CGA ADMM and Gurobi for the `∞ norm based metric near-
ness problem.

Graph
Dykstra CGA ADMM CGA Gurobi

time per iter(s) estimated time time(iter) obj time(iter) obj
minnesota 3.71 10h 0:01:09(4) 8.33e-02 0:00:30(4) 8.31e-2
caGrQc 16.29 45h 1:16:11(4) 8.40e-02 out of memory
power 25.23 70h 0:01:43(1) 8.31e-02 0:00:38(1) 8.31e-2
caHepTh 158.87 441h 0:54:13(1) 8.42e-02 out of memory

cost, which limits the application of Dykstra’s projection method for the large scale `∞ norm
based metric nearness problem. In the following comparison, we set γ = 500. We first list
the time cost of one iteration (time per iter) of Dykstra’s projection method and the results are
shown in the second column of Table 8. Based on Table 7, although the actual value may be
larger than 10000, we assume that the total number of iterations is 10000 and list the estimated
time (estimated time) of Dykstra’s projection method.

The implementation results of our algorithm, Dykstra’s projection method and the CGA Gurobi
are listed in Table 8. The comparisons show that the Gurobi package runs out of memory when
the number of vertices is large, but our algorithm can solve the large scale `∞ norm based metric
nearness problem efficiently. The number of the iterations of the constraint generation is small
(not greater than 5) and the constraints involved in each iteration is much less than the origi-
nal problem. We only need to implement a few iterations of constraint generation, hence our
algorithm is very efficient. It seems that the `∞ norm based metric nearness problem is much
more difficult and challenging than the other two problems. As we know, it is the first time
that numerical implementations and experiments for the `∞ based metric nearness problem are
conducted with n greater than 104. The maximal memory requirement for the caAstroPh data is
about 20GB for the `1 and `2 norm based problems, and 50GB for the `∞ norm based problem.

AN EFFICIENT CGA ADMM FOR THE METRIC NEARNESS PROBLEM 899

5. CONCLUSION

In this paper, we introduced a constraint generation algorithm based ADMM, CGA ADMM
to solve the `p (p = 1,2,∞) norm based metric nearness problem. We developed a constraint
generation strategy which balances the time cost of each iteration and the number of the it-
erations to make it possible for solving large scale metric nearness problems efficiently. We
take full advantage of the special structure of the problem and make the memory requirement
acceptable. Several numerical experiments on real data sets were implemented. The results
demonstrate that our algorithm is much more efficient than the current state-of-the-art algo-
rithms.

Acknowledgments
Chengjing Wang’s work was supported in part by the National Natural Science Foundation of
China (No. U21A20169) and Zhejiang Provincial Natural Science Foundation of China (Grant
No. LTGY23H240002).

REFERENCES

[1] S. Baraty, A. S. Dan, C. Zara, The impact of triangular inequality violations on medoid-based clustering, In:
Foundations of Intelligent Systems-19th International Symposium, Warsaw, 2011.

[2] F. Wang, J. M. Sun, Survey on distance metric learning and dimensionality reduction in data mining, Data
Mining and Knowledge Discovery, 29 (2015), 534–564.

[3] I.S. Dhillon, S. Sra, J.A Tropp, The metric nearness problems with applications, Department of Computer
Sciences Technical Report TR-03-23, The University of Texas at Austin, 2003.

[4] A. C Gilbert, L. Jain, If it ain’t broke, don’t fix it: Sparse metric repai, In: 2017 55th Annual Allerton
Conference on Communication, Control, and Computing (Allerton), 2017.

[5] C. L. Fan, B. Raichel, G. V. Buskirk, Metric violation distance: Hardness and approximation, Algorithmica,
84 (2022), 1441-1465.

[6] C. L. Fan, A. C. Gilbert, B. Raichel, R. Sonthalia, G. V. Buskirk, Generalized metric repair on graphs, Leibniz
International Proceedings in Informatics, LIPIcs, 2020. DOI: 10.4230/LIPIcs.SWAT.2020.25

[7] V. Cohen-Addad, D. Das, E. Kipouridis, N. Parotsidis, M. Thorup, Fitting distances by tree metrics mini-
mizing the total error within a constant factor, In: 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 468-479, 2022.

[8] L. L. Cavalli-Sforza, A. W. F. Edwards, Phylogenetic analysis. models and estimation procedures, The Amer-
ican Journal of Human Genetics, 19 (1967), 233-257.

[9] N.J. Higham, Matrix Nearness Problems and Applications, In: M.J.C. Gover, S. Barnett, (Ed.), Applications
of Matrix Theory, Oxford University Press, Oxford, 1989.

[10] N. Bansal, A. Blum, S. Chawla, Correlation clustering, Machine Learning, 56 (2004), 89-113.
[11] N. Veldt, D.F. Gleich, A. Wirth, J. Saunderson, Metric-constrained optimization for graph clustering algo-

rithms, SIAM J. Math. Data Sci. 1 (2019), 333-355.
[12] S. Sra, J. Tropp, I.S. Dhillon, Triangle fixing algorithms for the metric nearness problem, Advances in Neural

Information Processing Systems, 17 (2005), 361-368.
[13] J. Brickell, I.S. Dhillon, S. Sra, J.A. Tropp, The metric nearness problem, SIAM J. Matrix Anal. Appl. 30

(2008), 375-396.
[14] C. Ruggles, N. Veldt, D. F Gleich, A parallel projection method for metric constrained optimization, In: 2020

Proceedings of the SIAM Workshop on Combinatorial Scientific Computing, pp. 43–53, SIAM, 2020.
[15] R. Escalante, M. Raydan, Alternating Projection Methods, SIAM, Philadelphia, PA, 2011.
[16] R. Sonthalia, A.C. Gilbert, Project and forget: Solving large-scale metric constrained problems, arXiv

preprint arXiv:2005.03853, 2020.

900 B. JIANG, P. TANG, C. WANG, Y. WU

[17] D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element
approximation, Comput. Math. Appl. 2 (1976), 17-40.

[18] R. Glowinski, Lectures on Numerical Methods for Non-Linear Variational Problems, Tata Institute of Funda-
mental Research 1980, Springer, Berlin, 1980.

[19] J. Eckstein, W. Yao, Understanding the convergence of the alternating direction method of multipliers: The-
oretical and computational perspectives, Pacific J. Optim. 11 (2015), 619-644.

[20] D. Bertsimas, J. N. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific Belmont, MA, 1997.
[21] M. X. Lin, D. F. Sun, K.C. Toh, An augmented lagrangian method with constraint generation for shape-

constrained convex regression problems, Math. Program. Comput. 14 (2022), 223–270.
[22] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
[23] M. Fornasier, H. Rauhut, Recovery algorithms for vector-valued data with joint sparsity constraints, SIAM J.

Numer. Anal. 46 (2008), 577-613.
[24] G. Golub, C. F. Van Loan, Matrix Computationsm, 3nd Edition, Johns Hopkins University Press, Baltimore,

MD, 1996.
[25] R. Glowinski, A, Marroco, Sur l’approximation, par éléments finis d’ordre un, et la résolution, par

pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires, Revue française d’automatique,
informatique, recherche opérationnelle. Analyse numérique, 9 (1975), 41-76.

[26] L. Chen, D. F. Sun, K.-C. Toh, An efficient inexact symmetric gauss-seidel based majorized admm for high-
dimensional convex composite conic programming, Math. Program. 161 (2017), 237-270.

[27] T. A. Davis, Y. Hu, The university of florida sparse matrix collection, ACM Trans. Math. Softw. 38 (2011),
1-25.

[28] O. L. Mangasarian, Normal solutions of linear programs, In: Mathematical Programming at Oberwolfach II,
Mathematical Programming Studies 22, pp. 206-216. Springer, Berlin, Heidelberg, 1984.

AN EFFICIENT CGA ADMM FOR THE METRIC NEARNESS PROBLEM 901

APPENDIX

A. PROOF OF THEOREM 3.1

The proof of Theorem 3.1 is a special case of that in [26], we give a brief proof for complete-
ness.

Proof. To prove the result, we rewrite primal problem (2.2) as the following form

min
ζ∈Rn1+n2

y∈Rn1

H(ζ)+F(y) (A.1)

s.t. A ζ +By = c,

with ζ = (ξ ,η), H(ζ) = h(ξ)+q(η), F(y) = 0,

A =

[
−In2 On2×n1

On1×n2 −In1

]
, B =

[
A
W

]
, c =

[
b
0n1

]
,

and On2×n1 ∈Rn2×n1 a zero matrix and 0n1 ∈Rn1 a zero vector.
Due to the assumption that all elements of the weight matrix W are positive, we can easily

obtain that A ∗A and B∗B are positive definite. It follows from Theorem 5.1 of [26] that
{(yk,ξ k,ηk)} converges to an optimal solution of primal problem (2.2) and {(uk,vk)} converges
to an optimal solution of dual problem (2.3). �

B. PROOF OF THEOREM 3.2

In this section, we present a proof for Theorem 3.2 in order to be self-contained. Although
both the theorem and the proof can be regarded as a special case of those in [26], we deal with
a special problem in this paper, thus we can have an individualized estimation of the bound.
Denote R1(ξ ,u) := ∂h(ξ)−u, R2(η ,v) := ∂q(η)−v, R3(u,v) := AT u+W T v, R4(ξ ,y) := Ay−
ξ − b, R5(η ,y) := Wy−η . Let τ = (1+ρ/min{1+ρ,1+ρ−1})/2, τ̂ = 1− τ min{ρ,ρ−1},
ι = min{1,1−ρ +ρ−1}τ − (1− τ)ρ and E := ∑

∞
k=0 εk, E ′ := ∑

∞
k=0(ε

k)2. For x,y ∈Rn and
a self-adjoint positive semidefinite matrix M of order n, define 〈x,y〉M := 〈x,My〉 and ‖x‖M :=√
〈x,Mx〉= ‖M 1

2 x‖.

Lemma B.1. Suppose the same assumption as that of Theorem 3.1 holds. Let {(ξ k,ηk,yk,uk,vk)}
be the sequence generated by the ADMM and (ξ̄ , η̄ , ȳ, ū, v̄) be a solution of the corresponding
KKT system. Then, for k ≥ 1,

2τ〈dk−dk−1,yk− yk+1〉−2〈dk,yk+1− ȳ〉+ (1− τ)σ

2
(‖ξ k−ξ

k+1‖2 +‖ηk−η
k+1‖2)

+ τ min{ρ,1+ρ−ρ
2}‖yk− yk+1‖2

M + ισ(‖R4(ξ
k+1,yk+1)‖2 +‖R5(η

k+1,yk+1)‖2)

≤ ϕk(ξ̄ , η̄ , ū, v̄)−ϕk+1(ξ̄ , η̄ , ū, v̄),

where

ϕk(ξ ,η ,u,v) :=
1

ρσ
(‖u−uk‖2 +‖v− vk‖2)+σ(‖R4(ξ ,yk)‖2 +‖R5(η ,yk)‖2)

+τ̂σ(‖R4(ξ
k,yk)‖2 +‖R5(η

k,yk)‖2).

902 B. JIANG, P. TANG, C. WANG, Y. WU

Proof. From the optimality condition of the subproblem for the ADMM, we know

0 ∈ ∂h(ξ k+1)−σ(Ayk−ξ
k+1−b+σ

−1uk), (B.1)

0 ∈ ∂q(ηk+1)−σ(Wyk−η
k+1 +σ

−1vk), (B.2)

dk = σW T (Wyk+1−η
k+1 +σ

−1vk)+σAT (Ayk+1−ξ
k+1−b+σ

−1uk).

Hence

〈dk−AT (uk +σR4(ξ
k+1,yk+1))−W T (vk +σR5(η

k+1,yk+1)),yk+1− ȳ〉= 0. (B.3)

By (B.1), (B.2) and the convexity of h and q, we have

h(ξ̄)+ 〈uk +σR4(ξ
k+1,yk+1)+σA(yk− yk+1),ξ k+1− ξ̄ 〉 ≥ h(ξ k+1), (B.4)

q(η̄)+ 〈vk +σR5(η
k+1,yk+1)+σW (yk− yk+1),ηk+1− η̄〉 ≥ q(ηk+1). (B.5)

Furthermore, the optimal solution (ξ̄ , η̄ , ȳ, ū, v̄) satisfies

0 ∈ ∂h(ξ̄)− ū, 0 ∈ ∂q(η̄)− v̄, AT ū+W T v̄ = 0, Aȳ− ξ̄ −b = 0, Wȳ− η̄ = 0.

Therefore, by the convexity of h and q we obtain

h(ξ k+1)≥ h(ξ̄)+ 〈ū,ξ k+1− ξ̄ 〉, (B.6)

q(ηk+1)≥ g(η̄)+ 〈v̄,ηk+1− η̄〉, (B.7)

〈AT ū+W T v̄,yk+1− ȳ〉= 0. (B.8)

Combing the above results (B.3)–(B.8), we obtain

〈uk− ū+σR4(ξ
k+1,yk+1),ξ k+1− ξ̄ 〉+ 〈vk− v̄+σR5(η

k+1,yk+1),ηk+1− η̄〉

+σ〈AT (ξ k+1− ξ̄)+W T (ηk+1− η̄),yk− yk+1〉 ≥ 0, (B.9)

〈dk,yk+1− ȳ〉−〈uk− ū+σR4(ξ
k+1,yk+1),Ayk+1−Aȳ〉

−〈vk− v̄+σR5(η
k+1,yk+1),Wyk+1−Wȳ〉= 0. (B.10)

By adding (B.9) with (B.10), it follows that

〈dk,yk+1− ȳ〉−〈uk− ū+σR4(ξ
k+1,yk+1),R4(ξ

k+1,yk+1)〉

−〈vk− v̄+σR5(η
k+1,yk+1),R5(η

k+1,yk+1)〉+σ〈A(yk− yk+1),ξ k+1− ξ̄ 〉

+σ〈W (yk− yk+1),ηk+1− η̄〉 ≥ 0. (B.11)

AN EFFICIENT CGA ADMM FOR THE METRIC NEARNESS PROBLEM 903

Since

〈A(yk− yk+1,ξ k+1− ξ̄)〉

= 〈A(yk− ȳ)−A(yk+1− ȳ),A(yk+1− ȳ)−R4(ξ
k+1,yk+1)〉

=
1
2

(
‖A(yk− ȳ)‖2−‖A(yk− ȳ)−A(yk+1− ȳ)‖2−‖A(yk+1− ȳ)‖2

)
−〈A(yk− ȳ)−A(yk+1− ȳ),R4(ξ

k+1,yk+1)〉

=
1
2

(
‖A(yk− ȳ)‖2−‖A(yk+1− ȳ)‖2 +‖R4(ξ

k+1,yk+1)‖2−|R4(ξ
k+1,yk)‖2

)
,

〈W (yk− yk+1,ηk+1− η̄)〉

= 〈W (yk− ȳ)−W (yk+1− ȳ),W (yk+1− ȳ)−R5(η
k+1,yk+1)〉

=
1
2

(
‖W (yk− ȳ)‖2−‖W (yk− ȳ)−W (yk+1− ȳ)‖2−‖W (yk+1− ȳ)‖2

)
−〈W (yk− ȳ)−W (yk+1− ȳ),R5(η

k+1,yk+1)〉

=
1
2

(
‖W (yk− ȳ)‖2−‖W (yk+1− ȳ)‖2 +‖R5(η

k+1,yk+1)‖2−‖R5(η
k+1,yk)‖2

)
,

〈uk− ū+σR4(ξ
k+1,yk+1),R4(ξ

k+1,yk+1)〉

=
1

ρσ
〈(uk+1− ū)− (uk− ū),uk− ū〉+σ‖R4(ξ

k+1,yk+1)‖2

=
1

2ρσ

(
‖uk+1− ū‖2−‖uk+1−uk‖2−‖uk− ū‖2

)
+σ‖R4(ξ

k+1,yk+1)‖2

=
1

2ρσ

(
‖uk+1− ū‖2−‖uk− ū‖2

)
+

(2−ρ)σ

2
‖R4(ξ

k+1,yk+1)‖2

and

〈vk− v̄+σR5(η
k+1,yk+1),R5(η

k+1,yk+1)〉

=
1

ρσ
〈(vk+1− v̄)− (vk− v̄),vk− v̄〉+σ‖R5(η

k+1,yk+1)‖2

=
1

2ρσ

(
‖vk+1− v̄‖2−‖vk+1− vk‖2−‖vk− v̄‖2

)
+σ‖R5(η

k+1,yk+1)‖2

=
1

2ρσ

(
‖vk+1− v̄‖2−‖vk− v̄‖2

)
+

(2−ρ)σ

2
‖R5(η

k+1,yk+1)‖2,

we obtain from (B.11) that

〈dk,yk+1− ȳ〉+ 1
2ρσ

(
‖uk− ū‖2−‖uk+1− ū‖2 +‖vk− v̄‖2−‖vk+1− v̄‖2

)
+

σ

2

(
‖A(yk− ȳ)‖2−‖A(yk+1− ȳ)‖2 +‖W (yk− ȳ)‖2−‖W (yk+1− ȳ)‖2

)
≥ σ

2

(
‖R4(ξ

k+1,yk)‖2 +‖R5(η
k+1,yk)‖2

)
+

(1−ρ)σ

2

(
‖R4(ξ

k+1,yk+1)‖2 +‖R5(η
k+1,yk+1)‖2

)
. (B.12)

904 B. JIANG, P. TANG, C. WANG, Y. WU

Similar to Lemma 5.2 of [26], we can prove that

(1−ρ)σ(‖R4(ξ
k+1,yk+1)‖2 +‖R5(η

k+1,yk+1)‖2)

+σ(‖R4(ξ
k+1,yk)‖2 +‖R5(η

k+1,yk)‖2)+2τ

〈
dk−1−dk,yk− yk+1

〉
≥ τ̂σ(‖R4(ξ

k+1,yk+1)‖2−‖R4(ξ
k,yk)‖2 +‖R5(η

k+1,yk+1)‖2−‖R5(η
k,yk)‖2)

+ ισ(‖R4(ξ
k+1,yk+1)‖2 +‖R5(η

k+1,yk+1)‖2)

+
(1− τ)σ

2
(‖ξ k−ξ

k+1‖2 +‖ηk−η
k+1‖2)+min{ρ,1+ρ−ρ

2}τ‖yk− yk+1‖2
M . (B.13)

Noticing that

R4(ξ̄ ,y) = A(y− ȳ), R5(η̄ ,y) =W (y− ȳ),

and applying (B.13) to (B.12), the desired result follows. �

Now we give the proof of Theorem 3.2.

Proof. In order to derive the desired result, we first give an upper bound for
∞

∑
k=1

{(1− τ)σ

2
(‖ξ k−ξ

k+1‖2 +‖ηk−η
k+1‖2)+ τ min{ρ,1+ρ−ρ

2}‖yk− yk+1‖2
M

+ ισ(‖R4(ξ
k+1,yk+1)‖2 +‖R5(η

k+1,yk+1)‖2)
}
.

Based on the assumption of Theorem 3.1, the solution set of the KKT system is bounded.
Therefore the sequence {ϕk(ξ̄ , η̄ , ū, v̄)} is bounded and there exists a constant Λ > 0 such that
ϕk(ξ̄ , η̄ , ū, v̄)≤ Λ for all k ≥ 1. Since σ(‖R4(ξ̄ ,yk)‖2 +‖R5(η̄ ,yk)‖2) = ‖yk− ȳ‖2

M , we obtain

1
ρσ

(‖uk− ū‖2 +‖vk− v̄‖2)+‖yk− ȳ‖2
M + τ̂σ(‖R4(ξ

k,yk)‖2 +‖R5(η
k,yk)‖2)≤ Λ.

Furthermore, we have

‖yk− ȳ‖M ≤
√

Λ, ‖yk− ȳ‖ ≤ ‖M− 1
2‖
√

Λ, ‖yk− yk+1‖ ≤ 2‖M− 1
2‖
√

Λ.

From the fact that ‖dk‖ ≤ ‖M 1
2‖εk, we obtain ‖dk−dk−1‖ ≤ ‖M 1

2‖(εk +εk−1). Therefore by
Lemma B.1, we derive

∞

∑
k=1

{(1− τ)σ

2

(
‖ξ k−ξ

k+1‖2 +‖ηk−η
k+1‖2

)
+ τ min{ρ,1+ρ−ρ

2}‖yk− yk+1‖2
M

+ ισ

(
‖R4(ξ

k+1,yk+1)‖2 +‖R5(η
k+1,yk+1)‖2

)}
≤

∞

∑
k=1

(ϕk(ξ̄ , η̄ , ū, v̄)−ϕk+1(ξ̄ , η̄ , ū, v̄))+
∞

∑
k=1

{
2〈dk,yk+1− ȳ〉−2τ〈dk−dk−1,yk− yk+1〉

}
(B.14)

≤ ϕ1(ξ̄ , η̄ , ū, v̄)+2‖M
1
2‖
√

Λ

∞

∑
k=1

ε
k +4τ‖M− 1

2‖‖M
1
2‖
√

Λ

∞

∑
k=1

(εk + ε
k−1)

≤ ϕ1(ξ̄ , η̄ , ū, v̄)+2‖M
1
2‖
√

Λ(1+4τ‖M− 1
2‖)E := κ1. (B.15)

AN EFFICIENT CGA ADMM FOR THE METRIC NEARNESS PROBLEM 905

From the optimality conditions of the subproblem for the ADMM, we know

0 ∈ ∂h(ξ k+1)−σ(Ayk−ξ
k+1−b+σ

−1uk),

0 ∈ ∂q(ηk+1)−σ(Wyk−η
k+1 +σ

−1vk),

dk = σW T (Wyk+1−η
k+1 +σ

−1vk)+σAT (Ayk+1−ξ
k+1−b+σ

−1uk).

and it follows that

dist2(0,R1(ξ
k+1,uk+1))≤ ‖uk+1−σ(Ayk−ξ

k+1−b+σ
−1uk)‖2

= ‖ρσ(Ayk+1−ξ
k+1−b)−σ(Ayk−ξ

k−b)−σ(ξ k−ξ
k+1)‖2

= σ
2‖(ξ k−ξ

k+1)−ρR4(ξ
k+1,yk+1)+R4(ξ

k,yk))‖2

≤ 3σ
2
(
‖ξ k−ξ

k+1‖2 +ρ
2‖R4(ξ

k+1,yk+1)‖2 +‖R4(ξ
k,yk)‖2

)
.

(B.16)

Similarly, we have

dist2(0,R2(η
k+1,vk+1))≤ 3σ

2
(
‖ηk−η

k+1‖2 +ρ
2‖R5(η

k+1,yk+1)‖2 +‖R5(η
k,yk)‖2

)
(B.17)

and

‖R3(uk+1,vk+1)‖2

= ‖σAT (ρR4(ξ
k+1,yk+1)−R4(ξ

k,yk)− (ξ k−ξ
k+1))

+σW T (ρR5(η
k+1,yk+1)−R5(η

k,yk)− (ηk−η
k+1))+M (yk− yk+1)+dk‖2

≤ 8‖M ‖(‖M− 1
2 dk‖2 +‖yk− yk+1‖2

M)

+8σ
2‖M ‖(‖M− 1

2 AT‖2 +‖M− 1
2W T‖2)(‖ξ k−ξ

k+1‖2 +‖ηk−η
k+1‖2)

+8σ
2‖M ‖(‖M− 1

2 AT‖2 +‖M− 1
2W T‖2)(ρ2‖R4(ξ

k+1,yk+1)‖2 +‖R4(ξ
k,yk)‖2

+ρ
2‖R5(η

k+1,yk+1)‖2 +‖R5(η
k,yk)‖2). (B.18)

Combing (B.15)–(B.18) and ‖M− 1
2 dk‖ ≤ εk, we obtain

∞

∑
k=1

r(ξ k+1,ηk+1,yk+1,uk+1,vk+1)

≤ κ2

∞

∑
k=1

{(1− τ)σ

2

(
‖ξ k−ξ

k+1‖2 +‖ηk−η
k+1‖2

)
+ τ min{ρ,1+ρ−ρ

2}‖yk− yk+1‖2
M

+ισ

(
‖R4(ξ

k+1,yk+1)‖2 +‖R5(η
k+1,yk+1)‖2

)}
+8‖M ‖

∞

∑
k=1

(εk)2

+(3σ
2 +8σ

2‖M ‖(‖M− 1
2 AT‖2 +‖M− 1

2W T‖2))(‖R4(ξ
1,y1)‖2 +‖R5(η

1,y1)‖2)

≤ κ := (3σ
2 +8σ

2‖M ‖(‖M− 1
2 AT‖2 +‖M− 1

2W T‖2))(‖R4(ξ
1,y1)‖2 +‖R5(η

1,y1)‖2)

+κ1κ2 +8‖M ‖E ′,

906 B. JIANG, P. TANG, C. WANG, Y. WU

where

κ2 := max
{

8‖M ‖
τ min{ρ,1+ρ−ρ2}

,
2σ

1− τ
(3+8‖M ‖(‖M− 1

2 AT‖2 +‖M− 1
2W T‖2)),

σ2(3+8‖M ‖(‖M− 1
2 AT‖2 +‖M− 1

2W T‖2))(1+ρ2)+1
ισ

}
.

Due to Lemma 6.1 of [26], the desired result follows. �

	1. Introduction
	2. Preliminaries
	3. The Constraint Generation Based ADMM
	3.1. The ADMM for solving problem (2.2)
	3.2. The constraint generation algorithm

	4. Numerical Experiments
	4.1. Numerical experiments for the 1 norm based metric nearness problem
	4.2. Numerical experiments for the 2 norm based metric nearness problem
	4.3. Numerical experiments for the norm based metric nearness problem

	5. Conclusion
	References
	Appendix
	A. Proof of Theorem 3.1
	B. Proof of Theorem 3.2

