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AN EMBEDDING RESULT FOR A CLASS OF EPIGRAPHICAL SETS AND
APPLICATIONS TO SET OPTIMIZATION
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Abstract. We extend to the case of a class of unbounded generalized convex sets, the famous embedding
result of Radstrom. The main motivation for this is to have a new look to epigraphical set-valued maps
that are usually involved in set optimization problem. From this point of view, we study several aspects
concerning the order of the embedding space induced by the order of the output space of objective
mappings. Next, we associate to a set-valued map, an embedding single valued map, and we compare
two types of efficiency related to them. Then, some new optimality conditions for set optimization
problems are obtained.
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1. INTRODUCTION

The aim of this paper is to put in a wider perspective some results from [6] and [10] deal-
ing with conic cancellation laws and generalized differentiation calculus for set-valued maps
applied to set optimization problems. According to this statement, this work is twofold. On
the one hand, we extend the celebrated embedding result of Radstrom (see, e.g., [18, 19]),
and on the other hand, we apply this extension to set optimization problems (which actually
is the primary motivation of it). Notice that the extension of the Radstrém’s embedding result
to unbounded sets was studied in many papers; see, e.g., [11, 12] and the references therein.
Therefore, the proposed novelties in this work refer to one theoretical result that allows to see a
set-valued map with values in a specific class of sets as a function into a normed vector space.
Notice as well that taking sets with special structures in order to devise optimality conditions in
set optimization is a widely used technique in the literature dedicated to this topic (see [22] and
the references cited therein). Concerning the construction of the embedding space, we mention
that we follow the classical procedure from the references in this papers, but using, as the main
tool, an extension of the Radstrom cancellation law to an epigraphical set in partially ordered
normed vector spaces (see [6, 8]), while the emphasis will be on the partial order this space
inherits from the original one. Our investigation of the partial order structure on the embedding
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space is instrumental for obtaining a new view on set optimization problems, since we are in po-
sition to see a set-valued map as a single-valued mapping taking values in the embedding space
(see [3]) and its minima from set optimization perspective as Pareto minima of the associated
vectorial function. This association seems to be fruitful, allowing to transfer Pareto optimality
conditions to set optimization problems.

The paper is organized into a preliminary section, two main sections and some concluding
remarks, as we briefly describe below. The second section deals with the main notation, pre-
liminary results, and several topological facts which are needed in the sections to come. The
first main section, Section 3, describes the steps that allow us, via an appropriate cancellation
law, to extend the embedding result of Radstrom ([18, 19]) to our new setting that considers a
class of unbounded, generalized convex sets. In addition to the completion of the usual stages
of this construction, we put a special emphasis on the induced partial order of the embedding
space, as a main instrument to treat set optimization problems. The fourth section is divided into
two subsections. The first relates a set-valued map with values having appropriate properties
to a single valued map by the embedding procedure of the preceding section. Several topolog-
ical properties of the two mappings are paralleled, showing interesting similarities which are
illustrated by a theoretical example concerning equilibrium problems. Moreover, several dif-
ferentiability concepts of the two mappings in relation to some results in literature are explored
as well. The second subsection deals with set optimization problems. It is shown that an usual
type of efficiency becomes the classical Pareto efficiency for a problem driven by the embedded
single valued map and this gives us the possibility to transfer some primal space necessary op-
timality conditions for Pareto optimality to set optimization problems. Finally, the last section
concludes the paper with some ideas and difficulties to overcome in a future research continuing
this paper.

2. PRELIMINARIES

In what follows, X is a normed vector space over the field of real numbers. The symbols By
and Dy stand for the open and closed unit ball of X, respectively. For A,B C X and A € R, we
denote by A + B the Minkowski sum of A and B, thatis, A+B ={a+b|a € A,b € B} and by
AA the set {Aa|a € A}. The symbols cl, int, bd, diam, conv are for the closure, the interior,
the boundary, the diameter, and the convex hull of a set, respectively.

The following useful relation is needed in the sequel

cl(A+B) =cl(clA+B). (2.1)
Another celebrated topological fact that is needed later is
ACclB < Ve >0, ACB+¢€By.

We recall that if A, B are nonempty subsets of X, the excess from A to Bis ¢(A,B) =sup,., d(x,B),
where d(x,B) = inf{||x—b|| | b € B}. The Pompeiu-Hausdorff distance between A and B is
h(A,B) = max{e(A,B),e(B,A)}. Notice that h(A,B) is not necessarily a finite number in the
absence of some boundedness assumptions on the involved sets. It is well-known that

e(A,B) =inf{oo >0|ACB+aBx}=inf{a >0|ACB+aDx},

and
e(A,B) = e(clA,B) =e(A,clB) = e(clA,clB).
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We also use the notation d (A,B) = inf,c4d (a,B) . Let K C X be a closed convex and pointed
cone. We use the following notions for a nonempty set A C X : A is called K-bounded if there
exists a bounded set M C X such that A C M + K and A is called K-convex if A + K is convex.

Remark 2.1. Observe that if A is K-bounded, then it is not necessary to exist a bounded set N
for which A + K = N + K. One can easily see that on the example of the epigraph (in R?) of the
function f: (0,00) — R, f(x) =x ! when K = R2.

Furthermore, set A is called K-compact (or compact with respect to the cone K) if from any
cover of A with the sets of the form U + K, where U is open, one can extract a finite subcover
of it.

The next result is a conic version of Radstrom cancellation lemma from [7, Lemma 3.1].

Lemma 2.1. Let A, B,C C X be nonempty sets such that C is K-bounded and A+C C c1(C+B+K).
Then A C clconv(B+K).

This result is the cornerstone of the construction we propose in this work. We denote
€ Pk (X)={A C X | Aisnonempty, K —bounded and K — convex }
and
Cx (X)={cl(A+K)|A€CBx(X)}.

In order to simplify the notation, we put A := cl (A + K) for any A € €%k (X). So, every time
when we use tilde for a set, we automatically understand that the respective set is in € Bk (X).
Some easy remarks are in order for further consideration. Observe first that A = A + K. Indeed,
one finds from (2.1) that

A+KDA=cl(A+K)=cl(A+K+K)=cl(cl(A+K)+K) DA+K. (2.2)

Secondly, if intK # @, one has A = cl (A +intKU{0}) = cl(A +intK), due to (2.1) and the
convexity of K,

cl(A+intK) = cl (A +clintK) = A. (2.3)
Thirdly, observe that if intK # 0, then
int(A+K)=A+intK. (2.4)

The right-hand side is clearly included in the left-hand side. Take u € int(A + K) and let € > 0

be the radius of the open ball around u included in this set. Then €éBy C A+ K — u. Take

v € éBy N —intK. Then there exists a € A such that v € a —u + K, which implies that
a—ucv—KC —intKk — K = —intK.

We deduce that u € a+intK C A+ intK.

3. AN EMBEDDING PROCEDURE FOR EPIGRAPHICAL SETS

Now, we aim at embedding of % (X) to a normed vector space, by extending to our setting
the construction from [3, 18, 19] and [4, Chapter IX] (see also [16] and [13]). Notice that the
trivial case K = {0} reduces to the situation considered in these works.

For two nonempty K-bounded and K-convex sets A and B, we introduce a sum operation by
A®B:=cl(A+B+K). Then Lemma 2.1 yields the following implication:

ApCcBaC=ACB,
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and, consequently,
AepC=BaC=A=8.
Now, it is easy to see that (6 (X), ) is a commutative monoid, with cancellation law, the neu-

tral element being K = ¢l ({0} + K) € @k (X). We define, as an external operation on 6% (X),
the multiplication with nonnegative scalars, denoted ©, as follows:

K. ifA=0
AA, if A > 0.
Moreover, for any A,B € ¢k (X) and any A1, > 0, one readily gets 4, © (A®B) =1 ©A®

M @B, (l1 —i—lz) @A =M @A@/FLZ @A, MO (Az @A) = (;L]/lz) @A, 1@A =A.
Now, we observe that the Pompeiu-Hausdorff distance on €%k (X) has some useful properties.

A@A::ﬁ:{

Lemma 3.1. Consider A,B,C,D € € (X) and A,y > 0. Then:
(i) h (A,B) € R;

(ii) h(A©A,A®B) = Ah(A,B);
(iv)h(AC,BoD) <h(A,B)+h(C,D).
(v) If, additionally, there is a bounded set M for whichA+K =M +K, then h (7L OA, y@ﬁ) <
|A —y|diamM.
Proof. (i) We denote by N a bounded set for which A C N + K. Taking b € B, we have
e(A+K,B+K)=sup{d(a+c,B+K)|acA,ceK}
<sup{d(a+c,B+K)|acN,ceK}
<sup{d(a+c,b+K)|aeN,c€K}
<sup{|la—b| |a €N} < oo
So, the conclusion is true (see also [8, Remark 3.1]).
(11) It is enough to prove that e (A oC,B @C) =e (A,E) . Observe that
e(A,B) =e(cl(A+K),cl(B+K))=e(A+K,B+K) =e¢(A,B+K)
and
e(AeC,BoC) =e(A+C,B+C+K).
But, as mentioned,
e(A,B+K)=inf{oo >0|A CB+aBx+K},
while
e(A+C,B+K+C)=inf{a >0|A+CCB+aBx+K+C}.

So, the inequality e (A+C,B+K+C) <e(A,B+K) isclear. If A+C C B+ oBx + K +C then,
by Lemma 2.1, A C cl(B4+aBx +K) C B+ (a+€)Bx + K for any € > 0. Thus we have the
reverse inequality as well.

(ii1), (iv), and (v) In view of the definitions of the operations, these are obvious. ]

Remark 3.1. Observe that the item (iv) from the above proposition gives the continuity of
@ : Gk (X) X €k (X) — Gk (X) when on @k (X) one takes the topology given by . Moreover
(v) gives the continuity (for the obvious topologies) of ® : [0,00) x €2 (X) — €2 (X), where
%2 (X) is the class of sets in €k (X) with the property mentioned at (v).
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The last preparatory step is to define a partial order on 6 (X) . This is designed to fulfill two
objectives: to extend the partial order from X given by the cone K and to be in accordance to
the set optimization problems we are gomg to investigate later. So, the natural choice for such
an order, denoted by <, is A < B <> B C A. Notice that if A, B are K-closed, then this coincides
with the jg order relatlon between sets defined by Kuroiwa (see [13] and the next section for
further details). Indeed, let us observe that the first objective is achieved: let x,y € X such that
x 1s less than y with respect to K, that is, y —x € K. This is equivalent to y+ K C x+ K, and,
consequently, to the inclusion {y} C {x} as sets in ¢k (X). This is exactly {x} < {y}.

The above discussion ensures all the necessary ingredients in order to present the embedding
procedure on the steps of [18, 19] and [4, Chapter IX]. However, it is important to mention that
some of the properties of constructions from [4, 18] (e.g., the continuity of the scalar multipli-
cation or the Archimedean property) are not preserved in our more general setting, whence we
are closer in our demarche to [19, Section 6].

We consider two pairs (4,B) and (C,D) of elements from %k (X) and we say that they
are equivalent if A@® D = B@ C. This is an equivalence relation and we denote by % (X)
all equivalence classes. Moreover, we denote a particular class defined by a pair (A,E) €
%k (X) x €k (X) by (A,B). As usual, the addition on % (X) is defined by

(A,B)+(C,D)=(AaC,BaD),
while the multiplication by a scalar A € R is given by
a [ (AOALOB),if2 >0
A{4.B) = { (—A©B,—-AGA), if & <.

These operations ensure a structure of a real linear space for ¥k (X). Notice that the zero ele-
ment is the class (K, K) . So, one can define the substraction as

(A,B)—(C,D)=(AeD,BaC).
Moreover, €k (X) is embedded into this vectorial space by the mapping ¢ : €k (X) — 9 (X)
given by ¢ (A) = (A,K) . The distance h from €k (X) is extended as well on %k (X) . Keeping
the same notation, this becomes

and it defines a norm on ¥ (X), : 9k (X) = R, ||(A,B)|| = h(A,B) is a norm.
Finally, we can define a partial order on % (X), still denoted <, by

(A,B) < (C.D) « AeD=<BaC,
and this extends indeed the partial order on €% (X) defined above since A < B if and only
if (p( ) q)( ) All these constructions do not depend on the members of the classes, the
arguments for seeing this being similar to those in the original construction of Radstrom in
[18]. Accordingly, one can define the ordering cone (that is, the cone of positive elements)

associated to this partial order as #x (X {<A B> c% (X)|AC E} . The main properties of
Hx (X) are given below.

Proposition 3.1. The cone % (X) is convex and closed.
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Proof. The convexity of #k (X) is obvious. We show that it is closed. For this, consider a
sequence (<Z;,§Vn>>n C k (X) and (A, B) € 9k (X) such that <Z;,Evn> Ik (A,B). So, A, C
B,, for all n and H <;1;,§;> —(A,B) H — 0. The last relation means that & (X;@E,E; @A) —0.
We see that, for all € > 0, for n large enough,
A+B,+KCcl(A,+B+K)+€eBx CA,+B+K+2eBx C B+B,+K +3¢eBy.
Again by the cancellation rule from Lemma 2.1, we obtain that
A+K Ccl(B+K+3eBx) C B+ K +4¢€By.
Since this is true for all € > 0, we obtain that A+ K C B, whence A C B. We conclude that
(A,B) € Ak (X), so Hx (X) is closed. O
We tackle the question of the nonemptiness of the interior of #x (X).

Proposition 3.2. Let intK # 0. Then int %k (X) # 0 and, moreover,
{(A,B) € #k (X)|3e>0s.t A+€eBx C B} =int % (X). (3.1)

Proof. Let (A,B) € J (X) with the property that there exists € > 0 such that A + €éBy C B.
Using (2.2), A+&Bx C B+K, and (2.4), one has

A+27'eBy Cint(B+K) = B+intK. (3.2)

Let u € (0,2_18) . We show that the open ball with respect to the norm of ¥ (X) with cen-
ter <A7B> and radius u is included in %% (X), and this will conclude the proof of the di-
rect inclusion in (3.1). Let <C’,D> € Yk (X) such that H<C~’,l~)> — <A,B>H < u. Then, for all
0>0,B+C+KCA+D+K+ (u+06)Bx. In particular, this is true for a constant 0 €
(0,271 (27'e—pu)), whence, by (3.2),

B+C+8By CA+D+K+(u+28)By CA+D+K+2 'eBy
CD+cl(B+K)+intK C D+B+intK + 6By.
Therefore, B+C+ 0Bx C D+ B+ intK + 6By + K. We apply Lemma 2.1 to see that
C+0Bx Ccl(D+intK + 6By).
Now, by a classical variant of Radstrom cancellation lemma (that is, Lemma 2.1 for K = {0})
we obtain (by using (2.4) as well) that C C ¢l (D +intK) = cl(int(D +K)) = D. The proof of
the direct inclusion for (3.1) is complete. In particular, int #x (X) # 0.

For the reverse inclusion in (3.1), we consider <A,B> € int # (X) and suppose, by way of
contradiction, that, for all natural number n > 0, there exists a, € A and u, € By such that
an+n"'u, ¢ B. Then

H<A@{n*1un},1§> . <A,E>H -0,

—_—

but <A ® {n_lun},§> ¢ Jx (X) for any n. This contradicts the fact that (A, B) € int.#x (X).
U

Remark 3.2. For (A,B) € J#k (X), the condition that there exists € > 0 such that A+ By C B
is equivalent to the condition d (bdA,bd B) > 0.
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We record some important consequences of the above result and its proof.

Proposition 3.3. IfintK # 0, then the following elements belong to int #x (X) :
(i) <U,K> for which there exists € > 0 such that U + €Bx C K;
(ii) ({e} +K,K) with e € intK;
(iii) <A,E> € Yk (X) such that A C B+intK and A is K-compact.

Proof. (i) Relation (3.2) is clearly fulfilled for (U,K).

(i1) This is a particular case of (i).

(iii) Since A is K-compact, A = A + K and the inclusion from the hypothesis reads as A C
cl(B+K) +intK. According to [9, Lemma 4.1], the K-compactness of A ensures the existence
of a number € > 0 such that A+ €Bx C cl(B+ K) +intK. Thus (3.2) holds. O

Proposition 3.4. For A € €%k (X), it holds the equivalence (K,A) ¢ int.#x (X) <= AN
—intK =0.

Proof. Suppose that (K,A) ¢ int. %k (X). So, for all € >0, K+ ¢€By ¢ cl(A+K). If there
exists e € A and § > 0 such that —e+ 6By C K, then —e+ (K +¢) + 0Bx C A+ K, whence
K+ 8Bx C cl(A+K), which is a contradiction.

Conversely, we consider that A N —intK = 0 and suppose that there exists € > 0 such that
€Bx C cl(A+K). Then we can find e € intK N eBx, which gives a positive § for which —e +
O0Bx C —intK NeBx. Now, since —e € cl(A+K), we see that there exist some sequences
(an) C A and (k,) C K such that a, + k, — —e. But, for n large enough, a,, + k, € —e+ 8Bx C
—intK, which means that a, € —intK N A, which is a contradiction. O

We consider now the question of the representation of an element of positive dual of .7 (X).
As usual, we denote by X* the topological dual of X and by K™ the positive polar of K, that is,

K= {x" €X' |x*(x) >0, Vx € K}.

Proposition 3.5. Let x* € K. Define Ty : 9k (X) — R by Ty« ((A,B)) = infx* (A) —infx* (B).
Then following properties hold:

(i) Te € (Hx (X)) and | T || = "I

(ii) For x*,y* € KT\ {0} there exists 7* € K" such that Ty + T,» = T,+ if and only if there
exists & € Ry \ {0} such that x* = oy*;

(iii) If KU —K # X, then there exists T € (#x (X)) such that T # Ty for all x* € K*.

(iv) For every T € (x (X))", there exists x3 € KT such that

T (({a}+K,K)) = T (({a} +K,K)), Va € X.

and
T ((A,K)) <Te ((A,K)), VA € € Bk (X).
T > llvyl| and, for A € €% (X).
sup T ((A,K)) < sup T ((AK)).
IT]<1 |5 ]| <1
Te(Hx(X)"
Proof. (i) First of all, we observe that, for A € 4 Bk (X),

infx* (A) = infx* (A4 K) = inf (x" (A) + [0,0)) = infx" (4) € R,

Moreover,
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where the last relation is due to the K-boundedness of A. Therefore, 7y« is well-defined. Clearly,
T+ is linear and if <A,§> € H#x (X), then Ty (<A,l§>) > 0. We have to show that T+ is also

continuous. Consider, as usual, a sequence and its limit in %k (X), that is, <;\; ,E; > M <A,B> .
Then, as in the proof of Proposition 3.1, we have, for all € > 0, a natural number n¢ such that
foralln > ne, Ay,+B CA+B,+K+€Bx and A+ B, C A, + B+ K+ €By. These relations
imply

infx* (A,) +infx" (B) > infx* (A) +infx* (B,) — €||x"||
and

infx* (A) +infx* (B,) > infx* (A4,) +infx* (B) — € ||x™]| .
Consequently, for all n > ng,

|(infx* (A,) —infx" (By)) — (infx* (A) —infx" (B))| < €]|x"||,
whence |Te ((An,Bn)) — Te- ((A,B))| < & |x*||. We conclude that Ty~ is continuous. Concern-
ing its norm, we have || T+|| = SUP||(4.8) | <1 |7 ((A,B))||- Since, forallx € X, || (x+ K, K)|| <
||x||, we have
[T || = [[(x+ K, K} || = x" (x), Vx € Dx,
SO [| Toee || > [|x*] -
On the other hand, take (A,B) € % (X) with ||(A,B)|| = p > 0. This is to say that, for all

€>0,ACB+(p+¢€)Dx and B C A+ (p+¢)Dx. It follows that infx* () > infx* (B) —
(p+¢€)||x*|| and infx* (B) > infx* (A) — (p +€) ||x*||, whence

(<A B)) = infx* ( ) —infx* (B) € [— (p+¢€) |x*||,(p+ &) [|x|]

We deduce that [T+ ((A,B))| < ||x*|| ||(A,B)|| for any (A,B) € %k (X), so ||T| < ||Ix*. We
conclude that ||Tx*|| = |lx*||-

(i) Let x*,y* € K. If there exists z* € K™ such that T+ ((A,K)) = T« ((A,K)) + T+ ((A, K))
forall A € € Pk (X), then, in particular, for A = {x} with x € X, we have z*(x) = x*(x) +y* (x).
If there exist a,b € X such that x*(a) < x*(b) and y*(a) > y*(b), then, for A = conv{a,b} =
[a,b] € €%k (X), we have T+((A,K)) = T+ ((A,K)) + T,((A,K)) = x*(a) + y*(b). Since
T.+((A,K)) = infz* ([a,b]) and [a,b] is compact, there exists A € [0, 1] such that T;+((4,K)) =
Z*(Aa+ (1—A4)b). We deduce that

Az (a)+ (1= A)Z" (b) =x"(a) + " (D),
whence A (x*(a) +y*(a)) + (1 —=A4) (x* (b) +y* (b)) = x*(a) + y*(b), which gives
A(y(a)=y" (b)) = (1=2) (x*(a) —x" (b)),

which is a contradiction. We obtain that, in particular, {x € X | x*(x) <0} C {x € X | y* (x) <0},
SO
c{xeX |x"(x) <0} ={xeX|x"(x) <0} C{xeX |y (x) <0}.

According to the classical Farkas Lemma, this is equivalent with the existence of @ € R such
that x* = ay*. Of course, @ # 0. The other implication is obvious.

(iii) Since KU —K # X, then there exist a,b € X such that a ¢ b+ K and b ¢ a+ K. Thus
there exists x*,y* € K™ such that x*(a) < x*(b) and y*(b) < y*(a). Following (i), T+ + Ty €
(A% (X)) but, according to the proof of (i), Ty+ + Ty« # Ty for all z* € K+.
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(iv) Consider now T € (#x (X))". Then the functional x5 : X — R given by x} (x) =
T ({{x} +K,K)) belongs to K* (all the properties ensuring the validity of this assertion are
easy to check). Observe that, for any (A, B) € %k (X),

T((A,8)) =T ((A.K) = (B.K)) =T ((A.K)) =T ((B.K)).

Take A € € Pk (X). Then, for any a € A, ({a}+K,A) € Hx (X), so, T (({a} +K,A)) >0,
whence x} (a) > T ((A,K)) . We deduce that T ((A,K)) < infx} (A), which means

T ((AK)) <Ts ((A,K)), VA € € Bk (X).

We also have |x} (x)| = |T (({x} +K,K))| < ||T|||lx||, whence |x}| < ||T]|. Now, for A €
C Bk (X), we easily see that
sup T (<A,K>) < sup Ty (<A,K>).
IT]<1 || || <1
Te(#k(X))"
The proof is complete. U

The next result concerns a density property, with respect to the weak star topology of (% (X))*
(denoted by w*), of the set of positive operators on % (X) generated by the elements of K.

Proposition 3.6. In the notation from Proposition 3.5, 9 = {Ty+ | x* € K*} isa cone in (Hx (X))*

and w* —cl(conv 2) = (#x (X)) 7.

Proof. The fact that 2 is a cone is obvious since AT+ = Tj,- for all AL > 0 and x* € K™.
Moreover, the inclusion w* — cl (conv ) C (¥ (X))" is also clear. Another important thing
to take into account is from the application of a classical separation result for convex sets, and
reads as follows

(A,B) € Hx (X) < A C B< infx* (A) > infx* (B), Vx* € K+
& T ((A,B)) >0, x* e KT

Now, we suppose that the equality from the conclusion does not hold. Thus there exists T €
(Ax (X)) " such that T ¢ w* —cl(conv Z). Again by a separation result, there exists (A, B) €
%k (X) such that
T ((A,B)) <inf{T ((A.B)) |+ € K*Y.

Taking into account that & is a cone, we easily see, by a standard argument, that 7 (<A,I§>) >
0 for all x* € K. The above chain of equivalences ensures that <A,E> € J#k (X), whence
inf {Tx* (<A,}§>) | x* € K*} = 0. Consequently, T (<A,§>) < 0. This is a contradiction, so the
equality holds. 0

4. AN EMBEDDING OF A SET-VALUED MAP AND APPLICATIONS

4.1. An embedding of a set-valued map and related properties. In this subsection, using an
idea from [3], we associate to a set-valued map having values in ¢ g (X ) a function with values
in ¥ (X) by using the embedding procedure described before and then we explore the way
several classical properties of these objects (convexity, continuity, generalized differentiation,
etc.) link each other.

Let Z be a real normed vector space and F : Z = X be a set-valued map with nonempty,
K-bounded and K-convex values. This will be a standing assumption in the sequel. Then its
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epigraphical mapping EpiF : Z = X by EpiF (z) = F (z) + K has values whose closedness
are in ¢k (X). Using the embedding of €k (X) into the normed vector space ¥ (X) given in
the preceding section, we associate to F the single-valued function f : Z — ¥k (X) defined as

(@) ={F).K).

Firstly, we put into relation the generalized convexities for F" and f. We recall (see, e.g., [1])
thatif A C Z is a nonempty convex set, then one says that Fiis K-convex on A if, for every x,y € A
andevery A € (0,1), AF (x)+ (1 —A)F (y) C F (Ax+ (1 —A)y)+K. For a single-valued map,
this notion is similar and it requires only the replacement of C by € .

Proposition 4.1. In the above notation, suppose that F has K-closed valued. Then F is K-
convex on A if and only if f is Fx (X)-convex on A.

Proof. The K-convexity of F on A can be equivalently written as
cl(AF (x)+(1=A)F(y)+K) Ccl(F(Ax+(1—=A4)y)+K), Vx,y € A,VA € (0,1),
that is,

e~ —_—~—— e~

AOFx)®&(1—A)OF (y) CF(Ax+(1—2)y),Vx,y € A,YA € (0,1).

Furthermore, the above relation means that

—_—

<7L OF (D)@ (1-A)OF (y),F (Ax+ (1 _z)y)> € Hx (X),Vx,y € A,¥A € (0,1),

and this is to say that

—_~— P —_—

) <F (x),K> F(1-1) <F (y),K> — <F (Ax+(1 —z)y),K> € Hx (X),Vx,y € AVA € (0,1).
The latter relation is exactly the %k (X)-convexity of f on A. O

Concerning another useful property, that is, the Lipschitz continuity, it is straightforward to
see that the next assertion holds.

Proposition 4.2. The single-valued map f is Lipschitz around 7 (with respect to the norm on
Gk (X)) if and only if the set-valued map z = F (z) is Lipschitz around 7 (with respect to h).

A useful parenthesis here is the immediate possible use of these transfer properties from a
set-valued map to its embedding single-valued map (and vice-versa) in discussing some vector
equilibrium problems. Therefore, for a short look, we turn our attention to vector equilibrium
problems and we follow, as before, the way the behavior of the embedding function impacts the
behavior of the embedded set-valued map from the perspective of the existence of solutions for
some equilibrium problems they define. Actually, we consider some usual vector equilibrium
problems as presented, for instance, in [1, Chapter 10]. Only for our purpose in this small
discussion, we consider a (bi)set-valued map G : Z x Z =2 X with nonempty, K-bounded and
K-convex values. Again, we associate the (bi)function g : Z x Z — %k (X) defined as g (u,v) =

<G(u,v),K>.

Proposition 4.3. Let S C Z be a convex compact set and intK # 0. Assume the following prop-
erties:

(i) G (u,u) N\—intK = 0, for all u € S;

(ii) u = G (u,v) is K-convex on S for every v € §;
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(iii) the set {u € S| G (u,v) C X \ —intK} is closed for all v € S.
Then there exists t € S such that, for all v € S, G (u,v) N —intK = 0.

Proof. According to Proposition 3.4, for (u,v) € Z x Z, the relation G (u,v) N —intK = 0 is

equivalent to <G (u,v),K > ¢ —int %k (X). Now, it is easy to see that assumptions (i), (ii), and

(iii) mean, respectively, that g (u,u) ¢ —int #x (X), u = g (u,v) is #x (X)-convex on S for
every v € S,and the set {u € S| g(u,v) € (% (X)\ —int#k (X))} is closed for all v € S. These
properties on g ensure that the equilibrium problem

JueSst g(u,v) ¢ —intxx (X), VWweS,
has a solution by the use of Ky Fan Lemma (see, e.g., [1]). The conclusion follows. 0

At this point, after this new argument on the usefulness of the embedding procedure, we
follow here, the next step to take is to look at some classical generalized differentiation objects
associated to the function f and to devise generalized differentiation for the initial set-valued
map F. We consider again the setting fixed in the beginning of this section. Recall that the graph
of F is the set

GrF :={(z,x)|z€Z,x€ F(2)}.

Following [2], one defines the Bouligand derivative of F at (Z,X) € GrF as the set-valued map
DgF (Z,X) : Z = X given by

' —u,t |0

F(Z+t)—x
v € DgF (2,%) (1) <= liminfd G%) =0. 4.1)

Accordingly, for the function f, using a slightly simplified notation due to the fact that f is
single-valued, one has

fE+nd) - f (@)

t

ve € Dpf(Z) (u) <= liminf
' —u,t|0

o

Taking vy = (A, B) € % (X), one has that

 F(3) FGtu!) .
liminf h <A+ &) (Z+t”)+3> _0.

W' —u,t0 t t
Consequently,
_ F() F(ztud) -
liminfe( L FQ@) Fi+ ”)+B> —0
W' —u,t]0 t t
and

 Fzt+w) . F(z
liminfe<B+ (Zj “) iy t@):o

' —u,t|0

Proposition 4.4. In this notation, the following assertions hold:
(i) forallv € A andx € F (3),

e
liminf d <v+i—“,@+3) —0:

' —u,t|0
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(ii) for all v € A,

' —u,t|0

F(Z) FE+ud) -
liminf e <v+ §Z>, (z+ ”)+B> —0:

(iii) if B = K, then

where F is the set-valued map z = F (z). In addition, if F(Z) has ideal minimum (i.e., there
exists y € F(Z), Xx—y € K for each X € F(Z)), then

o tminge [0 P FETTH)

€ DpF <= liminf =0.

1€ (] PeF D = fimine (V+ C
X€F(Z)

Proof. We remark that, for all v € A, X € F (Z), and t > 0 the following inequalities hold:

S o o
d<v+§,w+é> §h<A+F§Z>,F(ij)+E>,

e <v+FA§),F@/) +E> <h<A+E§vZ),F(;\;u/) +l§) :

and

e <A+ X Flatud) +E> <h <A+ F@) Flri) +E> .
t t t t
Thus (1) and (i1) are consequences of these inequalities. Also, if B=K, (i) implies the inclusion
from (iii) by taking into account the definition of DgF (Z,%) (u).
Now, it remains to prove the direct implication from (iii) for the case when F(Z) has ideal
minimum denoted y. Letve () DgF (Z,%) (u). This implies

XEF(Z)
I
liminf d <v+ ) M) =0, VEE€F (3).
' —ut|0 t t

Since, for each k € K,

we obtain

and the conclusion follows. ]
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We discuss now the Fréchet and the Gateaux differentiability of the embedding map f :
Z — 9k (X) and we compare their consequences for F with other generalized differentiability
concepts for set-valued maps that one can find in literature.

First, we consider the Fréchet differentiability. Denote by L(Z, %k (X)) the space of linear
and continuous operators from Z to ¥k (X ). Recall that f is Fréchet differentiable at z € Z if and
only if there exists T € L(Z,%k (X)) (denoted V f(Z)) such that

limf(Z)—f(Z)—T(z—Z)

_ =0.
7 [Ed|

—_—~—

In our setting, this is to say that there existsT € L(Z,% (X)), T(z) = <T1 (2), 2(Z)> such that

P P

lim h(F(2)+Ta(z—2),F2)+Ti(z—2))
77 llz—z||
This means that, for all € > 0, there exists 0 > 0 such that, for all z € B(Z,0),

=0.

—~—

F(z2)+T(z—32) CFZ)+Ti(z—2)+¢|z—Z||Dx

and

—_— —_—~—

F(z)+Ti(z—2) CF(z) + Ta(z—Z) +€l|z—Z||Dx.
Similarly to [3], we say that a multifunction F : Z — % (X) satisfying the precedent conditions,

—

denoted (C), with Ty, T» : Z — 6x(X) (where T; (z) = T;(z), forallz€ Zand i € 1,2) and T =
(T\,T>) € L(Z,9x (X)) is m-differentiable. If there exists U : Z — €x(X) such that V£ (2)(-) =

<U (),K > , then conditions (C) implies the following conditions, denoted (C’) : for all € > 0,
there exists 8 > 0 such that, for all z € B(Z,9),

—_—— —_—

F(z) CF()+U(z—2)+¢€|z—Z||Dx, F(z) CF(2)+U(z—3) +€||z—7||Dx.
Following [17], a multifunction F which satisfies (C'), where U : Z — %x(X) (again, in the
notation U (z) = U(z), for all z € Z) is a positive homogeneous map, is called U —differentiable
at z. If f is Fréchet differentiable and <U (),K > = V£(z)(-), then F is U —differentiable at Z.

Conversely, if F is U —differentiable at 7 and U is single valued, linear and continuous, then
(U(-)+K,K)=Vf(Z)(-). We remark that if T(-) = ({T1(-)} + K,{T2(-) } + K) , where T; and
T, are single-valued continuous operators, then the linearity of 7' is equivalent with the linearity
of T} —T, and T = Vf(z) ifand only if T} — T € dF (z) N 9, F(Z), where dF (Z) and 9, F (Z) are
given in [7]. If JF ()N OuF (Z) # 0, then it contains only one element 7', F is t—differentiable,
T —differentiable, f is Fréchet differentiable at 7z and Vf(z)(u) = (T (u) + K, K).

Now, we turn our attention on Gateaux differentiability of f. Recall that f is Gateaux dif-
ferentiable at 7 € Z if, for each u € X, there exists lim,_, M, denoted by D' f(Z)(u),
and the map u — D' f(Z)(u) is linear and continuous. We recall (see [15]) that for two sets
A,B,C € 6x(X),A©B=Cif and only if A = B+ C or, equivalently in this case, withA = B®C.
Similarly to [15], we may consider the Hukuhara differential for a % (X) valued map as fol-
lows: if, for each u € X, the following limits

Pz _
lim (Z+tu) O F(z)
t10 t

€ 6k (X),
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. F(2)©F(z—tu) € G(X)
t}0 t
exist and are equal, denoted by D'F (Z)(u), and u = D’F (Z) (u) is linear and continuous, then F
is called Hukuhara differentiable at 7 and D'F (Z) is the Hukuhara differential of F at Z.

It is not difficult to verify that if F is Hukuhara differentiable at z, then (D'F(Z)(-),K) =
D'f(Z)(:). Conversely, if D'f(z)(-) = (U(-),K), where U : Z — € (X) is a linear continuous
map, and if, for each 7 > 0 and u € X, there exist F(Z+tu) © F(z) and F(z) © F(Z —tu), then F
is Hukuhara differentiable at 7 and U = D'F (7).

Example4.1. Letg:Z X, h: Z— Ry, M e 6x(X),and Fi(z) = {g(z)} + K, F2(2) = {g(2) } +
M and F3(z) = h(z) - M. Accordingly, we have the embedding maps, denoted by fi, f>, and f3,
respectively.

(i) If g is a Fréchet differentiable map at Z, then, for each € > 0, there exists 0 > 0 such that,
foreachz € B(Z,0),

8(z) C g(z) +Vg(2)(z—2) +ellz—zZ[|Dx,
8(2) +Vg(2)(z—2) C g(z) +€llz—Z| Dx.
Thus

Fi(z) C F1(2) +Vg(2)(z —2) + K+ €[z =2 Dx;,
Fi(2) + Ve(2)(z—2) + K C Fi(z) +ellz—Z[| Dx-
whence (Vg(Z)(-)+K,K) = Vf1(Z)(-). Similarly we get (Vg(z)(-)+K,K) =V£(Z)(:). If h
is Fréchet differentiable at z, for u € Z such that VA(Z)(u) > 0, then (VA(Z)(u)-M +K,K) =
V(@) ().

(ii) If g is Gateaux differentiable at z, then Fy(Z+tu) © F1(Z) = F>(z+tu) © F>(z) = g(z+
tu) —g(Z) + K and F3(Z+1tu) © F3(Z) = (h(Z+1tu) — h(Z)) - M + K for each ¢ and u € Z. Thus,
fori € {1,2}, D'f;(2)(:) = D'F,(2)(-) = (D'g (2) (-) + K,K) . If h is Gateaux differentiable at Z,
then D' f3(Z)(u) = D'F3(Z)(u) = (D'h(Z(u) - M + K, K) for each u € X such that D'h(Z)(u) > 0.

(ii1) In the same hypothesis as in Proposition 4.4, one has

v€EDpg(z)(u) = (v+K,K) € Dpfi(Z)(u) = v+K C ﬂ DpFy(Z,%)(u).
XEF (2)
Indeed,

v € Dpg(7)(u) <= liminfd (v+ gEZ) , g(ﬂt”/)) —0,

' —u,t]0 t

which implies

— — t /
liminf & (v—|— 82 | g 8ztm) +K> —0,
' —u,t |0 t t
which is equivalent to (v+ K,K) € Dpf)(zZ)(u). Finally, the latter relation implies, according to
Proposition 4.4 (iii),
v+KC () DpFi(z.X)(u).
xeF (?)

We refrain ourselves from exploring possible calculus associated to the above objects (see
the last section for more comments on this), concentrating instead on some links associated to
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generalized differentiation objects that have the potential to generate optimality conditions for
optimization problems we envisage, which is set optimization problems.

4.2. Set optimization problems and primal optimality conditions. In this subsection we
consider set optimization problems and we link the objective set-valued map that drives these
problems with the associated embedding function. The aim is to see the efficiencies of set opti-
mization as classical Pareto efficiencies for this associated function, and this view is instrumen-
tal in order to import in set optimization some techniques from vector optimization. The final
aim is to build up optimality conditions for set optimization problems using known optimality
conditions for Pareto minimality.

For some nonempty sets A, B C X, one defines the j;} order (see, e.g., [14, 16]) by A jf{ B &
B C A+ K. On this basis, one defines an efficiency concept for constrained set optimization
problems. Let M C Z be a nonempty closed set. An element Z € M is said to be /-minimum for
FonMif

ZE€M,F(z) <% F(2) = F(2) =% F(2).

So, the /-minimality of 7 means that when we consider an element z € M, there exist two
possibilities: either F (Z) ¢ F(z) +K,or F () +K = F(z) + K.

Suppose that intK # (0 and consider now the weak notion of /-efficiency. More precisely,
Z € M is said to be weak /-minimum for F on M if, for all z € M, either F (z) ¢ F (z) +intK, or
F(Z)+intK = F (z) +intK. It is known (see, e.g., [10]) that if the set of weak Pareto minimal
points with respect to K of F (Z) is nonempty, then the weak /-minimality of Z for F on M means
that F (z) ¢ F (z) +intK, for all z € M.

We study the links between these efficiency notions for F' and the Pareto efficiencies for f,
the latter considered with respect to the ordering cone #x (X).

Proposition 4.5. Let F' be with nonempty, K-closed values, and 7,z € M. Then,

(i) F () Xk F (2) if and only if f (z) - f (2) € Hk (X);

(ii) Z is L-minimum for F on M if and only if 7 is a Pareto minimum point for f on M.
Proof. Indeed, if F (Z) <% F (z), then F (z) C F (Z) + K, whence F (z) C F (Z), which is equiva-
lentto f (z) — f (z) € #k (X). So, this implication holds without any supplementary conditions.
For the converse, since F has K-closed values, F (z) = F (z) + K, and f(z) — f (Z) € #k (X)
actually means that F (z) + K C F () + K, so, F (Z) <% F (z) .

(ii) The fact that 7 is a Pareto minimum for f on M means that f(z) — f(z) € —#k (X) \

{(K,K)}, which can be written as <F (z),1<> . <F (z),K> ¢ i (X)\{(K,K)} . This is equiv-
alently to say that either

(F@.K)—(FR).K) ¢ H#x (X)

or

(F@).K)~(F().K) = (K.K).
Under our assumptions on the values of F' (that is, they are K-bounded, K-convex and K-closed)

the first is to say that F (z) + K ¢ F(z) + K, while the latter means that F () + K = F (z) + K.
The claim is done. U
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Proposition 4.6. Suppose that intK # 0 and F has K-closed values. If7 € M is weak {-minimum
for F on M, then it is weak Pareto minimum for f on M. If F (Z) is K-compact, then the converse
also holds.

Proof. Suppose that 7 € M is weak /-minimum for F on M. Then, foranyz€e M, F (Z) Z F (z) +
intK, or F (Z) +intK = F (z) +intK. In the first case, since f(Z) — f(z) = <F (Z),F(z)> =
(F(Z)+K,F (z) +K), by Proposition 3.2, we have f(z) — f(z) ¢ int.#k (X). In the second

case, ¢l (F (z) +intK) = cl (F (z) +intK), that is, F (Z) = F (z). Thus we deduce that
d (bd (F/(vz)) ,bdﬁ(?)) ~0.

According to Remark 3.2, f(zZ) — f (z) ¢ int %k (X).
For the converse, if 7 is a weak Pareto minimum for f on M with respect to %k (X), then, for

allze M, f(z)— f (z) ¢ —int#k (X), and this amounts to say that <F (z),F (Z)> ¢ int #x (X).
In particular, according to Proposition 3.3 (iii), since F (z) is K-compact, one has that F (Z) ¢

F (z) +1intK. Under the K-closedness of F (z), that is, F (z) ¢ F (z) +intK, which proves the
assertion. O

Example 4.2. Without the K-compactness assumption on F (Z) , the converse in the above result
is not true. To see this, let us consider Z:=R, X :=R? K:=R%, F: Z= X,

Foy={ (@) R xy>0}, ifz#0
D7V {y) eR x> 0> exp (1)}, ifz=0.

Then 7 := 0 is a weak Pareto minimum for f on Z (see Proposition 3.2), but it is not a weak
¢-minimum for F on Z, since, for all z one has F (z) C F (z) +intK, but the converse inclusion
does not hold. Clearly, F (Z) is not K-compact.

Remark 4.1. Notice that the corresponding concepts of local efficiencies and the associated
results are easy to write.

To present optimality conditions, we firstly recall some well-known definitions (see, e.g.,
[2]). If in the preceding section we gave the definition of the Bouligand derivative by inferior
limit, we prefer here a sequential approach for several related concepts.

Definition 4.1. Let D be a nonempty subset of Z and 7 € X.
(i) the Bouligand tangent cone to D at 7 (the contingent cone in [2]) is the set

Ts(D,z) ={ue X |3(t,) 4 0,3(uy) — u,3Ing € N,Vn > ng,z+ tyu, € D}

where (1,) | 0 means (#,) C (0,c0) and 7, — 0;
(i1) the Ursescu tangent cone to D at 7 (the intermediate cone in [2]) is the set

Ty(D,Z) ={ue X |VY(t,) 1 0,3(u,) — u,3ng € NVn > ng,z+tyu, € D}.

Definition 4.2. Let (z,x) € GrF. The Bouligand derivative of F at (z,X) is the set valued map
DgF (Z,x) from Z into X defined by

GrDgF (Z,x) = Tg(GrF, (Z,X)).

(Notice that this coincides with the definition from relation (4.1).) The Ursescu derivative has a
similar definition.
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In addition to these classical objects, we introduce a different kind of approximation for a
set-valued map.

Definition 4.3. We call an element <A, B > € Yk (X) an approximating pair of F at 7 in direction
u € Z if there exists (u,) — u, (t,) C (0,00), t, — 0 such that, for all € > 0, there exists ng € N
such that, for all n > ng,

e~

F(Z)+tACty®BOF (Z+tyu,) + €t,Bx

and

—_—

F (Z+tytty) +1,B Ct, ©ADF () + €t,Bx .

Now we are able to present our necessary optimality conditions for weak /-minimality by
using the above primal space approximation object.

Proposition 4.7. (i) If there exists a neighborhood V of Z such that F (7) =% F () for every
z €V, then, for every approximating pair (A,B) € 9x (X) of F at Z in a directionu € X, A C B.

(ii) Suppose that intK # 0, F has K-closed values, and F (Z) is K-compact. Moreover, assume
that F is Lipschitz around 7. Let 7 be a local weak (-minimum for F on M. Then, for u € Ty (M,Z)
and every approximating pair <A,1§> € Yk (X) of F at Z in direction u,

B+eBx ¢ A, Ve > 0. 4.2)
IfE = K, then relation (4.2) means that AN —intK = (.

Proof. (1) Let <A,I§> € Yk (X) be an approximating pair of F at 7 in a direction u € Z. It is
easy to see that this means that (A,B) € Dgf (Z) (u). According to Proposition 4.5 (i), f(z) —
f(2) € Hk (X) for all z € V. Taking into account that #x (X) is a closed cone, we see that
Dpf (Z) (u) C #k (X) whence A C B.

(i1) Following Proposition 4.6, hypothesis (i1) ensures that 7 is a local weak Pareto minimum
for f on M and, moreover, f is Lipschitz around Z (see Proposition 4.2). Let (A,B) € % (X)
be an approximating pair of F at Z in direction u € Ty (M,z), meaning, as before, (4,B) €
Dgf (z) (u). Using an well-known necessary optimality condition for Pareto minimality (see,
e.g., [5, Corollary 3.2]), we see that (A, B) ¢ —int.#k (X). According to Proposition 3.2, this
is the conclusion given by relation (4.2).

Finally, takeing B = K and using Proposition 3.4, we see that AN —intK = (), which is the
last conclusion. O

Remark 4.2. If B = K, Proposition 4.7 (i) and Proposition 4.4 (iii) ensure that if there exists a
neighborhood V of Z such that F () <! F (z) for every z € V, then, for all u € Z,

( DsF (z,%) (u) NK # 0.
XEF(Z)

Following Example 4.1 (iii) and the notation therein, if the set-valued map is Fj, then ,for each
ucXandv e Dpg(z)(u),t (v+K,K) € Dpfi(z)(u). Thus v € K, which implies

v+KC () DsFi (Z.X)(u).
X€F(2)
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For the next result, which aims to obtain a scalarization of ¢-minimality, we recall (see [2])
that a set-valued map F : Z = X is said to be continuous at z € Z if, for every € > 0, there exists
0 > 0 such that, for all v € B(z,8), h(F (v),F (z)) < €. As usual, F is said to be continuous if
it is continuous at all points in Z.

Proposition 4.8. Let F : Z = X be a K-convex set valued map with values in €k (X) and M C Z
be a nonempty convex and compact set. Suppose that F is continuous and 7 € M is a {-minimum
for F on M. Then there exists U : €k (X) — R, a positive homogeneous, additive and monotone
(with respect to the order of €k (X) , that is, =) operator such that U (F (z)) < U (F (z)) for all
7 € M. Moreover, for all z € M and all nonzero natural number n, there exists a finite subset
I, CNanda set {x; |i€l,} C K" such that the operator T, : €x (X) — R defined by T, (A) =
Yicr infx} (A) satisfies T, (F (z)) — T, (F (z)) > —n~! and limT, (F (z)) = U (F (2)).

Proof. Taking into account Propositions 4.1 and 4.5, we deduce that f (M) + %k (X) is a convex
set and 7 is a Pareto minimum for f on M. Moreover, it is easy to see that the continuity of F' is
equivalent to the continuity of f (as a single valued function), whence the set f (M) + %k (X)
is also closed. Therefore, by a well-known separation argument, there exists T € (#x (X))
such that
T((F(2),K)) <T({F(z),K)),Vze M.

Define U : 6k (X) — R, by U(A) =T ({(A,K)) . In view of the properties of T, U satisfies the
first part of the conclusion.

For the second part of the conclusion, we use Proposition 3.6. Fix z € M and take v :=
(F(z),F (Z)) € 9k (X) . Therefore, for all n € N\ {0}, there exist a finite subset I, of N and a
set {x | i € I,} C K" such that

Putting T, = Yier, Ty:, we have

T ((F (2).K)) =T ((F(2),K)) =T, ((F (2),K)) + T, ((F (2) ,K)) <"
since T € (‘%{(XD+’ T,((F(2),K)) —T,((F (z),K)) > —n~'. Take now T} : 6x (X) = R
given by 7, (A) = T, ((A,K) ) , which satisfies the requirements. Indeed,
lim, (F (2)) = lim 7, ((F (), K)) = T ((F (2) ,K)) = U (F (2)).
U

Remark 4.3. Let F : Z = X be as a set valued map with values in ¢k (X ), M C Z be a nonempty

set, and 7 € M. It is easy to see that if there exists U : ¢k (X) — R a strictly monotone operator
(thatis A C Band A # B, then U (A) > U (B)) such that U (F (z)) < U (F (z)) for all z € M, then
Z is a /-minimum for ¥ on M.

5. CONCLUDING REMARKS

In this paper, we devised an embedding result for the class of nonempty, bounded, and convex
sets with respect to a closed convex and pointed cone. This allows us to extend, in an nontrivial
manner, a classical result of Radstrom. Along the main discussion, we presented several appli-
cations and we investigated optimality conditions for set optimization that can be obtained by
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simply seeing, via the embedding result, a set-valued maps as a single valued one. Several other
possible applications can be envisaged by extending or offering alternatives to some results in
[3, 15, 17, 20, 21], for instance. In a future work, we intend to obtain suitable calculus for some
generalized differentiation objects, a task that is not straightforward to have in mind that several
of the main analytical properties usually used for such calculus (completeness, Asplundness,
etc.) of the embedding space are not available.
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