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Abstract. This paper addresses the challenge of finding a zero of a structured monotone inclusion, which
is closely related to convex minimization problems in signal and image processing. By defining a suitable
product space, the monotone inclusion problem is transformed into the sum of two maximally monotone
operators, one of which is cocoercive. Based on the preconditioned forward-backward splitting algo-
rithm, we propose a new primal-dual splitting algorithm with a simple structure and prove its convergence
with appropriate parameter conditions. In contrast to existing primal-dual forward-backward splitting al-
gorithms, the proposed algorithm uses fewer variables and employs a reduced amount of parameters.
Furthermore, we apply the algorithm to solve a class of convex minimization problems. Numerical ex-
periments demonstrate the effectiveness and robustness of the proposed algorithm for image denoising
problems.
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1. INTRODUCTION

In recent years, monotone inclusion problems have become increasingly important in the
study of various convex minimization problems. The forward-backward splitting algorithm
[1, 2], the Douglas-Rachford splitting algorithm [3, 4], the forward-backward-forward split-
ting algorithm [5, 6], the forward-reflected-backward splitting algorithm [7], and the reflected
forward-backward splitting algorithm [8] are among the most widely employed methods for ad-
dressing monotone inclusions that involve the sum of two maximally monotone operators. To
further improve the efficiency of the splitting algorithms, a new parameter-selection step, called
Halpern-type extrapolation technique, was introduced into these traditional splitting algorithms
and developed some Halpern-type algorithms [9,10], in which the step sizes are self-adaptively
chosen without the prior knowledge of Lipschitz constant of the cocoercive (or monotone Lips-
chitz continuous) operators. Very recently, Tan and Qin [11] introduced an inertial Halpern-type
forward-backward splitting algorithm by combining Halpern type extrapolation, inertial accel-
erated strategy, and forward-backward splitting algorithm. As demonstrated in [12–14], driven
by a variety of applications-including Huber total variation image restoration problems [15,16],
infimal convolution total variation image restoration problems [17, 18], and total generalized
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variation image restoration problems [19, 20]-highly structured monotone inclusion problems
have gained significant attention.

In this paper, we focus on solving the following structured monotone inclusion.

Problem 1.1. Let H be a real Hilbert space, and let m > 0 be an integer. Let A : H → 2H

be maximally monotone operator, and let C : H → H be an µ−1-cocoercive operator, for
some µ > 0. For every i = 1, . . . ,m, let Gi,Xi,Yi be real Hilbert spaces, let Bi : Xi → 2Xi

and Di : Yi → 2Yi be maximally monotone operators, and let Li : H → Gi,Ki : Gi →Xi and
Mi : Gi→ Yi be nonzero bounded linear operators.

find x ∈ H such that z ∈ Ax+
m

∑
i=1

L∗i ((K
∗
i ◦Bi ◦Ki)�(M∗i ◦Di ◦Mi))(Lix− ri)+Cx, (1.1)

together with its dual inclusion

find


pi ∈Xi, i = 1, . . . ,m,

qi ∈ Yi, i = 1, . . . ,m,

yi ∈ Gi, i = 1, . . . ,m,

such that ∃x ∈H :



−
m

∑
i=1

L∗i K∗i pi ∈ Ax+Cx,

Ki (Lix− yi) ∈ B−1
i pi, i = 1, . . . ,m,

Miyi ∈ D−1
i qi, i = 1, . . . ,m,

K∗i pi = M∗i qi, i = 1, . . . ,m.

(1.2)
Examining some special cases of (1.1) also presents interesting problems. In the following,
we introduce some relevant work concerning problems (1.1)-(1.2). Let I denote the identity
operator.

• Let L∗i (K
∗
i ◦Bi ◦Ki)�(M∗i ◦Di ◦Mi)Li = Bi. Davis and Yin [21] introduced a so-called

three-operator splitting algorithm when m = 1. Later, Zong et al. [22] developed a
four-operator splitting algorithm to solve 0 ∈ Ax+B1x+B2x+Cx, which combines the
Davis-Yin three-operator splitting algorithm and Ryu three-operator splitting algorithm
[23].
• Let Ki = I and Mi = I for any i = 1,2, · · · ,m. The preconditioned forward-backward

splitting algorithm was introduced independently by Vu [24] and Condat [25]. More-
over, Boţ and Csetnek [26] presented a comprehensive survey on primal-dual splitting
algorithms, exploring various intriguing applications including image denoising and de-
blurring, portfolio optimization, and clustering.
• Let Li = I for any i = 1,2, · · · ,m. Becker and Combettes [27] proposed a primal-dual

splitting algorithm to solve (1.1)-(1.2), which is derived from the inexact forward-
backward-forward splitting algorithm [28]. The key idea is to transform the original
monotone inclusion into a simplified formulation in a product Hilbert space which en-
courages a wealth of primal-dual splitting algorithms in solving diverse monotone in-
clusion problems; see, e.g., [29–32].
• For the general monotone inclusion (1.1), Boţ and Hendrich [33] proposed two differ-

ent types of primal-dual splitting algorithms to solve (1.1)-(1.2) based on the forward-
backward splitting algorithm and the forward-backward-forward splitting algorithm.
Recently, Chen et al. [34] relaxed the parameters for the primal-dual forward-backward
splitting algorithm [33] and designed another new algorithm for solving (1.1)-(1.2).
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This new proposed algorithm is derived from the forward-backward-half-forward split-
ting algorithm [35].

The purpose of this paper is to introduce a new primal-dual splitting algorithm for solving
(1.1)-(1.2). We reformulate monotone inclusions (1.1)-(1.2) into a sum of two maximally mono-
tone operators in a suitable product space, where one of them is cocoercive. We develop a com-
pletely splitting algorithm derived from the preconditioned forward-backward splitting algo-
rithm. Compared to the primal-dual forward-backward splitting algorithms studied in [33, 34],
this new algorithm requires fewer variables, which can save computational storage space. At
the same time, the proposed algorithm has fewer parameters.

The remainder of the paper is organized as follows. In Section 2, we review some funda-
mental elements of monotone operators and convex analysis. In Section 3, we present the main
algorithm and prove its convergence. As an application, we discuss a convex minimization
problem. In Section 4, we perform numerical experiments on image denoising problems to
demonstrate the efficiency and effectiveness of the proposed algorithm. Finally, we draw some
conclusions in Section 5.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product 〈·, ·〉H and associated norm ‖ · ‖H =√
〈·, ·〉H . Let L : H → G be a nonzero bounded linear operator, where G is a real Hilbert

space. The adjoint operator of L is denoted by L∗ : G →H , which is defined by 〈L∗y,x〉H =
〈y,Lx〉G ,∀x∈H ,y∈G . We denote by Γ0(H ) the collection of all proper lower semi-continuous
convex functions from H to (−∞,+∞]. Most of definitions are taken from [36].

Let A : H → 2H be a set-valued operator. We denote by graA = {(x,u) ∈H ×H |u ∈ Ax}
its graph, by domA = {x ∈H |Ax 6= /0} its domain, and by A−1 its inverse operator. A is said to
be monotone if 〈x− y,u− v〉 ≥ 0,∀(x,u),(y,v) ∈ graA. Furthermore, A is said to be maximally
monotone, if there exists no other monotone operator B such that its graph properly contains
graA. The parallel sum of two operators A,B : H → 2H is defined by A�B = (A−1+B−1)−1.

The resolvent of A is defined by JA = (I +A)−1. If A is maximally monotone, then JA is
single-valued and firmly nonexpansive. Let x ∈H and λ > 0. Note that

JλAx+λJλ−1A−1(
1
λ

x) = x.

Let B : H →H be a single-valued operator. Recall that B is said to be µ−1-cocoercive if
〈x− y,Bx−By〉H ≥ 1

µ
‖Bx−By‖2

H for all x,y ∈H .
In the following, we recall some elements of convex analysis. Let f : H → (−∞,+∞]. The

conjugate function of f is defined by f ∗(u) = supx∈H {〈u,x〉H − f (x)}. The subdifferential of
a convex function f at x ∈H is the set ∂ f (x) = {v ∈H | f (y)≥ f (x)+ 〈v,y− x〉H ,∀y ∈H }.
If f ∈ Γ0(H ), then ∂ f is maximally monotone and (∂ f )−1 = ∂ f ∗. Let f ,g ∈ Γ0(H ). The
infimal convolution is defined by ( f�g)(x) = infy∈H { f (y)+g(x− y)}.

Let f ∈ Γ0(H ), x ∈H , and λ > 0. We denote by proxλ f the proximity operator of λ f at x,
which is defined by

proxλ f (x) = arg min
x∈H

{
1

2λ
‖y− x‖2

2 + f (y)
}
.

It follows from the first-order optimal condition of the proximity operator that Jλ∂ f = proxλ f .
The Moreau’s decomposition shows that the relationship between the proximity operator of λ f
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and 1
λ

f ∗, that is,

proxλ f (x)+λ prox 1
λ

f ∗(
1
λ

x) = x, ∀x ∈H .

3. SIMPLIFIED PRIMAL-DUAL FORWARD-BACKWARD SPLITTING ALGORITHM

In this section, we present the main results. Firstly, we establish a lemma that offers an
equivalent characterization of (1.1)-(1.2). Then, based on the lemma, we propose a primal-
dual forward-backward splitting algorithm for solving (1.1)-(1.2) and prove the convergence
of the proposed algorithm. Finally, we apply the obtained results to solve a class of convex
minimization problems.

Lemma 3.1. Let H , Xi, Yi, Gi, A, C, Bi, Di, Li, Ki, Mi, i = 1, · · · ,m be defined as in (1.1)-(1.2),
and let

X := X1⊕·· ·⊕Xm,Y := Y1⊕·· ·⊕Ym,G := G1⊕·· ·⊕Gm,K := H ⊕X ⊕Y ⊕G ,

ppp = (p1, . . . , pm) ∈X ,qqq = (q1, . . . ,qm) ∈ Y ,yyy = (y1, . . . ,ym) ∈ G ,rrr = (r1, . . . ,rm) ∈ G

B : X → 2X : ppp 7→ (B1 p1, · · · ,Bm pm) ,D : Y → 2Y ,qqq 7→ (D1q1, · · · ,Dmqm) ,

M̃ : G → Y ,yyy 7→ (M1y1, · · · ,Mmym) , K̃ : G →X ,yyy 7→ (K1y1, · · · ,Kmym) ,

MMM : K → 2K ,(x, ppp,qqq,yyy) 7→ (−z+Ax)× (B−1 ppp+ K̃rrr)×D−1qqq×0

L : H → G : x 7→ (L1x, · · · ,Lmx)

SSS : K →K ,(x, ppp,qqq,yyy) 7→
(

L∗K̃∗ppp,−K̃Lx+ K̃yyy,−M̃yyy,−K̃∗ppp+ M̃∗qqq
)

QQQ : K →K ,(x, ppp,qqq,yyy) 7→ (Cx,0,0,0)

Then the following conclusions hold:
(i) MMM is maximally monotone.
(ii) SSS is monotone and l-Lipschitzian, where

l = (max{2
m

∑
i=1
‖KiLi‖2,

m

∑
i=1
‖KiLi‖2 +2max

j
‖K j‖2,2max

j
‖M j‖2,max

j
‖M j‖2 +2max

j
‖K j‖2})

1
2 .

(iii) QQQ is µ−1-cocoercive.
(iv) For any x̄ ∈H , x̄ is a solution to Problem 1.1 if and only if there exists (p̄pp, q̄qq, ȳyy) ∈X ⊕
Y ⊕G such that (x̄, p̄pp, q̄qq, ȳyy) ∈ zer(MMM+SSS+QQQ).

Proof. (i) Since A,BBB and DDD are maximally monotone, it follows from [36, Proposition 20.22
and Proposition 20.23] that set-valued operator MMM is maximally monotone.

(ii) By taking xxx = (x, ppp,qqq,yyy), x̂xx = (x̂, p̂pp, q̂qq, ŷyy) ∈K , we obtain

〈xxx− x̂xx,SSSxxx−SSSx̂xx〉K =
m

∑
i=1
〈(x− x̂,L∗i K∗i (pi− p̂i)〉H +

m

∑
i=1
〈pi− p̂i,−KiLi(x− x̂)+Ki(yi− ŷi)〉Xi

+
m

∑
i=1
〈(qi− q̂i),Mi(yi− ŷi)〉Yi +

m

∑
i=1
〈yi− ŷi,K∗i (pi− p̂i)−M∗i (qi− q̂i)〉Gi

=0,
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which means that SSS is monotone. It follows from the Cauchy-Schwarz inequality that

‖SSSxxx−SSSx̂xx‖K

=(‖
m

∑
i=1

L∗i K∗i (pi− p̂i)‖2
H +

m

∑
i=1
‖KiLi(x− x̂)−Ki(yi− ŷi)‖2

Xi
+

m

∑
i=1
‖Mi(yi− ŷi)‖2

Yi

+
m

∑
i=1
‖K∗i (pi− p̂i)−M∗i (qi− q̂i)‖2

Gi
)

1
2

≤((
m

∑
i=1
‖KiLi‖2)

m

∑
i=1
‖pi− p̂i‖2

Xi
+2

m

∑
i=1
‖KiLi‖2‖x− x̂‖2

H +2
m

∑
i=1
‖Ki‖2‖yi− ŷi‖2

Gi

+
m

∑
i=1
‖Mi‖2‖yi− ŷi‖2

Gi
+2

m

∑
i=1
‖Ki‖2‖pi− p̂i‖2

Xi
+2

m

∑
i=1
‖Mi‖2‖qi− q̂i‖2

Yi
)

1
2

≤l(‖x− x̂‖2
H +

m

∑
i=1
‖pi− p̂i‖2

Xi
+

m

∑
i=1
‖qi− q̂i‖2

Yi
+

m

∑
i=1
‖yi− ŷi‖2

Gi
)

1
2

=l‖xxx− x̂xx‖K .

Hence, SSS is monotone and l-Lipschitzian.
(iii) Let xxx = (x, ppp,qqq,yyy) ∈K and x̂xx = (x̂, p̂pp, q̂qq, ŷyy) ∈K . Since C is µ−1-cocoercive, we have

〈xxx− x̂xx,QQQxxx−QQQx̂xx〉K = 〈x− x̂,Cx−Cx̂〉H ≥ µ
−1‖Cx−Cx̂‖2

H = µ
−1‖QQQxxx−QQQx̂xx‖2

K .

Thus QQQ is µ−1-cocoercive.
(iv) Fixing x̄ ∈H , we have that

x̄ solves (1.1)⇔∃(x̄, ppp,qqq,yyy) ∈H ⊕X ⊕Y ⊕G :


z−

m
∑

i=1
L∗i K∗i p̄i ∈ Ax̄+Cx̄,

Ki (Lix̄− ȳi− ri) ∈ B−1
i p̄i, i = 1, . . . ,m,

Miȳi ∈ D−1
i q̄i, i = 1, . . . ,m,

K∗i p̄i = M∗i q̄i, i = 1, . . . ,m.

⇔∃(x̄, p̄pp, q̄qq, ȳyy) ∈ zer(MMM+SSS+QQQ).

Therefore, if (ppp,qqq,yyy) is a solution of (1.2), then there exists x̄ ∈H such that (x̄, ppp,qqq,yyy) is a
primal-dual solution to Problem 1.1. �

3.1. Main algorithm. In this subsection, we present the main algorithm to solve (1.1)-(1.2)
and establish its convergence.

Theorem 3.1. In monotone inclusion (1.1)-(1.2), suppose that

z ∈ ran

(
A+

m

∑
i=1

L∗i ((K
∗
i ◦Bi ◦Ki)�(M∗i ◦Di ◦Mi))(Li ·−ri)+C

)
.

For any i= 1, · · · ,m, let τ,θ1,i,θ2,i and γi be strictly positive real numbers and {λn}⊆ [0,2− 1
2β
]

satisfying the following conditions:
(i) 2β > 1, where

β = µ
−1

(
1
τ
−

m

∑
i=1

(
1

θ1,i
− (

1
γi
−θ2,i‖Mi‖2)−1‖Ki‖2)−1‖KiLi‖2

)
;
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(ii)

(1−α) min
i=1,...,m

{
1
τ
,

1
θ1,i

,
1

θ2,i
,

1
γi

}
> 0,

where α is defined by

α = max
j=1,2,··· ,m

{√
τ

m

∑
i=1

θ1,i ‖KiLi‖2 +

√
θ2, jγ j

∥∥K j
∥∥2
,

√
θ2, jγi

∥∥M j
∥∥2

+

√
θ2, jγ j

∥∥K j
∥∥2

}
.

(iii)
+∞

∑
n=0

λn(2−
1

2β
−λn) = +∞.

Let x0 ∈H , and for any i = 1, . . . ,m, and let pi,0 ∈Xi,qi,0 ∈ Yi and yi,0 ∈ Gi. Set

(∀n≥ 0)



x̃n = JτA(xn− τ(Cxn +
m

∑
i=1

L∗i K∗i pi,n− z))

xn+1 = xn +λn (x̃n− xn)

For i = 1, . . . ,m

p̃i,n = J
θ1,iB−1

i
(θ1,iKiLi(2x̃n− xn)−θ1,iKiri + pi,n−θ1,iKiyi,n)

q̃i,n = J
θ2,iD−1

i
(qi,n +θ2,iMiyi,n)

ỹi,n = γiK∗i (2 p̃i,n− pi,n)− γiM∗i (2q̃i,n−qi,n)+ yi,n− γiKiri

pi,n+1 = pi,n +λn (p̃i,n− pi,n)

qi,n+1 = qi,n +λn (q̃i,n−qi,n)

yi,n+1 = yi,n +λn (ỹi,n− yi,n)

(3.1)

Then there exists a primal-dual solution (x̄, ppp,qqq,yyy) of (1.1)-(1.2) such that xn ⇀ x̄, pi,n ⇀
p̄i,qi,n ⇀ q̄i, and yi,n ⇀ ȳi for any i = 1, . . . ,m as n→+∞.

Proof. Let the real Hilbert space K = H ⊕X ⊕Y ⊕G and
ppp = (p1, . . . , pm)
qqq = (q1, . . . ,qm)
yyy = (y1, . . . ,ym)

and
{

zzz = (z1, . . . ,zm)
rrr = (r1, . . . ,rm) .

Define

VVV : K →K ,(x, ppp,qqq,yyy) 7→
(

x
τ
,

ppp
θ1

,
qqq
θ2

,
yyy
γ

)
+
(
−L∗K̃∗ppp,−K̃Lx− K̃yyy,M̃yyy,−K̃∗ppp+ M̃∗qqq

)
.

Further, for positive real values τ,θ1,i,θ2,i,γi, i = 1, . . . ,m, we define the notations
p

θ1
=
(

p1
θ1,1

, . . . , pm
θ1,m

)
q
θ2

=
(

q1
θ2,1

, . . . , qm
θ2,m

) ,

{
y
γ
=

(
y1

γ1
, . . . ,

ym

γm

)
.

Let 
pppn = (p1,n, . . . pm,n) ∈X
qqqn = (q1,n, . . . ,qm,n) ∈ Y
yyyn = (y1,n, . . . ,ym,n) ∈ G


p̃ppnnn = (p̃1,n, . . . p̃m,n) ∈X
q̃qqnnn = (q̃1,n, . . . , q̃m,n) ∈ Y
ỹyyn = (ỹ1,n, . . . , ỹm,n) ∈ G
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and {
xxxn = (xn, pppn,qqqn,yyyn) ∈K
x̃xxn = (x̃n, p̃ppnnn, q̃qqnnn, ỹyynnn) ∈K .

We se that the iteration scheme in (3.1) is equivalent to

(∀n≥ 0)

⌊
VVV (xxxn− x̃xxn)−QQQxxxn ∈ (MMM+SSS)x̃xxnnn

xxxn+1 = xxxn +λn (x̃xxn− xxxn) .
(3.2)

We introduce the notations AAAK :=VVV−1(MMM+SSS) and BBBK :=VVV−1QQQ. Then, for any n≥ 0,

VVV (xxxn− x̃xxn)−QQQxxxn ∈ (MMM+SSS)x̃xxnnn

⇔VVV xxxn−QQQxxxn ∈ (VVV +MMM+SSS)x̃xxnnn

⇔xxxn−VVV−1QQQxxxn ∈
(
Id+VVV−1(MMM+SSS)

)
x̃xxn

⇔x̃xxn =
(
Id+VVV−1(MMM+SSS)

)−1 (
xxxn−VVV−1QQQxxxn

)
⇔x̃xxn = (Id+AAAK )−1 (xxxn−BBBK xxxn) ,

which can be written as x̃xxnnn = JAAAK
(xxxn−BBBK xxxn) . Thus the iterative scheme in (3.2) becomes

(∀n≥ 0)

⌊
x̃xxn = JAAAK

(xxxn−BBBK xxxn)

xxxn+1 = xxxn +λn (x̃xxnnn− xxxn) .
(3.3)

On the other hand, we have
〈xxx,VVV xxx〉K

=
1
τ
‖x‖2

H +
m

∑
i=1

1
θ1,i
‖pi‖2

Xi
+

m

∑
i=1

1
θ2,i
‖qi‖2

Yi
+

m

∑
i=1

1
γi
‖yi‖2

Gi
−2

m

∑
i=1
〈x,L∗i K∗i pi〉H

−2
m

∑
i=1
〈pi,Kiyi〉Xi

+2
m

∑
i=1
〈qi,Miyi〉Gi

≥1
τ
‖x‖2

H +
m

∑
i=1

1
θ1,i
‖pi‖2

Xi
+

m

∑
i=1

1
θ2,i
‖qi‖2

Yi
+

m

∑
i=1

1
γi
‖yi‖2

Gi
− 1

τ

√
m

∑
i=1

τθ1,i‖KiLi‖2‖x‖2
H

−
m

∑
j=1

1
θ1, j

(

√
m

∑
i=1

τθ1,i‖KiLi‖2 +
√

γ jθ1, j‖K j‖2)‖pi‖2
X j
−

m

∑
i=1

1
θ2,i

√
m

∑
i=1

γiθ2,i‖Mi‖2‖qi‖2
Yi

−
m

∑
i=1

1
γi
(
√

γiθ2,i‖Ki‖2 +
√

γiθ2,i‖Mi‖2)‖i‖2
G j

≥(1−α)(
1
τ
‖x‖2

H +
m

∑
i=1

1
θ1,i
‖pi‖2

Xi
+

m

∑
i=1

1
θ2,i
‖qi‖2

Yi
+

m

∑
i=1

1
γi
‖yi‖2

Gi
)

≥(1−α) min
i=1,...,m

{
1
τ
,

1
θ1,i

,
1

θ2,i
,

1
γi

}
‖xxx‖2

K .
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Define the Hilbert space (K VVV ,〈·, ·〉K VVV ) as: For xxx, x̂xx ∈K ,

〈xxx, x̂xx〉K VVV = 〈xxx,VVV x̂xx〉K and ‖xxx‖K VVV =
√
〈xxx,VVV xxx〉K .

Since VVV is self-adjoint and strongly positive, one can easily see that weak and strong conver-
gence in K VVV are equivalent with weak and strong convergence in K , respectively. In the
following, we prove that BBBK is β -cocoercive on K VVV . In fact, letting xxx, x̂xx ∈K VVV , we have

‖BBBK xxx−BBBK x̂xx‖2
K VVV

= 〈QQQxxx−QQQx̂xx,VVV−1QQQxxx−VVV−1QQQx̂xx〉K

= 〈Cx−Cx̂,(
1
τ

Id−L∗K̃∗(
1
θ1

Id− K̃(
1
γ

Id−θ2M̃∗M̃)−1K̃∗)−1K̃L)−1(Cx−Cx̂)〉H

≤ (
1
τ
−

m

∑
i=1

(
1

θ1,i
− (

1
γi
−θ2,i‖Mi‖2)−1‖Ki‖2)−1‖KiLi‖2)−1〈Cx−Cx̂,Cx−Cx̂〉H

= (
1
τ
−

m

∑
i=1

(
1

θ1,i
− (

1
γi
−θ2,i‖Mi‖2)−1‖Ki‖2)−1‖KiLi‖2)−1‖Cx−Cx̂‖2

H .

It follows from the above inequality that

〈xxx− x̂xx,BBBK xxx−BBBK x̂xx〉K VVV
= 〈xxx− x̂xx,QQQxxx−QQQx̂xx〉K
= 〈x− x̂,Cx−Cx̂〉H
≥ µ

−1‖Cx−Cx̂‖2
H

= β ‖BBBK xxx−BBBK x̂xx‖2
K VVV

,

where

β = µ
−1(

1
τ
−

m

∑
i=1

(
1

θ1,i
− (

1
γi
−θ2,i‖Mi‖2)−1‖Ki‖2)−1‖KiLi‖2).

Since 2β > 1, then iteration scheme (3.3) could be viewed as a special case of the forward-
backward splitting algorithm. By [36, Corollary 28.9], we see that iterative sequences {xxxn}
converges weakly to a point x̄xx = (x̄, ppp,qqq,yyy) in zer(AAAK +BBBK ). It is observed that

zer(AAAK +BBBK ) = zer(MMM+SSS+QQQ).

Then, we obtain that xn ⇀ x̄, pi,n ⇀ p̄i,qi,n ⇀ q̄i and yi,n ⇀ ȳi for i = 1, . . . ,m as n→+∞. This
completes the proof. �
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Remark 3.1. The following primal-dual forward-backward splitting algorithm was proposed
in [33] and [34].

(∀n≥ 0)



x̃n = JτA(xn− τ(Cxn +
m

∑
i=1

L∗i vi,n− z))

for i = 1, . . . ,m

p̃i,n = J
θ1,iB−1

i
(pi,n +θ1,iKizi,n)

q̃i,n = J
θ2,iD−1

i
(qi,n +θ2,iMiyi,n)

u1,i,n = zi,n + γ1,i (K∗i (pi,n−2p̃i,n)+ vi,n +σi (Li (2x̃n− xn)− ri))

u2,i,n = yi,n + γ2,i (M∗i (qi,n−2q̃i,n)+ vi,n +σi (Li (2x̃n− xn)− ri))

z̃i,n =
1+σiγ2,i

1+σi (γ1,i + γ2,i)
(u1,i,n−

σiγ1,i

1+σiγ2,i
u2,i,n)

ỹi,n =
1

1+σiγ2,i
(u2,i,n−σiγ2,iz̃i,n)

ṽi,n = vi,n +σi (Li (2x̃n− xn)− ri− z̃i,n− ỹi,n)

xn+1 = xn +λn (x̃n− xn)

for i = 1, . . . ,m

pi,n+1 = pi,n +λn (p̃i,n− pi,n)

qi,n+1 = qi,n +λn (q̃i,n−qi,n)

zi,n+1 = zi,n +λn (z̃i,n− zi,n)

yi,n+1 = yi,n +λn (ỹi,n− yi,n)

vi,n+1 = vi,n +λn (ṽi,n− vi,n) ,

(3.4)

where, for any i = 1, . . . ,m, τ,θ1,i,θ2,i,γ1,i,γ2,i, and σi are strictly positive real numbers, and
λn > 0. Iterative algorithm (3.1) requires fewer iterations to update variables and uses fewer
iterative parameters than (3.4). Therefore, (3.1) is simpler than (3.4).

3.2. Applications to convex minimization problems. In this subsection, we apply the pro-
posed algorithms to solve the following convex minimization problem.

Problem 3.1. Let H be a real Hilbert space, let z ∈H and h : H → R be differentiable
with µ-Lipschitzian gradient for some µ > 0. Let f ∈ Γ0(H ). For every i = 1, · · · ,m, let
Gi,Xi,Yi be real Hilbert spaces, ri ∈ Gi, gi ∈ Γ0 (Xi) and li ∈ Γ0 (Yi) and consider the nonzero
linear bounded operators Li : H → Gi,Ki : Gi → Xi and Mi : Gi → Yi. The primal convex
minimization problem is

min
x∈H

{
f (x)+

m

∑
i=1

((gi ◦Ki)�(li ◦Mi))(Lix− ri)+h(x)−〈x,z〉

}
, (3.5)

together with its conjugate dual problem

max
(ppp,qqq)∈X ⊕Y ,K∗i pi=M∗i qi,i=1,...,m

{
−( f ∗�h∗)

(
z−

m

∑
i=1

L∗i K∗i pi

)
−

m

∑
i=1

[g∗i (pi)+ l∗i (qi)+ 〈pi,Kiri〉]

}
.

(3.6)
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Let (x̄, ppp,qqq,yyy) ∈ H ⊕X ⊕Y ⊕ G be a solution to the following primal-dual system of
monotone inclusions

z−
m

∑
i=1

L∗i K∗i p̄i ∈ ∂ f (x̄)+∇h(x̄)

and Ki (Lix̄− ȳi− ri) ∈ ∂g∗i (p̄i) ,Miȳi ∈ ∂ l∗i (q̄i) ,K∗i p̄i = M∗i q̄i, i = 1, . . . ,m,

(3.7)

which means that x̄ is an optimal solution to (3.5) and (ppp,qqq) is an optimal solution to (3.6).
For primal-dual system (3.7), the iterative sequence proposed in (3.1) read as:
Algorithm 3.1. Let x0 ∈H , and for any i = 1, . . . ,m, let pi,0 ∈Xi,qi,0 ∈ Yi and yi,0 ∈ Gi.

Define

(∀n≥ 0)



x̃n = proxτ f

(
xn− τ

(
∇h(xn)+

m

∑
i=1

L∗i K∗i pi,n− z

))
xn+1 = xn +λn (x̃n− xn)

For i = 1, . . . ,m

p̃i,n = proxθ1,ig∗i
(θ1,iKiLi(2x̃n− xn)−θ1,iKiri + pi,n−θ1,iKiyi,n)

q̃i,n = proxθ2,il∗i
(qi,n +θ2,iMiyi,n)

ỹi,n = γiK∗i (2p̃i,n− pi,n)− γiM∗i (2q̃i,n−qi,n)+ yi,n− γKiri

pi,n+1 = pi,n +λn (p̃i,n− pi,n)

qi,n+1 = qi,n +λn (q̃i,n−qi,n)

yi,n+1 = yi,n +λn (ỹi,n− yi,n)

The convergence of Algorithm 3.1 is presented in the following theorem.

Theorem 3.2. For convex minimization problem (3.5), suppose that

z ∈ ran

(
∂ f +

m

∑
i=1

L∗i ((K
∗
i ◦∂gi ◦Ki)�(M∗i ◦∂ li ◦Mi))(Li ·−ri)+∇h

)
and consider the sequences generated by Algorithm 3.1. For any i = 1, . . . ,m, let τ,θ1,i,θ2,i,γ1,i,
γ2,i, and σi be strictly positive real numbers and {λn} satisfy the conditions in Theorem 3.1.
Then there exists an optimal solution x̄ to (3.5) and optimal solution (ppp,qqq) to (3.6) such that
xn ⇀ x̄ and for i = 1, . . . ,m, pi,n ⇀ p̄i,qi,n ⇀ q̄i as n→+∞.

Proof. In Theorem 3.1, let

A = ∂ f ,C = ∇h, and Bi = ∂gi,Di = ∂ li, i = 1, . . . ,m. (3.8)

According to Theorem 20.25 of [36], the operators in (3.8) are maximally monotone.
On the other hand, we have B−1

i = ∂g∗i and D−1
i = ∂ l∗i for i= 1, . . . ,m. Moreover, by Baillon-

Haddad theorem, C = ∇h is µ−1-cocoercive. By Theorem 3.1, we have xn ⇀ x̄ and for i =
1, . . . ,m, pi,n ⇀ p̄i,qi,n ⇀ q̄i. �

Remark 3.2. Let H be ñ−dimensional real Euclidean space, Xi be ci-dimensional real Eu-
clidean space, Yi be di−dimensional real Euclidean space, Gi be mi−dimensional real Euclidean
space, the multiplication computation of Algorithm 3.1 be m(2ciñ + 2cimi + 2dimi), and of
(3.4) [34] be m(ciñ+ 2cimi + 2dimi +miñ). Therefore, the actual computational complexity
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of the proposed algorithm and Algorithm 3.4 can only be compared in the context of specific
practical problems.

4. NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments to demonstrate the effectiveness of
the proposed algorithm for image denoising problems. We compare the proposed algorithm
with (3.4) by using the parameter conditions from [34], which we refer to as FB CLTD. All
numerical experiments are implemented on MATLAB R2017a on a personal computer with
Intel Core i7-10870H CPU 2.21GHz and 16 GB memory. The code for this paper is available
for download at the GitHub repository: https://github.com/hhaaoo1331/Simpli-ed-PDFB.

We mainly focus on the following constrained image denoising models:

(`2− IC) min
x∈Rkl

{
1
2
‖x−b‖2 +((α1‖ · ‖1 ◦D1)�(α2‖ · ‖1 ◦D2))(x)

}
, s.t. x ∈C, (4.1)

and

(`2−MIC) min
x∈kl

{
1
2
‖x−b‖2 +((α1‖ · ‖1)�(α2‖ · ‖1 ◦L1))(D1x)

}
, s.t. x ∈C, (4.2)

where α1 > 0,α2 > 0 are the regularization parameters, and C = {x ∈ Rkl|0 ≤ x j ≤ 255, j =
1,2, · · · ,kl}. For detailed definitions of (4.1) and (4.2), we refer to [33, 34]. It is easy to check
that (4.1) and (4.2) are special cases of convex minimization problem (3.5). For example, for
the `2− IC and `2−MIC, let h(x) = 1

2‖x−b‖2. Then ∇h(x) = x−b and µ = 1.
We use the peak-signal-to-noise (PSNR) and the structural similarity index (SSIM) [37] to

evaluate the quality of the restored images, which are estimated as follows:

PSNR = 20log10
255
√

kl
‖x− y‖

,

and

SSIM =
(2µ1µ2 + c1)(2σ12 + c2)

(2µ2
1 µ2

2 + c1)(σ
2
1 +σ2

2 + c2)
,

where x ∈ Rkl is the column vector converted from the original image x with size of k× l ,
y ∈ Rkl is the column vector converted from the restored image y, c1 > 0 and c2 > 0 are small
constants, µ1 and µ2 are the mean values of x and y, respectively; σ1 and σ2 are the variances
of x and y, respectively; σ12 is the covariance of x and y.

In the following experiments, we select two images as test images, shown in Figure 1, and add
Gaussian noise with mean zero and standard deviation of σ to the original image. The criterion
for stopping all algorithms is that the relative error of two consecutive iterations satisfies the
following inequality

‖xn+1− xn‖
‖xn‖

< ε,

where ε > 0 is a given positive constant. In the whole experiments, we choose ε = 10−5. The
regularization parameters α1 and α2 are listed in Table 1.
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TABLE 1. Selection of the regularization parameters α1 and α2.

Image Model
σ = 15 σ = 25 σ = 50

α1 α2 α1 α2 α1 α2

Castle
`2− IC 7.7 20.7 14.8 30.2 35.8 123.5
`2−MIC 7.7 21.5 14.8 51.2 35.7 115.9

Building
`2− IC 6.1 24.8 12.5 32.6 31.6 87.8
`2−MIC 6.1 27.4 12.5 49 31.8 139.8

In the first experiment, we discuss the influence of the selection of iterative parameters on the
convergence speed of the proposed algorithm, and the standard deviation of Gaussian noise σ is
set to 15. The numerical results are shown in Table 2. According to the convergence criteria of
Algorithm 3.1, we provide the range of parameter values that need to be satisfied in Table 2. At
the same time, we list some specific parameter combinations in Table 3 to meet the requirement.

TABLE 2. The range of parameter values of Algorithm 3.1.

Model Parameter

`2− IC
λn ∈ (0,2− 1

2β
),2β > 1,β = 1

τ
− ( 1

θ1
− (1

γ
−θ2×5.61332)−1×2.80722)−1×2.80722,

α = max
{

2.8072
√

τθ1 +2.8072
√

γθ2,5.6133
√

θ2γ +2.8072
√

θ2γ
}
< 1

`2−MIC
λn ∈ (0,2− 1

2β
),2β > 1,β = 1

τ
− ( 1

θ1
− (1

γ
−θ2×1.99262)−1)−1×2.80722,

α = max
{

2.8072
√

τθ1 +
√

γθ2,1.9926
√

θ2γ +
√

θ2γ
}
< 1

TABLE 3. The parameters selection of Algorithm 3.1, where λmax = 2− 1
2β

.

Model Case θ1 θ2 τ γ λmax

`2− IC

1 0.1 0.1 0.2 0.1 1.87
2 0.1 0.1 0.4 0.1 1.68
3 0.2 0.1 0.1 0.1 1.93
4 0.3 0.1 0.1 0.1 1.92
5 0.4 0.1 0.1 0.1 1.87
6 0.5 0.1 0.1 0.1 1.30

`2−MIC

1 0.1 0.4 0.6 0.1 1.42
2 0.1 0.3 0.3 0.3 1.80
3 0.1 0.5 0.4 0.2 1.70
4 0.1 0.7 0.6 0.1 1.42
5 0.2 0.2 0.4 0.2 1.40
6 0.4 0.5 0.1 0.1 1.92

It can be seen from Table 4 that, under the given parameter selection, the PSNR and SSIM
values of the restored images by Algorithm 3.1 is almost consistently, and the difference in terms
of the number of iterations required for the algorithm is not significant. Therefore, in practical
applications, we can easily choose appropriate parameters to ensure the convergence speed
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of the algorithm. In the following experiment, for the `2-IC model, we select the parameter
combination of Case 4, and for the `2-MIC model, we selected the parameter combination of
Case 3, respectively.

(a) (b)
FIGURE 1. Test images. (a) 481×321 “Castle” image, (b) 493×517 “Building”
image.

TABLE 4. Numerical results of Algorithm 3.1 with different parameters in terms
of the PSNR, SSIM, and number of iterations (Iter).

Model Case
Castle Building

PSNR SSIM Iter PSNR SSIM Iter

`2− IC

1 30.5400 0.8409 612 28.3654 0.8405 656
2 30.5401 0.8409 620 28.3651 0.8405 670
3 30.5400 0.8408 585 28.3652 0.8405 615
4 30.5400 0.8408 581 28.3652 0.8405 610
5 30.5400 0.8408 585 28.3652 0.8405 614
6 30.5400 0.8409 640 28.3660 0.8405 699

`2−MIC

1 30.5449 0.8411 304 28.3671 0.8405 320
2 30.5458 0.8412 379 28.3676 0.8405 416
3 30.5464 0.8412 292 28.3676 0.8405 298
4 30.5454 0.8413 334 28.3680 0.8405 368
5 30.5427 0.8410 377 28.3662 0.8405 401
6 30.5478 0.8413 317 28.3681 0.8405 340

In the second experiment, we compare the proposed Algorithm 3.1 with the FB CLTD for
solving `2− IC and `2−MIC. The test images are added by Gaussian noise with mean zero
and standard deviation of σ = 15,25 and 50, respectively. The obtained results in terms of
PSNR, SSIM, the number of iteration and CPU time are presented in Table 5. We can observe
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TABLE 5. Numerical results of the compared algorithms in terms of the PSNR,
SSIM, number of iterations (Iter) and CPU time (in seconds).

Image Model σ
FB CLTD Algorithm 3.1

PSNR SSIM Iter Time PSNR SSIM Iter Time

Castle

`2− IC
15 30.5393 0.8409 590 17.2 30.5400 0.8408 581 28.1
25 27.9452 0.7812 551 16.3 27.9422 0.7812 669 32.5
50 24.9487 0.7039 1044 31.6 24.9441 0.7047 1252 61.5

`2−MIC
15 30.5449 0.8411 403 12.9 30.5464 0.8412 292 10.1
25 27.9400 0.7799 604 19.0 27.9457 0.7803 457 15.9
50 24.9418 0.7017 1085 34.2 24.9501 0.7021 824 28.8

Building

`2− IC
15 28.3634 0.8404 903 45.6 28.3652 0.8405 610 47.2
25 25.5958 0.7331 705 32.6 25.5965 0.7331 680 50.9
50 22.6542 0.5552 850 42.1 22.6535 0.5552 939 71.4

`2−MIC
15 28.3669 0.8405 421 21.1 28.3676 0.8405 298 16.1
25 25.6005 0.7332 551 27.9 25.6019 0.7333 415 22.6
50 22.6731 0.5565 1057 53.1 22.6752 0.5566 836 45.4

that the quality evaluation indicators PSNR and SSIM of the restored images by FB CLTD
and Algorithm 3.1 are almost the same. For `2− IC, Algorithm 3.1 requires more time than
FB CLTD regardless of the number of iterations. For `2−MIC, Algorithm 3.1 exhibits fewer
iterations and less total computation time than FB CLTD. It has been observed that there is a
proportional relationship between the time consumed in each iteration of Algorithm 3.1 and that
of FB CLTD, i.e.,

TimeAlgorithm3.1

IterAlgorithm3.1
∝

TimeFB CLT D

IterFB CLT D
.

This phenomenon can be attributed to the fact that, as discussed in Remark 3.2: For `2− IC, Al-
gorithm 3.1 performs 12k2l2 multiplications per iteration, which is 4k2l2 more than FB CLTD,
leading to longer computation time; and for `2−MIC, in each iteration, the multiplication
computation of both algorithm is 8k2l2. Therefore, in each iteration, when the evaluations of
the proximity and the multiplication with the identity matrix I are negligible, with solving the
IC model, the time of Algorithm 3.1 for multiplication calculation is about 1.5 times that of
FB CLTD; when solving the MIC model, the multiplication computation time is nearly identi-
cal between FB CLTD and Algorithm 3.1.

We plot the PSNR performance with CPU time performance of FB CLTD and Algorithm 3.1
in Figure 2 and Figure 3, respectively. It can be observed that the SSIM of both algorithms
converge with almost equal values, respectively. Especially the zoomed-in images, Algorithm
3.1 is more stable than FB CLTD in the early iteration, i.e., the convergence of Algorithm 3.1
is more robust than FB CLTD. Furthermore, we present the restored images in Figure 4 and
Figure 5. As shown in Table 5, the PSNR values of the images restored by Algorithm 3.1 and
FB CLTD demonstrate minimal variation. Consequently, there is no obvious visual difference
between the images restored by the two algorithms.
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(f) Building, σ = 50

FIGURE 2. For `2− IC (4.1), PSNR vs CPU time.
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FIGURE 3. For `2−MIC (4.2), PSNR vs CPU time.
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(a) σ = 15 (b) σ = 25 (c) σ = 50

(d) `2− IC/FB CLTD (e) `2− IC/FB CLTD (f) `2− IC/FB CLTD

(g) `2− IC/Algorithm 3.1 (h) `2− IC/Algorithm 3.1 (i) `2− IC/Algorithm 3.1

(j) `2−MIC/FB CLTD (k) `2−MIC/FB CLTD (l) `2−MIC/FB CLTD

(m) `2−MIC/Algorithm 3.1 (n) `2−MIC/Algorithm 3.1 (o) `2−MIC/Algorithm 3.1
FIGURE 4. Noisy and restored “Castle” images.
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(a) σ = 15 (b) σ = 25 (c) σ = 50

(d) `2− IC/FB CLTD (e) `2− IC/FB CLTD (f) `2− IC/FB CLTD

(g) `2− IC/Algorithm 3.1 (h) `2− IC/Algorithm 3.1 (i) `2− IC/Algorithm 3.1

(j) `2−MIC/FB CLTD (k) `2−MIC/FB CLTD (l) `2−MIC/FB CLTD

(m) `2−MIC/Algorithm 3.1 (n) `2−MIC/Algorithm 3.1 (o) `2−MIC/Algorithm 3.1
FIGURE 5. Noisy and restored “Building” images.
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5. CONCLUSIONS

In this paper, we developed a new primal-dual splitting algorithm to solve monotone inclu-
sion problem (1.1)-(1.2), which is strongly related to convex minimization problem (3.5)-(3.6).
Firstly, we transformed the monotone inclusion into the sum of two maximally monotone op-
erators under a proper product space. Based on the preconditioned forward-backward splitting
algorithm, we proved the convergence of the proposed algorithm with appropriate parameter
conditions. The proposed algorithm has a simpler form than (3.4). Additionally, we employed
the proposed algorithm to solve a class of convex minimization problems. To verify the advan-
tages of the proposed algorithm, we used it to solve image denoising models (4.1) and (4.2). The
numerical results showed that the proposed algorithm demonstrates a reduction in the number
of iterations and the CPU time when solving (4.2) compared to (3.4).
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