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Abstract. This paper is devoted to the study of differential sensitivity analysis for weak vector variational
inequalities in terms of the higher-order tangent derivatives, which were introduced by J.P. Penot in 2017.
We first provide some calculus rules for these derivatives such as composition rule and sum rule, and we
obtain some formulas for the tangent derivative of the profile mapping. Then, they are employed to
investigate the differential sensitivity for the vector variational inequality problem with the help of gap
functions. Several examples are given to illustrate the obtained results.
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1. INTRODUCTION

One of the main topics in sensitivity analysis for optimization-related problems is the study
of derivatives/generalized derivatives of the solution mappings and the optimal-value mappings
of perturbed problems. For nonlinear programming, Fiacco and Ishizuka [8] studied sensitiv-
ity results in terms of classical derivatives. However, practical optimization-related problems
are often nonsmooth. To cope with this crucial difficulty, most of approaches for sensitiv-
ity analysis are based on generalized derivatives. For nonsmooth multiobjective optimization,
Tanino [27] first studied the first-order contingent derivative of perturbation maps. Some related
results were developed in [13, 14, 25]. By using the concepts in dual space approaches, such
as sub-gradients and co-derivatives of set-valued mappings, Levy and Mordukhovich [15] in-
vestigated sensitivity analysis for parameterized vector optimization problems. Following this
direction, the reader is referred to [6, 7, 21, 22] and the references therein. In primal space
approaches, Luc et al. [20] presented some sufficient conditions for semi-differentiability of ef-
ficient solutions and marginal maps for parameterized multiobjective optimization under some
relaxed assumptions. For second-order considerations, Wang et al. [32] provided the second-
order contingent derivative for the perturbation map and the proper perturbation map of vector
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optimization problem; Tung [29] gave some sufficient conditions for inner and outer estima-
tions of the second-order proto-derivative of the efficient solution map in vector optimization
problems under some qualification conditions. For equilibrium problems, Anh [3] obtained dif-
ferential sensitivity for these problems in terms of variational sets. Tung et al. [31] introduced
a notion of a higher-order Hadamard-type directional derivative and obtained an implicit set-
valued map theorem; then it is employed to examine the higher-order sensitivity analysis for
solution maps of a parametric vector equilibrium problem. All the aforementioned works are
for sensitivity analysis to optimization and equilibrium problems.

However, the sensitivity analysis for vector variational inequalities still needs to be addressed.
The concept of gap functions plays an essential role in studying the sensitivity of vector vari-
ational inequalities (VVI) and weak vector variational inequalities (WVVI). Chen et al. [5]
defined some gap functions for these problems and discussed some related properties. Later, Li
et al. [16] studied the differential and sensitivity properties of the set-valued gap function for
WVVI under some suitable conditions. Subsequently, Li and Li [19] examined the differential
sensitivity for the WVVI by using the second-order contingent derivative. Li and Zhai [18] in-
troduced an asymptotic second-order Φ-contingent cone and discussed an explicit expression of
the asymptotic second-order contingent derivative for the class of set-valued maps and obtained
them to investigate sensitivity analysis and optimality conditions for vector variational inequal-
ities. Besides, to the best of our knowledge, there are only few results for the higher-order
differential sensitivity of vector variational inequalities.

Motivated by the above observations, we, in this paper, aim to discuss the higher-order differ-
ential sensitivity for vector variational inequalities in terms of tangent derivatives, introduced by
Penot [24]. These tangent derivatives have many nice properties and are useful in applications
(see [4, 12, 23]). We first give some calculus rules such as chain rule and sum rule for these
derivatives. The main idea for these rules is inspired by [17] and based on a transitivity, that is
to insert an intermediate element. Our approach is different from [4], in which the assumption
of metric regularity plays a crucial role. We also provide the formula for the tangent deriva-
tive of the profile mapping. We then apply them to obtain the differential sensitivity for vector
variational inequality with the help of the corresponding gap function.

The rest of the paper is organized as follows. In Section 2, we collect definitions and pre-
liminary facts for use later. Section 3 gives some calculus rules for the higher-order tangent
derivatives. We discuss the differential properties of a class of set-valued maps and derive an
explicit expression for them in Section 4. Finally, the higher-order sensitivity properties for
vector weak variational inequality are investigated in Section 5.

2. PRELIMINARIES

Throughout the paper, if not otherwise stated, N,Rn, and R+ stand for the set of natural
numbers, an n-dimensional space, and the set of positive real numbers, respectively (resp). Let
Bn denote the open unit ball of Rn and Bn(x,r) be the open ball with center x and radius r. For a
set M ⊆Rn, intM, clM, coM, and coneM stand for its topological interior, closure, convex hull,
and cone hull, resp. L(Rn,Rm) denotes the space of the linear mappings from Rn to Rm. For
any l ∈ L(Rn,Rm), we recall the norm ‖l‖L := sup{‖l(x)‖ | ‖x‖ ≤ 1}.

Let C ⊂ Rn be a closed and convex cone with nonempty interior. A nonempty convex set Q
(see [9]) is a base of C if 0 /∈ clQ and coneQ = C. The cone C is called sequentially regular
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(see [26]) if each C-increasing and C-upper bounded sequence converges to an element of C.
A set Ω of Rn is called C-upper bounded (see [28]) if there exists a point a ∈ Rn such that
Ω ⊂ a−C. The maximal and weak maximal point sets of Ω with respect to C are defined
(see [10]),

Max(Ω,C) :=
{

y ∈Ω | (y+C \{0})∩Ω = /0
}
,

WMax(Ω,C) :=
{

y ∈Ω | (y+ intC)∩Ω = /0
}
.

Let G : Rn ⇒ Rm be a set-valued mapping. The domain and graph of G are

domG := {x ∈ Rn | G(x) 6= /0} , gphG := {(x,y) ∈ Rn×Rm | y ∈ G(x)} .

The profile map G− : Rn ⇒ Rm is defined by G−(x) := G(x)−C, for every x ∈ Rn. The hypo-
graph of G with respect to C is

hypoG := {(x,y) ∈ Rn×Rm | y ∈ G(x)−C} .

The closure mapping related to G is a set-valued mapping ClG : Rn ⇒ Rm defined by

gph(ClG) := cl(gphG).

G is said to be uniformly compact near x ∈ Rn (see [2]) if there exists a neighborhood U of x
such that the set

⋃
x∈U G(x) is compact.

Let us recall the higher-order tangent sets, which were introduced by Penot (see [24]).

Definition 2.1. (see [24]) Let M ⊆ Rn, x ∈ clM, v ∈ Rn, and r ∈ R+ := [0,+∞].

(i) The higher-order tangent set of M at x with index r is

T h
r (M,x,v) :=

{
w ∈ Rn | ∃tk↘ 0,∃sk↘ 0, tks−1

k → r,∃wk→ w : x+ tkv+
1
2

tkskwk ∈M, ∀k ∈ N
}
.

(ii) The incident higher-order tangent set of MS at x with index r is

T hi
r (M,x,v) :=

{
w ∈ Rn | ∀tk↘ 0,∀sk↘ 0, tks−1

k → r,∃wk→ w : x+ tkv+
1
2

tkskwk ∈M, ∀k ∈ N
}
.

T h
1 (M,x,v) is the well-known second-order tangent set (see [1]) and T h

0 (M,x,v) is the second-
order asymptotic tangent cone (see [23]). Some nice properties of these tangent sets were
studied in [11, 23, 24].

Definition 2.2. (see [24]) Let (x,y) ∈ gphG, (u,v) ∈ Rn×Rm, and r ∈ R+.

(i) The higher-order tangent derivative of G at (x,y) in the direction (u,v) with index r is

gph(Dh
r G(x,y,u,v)) := T h

r (gphG,(x,y),(u,v)).

Equivalently, for all x ∈ Rn,

Dh
r G(x,y,u,v)(x) =

{
y ∈ Rm | ∃tk↘ 0,∃sk↘ 0, tks−1

k → r, ∃(xk,yk)→ (x,y) :

y+ tkv+
1
2

tkskyk ∈ G
(

x+ tku+
1
2

tkskxk

)
,∀k ∈ N

}
.
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(ii) The incident higher-order tangent derivative of G at (x,y) in the direction (u,v) with index
r is

gph(Dhi
r G(x,y,u,v)) := T hi

r (gphG,(x,y),(u,v)).

Equivalently, for all x ∈ Rn,

Dhi
r G(x,y,u,v)(x) =

{
y ∈ Rm | ∀tk↘ 0,∀sk↘ 0, tks−1

k → r, ∃(xk,yk)→ (x,y) :

y+ tkv+
1
2

tkskyk ∈ G
(

x+ tku+
1
2

tkskxk

)
,∀k ∈ N

}
.

Dh
0G(x,y,u,v)(x) is the second-order asymptotic tangent derivative, introduced by Penot (see

[23]). While Dh
1G(x,y,u,v)(x) is the second-order tangent derivative (see [1]).

We give some examples to illustrate the higher-order tangent derivatives.

Example 2.1. (i) Let G : R⇒ R be defined by

G(x) :=

{
{y ∈ R | y = x(2p+1)/2p, p ∈ N}, if x≥ 0,
/0, if x < 0.

Take (x,y) = (0,0) and (u,v) = (1,0). By directly calculating, we have

Dh
r G(x,y,u,v)(x) =

{
R+, if r = 0,
/0, if r = (0,+∞].

(ii) Let Gq : R⇒ R2 be defined by Gq(x) := {(y1,y2) ∈ R2 | y1 = y2 = x2q} for q ∈ N. Take
(x,y) = (0,(0,0)) and (u,v) = (1,(0,0)). After some computations, we see that
• for any x ∈ R,

Dh
r G1 (x,y,u,v)(x) =

{
{(2r,2r)}, if r = [0,+∞),

/0, if r =+∞.

• for q > 1 and x ∈ R,

Dh
r Gq (x,y,u,v)(x) =

{
{(0,0)}, if r = [0,+∞),

R2
+, if r =+∞.

3. CALCULUS RULES

In this section, we study some calculus rules for the higher-order tangent derivative. The
main idea in this section is inspired by [4, 17, 24, 30].

3.1. Derivatives of compositions. For the set-valued mappings F : Rn ⇒ Rm and G : Rm ⇒
Rp, we study the composition set-valued mapping

(G◦F)(x) := ∪y∈F(x)G(y).

Denote by G−1(z) := {y ∈ Rm | z ∈ G(y)}, the resultant set-valued map is H : Rn×Rp ⇒ Rm

by H(x,z) := F(x)∩G−1(z).
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Definition 3.1. Given ((x,z) ,y) ∈ gph(ClH), (u,w) ∈Rn×Rp, and r ∈R+, the y-higher-order
tangent derivative of G ◦F at (x,z) in the direction (u,w) with index r is the set-valued map
Dh

r (G◦y F)(x,z,u,w) : Rn ⇒ Rp defined by

Dh
r (G◦y F)(x,z,u,w)(x) :=

{
z ∈ Rp | ∃tk↘ 0,∃sk↘ 0, tks−1

k → r, ∃(xk,yk,zk)→ (x,y,z) :

yk ∈ H
(

x+ tku+
1
2

tkskxk,z+ tkw+
1
2

tkskzk

)
,∀k ∈ N

}
.

Motivated by the work in [17], we use the following definition of directionally semi-compact.

Definition 3.2. Let H : Rn×Rp ⇒Rm,(x,z) ∈ dom(ClH), (u,w) ∈Rn×Rp, and r ∈R+. H is
directionally semi-compact at (x,z) with respect to (u,w) in the direction (x,y) iff, for all tk↘

0,sk↘ 0, tks−1
k → r,(xk,zk)→ (x,z), any sequence yk ∈H

(
x+ tku+

1
2

tkskxk,z+ tkw+
1
2

tkskzk

)
has a convergent subsequence.

Proposition 3.1. Given (x,z) ∈ gph(G ◦F), (u,w) ∈ Rn×Rp, and r ∈ R+. Assume that H is
directionally semi-compact at (x,z). Then,

Dh
r (G◦F)(x,z,u,w)(x) =

⋃
y∈(ClH)(x,z)

Dh
r (G◦y F)(x,z,u,w)(x). (3.1)

Proof. Let y ∈ (ClH)(x,z) and z ∈ Dh
r (G ◦y F)(x,z,u,w)(x). Then there exist sequences tk ↘

0,sk↘ 0 with tks−1
k → r, and (xk,yk,zk)→ (x,y,z) such that

yk ∈ H
(

x+ tku+
1
2

tkskxk,z+ tkw+
1
2

tkskzk

)
.

By the definition of H, one has

z+ tkw+
1
2

tkskzk ∈ G(yk)⊆ (G◦F)

(
x+ tku+

1
2

tkskxk

)
.

Hence, we arrive at z ∈ Dh
r (G◦F)(x,z,u,w)(x).

For the converse, pick any z ∈ Dh
r (G ◦F)(x,z,u,w)(x). Then we find sequences tk ↘ 0 and

sk↘ 0 with
tk
sk
→ r, and (xk,zk)→ (x,z) such that

z+ tkw+
1
2

tkskzk ∈ (G◦F)

(
x+ tku+

1
2

tkskxk

)
.

Hence, there exists yk ∈ F
(

x+ tku+
1
2

tkskxk

)
with z+ tkw+

1
2

tkskzk ∈ G(yk) for all n ∈ N.

This gives that

yk ∈ G−1
(

z+ tkw+
1
2

tkskzk

)⋂
F
(

x+ tku+
1
2

tkskxk

)
= H

(
x+ tku+

1
2

tkskxk,z+ tkw+
1
2

tkskzk

)
.

(3.2)

From the assumption that H is directionally semi-compact, we can assume that {yk} converges

to some y (using a subsequence if necessary). Since
(

x+ tku+
1
2

tkskxk,z+ tkw+
1
2

tkskzk,yk

)
→
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(x,z,y), we have y ∈ (ClH)(x,z). This together with (3.2) derives that

z ∈ Dh
r (G◦y F)(x,z,u,w)(x)⊆

⋃
y∈(ClH)(x,z)

Dh
r (G◦y F)(x,z,u,w)(x).

The proof is done. �

The following example shows that the directional semi-compactness of H in Proposition 3.1
is essential.

Example 3.1. Let F : R⇒ R, and G : R⇒ R be given by

F(x) =

{
{y ∈ R | y = x3/2}, if x≥ 0,
/0, if x < 0,

G(y) = {z ∈ R | z =−y}.

Then

(G◦F)(x) =

{
{z ∈ R | z =−x3/2}, if x≥ 0,
/0, if x < 0,

H(x,z) = F(x)∩G−1(z) =

{
{0}, if x = z = 0,
/0, otherwise .

Let (x,z) = (0,0), y = 0 ∈ (ClH)(x,z), and (u,w) = (1,0). Hence

Dh
r (G◦F)(x,z,u,w)(x) =

{
R+, if r = 0,
/0, if r = (0,+∞],

Dh
r (G◦y F)(x,z,u,w)(x) = {0}.

Then ⋃
y∈(ClH)(x,z)

Dh
r (G◦y F)(x,z,u,w)(x)⊆ Dh

r (G◦F)(x,z,u,w)(x).

However, the converse is not true. The reason is that H is not directionally semi-compact at
(0,0).

Proposition 3.2. Let (x,z) ∈ gph(G ◦ F), (u,v,w) ∈ Rn×Rm×Rp, and r ∈ R+. If for all
(x,z) ∈ Rn×Rp, the following condition holds

Dh
r F (x,y,u,v)(x)∩Dh

r G−1 (z,y,w,v)(z)⊆ Dh
r H ((x,z),y,(u,w),v)(x,z), (3.3)

then (
Dh

r G(y,z,v,w)◦Dh
r F (x,y,u,v)

)
(x)⊆ Dh

r (G◦y F)(x,z,u,w)(x). (3.4)

Proof. Let z be in the left-hand side of (3.4). Then there exists y ∈ Dh
r F (x,y,u,v)(x) with

y ∈Dh
r G−1 (z,y,w,v)(z). In view of (3.3), we have y ∈Dh

r H ((x,y),z,(u,v),w)(x,z). Thus there
exist sequences tk↘ 0,sk↘ 0 with tks−1

k → r and (xk,zk,yk)→ (x,z,y) such that

y+ tkv+
1
2

tkskyk ∈ H
(

x+ tku+
1
2

tkskxk,z+ tkw+
1
2

tkskzk

)
.

It follows from the formula of H that

y+ tkv+
1
2

tkskyk ∈ F
(

x+ tku+
1
2

tkskxk

)
, (3.5)

z+ tkw+
1
2

tkskzk ∈ G
(

y+ tkv+
1
2

tkskyk

)
. (3.6)



HIGHER-ORDER DIFFERENTIAL SENSITIVITY 953

Combining (3.5) and (3.6), we have

z+ tkw+
1
2

tkskzk ∈ (G◦F)

(
x+ tku+

1
2

tkskxk

)
,

which means z ∈ (G◦F)(x,z,u,w) . This together with (3.1) gives that z ∈ (G◦y F)(x,z,u,w) .
�

Proposition 3.3. Let (x,z)∈ gph(G◦F), (u,v,w)∈Rn×Rm×Rp, and r ∈R+. If the following
condition holds

Dh
r H ((x,z),y,(u,w),v)(0,0) = {0}, (3.7)

then
Dh

r (G◦y F)(x,z,u,w)(x)⊆
(

Dh
r G(y,z,v,w)◦Dh

r F (x,y,u,v)
)
(x).

Proof. Let z∈Dh
r (G◦y F)(x,z,u,w)(x). Then there exist sequences tk↘ 0,sk↘ 0 with tks−1

k →
r and (xk,yk,zk)→ (x,y,z) such that

yk ∈ H
(

x+ tku+
1
2

tkskxk,z+ tkw+
1
2

tkskzk

)
.

There are two cases to be considered.
Case 1. If yk = y for infinitely many times k, then

0 ∈ Dh
r F (x,y,u,v)(x) and z ∈ Dh

r G(y,z,v,w)(0).

Case 2. If yk 6= y for all k, we denote qk :=
‖yk− y− tkv‖

tk
and q̂k :=

yk− y− tkv
tkqk

. We see that

q̂k→ q̂ ∈ Rm with ‖q̂‖= 1. Moreover, we have

y+ tkv+
1
2

tkqkq̂k = yk ∈ H
(

x+ tku+
1
2

tkskxk,z+ tkw+
1
2

tkskzk

)
. (3.8)

Suppose that
sk

qk
→ 0. It follows from (3.8) that

y+ tkv+
1
2

tkqkq̂k = yk ∈ H
(

x+ tku+
1
2

tkqk

(
sk

qk
xk

)
,z+ tkw+

1
2

tkqk

(
sk

qk
zk

))
,

which means that q̂ ∈ Dh
r H ((x,z),y,(u,w),v)(0,0), a contradiction to (3.7). Hence, qk

sk
has a

bounded subsequence. Taking a subsequence, one may assume that qk
sk

has a limit l ∈ R+. It
follows from (3.8) that

y+ tkv+
1
2

tksk

(
qk

sk
q̂k

)
= yk ∈ H

(
x+ tku+

1
2

tkskxk,z+ tkw+
1
2

tkskzk

)
.

By the definition of H, we arrive at lq̂ ∈ Dh
r F (x,y,u,v)(x) and z ∈ Dh

r G(y,z,v,w)(lq̂). �

To illustrate Propositions 3.2 and 3.3, we consider the following example.

Example 3.2. Let F : R⇒ R and G : R⇒ R be given by

F(x) = {y ∈ R | y≥ x6} and G(y) = {z ∈ R | z≥ 3
√

y}.
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Then

H(x,z) = F(x)∩G−1(z) =

{
{(x,z) ∈ R2 | x6 ≤ y≤ z3}, if x ∈ [0,1] and z ∈ [0,1],
/0, otherwise .

Consider (x,z) = (0,0), y = 0 ∈ (ClH)(x,z), and (u,v,w) = (1,0,0).
• For r = [0,+∞), we have

Dh
r F (x,y,u,v)(0) = R+,Dh

r G(y,z,v,w)(0) = R+,Dh
r G−1 (z,y,w,v)(0) = R−,

Dh
r H ((x,z),y,(u,w),v)(0,0) = {0},Dh

r (G◦y F)(x,z,u,w)(0) = R+.

Then we can check that (3.3) and (3.7) hold and(
Dh

r G(y,z,v,w)◦Dh
r F (x,y,u,v)

)
(0) = Dh

r (G◦y F)(x,z,u,w)(0).

• For r =+∞, the above derivatives are empty.
Consequently, the conclusions of Propositions 3.2 and 3.3 are fulfilled.

3.2. Derivatives of sums. Now we study the sum rule for two set-valued mappings P,Q :Rn ⇒
Rm. For I being the identity map on Rn and (x,y)∈Rn×Rm, we denote F = I×P and G(x,y) =
y+Q(x). For (x,z) ∈ Rn×Rm, we set K(x,z) := P(x)∩ (z−Q(x)). The resultant set-valued
mapping H : Rn×Rm ⇒ Rn×Rm associated to F , G is H(x,z) = {x}×K(x,z).

Definition 3.3. Given ((x,z) ,y) ∈ gph(ClK), (u,w) ∈Rn×Rp, and r ∈R+, the y-higher-order
tangent derivative of P+Q at (x,z) in the direction (u,w) with index r is the set-valued mapping
Dh

r (P+y Q)(x,z,u,w) : Rn ⇒ Rp is

Dh
r (P+y Q)(x,z,u,w)(x) :=

{
z ∈ Rp | ∃tk↘ 0,∃sk↘ 0, tks−1

k → r, ∃(xk,yk,zk)→ (x,y,z) :

yk ∈ K
(

x+ tku+
1
2

tkskxk,z+ tkw+
1
2

tkskzk

)
,∀k ∈ N

}
.

We observe that
Dh

r (P+y Q)(x,z,u,w) = Dh
r (G◦y F)(x,z,u,w).

Consequently, this subsection can be presented in an analogous way as the previous one.

Proposition 3.4. Give (x,z) ∈ gph(P+Q), (u,w) ∈ Rn×Rm, and r ∈ R+. Suppose that K is
directionally semi-compact at (x,z). Then,

Dh
r (P+Q)(x,z,u,w)(x) =

⋃
y∈(ClK)(x,z)

Dh
r (P+y Q)(x,z,u,w)(x). (3.9)

Proof. Let y∈ (ClK)(x,z) and z∈Dh
r (P+y Q)(x,z,u,w)(x). There exist sequences tk↘ 0,sk↘

0 with tks−1
k → r and (xk,yk,zk)→ (x,y,z) such that

yk ∈ K
(

x+ tku+
1
2

tkskxk,z+ tkw+
1
2

tkskzk

)
.

By the definition of K, we have

zk := z+ tkw+
1
2

tkskzk = yk +(zk− yk) ∈ (P+Q)

(
x+ tku+

1
2

tkskxk

)
.

Consequently, z ∈ Dh
r (P+Q)(x,z,u,w)(x).
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For the converse, taking z ∈ Dh
r (P+Q)(x,z,u,w)(x), we see that there exist sequences tk↘

0,sk↘ 0 with tks−1
k → r and (xk,zk)→ (x,z) such that zk ∈ (P+Q)

(
x+ tku+

1
2

tkskxk

)
. Hence,

there exists yk ∈ P
(

x+ tku+
1
2

tkskxk

)
satisfying zk−yk ∈Q

(
x+ tku+

1
2

tkskxk

)
for all k ∈N.

This implies that

yk ∈ P
(

x+ tku+
1
2

tkskxk

)⋂(
zk−Q

(
x+ tku+

1
2

tkskxk

))
= K

(
x+ tku+

1
2

tkskxk,zk

)
.

(3.10)
By the compactness of K, we can assume that {yk} converges to some y. On the one hand,

we see that
(

x+ tku+
1
2

tkskxk,zk,yk

)
→ (x,z,y), and hence y ∈ (ClK)(x,z). This together with

(3.10) asserts that

z ∈ Dh
r (P+y Q)(x,z,u,w)(x)⊆

⋃
y∈(ClK)(x,z)

Dh
r (P+y Q)(x,z,u,w)(x).

�

Example 3.3. Let P,Q : R⇒ R be given by

P(x) =

{
[0,1], if x 6= 0,
{0}, if x = 0,

Q(x) =

{
{0}, if x 6= 0,
[0,1], if x = 0.

Then, (P+Q)(x) = [0,1] for all x ∈ R and

K(x,z) = P(x)∩ (z−Q(x)) =


{z}, if x 6= 0 and z ∈ [0,1],
{0}, if x = 0 and z ∈ [0,1],
/0, otherwise.

Consider (x,z) = (0,1) and (u,w) = (1,0). Then, (ClK)(x,z) = {0} and hence y = 0. By
calculating, we have

Dh
r (P+Q)(x,z,u,w)(x) = Dh

r (P+y Q)(x,z,u,w)(x) = R−.

Thus we have that the relation (3.9) in Proposition 3.4 holds.

Proposition 3.5. Give ((x,z),y)∈ gphK,(u,v,w)∈Rn×Rm×Rm, and r∈R+. If for all (x,y)∈
Rn×Rm, the following condition is satisfied

Dh
r P(x,y,u,v)(x)∩

(
y−Dh

r Q(x,z− y,u,w− v)(x)
)
⊆ Dh

r K ((x,z),y,(u,w),v)(x,y), (3.11)

then

Dh
r P(x,y,u,v)(x)+Dh

r Q(x,z− y,u,w− v)(x)⊆ Dh
r (P+y Q)(x,z,u,w)(x). (3.12)

Proof. Let z be in the left-hand side of (3.12). Then there exists z′ ∈Dh
r P(x,y,u,v)(x) such that

z′ ∈ z−Dh
r Q(x,z− y,u,w− v)(x).



956 N.M. TUNG, T.M. BANG, N.V. HOI

From condition (3.11), z′ ∈ Dh
r K ((x,z),y,(u,w),v)(x,z). Then there exist sequences tk ↘

0,sk↘ 0 with tks−1
k → r and

(
xk,zk,z′k

)
→ (x,z,z′) satisfying

y+ tkv+
1
2

tkskz′k ∈ K
(

x+ tku+
1
2

tkskxk,z+ tkw+
1
2

tkskzk

)
.

Therefore, we arrive at z ∈ Dh
r (P+y Q)(x,z,u,w)(x). �

Proposition 3.6. Give ((x,z),y)∈ gphK, (u,v,w)∈Rn×Rm×Rm, and r ∈R+. If the following
condition is fulfilled

Dh
r K ((x,z),y,(u,w),v)(0,0) = {0}, (3.13)

then

Dh
r (P+y Q)(x,z,u,w)(x)⊆ Dh

r P(x,y,u,v)(x)+Dh
r Q(x,z− y,u,w− v)(x). (3.14)

Proof. Let z∈Dh
r (P+y Q)(x,z,u,w)(x). Then there exist sequences tk↘ 0,sk↘ 0 with tks−1

k →
r and (xk,yk,zk)→ (x,y,z) such that

yk ∈ K
(

x+ tku+
1
2

tkskxk,z+ tkw+
1
2

tkskzk

)
.

It suffices to investigate two following cases.
Case 1. If yk = y for infinitely many times k, then

0 ∈ Dh
r P(x,y,u,v)(x) and z ∈ Dh

r Q(x,z− y,u,w− v)(0).

Case 2. If yk 6= y for all k, we denote qk :=
‖yk− y− tkv‖

tk
and q̂k :=

yk− y− tkv
tkqk

. Thus q̂k has

a subsequence converging to some q̂ ∈ Rm with ‖q̂‖= 1. Moreover, we see that

y+ tkv+
1
2

tkqkq̂k = yk ∈ K
(

x+ tku+
1
2

tkskxk,z+ tkw+
1
2

tkskzk

)
. (3.15)

If
sk

qk
→ 0, it follows from (3.15) that

y+ tkv+
1
2

tkqkq̂k = yk ∈ K
(

x+ tku+
1
2

tkqk

(
sk

qk
xk

)
,z+ tkw+

1
2

tkqk

(
sk

qk
zk

))
.

Hence, q̂ ∈ Dh
r K ((x,z),y,(u,w),v)(0,0), a contradiction to (3.13). Thus qk

sk
has a bounded

subsequence. Taking a subsequence, qk
sk

has a limit l ∈ R+. From (3.15), we have

y+ tkv+
1
2

tksk

(
qk

sk
q̂k

)
= yk ∈ K

(
x+ tku+

1
2

tkskxk,z+ tkw+
1
2

tkskzk

)
.

By definition of K, we obtain

lq̂ ∈ Dh
r P(x,y,u,v)(x) and z− lq̂ ∈ Dh

r Q(x,z− y,u,w− v)(x).

Therefore, relation (3.14) are proved. �

Example 3.4. Let P,Q : R⇒ R2 be defined by

P(x) =
{
(y1,y2) ∈ R2 | y1 ≥ x2,y2 = 0

}
and Q(x) = {(y1,y2) ∈ R2 | y1 ≥ x4,y2 = 0}.
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After some directed computations, we have

K(x,z) =


{(y1,y2) ∈ R2 | x2 ≤ y1 ≤ z1− x4,y2 = 0}
if (x,z) ∈ {(x,z) ∈ R×R2 | z1− x4 ≥ x2,z2 = 0},
/0, if otherwise.

Consider (x,z) = (0,(0,0)) and (u,v,w) = (1,(0,0),(0,0)). Then, (ClK)(x,z) = {(0,0)}. Di-
rected calculations yield that the following higher-order tangent derivatives.
• If r = 0. Then, for all x ∈ R and z1 ∈ R+,

Dh
0K ((x,z),y,(u,w),v)(x,z) =

{
(y1,y2) ∈ R2 | 0≤ y1 ≤ z1,y2 = 0

}
,

Dh
0(P+y Q)(x,z,u,w)(x) =

{
(h1,h2) ∈ R2 | h1 ≥ 0,h2 = 0

}
,

and

Dh
0P(x,y,u,v)(x) = Dh

0Q(x,z− y,u,w− v)(x) =
{
(y1,y2) ∈ R2 | y1 ≥ 0,y2 = 0

}
.

Letting (x,z) = (0,(0,0)), we have Dh
0K ((x,z),y,(u,w),v)(0,(0,0)) = {(0,0)} and

Dh
0P(x,y,u,v)(0)∩

(
(0,0)−Dh

0Q(x,z− y,u,w− v)(0)
)
⊆ Dh

0K ((x,z),y,(u,w),v)(0,(0,0)).

Hence, we have

Dh
0P(x,y,u,v)(0)+Dh

0Q(x,z− y,u,w− v)(0) = Dh
0(P+y Q)(x,z,u,w)(0).

Thus, the conclusion of Proposition 3.6 holds.
• If r = (0,+∞). Then, for all x ∈ R and z1 ∈ R+,

Dh
r K ((x,z),y,(u,w),v)(x,z) =

{
(y1,y2) ∈ R2 | 2r ≤ y1 ≤ z1,y2 = 0

}
,

Dh
r (P+y Q)(x,z,u,w)(x) =

{
(h1,h2) ∈ R2 | h1 ≥ 0,h2 = 0

}
,

Dh
r P(x,y,u,v)(x) =

{
(y1,y2) ∈ R2 | y1 ≥ 2r,y2 = 0

}
,

Dh
r Q(x,z− y,u,w− v)(x) =

{
(y1,y2) ∈ R2 | y1 ≥ 0,y2 = 0

}
.

It is easy to check that (3.11) and (3.12) are satisfied. However, (3.14) is not fulfilled. The
reason is that condition (3.13) does not hold since Dh

r K ((x,z),y,(u,w),v)(0,(0,0)) = /0.

Later, we directly apply Propositions 3.5 and 3.6 to see an estimation of the higher-order
tangent derivative for the profile map, G−.

Corollary 3.1. Let G : Rn ⇒ Rm,K(x,z) := (−C)∩ (z−G(x)) ,((x,z),y) ∈ gphK, (u,v,w) ∈
Rn×Rm×Rm, and r ∈ R+. Then,

Dh
r G(x,z,u,w)(x)−C ⊆ Dh

r (G−y C)(x,z,u,w)(x).

This inclusion becomes an equality if Dh
r K ((x,z),y,(u,w),v)(0,0) = {0}.
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3.3. Higher order tangent derivatives of the profile mapping. In this subsection, we always
assume that C, the ordering cone, has a compact base Q.

Proposition 3.7. Let (x,y)∈ gphG, (u,v)∈Rn×Rm and r∈R+. For any x∈ dom
(
Dh

r G(x,y,u,v)
)
,

Max
(

Dh
r G−(x,y,u,v)(x),C

)
⊆ Dh

r G(x,y,u,v)(x). (3.16)

Proof. Let x ∈ dom
(
Dh

r G(x,y,u,v)
)
. If Max

(
Dh

r G−(x,y,u,v)(x),C
)
= /0, then (3.16) is trivial.

Take any y ∈Max
(
Dh

r G−(x,y,u,v)(x),C
)
. Using the definition, we find y ∈Dh

r G−(x,y,u,v)(x)
such that (

Dh
r G−(x,y,u,v)(x)− y

)
∩ (C\{0}) = /0. (3.17)

As y∈Dh
r G−(x,y,u,v)(x), there exists sequences tk↘ 0,sk↘ 0 with tks−1

k → r, (xk,yk)→ (x,y)
and ck ∈C satisfying

y+ tkv+
1
2

tksk

(
yk +

2ck

tksk

)
∈ G

(
x+ tku+

1
2

tkskxk

)
. (3.18)

We first prove that
ck

tksk
→ 0 (using a subsequence if necessary). As the base Q of C is compact,

there are αk ≥ 0 and qk ∈ Q : qk→ q (for some q ∈ Q\{0}) such that ck = αkqk.

• If αk = 0 for infinitely many times k ∈ N, it is obvious that
ck

tksk
→ 0.

• If αk > 0 for all k, then
ck

tksk
=

αkqk

tksk
→ 0 if and only if

αk

tksk
→ 0. Suppose that ck

tksk
does not

converge to 0. Then, for some ε > 0, we may assume that
αk

tksk
≥ ε , for all n. Set ĉk = ε

tkskck

αk
.

Then ck ∈ ĉk +C. Combining this and (3.18), we have

y+ tkv+
1
2

tksk

(
yk +

2ĉk

tksk

)
∈ G

(
x+ tku+

1
2

tkskxk

)
−C.

One has
2ĉk

tksk
→ 2εq 6= 0. Then, yk +

2ĉk

tksk
→ y+2εq, i.e., y+2εq ∈ Dh

r G−(x,y,u,v)(x). There-

fore, we obtain

2εq ∈
(

Dh
r G−(x,y,u,v)(x)− y

)
∩C,

which contradicts (3.17). Hence,
ck

tksk
→ 0. By (3.18), we arrive at y ∈ Dh

r G(x,y,u,v)(x). �

Example 3.5. Let C = R+ and G : R ⇒ R be given by G(x) =
{

y ∈ R | y = x2}. Consider
(x,y) = (0,0) and (u,v) = (1,0). Directed computations yield that, for x ∈ R,

Dh
r G(x,y,u,v)(x) =

{
{2r}, if r = [0,+∞),

/0, if r =+∞,

Dh
r G− (x,y,u,v)(x) =

{
(−∞,2r], if r = [0,+∞),

/0, if r =+∞.

Hence, for all x ∈ R, we have Max
(
Dh

r G−(x,y,u,v)(x),C
)
⊆ Dh

r G(x,y,u,v)(x).
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Definition 3.4. (see [12]) Let (x,y) ∈ gphG,(u,v) ∈ Rn×Rm, and r ∈ R+. G is x-directionally
calm at (x,y) in the direction (u,v) with index r if there exist c > 0 and ρ > 0 such that, for all
t,s ∈ (0,ρ) : ts−1 ∈ B1(r,ρ), x′ ∈ Bn(x,ρ),

G
(

x+ tu+
1
2

tsx′
)
⊆ {y+ tv}+ 1

2
cts
∥∥x′
∥∥Bm.

The following lemma is necessary in our study.

Lemma 3.1. ( [26]) Let C⊂Rm be a convex regular cone. Let Ω∈Rm be a closed and C-upper
bounded. Then, Max(Ω,C) 6= /0 and Ω⊆Max(Ω,C)−C.

Proposition 3.8. Let (x,y)∈ gphG,(u,v)∈Rn×Rm, and r∈R+. Suppose that G is x-directionally
calm at (x,y) in the direction (u,v) with index r and the set Dh

r G−(x,y,u,v)(x) has a C-upper
bound for every x ∈ dom

(
Dh

r G−(x,y,u,v)
)
. Then,

Dh
r G(x,y,u,v)(x)−C = Dh

r G−(x,y,u,v)(x), (3.19)

Max
(

Dh
r G−(x,y,u,v)(x),C

)
−C = Dh

r G−(x,y,u,v)(x). (3.20)

Proof. Let y∈Dh
r G(x,y,u,v)(x) and c∈C be arbitrarily chosen. Then, the there exist sequences

tk↘ 0,sk↘ 0, tks−1
k → r, (xk,yk)→ (x,y) such that

y+ tkv+
1
2

tkskyk ∈ G
(

x+ tku+
1
2

tkskxk

)
.

By setting yk := yk− c, we have that

y+ tkv+
1
2

tkskyk = y+ tkv+
1
2

tkskyk−
1
2

tkskc ∈ G
(

x+ tku+
1
2

tkskxk

)
−C.

As yk converges to y− c, we deduce that y− c ∈ Dh
r G−(x,y,u,v)(x).

Conversely, let y ∈ Dh
r G−(x,y,u,v)(x). Then there exist sequences tk↘ 0,sk↘ 0, tks−1

k → r,
(xk,yk)→ (x,y), and ck ∈C, satisfying

y+ tkv+
1
2

tksk

(
yk +

2ck

tksk

)
∈ G

(
x+ tku+

1
2

tkskxk

)
. (3.21)

Then, by the calmness of G, (3.21) gives us, for k large enough,

y+ tkv+
1
2

tksk

(
yk +

2ck

tksk

)
∈ {y+ tkv}+ 1

2
ctksk ‖xk‖Bm,

which means that
∥∥∥∥yk +

2ck

tksk

∥∥∥∥ ≤ c‖xk‖. In view of the finite dimension of the space, we have

xk → x and yk +
2ck

tksk
→ ŷ. It follows that ŷ ∈ Dh

r G(x,y,u,v)(x) and
2ck

tksk
→ ŷ− y ∈ C. Thus

y∈Dh
r G(x,y,u,v)(x)−C. By using (3.16), (3.19), and Lemma 3.1, the desired result is obtained.

�

Proposition 3.9. Let (x,y)∈ gphG,(u,v)∈Rn×Rm and r∈R+. Suppose that Dh
r G−(x,y,u,v)(x)

has a C-upper bound for all x ∈ dom
(
Dh

r G− (x,y,u,v)
)
. Then,

Max
(

Dh
r G(x,y,u,v)(x),C

)
= Max

(
Dh

r G−(x,y,u,v)(x),C
)
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and
WMax

(
Dh

r G(x,y,u,v)(x),C
)
= WMax

(
Dh

r G−(x,y,u,v)(x),C
)
.

Proof. In view of Proposition 3.8, we have Dh
r G(x,y,u,v)(x)−C = Dh

r G−(x,y,u,v)(x). Conse-
quently, for any x ∈ dom

(
Dh

r G− (x,y,u,v)
)
, we obtain

Max
(

Dh
r G(x,y,u,v)(x),C

)
= Max

(
Dh

r G−(x,y,u,v)(x),C
)

and
WMax

(
Dh

r G(x,y,u,v)(x),C
)
= WMax

(
Dh

r G−(x,y,u,v)(x),C
)
.

�

The C-upper bound property in Proposition 3.9 plays a key role as seen in the next example.

Example 3.6. Let C = R2
+ and G : R⇒ R2 be defined by

G(x) =

{
{(0,0)}, if x≤ 0,{(

x,x1/2
)}

, if x > 0.

Then, we have

G−(x) =

{
R2
−, if x≤ 0,
{(y1,y2) | y1 ≤ x,y2 ≤ x1/2}, if x > 0.

Take (x,y) = (0,(0,0)) and (u,v) = (1,(0,0)). Then, for any x ∈ R,

Dh
r G(x,y,u,v)(x) = {(0,0)}, and Dh

r G− (x,y,u,v)(x) =

{
R2, if r = [0,+∞),

/0, if r =+∞.

We can check that Proposition 3.9 do not satisfy in this example, because the Dh
r G−(x,y,u,v)(x)

is not C-upper bound for any x ∈ R.

4. HIGHER-ORDER DIFFERENTIAL PROPERTIES OF A CLASS OF SET-VALUED MAPS

In this section, let K be a compact subset of Rn and F : Rn→ L(Rn,Rm) be twice Fréchet
differentiable. We consider a set-valued mapping G : Rn ⇒ Rm given by

G(x) :=
〈

F(x),x−K
〉
=
⋃
z∈K

〈
F(x),x− z

〉
, ∀x ∈ K.

For x ∈ Rn, we denote F(x) :=
〈
F(x),x− x

〉
. The following theorem is inspired of the work

of [19].

Theorem 4.1. Let y = 〈F(x),x− x̂〉 ∈ G(x), (u,v) ∈ T (gphG,(x,y)), and r ∈ R+. Assume that

lim
‖z‖→+∞

‖ 〈F(x),z〉‖=+∞. (4.1)

Then, for any x ∈ dom
(
Dh

r G(x,y,u,v)
)
,

Dh
r G(x,y,u,v)(x) =

⋃
x∗∈T h

r (K,x̂,w)

[〈F(x),x− x∗〉+ 〈∇F(x)u,2r(u−w)〉]

+
〈
∇

2F(x)(u,u),r(x− x̂)
〉
+ 〈∇F(x)x,x− x̂〉,

where w satisfies 〈F(x),w〉=−v+ 〈∇F(x)u,x− x̂〉+ 〈F(x),u〉 .
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Proof. Let y ∈ Dh
r G(x,y,u,v)(x). Then, there exist sequences tk ↘ 0,sk ↘ 0, tks−1

k → r, and
(xk,yk)→ (x,y) such that

y+ tkv+
1
2

tkskyk ∈ G
(

x+ tku+
1
2

tkskxk

)
.

It follows from the definition that there exist x̂k ∈ K such that

y+ tkv+
1
2

tkskyk =

〈
F
(

x+ tku+
1
2

tkskxk

)
,x+ tku+

1
2

tkskxk− x̂k

〉
. (4.2)

Since F is twice differentiable, it follows from the Taylor’s polynomial that

F
(

x+ tku+
1
2

tkskxk

)
=F(x)+ tk∇F(x)u+

1
2

tksk∇F(x)xk

+
1
2

t2
k ∇

2F(x)
(

u+
1
2

skxk,u+
1
2

skxk

)
+◦

(∥∥∥∥tku+
1
2

tkskxk

∥∥∥∥2
)
.

(4.3)

As K is compact, we can assume that x̂k → x′ ∈ K. By the continuity of F and (4.2), we have
y = 〈F(x),x− x′〉= F(x′). By (4.2) and (4.3), we have

y+ tkv+
1
2

tkskyk = 〈F(x),x− x̂k〉+ tk〈F(x),u〉+ tk 〈∇F(x)u,x− x̂k〉

+
1
2

tksk 〈F(x),xk〉+
1
2

t2
k 〈∇F(x)u,2u+ skxk〉

+
1
2

tksk

〈
∇F(x)xk,x+ tku+

1
2

tkskxk− x̂k

〉
+

1
2

t2
k

〈
∇

2F(x)
(

u+
1
2

skxk,u+
1
2

skxk

)
,x+ tku+

1
2

tkskxk− x̂k

〉

+
1
2

t2
k

〈◦(∥∥tku+ 1
2tkskxk

∥∥2
)

1
2t2

k
,x+ tku+

1
2

tkskxk− x̂k

〉
.

(4.4)

We obtain from (4.4) that〈
F(x),

x̂k− x̂
tk

〉
→−v+ 〈F(x),u〉+ 〈∇F(x)u,x− x̂〉. (4.5)

We next show that
{

x̂k− x̂
tk

}
is bounded. Suppose that

{
x̂k− x̂

tk

}
→ +∞. By assumption

(4.1), we have ∥∥∥∥〈F(x),
x̂k− x̂

tk

〉∥∥∥∥→+∞,

which is a contradiction to (4.5). Hence,
{

x̂k− x̂
tk

}
is bounded, and

x̂k− x̂
tk
→ w ∈ T (K, x̂).

As tk↘ 0, we have x̂k→ x̂ and x′ = x̂. It follows from (4.5) that

〈F(x),w〉=−v+ 〈F(x),u〉+ 〈∇F(x)u,x− x̂〉.
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By (4.4) and (4.5), we see that

〈
F(x),

x̂k−x̂
tk
−w

1
2sk

〉
=− yk−

tk
sk

〈
∇F(x)u,

x̂k− x̂
1
2tk

〉
+ 〈F(x),xk〉

+
tk
sk
〈∇F(x)u,2u+ skxk〉+

〈
∇F(x)xk,x+ tku+

1
2

tkskxk− x̂k

〉
+

tk
sk

〈
∇

2F(x)
(

u+
1
2

skxk,u+
1
2

skxk

)
,x+ tku+

1
2

tkskxk− x̂k

〉

+
tk
sk

〈◦(∥∥tku+ 1
2tkskxk

∥∥2
)

1
2t2

k
,x+ tku+

1
2

tkskxk− x̂k

〉
.

As
◦
(∥∥tku+ 1

2tkskxk
∥∥2
)

1
2t2

k
→ 0, we have

〈
F(x),

x̂k−x̂
tk
−w

1
2sk

〉
→−y+ 〈F(x),x〉+ 〈∇F(x)u,2r(u−w)〉+

〈
∇F(x)x+∇

2F(x)(u,u),r(x− x̂)
〉
.

With the same arguments, we see that the sequence

{
x̂k−x̂

tk
−w

1
2 sk

}
is bounded. Hence, we can

assume that
x̂k−x̂

tk
−w

1
2sk

→ x∗ ∈ T h
r (K, x̂,w). Consequently, we obtain

y ∈
⋃

x∗∈T h
r (K,x̂,w)

[〈F(x),x− x∗〉+ 〈∇F(x)u,2r(u−w)〉]

+ 〈∇F(x)x,x− x̂〉+
〈
∇

2F(x)(u,u),r(x− x̂)
〉
.

For the converse, we now take x∗ ∈ T h
r (K, x̂,w) and

y = 〈F(x),x− x∗〉+ 〈∇F(x)u,2r(u−w)〉+ 〈∇F(x)x,x− x̂〉+
〈
∇

2F(x)(u,u),r(x− x̂)
〉
.

Then, there exist sequences {x̂k} ⊂ K with x̂k→ x̂ and tk↘ 0,sk↘ 0 satisfying

x̂k− x̂
tk
→ w and

x̂k−x̂
tk
−w

1
2sk

→ x∗.
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Since F is twice continuously Fréchet differentiable, we can take the sequences {xk} and {yk}
such that xk→ x and

yk =

〈
F
(

x+ tku+
1
2

tkskxk

)
,xk−

x̂k−x̂
tk
−w

1
2sk

〉
+ 〈∇F(x)xk,x− x̂〉

+

〈
F
(
x+ tku+ 1

2tkskxk
)
−F(x)

sk
,2(u−w)

〉

+

〈
F
(
x+ tku+ 1

2tkskxk
)
−F(x)−∇F(x)

(
tku+ 1

2tkskxk
)

1
2tksk

,x− x̂

〉
.

Hence, we see that yk→ y and

y+ tk(〈∇F(x)u,x− x̂〉+ 〈F(x),u−w〉)+ 1
2

tkskyk

=

〈
F
(

x+ tku+
1
2

tkskxk

)
,x+ tku+

1
2

tkskxk− x̂k

〉
∈ G

(
x+ tku+

1
2

tkskxk

)
.

As v = 〈∇F(x)u,x− x̂〉+ 〈F(x),u−w〉, we obtain y ∈ Dh
r G(x,y,u,v)(x). This completes the

proof. �

Remark 4.1. (i) For r = 0, Theorem 4.1 gives that, for any x ∈ dom
(
Dh

0G(x,y,u,v)
)
,

Dh
0G(x,y,u,v)(x) =

⋃
x∗∈T h

0 (K,x̂,w)

〈F(x),x− x∗〉+ 〈∇F(x)x,x− x̂〉,

where w satisfies 〈F(x),w〉 = −v+ 〈∇F(x)u,x− x̂〉+ 〈F(x),u〉 . This formula is new
and gives the behavior of the asymptotic tangent derivative of the map G.

(ii) For r = 1, the second-order contingent derivative Dh
1G(x,y,u,v)(x) was studied in [19].

Theorem 4.1 extends and generalizes the corresponding results in [19].

We next give an upper estimation for Dh
+∞G as follows.

Theorem 4.2. Suppose that ∇F(x)= 0 and ∇2F(x)= 0. Then, for any x∈ dom
(
Dh
+∞G(x,y,u,v)

)
,

Dh
+∞G(x,y,u,v)(x)⊆

⋃
x∗∈T h

+∞(K,x̂,w)

〈F(x),x− x∗〉+Rm
+,

where w satisfies 〈F(x),w〉=−v+ 〈F(x),u〉.

Proof. Pick any y ∈Dh
+∞G(x,y,u,v)(x). With the same arguments in proof of Theorem 4.1 and

assumptions ∇F(x) = 0 and ∇2F(x) = 0, (4.4) is rewrite as

y+ tkv+
1
2

tkskyk =〈F(x),x− x̂k〉+ tk〈F(x),u〉+ 1
2

tksk 〈F(x),xk〉

+
1
2

t2
k

〈◦(∥∥tku+ 1
2tkskxk

∥∥2
)

1
2t2

k
,x+ tku+

1
2

tkskxk− x̂k

〉
.

(4.6)

It follows from (4.6) that 〈
F(x),

x̂k− x̂
tk

〉
→−v+ 〈F(x),u〉
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and 〈
F(x),

x̂k−x̂
tk
−w

1
2sk

〉
→−y+ 〈F(x),x〉+ c,

for some c ∈ Rm
+. Consequently, we obtain the desired result immediately. �

Example 4.1. Let F : R→ R with F(x) = x−1, K = {x ∈ R | −1≤ x≤ 1}. Consider (x,y) =
(0,1), (u,v) = (1,−2), and r ∈ R+. We have

G(x) =
⋃
z∈K

〈F(x),x− z〉=
⋃
z∈K

〈x−1,x− z〉=
[
x2−1,(x−1)2] ,

and condition (4.1) holds. After some calculations, for x ∈ dom
(
Dh

r G(x,y,u,v)
)
= R,

Dh
r G(x,y,u,v)(x) = {y ∈ R | y≤−2x+2r}. (4.7)

On the other hand, F(x) = 〈F(x),x− x〉= x and x̂ = 1 satisfies 〈F(x),x− x̂〉= y. Then, we see
that w = 0, T h

r (K, x̂,w) = R−, 〈F(x),x− x∗〉=−x+ x∗, and

〈∇F(x)u,2r(u−w)〉= 2r, 〈∇F(x)x,x− x̂〉=−x,〈
∇

2F(x)(u,u),r(x− x̂)
〉
= 0.

Consequently, for any x ∈ R,⋃
x∗∈T h

r (K,x̂,w)

[〈F(x),x− x∗〉+ 〈∇F(x)u,2r(u−w)〉]

+ 〈∇F(x)x,x− x̂〉+
〈
∇

2F(x)(u,u),r(x− x̂)
〉
= {y ∈ R | y≤−2x+2r}.

(4.8)

By (4.7) and (4.8), we see that the conclusion of Theorem 4.1 is fulfilled.

The next example shows that the inclusion in Theorem 4.2 could be strict.

Example 4.2. Let K = {x∈R | 0≤ x≤ 1},(x,y) = (0,0), (u,v) = (1,0), and r =+∞. Consider
a map F : R→ R with F(x) = x3. We can easily check that, for any x ∈ K,

G(x) =
⋃
z∈K

〈F(x),x− z〉=
⋃
z∈K

〈x3,x− z〉=
[
x3(x−1),x4] .

By direct calculations, we see that, for all x ∈ R,

Dh
+∞G(x,y,u,v)(x) = {0}(

⋃
x∗∈T h

+∞(K,x̂,w)

〈F(x),x− x∗〉+R+ = R+.

5. DIFFERENTIAL SENSITIVITY OF WEAK VECTOR VARIATIONAL INEQUALITIES

In this section, we consider a weak vector variational inequality (WVVI), which is of

finding x̂ ∈ K such that 〈F (x̂) ,x− x̂〉 /∈ − intC, ∀x ∈ K,

where F and K are mentioned in Section 4 and C is a closed convex cone with nonempty interior.
We first recall the gap function for (WVVI), as follows.

Definition 5.1. (see [5]) A set-valued map W : Rn ⇒Rm is said to be a gap function of (WVVI)
if the following conditions hold

(i) 0Rm ∈W (x) iff x solves the WVVI;
(ii) W (x)∩ (−intC) = /0,∀x ∈ K.
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The following theorem is useful in our analysis.

Theorem 5.1. (see [5]) The set-valued map W :Rn ⇒Rm, defined by W (x) :=WMax(G(x), intC),
is a gap function for (WVVI).

We first present the relationship between higher-order tangent derivatives Dh
rW and Dh

r G.

Theorem 5.2. Let x ∈ K,y ∈ G(x),(u,v) ∈ T (gphG,(x,y)), and r ∈ R+. Suppose that

Dh
r G(x,y,u,v)(x) = Dhi

r G(x,y,u,v)(x), ∀x ∈ dom
(

Dh
r G(x,y,u,v)

)
. (5.1)

Then, for any x ∈ dom
(
Dh

rW (x,y,u,v)
)
,

Dh
rW (x,y,u,v)(x)⊆W Max

(
Dh

r G(x,y,u,v)(x), intC
)
.

Proof. Take any y ∈Dh
rW (x,y,u,v)(x). It follows from the definition that y ∈Dh

r G(x,y,u,v)(x).
If y /∈WMax

(
Dh

r G(x,y,u,v)(x), intC
)
, then there exists ŷ ∈ Dh

r G(x,y, u,v)(x) such that

ŷ− y ∈ intC. (5.2)

As y ∈ Dh
rW (x,y,u,v)(x), there exist sequences tk↘ 0,sk↘ 0, tks−1

k → r, and (xk,yk)→ (x,y)
satisfying

y+ tkv+
1
2

tkskyk ∈W
(

x+ tku+
1
2

tkskxk

)
. (5.3)

It follows from ŷ ∈Dh
r G(x,y,u,v)(x) and (5.1) that, for the preceding sequences tk and sk, there

exist sequences (x̂k, ŷk)→ (x, ŷ) such that

y+ tkv+
1
2

tkskŷk ∈ G
(

x+ tku+
1
2

tkskx̂k

)
.

Hence, there exists x′k ∈ K such that

y+ tkv+
1
2

tkskŷk =

〈
F
(

x+ tku+
1
2

tkskx̂k

)
,x+ tku+

1
2

tkskx̂k− x′k

〉
. (5.4)

Since F : Rn→ L(Rn,Rm) is twice continuously Fréchet differentiable, we have

F
(

x+ tku+
1
2

tkskx̂k

)
= F(x)+ tk∇F(x)

(
u+

1
2

skx̂k

)
+

1
2

t2
k ∇

2F(x)
(

u+
1
2

skx̂k,u+
1
2

skx̂k

)
+◦

(∥∥∥∥tku+
1
2

tkskx̂k

∥∥∥∥2
)
.

(5.5)

As {xk} and {x̂k} are two convergent sequences, one has

◦

(∥∥∥∥tku+
1
2

tkskxk

∥∥∥∥2
)

1
2

tksk

→ 0 and

◦

(∥∥∥∥tku+
1
2

tkskx̂k

∥∥∥∥2
)

1
2

tksk

→ 0.

Then, it gives that

o(tksk) = ◦

(∥∥∥∥tku+
1
2

tkskx̂k

∥∥∥∥2
)
−◦

(∥∥∥∥tku+
1
2

tkskxk

∥∥∥∥2
)
.
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By (4.3) and (5.5), we can deduce that〈
F
(

x+ tku+
1
2

tkskx̂k

)
,x+ tku+

1
2

tkskx̂k− x′k

〉
=

〈
F
(

x+ tku+
1
2

tkskxk

)
,x+ tku+

1
2

tkskxk− x′k

〉
+

1
2

tksk

〈
F
(

x+ tku+
1
2

tkskxk

)
, x̂k− xk

〉
+

1
2

tksk

〈
∇F(x)(x̂k− xk) ,x+ tku+

1
2

tkskx̂k− x′k

〉
+

1
4

t2
k sk

〈
∇

2F(x)(x̂k, x̂k)−∇
2F(x)(xk,xk) ,x+ tku+

1
2

tkskx̂k− x′k

〉
+

1
2

tksk

〈
◦(tksk)

1
2tksk

,x+ tku+
1
2

tkskx̂k− x′k

〉
.

Set

α(k) :=
〈

F
(

x+ tku+
1
2

tkskxk

)
, x̂k− xk

〉
+

〈
∇F(x)(x̂k− xk) ,x+ tku+

1
2

tkskx̂k− x′k

〉
+

〈
1
2

tk∇
2F(x)(x̂k, x̂k)−

1
2

tk∇
2F(x)(xk,xk) ,x+ tku+

1
2

tkskx̂k− x′k

〉
+

〈
◦(tksk)

1
2tksk

,x+ tku+
1
2

tkskx̂k− x′k

〉
.

(5.6)

Since x̂k− xk→ 0 and
◦(tksk)

1
2tksk

→ 0, we see that α(k)→ 0. With the aid of (5.4) and (5.6), we

have

y+ tkv+
1
2

tksk [ŷk−α(k)] =
〈

F
(

x+ tku+
1
2

tkskxk

)
,x+ tku+

1
2

tkskxk− x′k

〉
∈ G

(
x+ tku+

1
2

tkskxk

)
.

By definition of W and (5.3), we obtain[
y+ tkv+

1
2

tksk (ŷk−α(k))
]
−
[

y+ tkv+
1
2

tkskyk

]
/∈ intC,

which yields that ŷk−α(k)− yk /∈ intC. Consequently, we arrive at ŷ− y /∈ intC, which contra-
dicts (5.2). The proof is done. �

Example 5.1. Let K = {x∈R | −1≤ x≤ 1},(x,y)= (0,0), (u,v)= (1,0), and r∈R+. Consider
a map F : R→ R with F(x) = x2. We can easily check that, for any x ∈ K,

G(x) =
⋃
z∈K

〈F(x),x− z〉=
⋃
z∈K

〈x2,x− z〉=
[
x2(x−1),x2(x+1)

]
.
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Then, W (x) = WMax(G(x), intC) = x2(x+1) for all x ∈K. By calculating, we see that, for any
x ∈ R,

Dh
r G(x,y,u,v)(x) = Dhi

r G(x,y,u,v)(x) =

{
[−2r,2r] , if r = [0,+∞),

/0, if r =+∞,

which fulfill condition (5.1). We have that, for any x ∈ R,

Dh
rW (x,y,u,v)(x) =

{
{2r}, if r = [0,+∞),

/0, if r =+∞,
W Max

(
Dh

r G(x,y,u,v)(x), intC
)
= {2r}.

Consequently, the conclusion of Theorem 5.2 holds.

Definition 5.2. We say that G is C-maxicomplete by W near x∈K if there exists a neighborhood
U of x such that G(x)⊆W (x)−C, for all x ∈U.

Let C be a convex cone. As W (x) ⊆ G(x), the C-maxicompleteness of G by W near x ∈ K
implies that W (x)−C = G(x)−C, for any x ∈U. Hence, if G is C-maxicomplete by W near
x ∈ K, then, for any y ∈W (x), Dh

rW− (x,y,u,v)(x) = Dh
r G− (x,y,u,v)(x).

Theorem 5.3. Let all the assumptions of Proposition 3.8 hold and G be C-maxicomplete by W
near x ∈ K. Then,

W Max
(

Dh
r G(x,y,u,v)(x), intC

)
⊆ Dh

rW (x,y,u,v)(x), ∀x ∈ dom
(

Dh
rW (x,y,u,v)

)
.

Proof. Since K is a compact set, G(x) is also compact for any x ∈ K. Then, it follows from
Propositions 3.7 and 3.9, and the above remark, we have that

WMax
(

Dh
r G(x,y,u,v)(x), intC

)
= WMax

(
Dh

r G−(x,y,u,v)(x), intC
)

= WMax
(

Dh
rW−(x,y,u,v)(x), intC

)
= WMax

(
Dh

rW (x,y,u,v)(x), intC
)

⊆ Dh
rW (x,y,u,v)(x).

�

By directly applying Theorems 4.1, 5.2, and 5.3, we obtain the following results.

Theorem 5.4. Suppose that the conditions of Proposition 3.8, Theorems 4.1 and 5.2 hold and
G is C-maxicomplete by W near x ∈ K. Then, for any x ∈ dom

(
Dh

rW (x,y,u,v)
)
,

Dh
rW (x,y,u,v)(x) =W Max

(
Dh

r G(x,y,u,v)(x), intC
)

=W Max

 ⋃
x∗∈T h

r (K,x̂,w)

[〈F(x),x− x∗〉+ 〈∇F(x)u,2r(u−w)〉] , intC


+
〈
∇

2F(x)(u,u),r (x− x̂)
〉
+ 〈∇F(x)x,x− x̂〉,

where w satisfies 〈F(x),w〉=−v+ 〈∇F(x)u,x− x̂〉+ 〈F(x),u〉.
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Remark 5.1. By using the second-order contingent derivative, [19, Corollary 4.1] gave us re-
sults on the weak vector variational inequalities with only index r = 1. In our study, we not
only consider index r = 0 but also with index r ∈ (0,+∞). Therefore, our results extend and
generalize in [19, Corollary 4.1].

Finally, we provide the following example to explain Theorem 5.4.

Example 5.2. Let K = {x∈R | −1≤ x≤ 1},(x,y)= (1,2), (u,v)= (1,5), and r∈R+. Consider
a map F : R→ R with F(x) = x2. We can easily check that, for any x ∈ K,

G(x) =
⋃
z∈K

〈F(x),x− z〉=
⋃
z∈K

〈x2,x− z〉=
[
x2(x−1),x2(x+1)

]
,

and condition (4.1) holds. Then W (x) = WMax(G(x), intC) = x2(x+1) for all x ∈K. By direct
calculations, one see that, for all x ∈ R,

Dh
r G(x,y,u,v)(x) = Dhi

r G(x,y,u,v)(x) = Dh
r G−(x,y,u,v)(x) = {y ∈ R | y≤ 5x+8r},

Dh
rW (x,y,u,v)(x) =W Max

(
Dh

r G(x,y,u,v)(x), intC
)
= {y ∈ R | y = 5x+8r}.

Hence, conditions (3.19), (3.20), and (5.1) are satisfied.
On the other hand, F(x) = 〈F(x),x− x〉= 1− x, and x̂ =−1 satisfy 〈F(x),x− x̂〉= y. Then,

we see that w = 0, T h
r (K, x̂,w) = R+, 〈F(x),x− x∗〉= x− x∗, and

〈∇F(x)u,2r(u−w)〉= 4r, 〈∇F(x)x,x− x̂〉= 4x,〈
∇

2F(x)(u,u),r(x− x̂)
〉
= 4r.

Hence, for any x ∈ R, we see that

W Max

 ⋃
x∗∈T h

r (K,x̂,w)

[〈F(x),x− x∗〉+ 〈∇F(x)u,2r(u−w)〉] , intC


+
〈
∇

2F(x)(u,u),r (x− x̂)
〉
+ 〈∇F(x)x,x− x̂〉= {y ∈ R | y = 5x+8r}= Dh

rW (x,y,u,v)(x).

Therefore, the conclusion of Theorem 5.4 is satisfied.
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