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Abstract. In this paper, the Bergman-Morrey space A p,λ (Bn) is introduced in the open unit ball of Cn

and the identity operator from A p,λ (Bn) into a tent space T ∞

p, λ (n+1)
n

(µ) is characterized. Furthermore,

the boundedness, compactness, and essential norm of the Riemann-Stieltjes operators Vg and Ug on
A p,λ (Bn) spaces are investigated.
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1. INTRODUCTION

Let Bn and Sn denote the open unit ball and its boundary, respectively, in Cn. In the case of
n = 1, the open unit ball Bn reduces to the open unit disc D in C. We use H(Bn) to denote the
space of all holomorphic functions on Bn. For a function f ∈ H(Bn), we define the complex
gradient and radial derivative of f as follows:

∇ f (z) =
(

∂ f
∂ z1

(z), . . .
∂ f
∂ zn

(z)
)
, R f (z) =

n

∑
j=1

z j
∂ f
∂ z j

(z), z ∈ Bn.

For any a ∈ Bn\{0}, let σa denote the biholomorphic mapping of Bn, that is,

σa(z) =
a−Pa(z)−

√
1−|a|2(z−Pa(z))

1−〈z,a〉
, z ∈ Bn,

where Pa(z) =
〈z,a〉a
|a|2 . It is known that σa ◦σa(z) = z and

1−|σa(z)|2 =
(1−|a|2)(1−|z|2)
|1−〈z,a〉|2

.

For 0 < p < ∞, the Bergman space A p(Bn) is the space of all functions f ∈ H(Bn) such that

‖ f‖p
A p(Bn)

=
∫
Bn

| f (z)|pdV (z)< ∞,
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where dV denotes the normalized Lebesgue measure on Bn. It is known that f ∈A p(Bn) if and
only if (1−|z|2)R f (z) ∈ Lp(Bn,dV ). Moreover,

‖ f‖p
A p(Bn)

≈ | f (0)|p +
∫
Bn

|R f (z)|p(1−|z|2)pdV (z).

We refer to [41, 42] for more results about Bergman spaces.
For 0 < α < ∞, we define the α-Bloch space Bα as the set of all f ∈ H(Bn) satisfying (see

[42])
‖ f‖Bα = sup

z∈Bn

|R f (z)|(1−|z|2)α < ∞.

It is evident that Bα is a Banach space under the norm ‖ f‖= | f (0)|+‖ f‖Bα . In particular, the
classical Bloch space B is just B1. We denote the little Bloch space by B0, which consists of
all f ∈B such that lim|z|→1(1−|z|2)|R f (z)|= 0. We use H∞ = H∞(Bn) to represent the space
of all bounded holomorphic functions on Bn.

Let 0 < p < ∞, −(n+1)< q < ∞, and 0≤ s < ∞ be such that q+ s >−1. The general space
F(p,q,s) consists of all f ∈ H(Bn) satisfying the following norm condition:

‖ f‖p
F(p,q,s) = | f (0)|

p + sup
a∈Bn

∫
Bn

|∇ f (z)|p(1−|z|2)qgs(z,a)dV (z)< ∞,

where g(z,a) = log 1
|σa(z)| . According to [39, Theorem 3.1], we have

‖ f‖p
F(p,q,s) ≈ | f (0)|

p + sup
a∈Bn

∫
Bn

|R f (z)|p(1−|z|2)q(1−|σa(z)|2)sdV (z).

The space F(p,q,s) was originally introduced by Zhao on D in [40]. Special values of p,q,s
correspond to some classical function spaces, such as weighted Dirichlet spaces, weighted
Bergman spaces, BMOA, Qs spaces, and others (see, e.g., [14, 25]; for the unit disk setting, see
[39]). It is worth noting that F(p,q,s) is a subspace of B(n+1+q)/p, and when s > n, F(p,q,s)
is equivalent to the space B(n+1+q)/p. In [18], Morrey introduced the Morrey space, which
has been utilized in the investigation of partial differential equation solutions’ regularity and
harmonic analysis on Euclidean spaces. In [31], Wu and Xie proposed and examined the holo-
morphic Morrey space denoted by L 2,λ on the unit disk. In [15], Liu and Lou provided a
characterization of the Carleson measure for L 2,λ .

Let p > 0, 0 ≤ λ ≤ 2. The Bergman-Morrey space A p,λ (D) is defined as the set of all
functions f ∈ H(D) satisfying the following norm condition:

‖ f‖A p,λ (D) = | f (0)|+ sup
a∈D

(1−|a|2)
2−λ

p ‖ f ◦σa− f (a)‖A p(D) < ∞.

This space was originally introduced by Yang and Liu in [36]. They provided a characterization
of the identity operator from A p,λ (D) into a tent space, as well as the boundedness and essential
norm of the corresponding Volterra operators on the space A p,λ (D). In recent decades, scholars
introduced and studied various Morrey type spaces. For more information on these spaces and
their properties, we refer to [5, 15, 30, 31, 32, 34, 36, 38] and the references therein.

Based on the work of [36], we introduce the Bergman-Morrey space A p,λ (Bn) on the unit
ball as follows: for 0 < λ < 1 < p < ∞, A p,λ (Bn) is the space of all f ∈ H(Bn) satisfying

‖ f‖A p,λ (Bn)
= | f (0)|+ sup

a∈Bn

(1−|a|2)
(1−λ )(n+1)

p ‖ f ◦σa− f (a)‖A p(Bn) < ∞.
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We note that A p,0(Bn) = A p(Bn) and A p,1(Bn) = B. Furthermore, it is straightforward to
verify that B ⊂A p,λ (Bn)⊂A p(Bn), 0 < λ < 1.

The organization of this paper is as follows. Section 2 presents a characterization of the
boundedness and compactness of the identity operator from A p,λ (Bn) into T ∞

p, λ (n+1)
n

(µ), a tent

space, which is defined in the same section. Section 3 investigates the boundedness of the
Riemann-Stieltjes operators Vg, Ug, and the multiplication operator Mg on A p,λ (Bn). Addition-
ally, Section 4, the last section, covers the determination of the essential norm of the operators
Vg and Ug. In this paper, we use the notation A≈ B to denote that A. B. A for two functions.
Specifically, B. A means that there exists a positive constant C such that B≤CA.

2. EMBEDDING THEOREM

This section begins with the definition of the Carleson measure, which was first proposed by
Carleson [2] in the unit disk and has numerous applications. For 0 < t < ∞, a positive Borel
measure µ on Bn is called a t-Carleson measure if

‖µ‖C M t = sup
{

µ(Qδ (ζ ))

δ nt ;ζ ∈ Sn,δ > 0
}
< ∞,

where Qδ (ζ ) = {z ∈ Bn : |1− 〈z,ζ 〉| < δ} for any ζ ∈ Sn and δ > 0. When ζ = a
|a| and

δ =
√

1−|a|2, we write Qδ (ζ ) = Q(a). The measure µ is called a vanishing t-Carleson
measure if

lim
δ→0

µ(Qδ (ζ ))

δ nt = 0 for ζ ∈ Sn.

An equivalent description of t-Carleson measure is stated as follows (see [41, Theorem 45]).

Lemma 2.1. Let t,r > 0 and µ be a positive Borel measure on Bn. Then µ is a t-Carleson
measure if and only if

sup
a∈Bn

∫
Bn

(1−|a|2)r

|1−〈z,a〉|nt+r dµ(z)< ∞.

Further,

‖µ‖C M t ≈ sup
a∈Bn

∫
Bn

(1−|a|2)r

|1−〈z,a〉|nt+r dµ(z).

For 0 < p,s < ∞, the non-isotropic tent type space T ∞
p,s(µ) is defined as the set of all µ-

measurable functions f on Bn such that

‖ f‖p
T ∞

p,s(µ)
= sup

{
δ
−ns
∫
Qδ (ζ )

| f (z)|pdµ(z);ζ ∈ Sn,δ > 0
}
< ∞.

From [20, Proposition 2.1 ], we obtain the following equivalent characterization for space
T ∞

p,s(µ).

Lemma 2.2. Let p,s,m > 0 and µ be a positive Borel measure on Bn. Then a function f ∈
H(Bn) belongs to T ∞

p,s(µ) if and only if

sup
a∈Bn

∫
Bn

| f (z)|p (1−|a|2)m

|1−〈z,a〉|ns+m dµ(z)< ∞.
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Moreover,

‖ f‖p
T ∞

p,s(µ)
≈ sup

a∈Bn

∫
Bn

| f (z)|p (1−|a|2)m

|1−〈z,a〉|ns+m dµ(z).

From [38, Theorem 1], we immediately obtain the following conclusion.

Lemma 2.3. Let 0 < λ < 1 < p < ∞ and f ∈ H(Bn). Then f ∈A p,λ (Bn) if and only if

sup
a∈Bn

∫
Bn

|R f (z)|p(1−|z|2)p−λ (n+1)(1−|σa(z)|2)λ (n+1)dV (z)< ∞.

Lemma 2.4. Let 0 < λ < 1 < p < ∞ and f ∈A p,λ (Bn). Then

| f (a)|.
‖ f‖A p,λ (Bn)

(1−|a|2)
(1−λ )(n+1)

p

, a ∈ Bn.

Proof. Assume that f ∈A p,λ (Bn). By [39, Lemma 2.1], we have

|R f (a)|. 1

(1−|a|2)
(1−λ )(n+1)

p +1
‖ f‖A p,λ (Bn)

.

Integrating both sides of the above inequality, the desired result can be obtained immediately.
�

The following lemma can be found in [20, Corollary 2.1].

Lemma 2.5. For m >−1, r, t > 0 with 0 < r+ t−m−n−1 < r, there exists a constant C > 0
such that ∫

Bn

(1−|z|2)m

|1−〈z,a〉|r|1−〈z,d〉|t
dV (z)≤ C

(1−|a|2)r+t−m−n−1 .

Next, we describe the boundedness and compactness of the identity operator from A p,λ (Bn)
into space T ∞

p, λ (n+1)
n

(µ). The following two theorems are the main conclusions of this section.

Theorem 2.1. Let 0 < λ < 1 < p < ∞ and µ be a positive Borel measure on Bn. Then the
identity operator Id : A p,λ (Bn)→ T ∞

p, λ (n+1)
n

(µ) is bounded if and only if µ is an n+1
n -Carleson

measure.

Proof. First we suppose that the operator Id : A p,λ (Bn)→ T ∞

p, λ (n+1)
n

(µ) is bounded. For any

ζ ∈ Sn and 0 < δ < 1, we set

fζ ,δ (z) =
1

(1−〈z,(1−δ )ζ 〉)
(1−λ )(n+1)

p

.
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By Lemma 2.5, we have

sup
a∈Bn

∫
Bn

|R fζ ,δ (z)|p(1−|z|2)p−λ (n+1)(1−|σa(z)|2)λ (n+1)dV (z)

. sup
a∈Bn

∫
Bn

|(1−δ )ζ |p

|1−〈z,(1−δ )ζ 〉|(1−λ )(n+1)+p
(1−|z|2)p−λ (n+1)(1−|σa(z)|2)λ (n+1)dV (z)

≤ sup
a∈Bn

∫
Bn

(1−|z|2)p(1−|a|2)λ (n+1)

|1−〈z,a〉|2λ (n+1)|1−〈z,(1−δ )ζ 〉|(1−λ )(n+1)+p
dV (z)

<∞.

Then Lemma 2.3 yields that fζ ,δ ∈A p,λ (Bn). Since |1−〈z,(1−δ )ζ 〉| ≈ δ for all z ∈Qδ (ζ ),
one has

∞ > ‖ fζ ,δ‖
p
T ∞

p, λ (n+1)
n

(µ)
≥ δ

−λ (n+1)
∫
Qδ (ζ )

| fζ ,δ (z)|pdµ(z)& δ
−(n+1)

µ(Qδ (ζ )),

which means that µ is an n+1
n -Carleson measure by the arbitrariness of δ .

Conversely, we ssume that µ is an n+1
n -Carleson measure. From Lemma 2.2, we just need to

show that, for any f ∈A p,λ (Bn), there exists a t > 0 such that

‖ f‖p
T ∞

p, λ (n+1)
p

(µ)
≈ sup

a∈Bn

∫
Bn

| f (z)|p (1−|a|2)t

|1−〈z,a〉|λ (n+1)+t
dµ(z)< ‖ f‖p

A p,λ (Bn)
.

Let p− 1 < ε < 2p. Choose a constant t such that t > max{(2−λ )(n+ 1),(2−λ )(n+ 1)−
p−n+ ε} and t < (2−λ )(n+1)+ p. Then

sup
a∈Bn

∫
Bn

| f (z)|p (1−|a|2)t

|1−〈z,a〉|λ (n+1)+t
dµ(z). sup

a∈Bn

∫
Bn

| f (z)− f (a)|p (1−|a|2)t

|1−〈z,a〉|λ (n+1)+t
dµ(z)

+ sup
a∈Bn

∫
Bn

| f (a)|p (1−|a|2)t

|1−〈z,a〉|λ (n+1)+t
dµ(z)

:=E +F.

Employing Lemmas 2.1 and 2.4 and noting that t > (1−λ )(n+1), we see that

F . ‖ f‖p
A p,λ (Bn)

sup
a∈Bn

∫
Bn

(1−|a|2)t−(1−λ )(n+1)

|1−〈z,a〉|λ (n+1)+t
dµ(z)< ∞.

Since µ is an n+1
n -Carleson measure, [41, Theorem 50] yields that A p ⊂ Lp

µ . Therefore,

E . sup
a∈Bn

∫
Bn

∣∣∣∣∣∣R
( f (z)− f (a))(1−|a|2)

t
p

(1−〈z,a〉)
λ (n+1)+t

p

∣∣∣∣∣∣
p

(1−|z|2)pdV (z)+‖ f‖p
A p,λ (Bn)

. sup
a∈Bn

∫
Bn

|R f (z)|p(1−|a|2)t

|1−〈z,a〉|λ (n+1)+t
(1−|z|2)pdV (z)

+ sup
a∈Bn

∫
Bn

| f (z)− f (a)|p(1−|a|2)t

|1−〈z,a〉|λ (n+1)+t+p
(1−|z|2)pdV (z)+‖ f‖p

A p,λ (Bn)

= : E1 +E2 +‖ f‖p
A p,λ (Bn)

.
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In view of t > λ (n+1), one has

E1 . sup
a∈Bn

∫
Bn

|R f (z)|p(1−|a|2)λ (n+1)

|1−〈z,a〉|2λ (n+1)
(1−|z|2)pdV (z)

= sup
a∈Bn

∫
Bn

|R f (z)|p(1−|z|2)p−λ (n+1)(1−|σa(z)|2)λ (n+1)dV (z)

≈‖ f‖p
A p,λ (Bn)

< ∞.

From [42, page 51], Hölder’s inequality and [42, Theorem 1.12 ], for any a∈Bn and f ∈H(Bn),
one has

| f ◦σa(z)− f ◦σa(0)|p

.

(∫
Bn

|R( f ◦σa)(w)|
(1−|w|2)β

|1−〈z,w〉|n+β
dV (w)

)p

=

∫
Bn

|R( f ◦σa)(w)|
(1−|w|2)

β+ε

p

|1−〈z,w〉|
n+β

p

· (1−|w|
2)

β (p−1)
p − ε

p

|1−〈z,w〉|
(n+β )(p−1)

p

dV (w)

p

.
∫
Bn

|R( f ◦σa)(w)|p
(1−|w|2)β+ε

|1−〈z,w〉|n+β
dV (w)

(∫
Bn

(1−|w|2)β− ε

p−1

|1−〈z,w〉|n+β
dV (w)

)p−1

.(1−|z|2)p−1−ε

∫
Bn

|R( f ◦σa)(w)|p
(1−|w|2)β+ε

|1−〈z,w〉|n+β
dV (w),

where β is large enough. Therefore, using Lemma 2.5 and the change of variable z = σa(u), we
have

E2 = sup
a∈Bn

∫
Bn

| f (z)− f (a)|p(1−|a|2)t

|1−〈z,a〉|λ (n+1)+t+p
(1−|z|2)pdV (z)

= sup
a∈Bn

∫
Bn

| f ◦σa(u)− f ◦σa(0)|p
(1−|a|2)t(1−|σa(u)|2)p

|1−〈σa(u),a〉|λ (n+1)+p+t

(
1−|a|2

|1−〈u,a〉|2

)n+1

dV (u)

= sup
a∈Bn

∫
Bn

| f ◦σa(u)− f ◦σa(0)|p
(1−|u|2)p(1−|a|2)(1−λ )(n+1)

|1−〈u,a〉|(2−λ )(n+1)+p−t
dV (u)

. sup
a∈Bn

∫
Bn

|R( f ◦σa)(w)|p(1−|w|2)β+ε

∫
Bn

(1−|u|2)2p−1−ε(1−|a|2)(1−λ )(n+1)

|1−〈u,w〉|n+β |1−〈u,a〉|(2−λ )(n+1)+p−t
dV (u)dV (w)

. sup
a∈Bn

∫
Bn

|R( f ◦σa)(w)|p(1−|w|2)−(2−λ )(n+1)+p+t(1−|a|2)(1−λ )(n+1)dV (w)

. sup
a∈Bn

(1−|a|2)(1−λ )(n+1)
∫
Bn

|R( f ◦σa)(w)|p(1−|w|2)pdV (w)

. sup
a∈Bn

(1−|a|2)(1−λ )(n+1)‖ f ◦σa− f (a)‖p
A p(Bn)

≈‖ f‖p
A p,λ (Bn)

< ∞.
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Then

‖ f‖p
T ∞

p, λ (n+1)
p

(µ)
≈ sup

a∈Bn

∫
Bn

| f (z)|p (1−|a|2)t

|1−〈z,a〉|λ (n+1)+t
dµ(z). ‖ f‖p

A p,λ (Bn)
< ∞,

which means that Id : A p,λ (Bn)→T ∞

p, λ (n+1)
n

(µ) is bounded. �

The identity operator Id : A p,λ (Bn)→T ∞

p, λ (n+1)
n

(µ) is said to be compact if ‖ fk‖T ∞

p, λ (n+1)
n

(µ)→

0 as k→ ∞, when { fk} is a bounded sequence in A p,λ (Bn) that converges to 0 uniformly on
every compact subset of Bn.

Theorem 2.2. Let 0 < λ < 1 < p < ∞ and µ be a positive Borel measure on Bn such that
the point evaluations are bounded functionals on T ∞

p, λ (n+1)
n

(µ). Then the identity operator Id :

A p,λ (Bn)→T ∞

p, λ (n+1)
n

(µ) is compact if and only if µ is a vanishing n+1
n -Carleson measure.

Proof. First we suppose that Id : A p,λ (Bn)→ T ∞

p, λ (n+1)
n

(µ) is compact. For any ζ ∈ Sn and

δk→ 0 as k→ ∞, we set

fζ ,k(z) =
1−|1−δk|2

(1−〈z,(1−δk)ζ 〉)
(1−λ )(n+1)

p +1
.

It is easy to see that { fζ ,k} is a bounded sequence in A p,λ (Bn) and converges to 0 uniformly on
every compact set of Bn as k→∞. Using the fact that |1−〈z,(1−δk)ζ 〉| ≥ δk when z∈Qδk

(ζ ),
we have

µ(Qδk
(ζ ))

δk
n+1 . δk

−λ (n+1)
∫
Qδk

(ζ )
| fζ ,k(z)|pdµ(z). ‖ fζ ,k‖

p
T ∞

p, λ (n+1)
n

(µ)
→ 0

as k→ ∞, which means that µ is a vanishing n+1
n -Carleson measure.

Conversely, we assume that µ is a vanishing n+1
n -Carleson measure. Let { fk} be a bounded

sequence in A p,λ (Bn) and converge to 0 uniformly on every compact set of Bn. Then the
definition of T ∞

p, λ (n+1)
n

(µ) and Theorem 2.1 imply

δ
−λ (n+1)

∫
Qδ (ζ )

| fk(z)|pdµ(z). ‖µ‖C M n+1
n
‖ fk‖p

A p,λ (Bn)
.

Therefore, for any 0 < r < 1, we have

δ
−λ (n+1)

∫
Qδ (ζ )

| fk(z)|pdµ(z)

=δ
−λ (n+1)

∫
Qδ (ζ )

| fk(z)|pχ{z∈Bn:|z|≤r}dµ(z)+δ
−λ (n+1)

∫
Qδ (ζ )

| fk(z)|pχ{z∈Bn:|z|>r}dµ(z)

.δ
−λ (n+1)

∫
Qδ (ζ )

| fk(z)|pχ{z∈Bn:|z|≤r}dµ(z)+‖ fk‖p
A p,λ (Bn)

‖µr‖C M n+1
n
,

where dµr(z) = χ{z∈Bn:|z|>r}dµ(z). Since { fk} converges to 0 uniformly on {z ∈ Bn : |z| ≤ r},
one has

δ
−λ (n+1)

∫
Qδ (ζ )

| fk(z)|pχ{z∈Bn:|z|≤r}dµ(z)→ 0
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as k→ ∞. Now, we just need to proof that ‖µr‖C M n+1
n
→ 0 when r→ 1 (It is worth noting that

the proof of this fact was given in [4, Lemma 3.1], but here we present an alternative proof).
For ζ ∈ Sn and δ > 0, let

Q̃δ (ζ ) = {η ∈ Sn : |1−〈η ,ζ 〉|< δ}.

From the proof of [10, Theorem 4.1 ], it is clear that Qδ (ζ )⊂ Q̂4δ (ζ )⊂Q16δ (ζ ), where

Q̂δ (ζ ) =

{
z ∈ Bn :

z
|z|
∈ Q̃δ (ζ ),1−δ < |z|< 1

}
.

Thus Qδ (ζ ) in the definition of (vanishing) t-Carleson measure can be replaced by Q̂δ (ζ ).
Then, for any ε > 0, there exists δ0 > 0 such that µ(Q̂δ (ζ ))< εδ n+1 for all δ ≤ δ0 and ζ ∈ Sn.
If δ > δ0, we choose a natural number m satisfying δ

δ0
< m < 2δ

δ0
for any δ ≤ 2. From [19,

Lemma 3.3], we have that Q̃δ can be covered by N balls Q̃ δ

m
on Sn, where N ≤Cmn, C > 1.

Therefore, Q̂δ ∩{z ∈ Bn : |z|> r0} ⊂ ∪
N
Q̂ δ

m
with r0 = 1− δ0

m . Then

µr0(Q̂δ )≤ µr0(∪NQ̂ δ

m
)≤ µr0(∪NQ̂δ0)≤∑

N
µ(Q̂δ0)

≤ Nεδ
n+1
0 <C

(
2δ

δ0

)n

εδ
n+1
0 <Cεδ

n
δ

n+1−n
0 <Cεδ

n+1,

which implies that, for r > r0, µr(Q̂δ )<Cεδ n+1. Therefore,

δ
−λ (n+1)

∫
Qδ (ζ )

| fk(z)|pdµ(z). ε.

Thus Id : A p,λ (Bn)→T ∞

p, λ (n+1)
n

(µ) is compact. �

3. RIEMANN-STIELTJES OPERATORS

This section aims to study the boundedness of the Riemann-Stiltjes operators Vg,Ug and the
multiplication operator Mg on A p,λ (Bn). Now we recall the definitions of these operators. Let
g ∈ H(Bn). The Riemann-Stieltjes operator Vg is defined by

Vg f (z) =
∫ 1

0
f (sz)Rg(sz)

ds
s
, f ∈ H(Bn), z ∈ Bn.

The operator Vg was first introduced and studied by Hu in [7]. A related operator Ug is defined
by

Ug f (z) =
∫ 1

0
R f (sz)g(sz)

ds
s
, f ∈ H(Bn), z ∈ Bn.

Clearly, the multiplication operator Mg is determined by

Mg f (z) = f (z)g(z) = f (0)g(0)+Vg f (z)+Ug f (z), f ∈ H(Bn), z ∈ Bn.

Some information on these integral-type operators and related operators on the unit disk and
the polydisk and many references up to the end of 2006 can be found in [3, 22]. For some
later results on the operators and their extensions in [23] and [24] we refer to, for example,
[1, 3, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 25, 27, 28, 33] and the references therein.

Now we state and prove the main results in this section.
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Theorem 3.1. Let 0 < λ < 1 < p < ∞ and g ∈ H(Bn). Then Vg : A p,λ (Bn)→ A p,λ (Bn) is
bounded if and only if g ∈B.

Proof. Assume first that Vg : A p,λ (Bn)→A p,λ (Bn) is bounded. Since R(Vg f )(z)= f (z)Rg(z),
we find by Lemma 2.3 that

‖Vg f‖p
A p,λ (Bn)

≈ sup
a∈Bn

∫
Bn

| f (z)|p|Rg(z)|p(1−|z|2)p−λ (n+1)(1−|σa(z)|2)λ (n+1)dV (z)

= sup
a∈Bn

∫
Bn

| f (z)|p (1−|a|2)λ (n+1)

|1−〈z,a〉|2λ (n+1)
dµg(z)

.‖ f‖p
A p,λ (Bn)

,

where dµg = |Rg(z)|p(1− |z|2)pdV (z). This with Lemma 2.2 implies that Id : A p,λ (Bn)→
T ∞

p, λ (n+1)
n

(µg) is bounded. Using Theorem 2.1, we obtain that µg is an n+1
n -Carleson measure.

Lemma 2.1 yields that µg is an n+1
n -Carleson measure if and only if

∞ > sup
a∈Bn

∫
Bn

(1−|a|2)n+1

|1−〈z,a〉|2(n+1)
dµg(z)

= sup
a∈Bn

∫
Bn

|Rg(z)|p(1−|z|2)p−(n+1)(1−|σa(z)|2)n+1dV (z),

which implies that g ∈ F(p, p− (n+1),(n+1)) = B.
Conversely, we suppose that g ∈ B = F(p, p− (n + 1),(n + 1)). From the definition of

F(p, p− (n+ 1),(n+ 1)), we see that µg is an n+1
n -Carleson measure. By Theorem 2.1, we

obtain that Id : A p,λ (Bn)→T ∞

p, λ (n+1)
n

(µg) is bounded. Then Lemma 2.2 gives that

‖Vg f‖p
A p,λ (Bn)

≈ sup
a∈Bn

∫
Bn

| f (z)|p|Rg(z)|p(1−|z|2)p−λ (n+1)(1−|σa(z)|2)λ (n+1)dV (z)

= sup
a∈Bn

∫
Bn

| f (z)|p (1−|a|2)λ (n+1)

|1−〈z,a〉|2λ (n+1)
dµg(z)< ∞.

The proof is complete. �

Theorem 3.2. Let 0 < λ < 1 < p < ∞ and g ∈ H(Bn). Then Ug : A p,λ (Bn)→ A p,λ (Bn) is
bounded if and only if g ∈ H∞.

Proof. Suppose that Ug : A p,λ (Bn)→A p,λ (Bn) is bounded. For a ∈ Bn with |a|> 3
4 , we set

fa(z) =
1−|a|2(

(1−λ )(n+1)
p +1

)
(1−〈z,a〉)

(1−λ )(n+1)
p +1

, z ∈ Bn.

Note that [20, Lemma 2.4] yields that ‖ fa‖A p,λ (Bn)
. 1. It is known that

V (D(a,
1
2
))≈ (1−|a|2)n+1, 1−|a|2 ≈ 1−|z|2 ≈ |1−〈z,a〉|,
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for all z ∈D(a, 1
2), where D(a,r) denotes the Bergman metric ball. Noting that, for z ∈D(a, 1

2),
|〈z,a〉|& 1. Employing the subharmonicity of |g|p (see [42, Lemma 2.24]), we obtain that

|g(a)|p . 1
V (D(a, 1

2))

∫
D(a, 1

2 )
|g(z)|pdV (z)

.
1

(1−|a|2)n+1+p

∫
D(a, 1

2 )
|g(z)|p(1−|z|2)pdV (z)

.
∫

D(a, 1
2 )

 1−|a|2

|1−〈z,a〉|
(1−λ )(n+1)

p +2

p

|g(z)|p(1−|z|2)p (1−|a|2)λ (n+1)

(1−〈z,a〉)2λ (n+1)
dV (z)

.
∫

D(a, 1
2 )

 (1−|a|2)|〈z,a〉|

|1−〈z,a〉|
(1−λ )(n+1)

p +2

p

|g(z)|p(1−|z|2)p (1−|a|2)λ (n+1)

(1−〈z,a〉)2λ (n+1)
dV (z)

.
∫

D(a, 1
2 )
|R fa(z)|p|g(z)|p(1−|z|2)p (1−|a|2)λ (n+1)

(1−〈z,a〉)2λ (n+1)
dV (z)

. sup
b∈Bn

∫
Bn

|R fa(z)|p|g(z)|p(1−|z|2)p−λ (n+1)(1−|σb(z)|2)λ (n+1)dV (z)

. ‖Ug fa‖p
A p,λ (Bn)

. ‖Ug‖p
A p,λ (Bn)

< ∞,

which means that g ∈ H∞.
Conversely, we assume that g ∈ H∞. Let f ∈A p,λ (Bn). Using Lemma 2.3 twice, we have

‖Ug f‖p
A p,λ (Bn)

. sup
a∈Bn

∫
Bn

|R f (z)|p|g(z)|p(1−|z|2)p−λ (n+1)(1−|σa(z)|2)λ (n+1)dV (z)

.‖g‖p
∞ sup

a∈Bn

∫
Bn

|R f (z)|p(1−|z|2)p−λ (n+1)(1−|σa(z)|2)λ (n+1)dV (z)

.‖g‖p
∞‖ f‖p

A p,λ (Bn)
,

which implies that Ug : A p,λ (Bn)→A p,λ (Bn) is bounded. �

Theorem 3.3. Let 0 < λ < 1 < p < ∞ and g ∈ H(Bn). Then Mg : A p,λ (Bn)→ A p,λ (Bn) is
bounded if and only if g ∈ H∞.

Proof. First, we suppose that g ∈ H∞. Using Theorems 3.1 and 3.2 and the fact that H∞ ⊂B,
we obtain that Vg and Ug are bounded on A p,λ (Bn). Therefore, Mg : A p,λ (Bn)→A p,λ (Bn) is
bounded by the fact that Mg f (z) = f (0)g(0)+Vg f (z)+Ug f (z).

Conversely, we suppose that Mg : A p,λ (Bn)→ A p,λ (Bn) is bounded. For any a ∈ D with
|a|> 1/2, we set

fa(z) =
(1−|a|2)2

(1−〈z,a〉)
(1−λ )(n+1)

p +2
− 1−|a|2

(1−〈z,a〉)
(1−λ )(n+1)

p +1
, z ∈ Bn.

Then

R fa(z) =

(
(1−λ )(n+1)

p +2
)
(1−|a|2)2〈z,a〉

(1−〈z,a〉)
(1−λ )(n+1)

p +3
−

(
(1−λ )(n+1)

p +1
)
(1−|a|2)〈z,a〉

(1−〈z,a〉)
(1−λ )(n+1)

p +2
.
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It is clear that
fa(a) = 0, R fa(a) = |a|2(1−|a|2)−

(1−λ )(n+1)
p −1.

Thus we see that fa ∈A p,λ (Bn) and supa∈Bn
‖ fa‖A p,λ (Bn)

<∞. Since A p,λ (Bn)⊂B1+ (1−λ )(n+1)
p ,

we see that

∞ >‖Mg fa‖A p,λ (Bn)
& ‖Mg fa‖

B
1+(1−λ )(n+1)

p

& sup
z∈Bn

|Rg(z) fa(z)+g(z)R fa(z)|(1−|z|2)1+ (1−λ )(n+1)
p

&|Rg(a) fa(a)+g(a)R fa(a)|(1−|a|2)1+ (1−λ )(n+1)
p

&|g(a)||a|2,
from which it easily follows that g ∈ H∞. �

4. ESSENTIAL NORM

This section is devoted to the essential norm of the operators Vg and Ug on A p,λ (Bn). Let
A and B be two Banach spaces. The essential norm of a bounded linear operator T : A→ B is
defined as

‖T‖e,A→B = inf
K
{‖T −K‖A→B : K is compact from A to B}.

As we know, T : A→ B is compact if and only if ‖T‖e,A→B = 0. For recent research on the
estimating essential norm of some integral-type operators, we refer to [4, 6, 26, 27, 35].

Let Q and B be two Banach spaces such that Q is a subspace of B. Given f ∈B, the distance of
f to Q is defined as distB( f ,Q) = infg∈Q ‖ f −g‖B. From [4, Lemma 4.1], the distance formula
for the function in the space B to the space B0 is stated as follows.

Lemma 4.1. Let g ∈B. Then

distB(g,B0)≈ limsup
r→1−

‖g−gr‖B ≈ limsup
|z|→1−

|Rg(z)|(1−|z|2).

Similar to the proof of [37, Lemma 5], we have the following result.

Lemma 4.2. Let 0 < λ < 1 < p < ∞ and g ∈ H(Bn). If 0 < r < 1 and g ∈ B, then Vgr :
A p,λ (Bn)→A p,λ (Bn) is compact.

Tjani, in [29], established the following findings within the open unit disc D, which are fun-
damental in investigating the essential norm of integral operators on different analytic function
spaces. It is noteworthy that these findings also hold true in the open unit ball Bn.

Lemma 4.3. Let X ,Y be two Banach spaces of analytic functions on Bn. Suppose that
(i) The point evaluation functionals on Y are continuous.

(ii) The closed unit ball of X is a compact subset of X in the topology of uniform convergence
on compact sets.

(iii) T : X → Y is continuous when X and Y are given the topology of uniform convergence
on compact sets.

Then T is compact if and only if for every bounded sequence { fn} in X such that fn → 0
uniformly on every compact set of Bn, then the sequence {T fn} converges to 0 in the norm of Y .
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Theorem 4.1. Let 0< λ < 1< p<∞ and g∈H(Bn). If Vg : A p,λ (Bn)→A p,λ (Bn) is bounded,
then

‖Vg‖e,A p,λ (Bn)→A p,λ (Bn)
≈ distB(g,B0)≈ limsup

|z|→1−
|Rg(z)|(1−|z|2).

Proof. From the proof of Theorem 3.1, it is easy to see that g ∈B and

‖Vg‖A p,λ (Bn)→A p,λ (Bn)
≈ ‖g‖B.

From Lemma 4.2, we see that Vgr : A p,λ (Bn)→A p,λ (Bn) is compact. Hence

‖Vg‖e,A p,λ (Bn)→A p,λ (Bn)
≤ ‖Vg−Vgr‖A p,λ (Bn)→A p,λ (Bn)

= ‖Vg−gr‖A p,λ (Bn)→A p,λ (Bn)
≈ ‖g−gr‖B.

Since Rgr ∈ H∞, we see that gr ∈B0. So,

‖Vg‖e,A p,λ (Bn)→A p,λ (Bn)
. limsup

r→1−
‖g−gr‖B ≈ limsup

|z|→1−
|Rg(z)|(1−|z|2).

Next, we estimate the lower bounded. Let {ak} be a bounded sequence in Bn such that
limk→∞ |ak|= 1. Set

fk(z) =
(1−|ak|2)

(1−λ )(n+1)
p

(1−〈z,ak〉)2 (1−λ )(n+1)
p

, z ∈ Bn.

Then { fk} is bounded in A p,λ (Bn) and converges to zero uniformly on every compact subset
of Bn as k→ ∞. Let K : A p,λ (Bn)→ A p,λ (Bn) be a compact operator. By Lemma 4.3, we
have

lim
k→∞
‖K fk‖A p,λ (Bn)

= 0.

Therefore, using [42, Lemma 2.24], we have

‖Vg−K‖A p,λ (Bn)→A p,λ (Bn)

& limsup
k→∞

‖(Vg−K)( fk)‖A p,λ (Bn)

& limsup
k→∞

(‖Vg fk‖A p,λ (Bn)
− limsup

k→∞

‖K fk‖A p,λ (Bn)

= limsup
k→∞

‖Vg fk‖A p,λ (Bn)

& limsup
k→∞

(∫
Bn

| fk(z)|p|Rg(z)|p(1−|z|2)p−λ (n+1)(1−|σak(z)|
2)λ (n+1)dV (z)

) 1
p

= limsup
k→∞

(∫
Bn

(1−|ak|2)(1−λ )(n+1)+λ (n+1)

|1−〈z,ak〉|2(1−λ )(n+1)+2λ (n+1)
|Rg(z)|p(1−|z|2)pdV (z)

) 1
p

& limsup
k→∞

(∫
D(ak,r)

|Rg(z)|p(1−|z|2)p−(n+1)dV (z)
) 1

p

& limsup
k→∞

|Rg(ak)|(1−|ak|2),
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which implies that

‖Vg‖e,A p,λ (Bn)→A p,λ (Bn)
& limsup
|z|→1−

|Rg(z)|(1−|z|2).

The proof is complete. �

Theorem 4.2. Let 0 < λ < 1 < p < ∞ and g ∈ H(Bn). If Ug : A p,λ (Bn) → A p,λ (Bn) is
bounded, then

‖Ug‖e,A p,λ (Bn)→A p,λ (Bn)
≈ ‖g‖∞.

Proof. We define K and {ak} as in the proof of Theorem 4.1. Set

fk(z) =
(1−|ak|2)

(1−λ )(n+1)
p

(1−〈z,ak〉)2 (1−λ )(n+1)
p

, z ∈ Bn,

where {ak} satisfies |ak| ≥ 3/4 and |ak| → 1 as k→ ∞. Then { fk} is a bounded sequence in
A p,λ (Bn) and converges to zero uniformly on every compact subset of Bn as k→ ∞. Hence

‖Ug−K‖A p,λ (Bn)→A p,λ (Bn)
& limsup

k→∞

‖(Ug−K)( fk)‖A p,λ (Bn)

& limsup
k→∞

‖Ug fk‖A p,λ (Bn)
− limsup

k→∞

‖K fk‖A p,λ (Bn)

= limsup
k→∞

‖Ug fk‖A p,λ (Bn)
.

From the proof of Theorem 3.2, we see that ‖Ug fk‖A p,λ (Bn)
& |g(ak)|, which implies that

‖Ug‖e,A p,λ (Bn)→A p,λ (Bn)
& ‖g‖H∞.

Conversely, we have by Theorem 3.2 that

‖Ug‖e,A p,λ (Bn)→A p,λ (Bn)
. ‖Ug‖A p,λ (Bn)→A p,λ (Bn)

. ‖g‖H∞ .

This finishes the proof. �

From Theorems 4.1 and 4.2, we have the following corollary.

Corollary 4.1. Let 0 < λ < 1 < p < ∞ and g ∈ H(Bn). Then the following statements hold.

(i) The operator Vg : A p,λ (Bn)→A p,λ (Bn) is compact if and only if g ∈B0;
(ii) The operator Ug : A p,λ (Bn)→A p,λ (Bn) is compact if and only if g = 0.
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[8] Z. Hu, Extended Cesàro operators on the Bloch space in the unit ball of Cn, Acta Math. Sci. 23 (2003),

561-566.
[9] B. Hu, S. Li, N(p,q,s)-type spaces in the unit ball of Cn(V ): Riemann-Stieltjes operators and multipliers,

Bull. Sci. Math. 166 (2021), 102929.
[10] B. Li, C. Ouyang, Higher radial derivative of functions of Qp spaces and its applications, J. Math. Anal. Appl.

327 (2007), 1257-1272.
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