J. Nonlinear Var. Anal. 9 (2025), No. 6, pp. 971-985 Available online at http://jnva.biemdas.com https://doi.org/10.23952/jnva.9.2025.6.08

RIEMANN-STIELTJES OPERATORS ON BERGMAN-MORREY SPACES IN THE UNIT BALL OF \mathbb{C}^n

LIAN HU¹, SONGXIAO LI^{2,*}

Abstract. In this paper, the Bergman-Morrey space $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is introduced in the open unit ball of \mathbb{C}^n and the identity operator from $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ into a tent space $\mathscr{T}^{\infty}_{p,\frac{\lambda(n+1)}{n}}(\mu)$ is characterized. Furthermore, the boundedness, compactness, and essential norm of the Riemann-Stieltjes operators V_g and U_g on $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ spaces are investigated.

Keywords. Bergman-Morrey space; Carleson measure; Essential norm; Riemann-Stieltjes operator.

1. Introduction

Let \mathbb{B}_n and \mathbb{S}_n denote the open unit ball and its boundary, respectively, in \mathbb{C}^n . In the case of n = 1, the open unit ball \mathbb{B}_n reduces to the open unit disc \mathbb{D} in \mathbb{C} . We use $H(\mathbb{B}_n)$ to denote the space of all holomorphic functions on \mathbb{B}_n . For a function $f \in H(\mathbb{B}_n)$, we define the complex gradient and radial derivative of f as follows:

$$\nabla f(z) = \left(\frac{\partial f}{\partial z_1}(z), \dots, \frac{\partial f}{\partial z_n}(z)\right), \, \mathcal{R}f(z) = \sum_{i=1}^n z_i \frac{\partial f}{\partial z_i}(z), \, z \in \mathbb{B}_n.$$

For any $a \in \mathbb{B}_n \setminus \{0\}$, let σ_a denote the biholomorphic mapping of \mathbb{B}_n , that is,

$$\sigma_a(z) = \frac{a - P_a(z) - \sqrt{1 - |a|^2}(z - P_a(z))}{1 - \langle z, a \rangle}, \ z \in \mathbb{B}_n,$$

where $P_a(z) = \frac{\langle z, a \rangle a}{|a|^2}$. It is known that $\sigma_a \circ \sigma_a(z) = z$ and

$$1 - |\sigma_a(z)|^2 = \frac{(1 - |a|^2)(1 - |z|^2)}{|1 - \langle z, a \rangle|^2}.$$

For $0 , the Bergman space <math>\mathscr{A}^p(\mathbb{B}_n)$ is the space of all functions $f \in H(\mathbb{B}_n)$ such that

$$||f||_{\mathscr{A}^p(\mathbb{B}_n)}^p = \int_{\mathbb{B}_n} |f(z)|^p dV(z) < \infty,$$

E-mail address: jyulsx@163.com (S. Li).

Received 27 October 2023; Accepted 18 March 2024; Published online 10 August 2025.

¹College of Science, Sichuan Agricultural University, Ya'an 625014, China

²Department of Mathematics, Shantou University, Shantou 515063, China

^{*}Corresponding author.

where dV denotes the normalized Lebesgue measure on \mathbb{B}_n . It is known that $f \in \mathscr{A}^p(\mathbb{B}_n)$ if and only if $(1-|z|^2)\mathscr{R}f(z) \in L^p(\mathbb{B}_n, dV)$. Moreover,

$$||f||_{\mathscr{A}^p(\mathbb{B}_n)}^p \approx |f(0)|^p + \int_{\mathbb{B}_n} |\mathscr{R}f(z)|^p (1-|z|^2)^p dV(z).$$

We refer to [41, 42] for more results about Bergman spaces.

For $0 < \alpha < \infty$, we define the α -Bloch space \mathscr{B}^{α} as the set of all $f \in H(\mathbb{B}_n)$ satisfying (see [42])

$$||f||_{\mathscr{B}^{\alpha}} = \sup_{z \in \mathbb{B}_n} |\mathscr{R}f(z)|(1-|z|^2)^{\alpha} < \infty.$$

It is evident that \mathscr{B}^{α} is a Banach space under the norm $||f|| = |f(0)| + ||f||_{\mathscr{B}^{\alpha}}$. In particular, the classical Bloch space \mathscr{B} is just \mathscr{B}^1 . We denote the little Bloch space by \mathscr{B}_0 , which consists of all $f \in \mathscr{B}$ such that $\lim_{|z| \to 1} (1 - |z|^2) |\mathscr{R}f(z)| = 0$. We use $H^{\infty} = H^{\infty}(\mathbb{B}_n)$ to represent the space of all bounded holomorphic functions on \mathbb{B}_n .

Let $0 , <math>-(n+1) < q < \infty$, and $0 \le s < \infty$ be such that q+s > -1. The general space F(p,q,s) consists of all $f \in H(\mathbb{B}_n)$ satisfying the following norm condition:

$$||f||_{F(p,q,s)}^p = |f(0)|^p + \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} |\nabla f(z)|^p (1 - |z|^2)^q g^s(z,a) dV(z) < \infty,$$

where $g(z,a) = \log \frac{1}{|\sigma_a(z)|}$. According to [39, Theorem 3.1], we have

$$||f||_{F(p,q,s)}^p \approx |f(0)|^p + \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} |\mathscr{R}f(z)|^p (1 - |z|^2)^q (1 - |\sigma_a(z)|^2)^s dV(z).$$

The space F(p,q,s) was originally introduced by Zhao on \mathbb{D} in [40]. Special values of p,q,s correspond to some classical function spaces, such as weighted Dirichlet spaces, weighted Bergman spaces, BMOA, Q_s spaces, and others (see, e.g., [14, 25]; for the unit disk setting, see [39]). It is worth noting that F(p,q,s) is a subspace of $\mathscr{B}^{(n+1+q)/p}$, and when s>n, F(p,q,s) is equivalent to the space $\mathscr{B}^{(n+1+q)/p}$. In [18], Morrey introduced the Morrey space, which has been utilized in the investigation of partial differential equation solutions' regularity and harmonic analysis on Euclidean spaces. In [31], Wu and Xie proposed and examined the holomorphic Morrey space denoted by $\mathscr{L}^{2,\lambda}$ on the unit disk. In [15], Liu and Lou provided a characterization of the Carleson measure for $\mathscr{L}^{2,\lambda}$.

Let p > 0, $0 \le \lambda \le 2$. The Bergman-Morrey space $\mathscr{A}^{p,\lambda}(\mathbb{D})$ is defined as the set of all functions $f \in H(\mathbb{D})$ satisfying the following norm condition:

$$\|f\|_{\mathscr{A}^{p,\lambda}(\mathbb{D})} = |f(0)| + \sup_{a \in \mathbb{D}} (1 - |a|^2)^{\frac{2-\lambda}{p}} \|f \circ \sigma_a - f(a)\|_{\mathscr{A}^p(\mathbb{D})} < \infty.$$

This space was originally introduced by Yang and Liu in [36]. They provided a characterization of the identity operator from $\mathscr{A}^{p,\lambda}(\mathbb{D})$ into a tent space, as well as the boundedness and essential norm of the corresponding Volterra operators on the space $\mathscr{A}^{p,\lambda}(\mathbb{D})$. In recent decades, scholars introduced and studied various Morrey type spaces. For more information on these spaces and their properties, we refer to [5, 15, 30, 31, 32, 34, 36, 38] and the references therein.

Based on the work of [36], we introduce the Bergman-Morrey space $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ on the unit ball as follows: for $0 < \lambda < 1 < p < \infty$, $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is the space of all $f \in H(\mathbb{B}_n)$ satisfying

$$||f||_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} = |f(0)| + \sup_{a \in \mathbb{B}_n} (1 - |a|^2)^{\frac{(1-\lambda)(n+1)}{p}} ||f \circ \sigma_a - f(a)||_{\mathscr{A}^p(\mathbb{B}_n)} < \infty.$$

We note that $\mathscr{A}^{p,0}(\mathbb{B}_n) = \mathscr{A}^p(\mathbb{B}_n)$ and $\mathscr{A}^{p,1}(\mathbb{B}_n) = \mathscr{B}$. Furthermore, it is straightforward to verify that $\mathscr{B} \subset \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \subset \mathscr{A}^p(\mathbb{B}_n)$, $0 < \lambda < 1$.

The organization of this paper is as follows. Section 2 presents a characterization of the boundedness and compactness of the identity operator from $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ into $\mathscr{T}^{\infty}_{p,\frac{\lambda(n+1)}{n}}(\mu)$, a tent space, which is defined in the same section. Section 3 investigates the boundedness of the Riemann-Stieltjes operators V_g , U_g , and the multiplication operator M_g on $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$. Additionally, Section 4, the last section, covers the determination of the essential norm of the operators V_g and U_g . In this paper, we use the notation $A \approx B$ to denote that $A \lesssim B \lesssim A$ for two functions. Specifically, $B \lesssim A$ means that there exists a positive constant C such that $B \leq CA$.

2. Embedding Theorem

This section begins with the definition of the Carleson measure, which was first proposed by Carleson [2] in the unit disk and has numerous applications. For $0 < t < \infty$, a positive Borel measure μ on \mathbb{B}_n is called a t-Carleson measure if

$$\|\mu\|_{\mathscr{CM}_t} = \sup\left\{ rac{\mu(\mathscr{Q}_{oldsymbol{\delta}}(\zeta))}{\delta^{nt}}; \zeta \in \mathbb{S}_n, \delta > 0
ight\} < \infty,$$

where $\mathscr{Q}_{\delta}(\zeta) = \{z \in \mathbb{B}_n : |1 - \langle z, \zeta \rangle| < \delta\}$ for any $\zeta \in \mathbb{S}_n$ and $\delta > 0$. When $\zeta = \frac{a}{|a|}$ and $\delta = \sqrt{1 - |a|^2}$, we write $\mathscr{Q}_{\delta}(\zeta) = \mathscr{Q}(a)$. The measure μ is called a vanishing *t*-Carleson measure if

$$\lim_{\delta \to 0} \frac{\mu(\mathcal{Q}_{\delta}(\zeta))}{\delta^{nt}} = 0 \text{ for } \zeta \in \mathbb{S}_n.$$

An equivalent description of t-Carleson measure is stated as follows (see [41, Theorem 45]).

Lemma 2.1. Let t, r > 0 and μ be a positive Borel measure on \mathbb{B}_n . Then μ is a t-Carleson measure if and only if

$$\sup_{a\in\mathbb{B}_n}\int_{\mathbb{B}_n}\frac{(1-|a|^2)^r}{|1-\langle z,a\rangle|^{nt+r}}d\mu(z)<\infty.$$

Further,

$$\|\mu\|_{\mathscr{C}\mathscr{M}_t} pprox \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} \frac{(1-|a|^2)^r}{|1-\langle z,a
angle|^{nt+r}} d\mu(z).$$

For $0 < p, s < \infty$, the non-isotropic tent type space $\mathscr{T}_{p,s}^{\infty}(\mu)$ is defined as the set of all μ -measurable functions f on \mathbb{B}_n such that

$$\|f\|_{\mathscr{T}^{\infty}_{p,s}(\mu)}^{p}=\sup\left\{\delta^{-ns}\int_{\mathscr{Q}_{\delta}(\zeta)}|f(z)|^{p}d\mu(z);\zeta\in\mathbb{S}_{n},\delta>0\right\}<\infty.$$

From [20, Proposition 2.1], we obtain the following equivalent characterization for space $\mathscr{T}^{\infty}_{p,s}(\mu)$.

Lemma 2.2. Let p, s, m > 0 and μ be a positive Borel measure on \mathbb{B}_n . Then a function $f \in H(\mathbb{B}_n)$ belongs to $\mathscr{T}_{p,s}^{\infty}(\mu)$ if and only if

$$\sup_{a\in\mathbb{B}_n}\int_{\mathbb{B}_n}|f(z)|^p\frac{(1-|a|^2)^m}{|1-\langle z,a\rangle|^{ns+m}}d\mu(z)<\infty.$$

Moreover,

$$||f||_{\mathscr{T}_{p,s}^{\infty}(\mu)}^{p} \approx \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |f(z)|^{p} \frac{(1-|a|^{2})^{m}}{|1-\langle z,a\rangle|^{ns+m}} d\mu(z).$$

From [38, Theorem 1], we immediately obtain the following conclusion.

Lemma 2.3. Let $0 < \lambda < 1 < p < \infty$ and $f \in H(\mathbb{B}_n)$. Then $f \in \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ if and only if

$$\sup_{a\in\mathbb{B}_n}\int_{\mathbb{B}_n}|\mathscr{R}f(z)|^p(1-|z|^2)^{p-\lambda(n+1)}(1-|\sigma_a(z)|^2)^{\lambda(n+1)}dV(z)<\infty.$$

Lemma 2.4. Let $0 < \lambda < 1 < p < \infty$ and $f \in \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$. Then

$$|f(a)|\lesssim rac{\|f\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)}}{(1-|a|^2)^{rac{(1-\lambda)(n+1)}{p}}},\ a\in\mathbb{B}_n.$$

Proof. Assume that $f \in \mathcal{A}^{p,\lambda}(\mathbb{B}_n)$. By [39, Lemma 2.1], we have

$$|\mathscr{R}f(a)|\lesssim rac{1}{(1-|a|^2)^{rac{(1-\lambda)(n+1)}{p}+1}}\|f\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)}.$$

Integrating both sides of the above inequality, the desired result can be obtained immediately.

The following lemma can be found in [20, Corollary 2.1].

Lemma 2.5. For m > -1, r,t > 0 with 0 < r+t-m-n-1 < r, there exists a constant C > 0 such that

$$\int_{\mathbb{B}_n} \frac{(1-|z|^2)^m}{|1-\langle z,a\rangle|^r |1-\langle z,d\rangle|^t} dV(z) \le \frac{C}{(1-|a|^2)^{r+t-m-n-1}}.$$

Next, we describe the boundedness and compactness of the identity operator from $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ into space $\mathscr{T}^{\infty}_{p,\frac{\lambda(n+1)}{n}}(\mu)$. The following two theorems are the main conclusions of this section.

Theorem 2.1. Let $0 < \lambda < 1 < p < \infty$ and μ be a positive Borel measure on \mathbb{B}_n . Then the identity operator $I_d: \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{T}^{\infty}_{p,\frac{\lambda(n+1)}{n}}(\mu)$ is bounded if and only if μ is an $\frac{n+1}{n}$ -Carleson measure.

Proof. First we suppose that the operator $I_d: \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{T}^{\infty}_{p,\frac{\lambda(n+1)}{n}}(\mu)$ is bounded. For any $\zeta \in \mathbb{S}_n$ and $0 < \delta < 1$, we set

$$f_{\zeta,\delta}(z) = \frac{1}{(1 - \langle z, (1 - \delta)\zeta \rangle)^{\frac{(1 - \lambda)(n + 1)}{p}}}.$$

By Lemma 2.5, we have

$$\sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |\mathscr{R} f_{\zeta,\delta}(z)|^{p} (1-|z|^{2})^{p-\lambda(n+1)} (1-|\sigma_{a}(z)|^{2})^{\lambda(n+1)} dV(z)
\lesssim \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{|(1-\delta)\zeta|^{p}}{|1-\langle z,(1-\delta)\zeta\rangle|^{(1-\lambda)(n+1)+p}} (1-|z|^{2})^{p-\lambda(n+1)} (1-|\sigma_{a}(z)|^{2})^{\lambda(n+1)} dV(z)
\leq \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{(1-|z|^{2})^{p} (1-|a|^{2})^{\lambda(n+1)}}{|1-\langle z,a\rangle|^{2\lambda(n+1)} |1-\langle z,(1-\delta)\zeta\rangle|^{(1-\lambda)(n+1)+p}} dV(z)
< \infty.$$

Then Lemma 2.3 yields that $f_{\zeta,\delta} \in \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$. Since $|1 - \langle z, (1 - \delta)\zeta \rangle| \approx \delta$ for all $z \in \mathscr{Q}_{\delta}(\zeta)$, one has

$$\infty > \|f_{\zeta,\delta}\|_{\mathcal{P}^{\infty}_{p,\frac{\lambda(n+1)}{p}}(\mu)}^{p} \geq \delta^{-\lambda(n+1)} \int_{\mathcal{Q}_{\delta}(\zeta)} |f_{\zeta,\delta}(z)|^{p} d\mu(z) \gtrsim \delta^{-(n+1)} \mu(\mathcal{Q}_{\delta}(\zeta)),$$

which means that μ is an $\frac{n+1}{n}$ -Carleson measure by the arbitrariness of δ . Conversely, we ssume that μ is an $\frac{n+1}{n}$ -Carleson measure. From Lemma 2.2, we just need to show that, for any $f \in \mathcal{A}^{p,\lambda}(\mathbb{B}_n)$, there exists a t > 0 such that

$$||f||_{\mathscr{T}^{\infty}_{p,\frac{\lambda(n+1)}{n}}(\mu)}^{p} \approx \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |f(z)|^{p} \frac{(1-|a|^{2})^{t}}{|1-\langle z,a\rangle|^{\lambda(n+1)+t}} d\mu(z) < ||f||_{\mathscr{A}^{p,\lambda}(\mathbb{B}_{n})}^{p}.$$

Let $p-1 < \varepsilon < 2p$. Choose a constant t such that $t > \max\{(2-\lambda)(n+1), (2-\lambda)(n+1) - (2-\lambda)(n+1)\}$ $p-n+\varepsilon$ and $t<(2-\lambda)(n+1)+p$. Then

$$\sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |f(z)|^{p} \frac{(1 - |a|^{2})^{t}}{|1 - \langle z, a \rangle|^{\lambda(n+1)+t}} d\mu(z) \lesssim \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |f(z) - f(a)|^{p} \frac{(1 - |a|^{2})^{t}}{|1 - \langle z, a \rangle|^{\lambda(n+1)+t}} d\mu(z)
+ \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |f(a)|^{p} \frac{(1 - |a|^{2})^{t}}{|1 - \langle z, a \rangle|^{\lambda(n+1)+t}} d\mu(z)
:= E + F.$$

Employing Lemmas 2.1 and 2.4 and noting that $t > (1 - \lambda)(n + 1)$, we see that

$$F \lesssim \|f\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)}^p \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} \frac{(1-|a|^2)^{t-(1-\lambda)(n+1)}}{|1-\langle z,a\rangle|^{\lambda(n+1)+t}} d\mu(z) < \infty.$$

Since μ is an $\frac{n+1}{n}$ -Carleson measure, [41, Theorem 50] yields that $\mathscr{A}^p \subset L^p_\mu$. Therefore,

$$\begin{split} E &\lesssim \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \left| \mathscr{R} \left(\frac{(f(z) - f(a))(1 - |a|^{2})^{\frac{t}{p}}}{(1 - \langle z, a \rangle)^{\frac{\lambda(n+1)+t}{p}}} \right) \right|^{p} (1 - |z|^{2})^{p} dV(z) + \|f\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_{n})}^{p} \\ &\lesssim \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{|\mathscr{R}f(z)|^{p} (1 - |a|^{2})^{t}}{|1 - \langle z, a \rangle|^{\lambda(n+1)+t}} (1 - |z|^{2})^{p} dV(z) \\ &+ \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{|f(z) - f(a)|^{p} (1 - |a|^{2})^{t}}{|1 - \langle z, a \rangle|^{\lambda(n+1)+t+p}} (1 - |z|^{2})^{p} dV(z) + \|f\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_{n})}^{p} \\ &= : E_{1} + E_{2} + \|f\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_{n})}^{p}. \end{split}$$

In view of $t > \lambda(n+1)$, one has

$$\begin{split} E_1 \lesssim & \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|\mathscr{R}f(z)|^p (1 - |a|^2)^{\lambda(n+1)}}{|1 - \langle z, a \rangle|^{2\lambda(n+1)}} (1 - |z|^2)^p dV(z) \\ = & \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} |\mathscr{R}f(z)|^p (1 - |z|^2)^{p - \lambda(n+1)} (1 - |\sigma_a(z)|^2)^{\lambda(n+1)} dV(z) \\ \approx & \|f\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)}^p < \infty. \end{split}$$

From [42, page 51], Hölder's inequality and [42, Theorem 1.12], for any $a \in \mathbb{B}_n$ and $f \in H(\mathbb{B}_n)$, one has

$$\begin{split} &|f\circ\sigma_{a}(z)-f\circ\sigma_{a}(0)|^{p}\\ &\lesssim \left(\int_{\mathbb{B}_{n}}|\mathscr{R}(f\circ\sigma_{a})(w)|\frac{(1-|w|^{2})^{\beta}}{|1-\langle z,w\rangle|^{n+\beta}}dV(w)\right)^{p}\\ &= \left(\int_{\mathbb{B}_{n}}|\mathscr{R}(f\circ\sigma_{a})(w)|\frac{(1-|w|^{2})^{\frac{\beta+\varepsilon}{p}}}{|1-\langle z,w\rangle|^{\frac{n+\beta}{p}}}\cdot\frac{(1-|w|^{2})^{\frac{\beta(p-1)}{p}-\frac{\varepsilon}{p}}}{|1-\langle z,w\rangle|^{\frac{(n+\beta)(p-1)}{p}}}dV(w)\right)^{p}\\ &\lesssim \int_{\mathbb{B}_{n}}|\mathscr{R}(f\circ\sigma_{a})(w)|^{p}\frac{(1-|w|^{2})^{\beta+\varepsilon}}{|1-\langle z,w\rangle|^{n+\beta}}dV(w)\left(\int_{\mathbb{B}_{n}}\frac{(1-|w|^{2})^{\beta-\frac{\varepsilon}{p-1}}}{|1-\langle z,w\rangle|^{n+\beta}}dV(w)\right)^{p-1}\\ &\lesssim (1-|z|^{2})^{p-1-\varepsilon}\int_{\mathbb{B}_{n}}|\mathscr{R}(f\circ\sigma_{a})(w)|^{p}\frac{(1-|w|^{2})^{\beta+\varepsilon}}{|1-\langle z,w\rangle|^{n+\beta}}dV(w), \end{split}$$

where β is large enough. Therefore, using Lemma 2.5 and the change of variable $z = \sigma_a(u)$, we have

$$\begin{split} E_2 &= \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(a)|^p (1 - |a|^2)^t}{|1 - \langle z, a \rangle|^{\lambda(n+1)+t+p}} (1 - |z|^2)^p dV(z) \\ &= \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} |f \circ \sigma_a(u) - f \circ \sigma_a(0)|^p \frac{(1 - |a|^2)^t (1 - |\sigma_a(u)|^2)^p}{|1 - \langle \sigma_a(u), a \rangle|^{\lambda(n+1)+p+t}} \left(\frac{1 - |a|^2}{|1 - \langle u, a \rangle|^2} \right)^{n+1} dV(u) \\ &= \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} |f \circ \sigma_a(u) - f \circ \sigma_a(0)|^p \frac{(1 - |u|^2)^p (1 - |a|^2)^{(1-\lambda)(n+1)}}{|1 - \langle u, a \rangle|^{(2-\lambda)(n+1)+p-t}} dV(u) \\ &\lesssim \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} |\mathcal{R}(f \circ \sigma_a)(w)|^p (1 - |w|^2)^{\beta+\varepsilon} \int_{\mathbb{B}_n} \frac{(1 - |u|^2)^{2p-1-\varepsilon} (1 - |a|^2)^{(1-\lambda)(n+1)}}{|1 - \langle u, a \rangle|^{(2-\lambda)(n+1)+p-t}} dV(u) dV(w) \\ &\lesssim \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} |\mathcal{R}(f \circ \sigma_a)(w)|^p (1 - |w|^2)^{-(2-\lambda)(n+1)+p+t} (1 - |a|^2)^{(1-\lambda)(n+1)} dV(w) \\ &\lesssim \sup_{a \in \mathbb{B}_n} (1 - |a|^2)^{(1-\lambda)(n+1)} \int_{\mathbb{B}_n} |\mathcal{R}(f \circ \sigma_a)(w)|^p (1 - |w|^2)^p dV(w) \\ &\lesssim \sup_{a \in \mathbb{B}_n} (1 - |a|^2)^{(1-\lambda)(n+1)} ||f \circ \sigma_a - f(a)||^p_{\mathcal{A}^p(\mathbb{B}_n)} \\ &\approx ||f||^p_{\mathcal{A}^{p,\lambda}(\mathbb{B}_n)} < \infty. \end{split}$$

Then

$$||f||_{\mathcal{F}_{p,\frac{\lambda(n+1)}{p}}^{\infty}(\mu)}^{p} \approx \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |f(z)|^{p} \frac{(1-|a|^{2})^{t}}{|1-\langle z,a\rangle|^{\lambda(n+1)+t}} d\mu(z) \lesssim ||f||_{\mathscr{A}^{p,\lambda}(\mathbb{B}_{n})}^{p} < \infty,$$

which means that $I_d: \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{T}^{\infty}_{p,\frac{\lambda(n+1)}{2}}(\mu)$ is bounded.

The identity operator $I_d: \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{T}^{\infty}_{p,\frac{\lambda(n+1)}{n}}(\mu)$ is said to be compact if $\|f_k\|_{\mathscr{T}^{\infty}_{p,\frac{\lambda(n+1)}{n}}(\mu)} \to \mathbb{C}$ 0 as $k \to \infty$, when $\{f_k\}$ is a bounded sequence in $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ that converges to 0 uniformly on every compact subset of \mathbb{B}_n .

Theorem 2.2. Let $0 < \lambda < 1 < p < \infty$ and μ be a positive Borel measure on \mathbb{B}_n such that the point evaluations are bounded functionals on $\mathscr{T}_{p,\frac{\lambda(n+1)}{2}}^{\infty}(\mu)$. Then the identity operator I_d : $\mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{T}^{\infty}_{p,\frac{\lambda(n+1)}{n}}(\mu)$ is compact if and only if μ is a vanishing $\frac{n+1}{n}$ -Carleson measure.

Proof. First we suppose that $I_d: \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{T}^{\infty}_{n,\frac{\lambda(n+1)}{2}}(\mu)$ is compact. For any $\zeta \in \mathbb{S}_n$ and $\delta_k \to 0$ as $k \to \infty$, we set

$$f_{\zeta,k}(z) = \frac{1 - |1 - \delta_k|^2}{\left(1 - \langle z, (1 - \delta_k)\zeta \rangle\right)^{\frac{(1 - \lambda)(n+1)}{p} + 1}}.$$

It is easy to see that $\{f_{\zeta,k}\}$ is a bounded sequence in $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ and converges to 0 uniformly on every compact set of \mathbb{B}_n as $k \to \infty$. Using the fact that $|1 - \langle z, (1 - \delta_k)\zeta \rangle| \ge \delta_k$ when $z \in \mathcal{Q}_{\delta_k}(\zeta)$, we have

$$\frac{\mu(\mathcal{Q}_{\delta_k}(\zeta))}{\delta_k^{n+1}} \lesssim \delta_k^{-\lambda(n+1)} \int_{\mathcal{Q}_{\delta_k}(\zeta)} |f_{\zeta,k}(z)|^p d\mu(z) \lesssim \|f_{\zeta,k}\|_{\mathcal{F}_{p,\frac{\lambda(n+1)}{n}}(\mu)}^p \to 0$$

as $k \to \infty$, which means that μ is a vanishing $\frac{n+1}{n}$ -Carleson measure. Conversely, we assume that μ is a vanishing $\frac{n+1}{n}$ -Carleson measure. Let $\{f_k\}$ be a bounded sequence in $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ and converge to 0 uniformly on every compact set of \mathbb{B}_n . Then the definition of $\mathscr{T}^{\infty}_{p,\frac{\lambda(n+1)}{n}}(\mu)$ and Theorem 2.1 imply

$$\delta^{-\lambda(n+1)} \int_{\mathscr{Q}_{\delta}(\zeta)} |f_k(z)|^p d\mu(z) \lesssim \|\mu\|_{\mathscr{CM}_{\frac{n+1}{n}}} \|f_k\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)}^p.$$

Therefore, for any 0 < r < 1, we have

$$\begin{split} & \delta^{-\lambda(n+1)} \int_{\mathscr{Q}_{\delta}(\zeta)} |f_{k}(z)|^{p} d\mu(z) \\ = & \delta^{-\lambda(n+1)} \int_{\mathscr{Q}_{\delta}(\zeta)} |f_{k}(z)|^{p} \chi_{\{z \in \mathbb{B}_{n}: |z| \leq r\}} d\mu(z) + \delta^{-\lambda(n+1)} \int_{\mathscr{Q}_{\delta}(\zeta)} |f_{k}(z)|^{p} \chi_{\{z \in \mathbb{B}_{n}: |z| > r\}} d\mu(z) \\ \lesssim & \delta^{-\lambda(n+1)} \int_{\mathscr{Q}_{\delta}(\zeta)} |f_{k}(z)|^{p} \chi_{\{z \in \mathbb{B}_{n}: |z| \leq r\}} d\mu(z) + \|f_{k}\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_{n})}^{p} \|\mu_{r}\|_{\mathscr{CM}_{\frac{n+1}{n}}}, \end{split}$$

where $d\mu_r(z) = \chi_{\{z \in \mathbb{B}_n: |z| > r\}} d\mu(z)$. Since $\{f_k\}$ converges to 0 uniformly on $\{z \in \mathbb{B}_n: |z| \le r\}$, one has

$$\delta^{-\lambda(n+1)} \int_{\mathscr{Q}_{\delta}(\zeta)} |f_k(z)|^p \chi_{\{z \in \mathbb{B}_n : |z| \le r\}} d\mu(z) \to 0$$

as $k \to \infty$. Now, we just need to proof that $\|\mu_r\|_{\mathscr{CM}_{\frac{n+1}{n}}} \to 0$ when $r \to 1$ (It is worth noting that the proof of this fact was given in [4, Lemma 3.1], but here we present an alternative proof). For $\zeta \in \mathbb{S}_n$ and $\delta > 0$, let

$$\tilde{\mathcal{Q}}_{\delta}(\zeta) = \{ \eta \in \mathbb{S}_n : |1 - \langle \eta, \zeta \rangle| < \delta \}.$$

From the proof of [10, Theorem 4.1], it is clear that $\mathcal{Q}_{\delta}(\zeta) \subset \hat{\mathcal{Q}}_{4\delta}(\zeta) \subset \mathcal{Q}_{16\delta}(\zeta)$, where

$$\hat{\mathscr{Q}}_{\delta}(\zeta) = \left\{ z \in \mathbb{B}_n : \frac{z}{|z|} \in \tilde{\mathscr{Q}}_{\delta}(\zeta), 1 - \delta < |z| < 1 \right\}.$$

Thus $\mathcal{Q}_{\delta}(\zeta)$ in the definition of (vanishing) t-Carleson measure can be replaced by $\hat{\mathcal{Q}}_{\delta}(\zeta)$. Then, for any $\varepsilon > 0$, there exists $\delta_0 > 0$ such that $\mu(\hat{\mathcal{Q}}_{\delta}(\zeta)) < \varepsilon \delta^{n+1}$ for all $\delta \leq \delta_0$ and $\zeta \in \mathbb{S}_n$. If $\delta > \delta_0$, we choose a natural number m satisfying $\frac{\delta}{\delta_0} < m < \frac{2\delta}{\delta_0}$ for any $\delta \leq 2$. From [19, Lemma 3.3], we have that $\tilde{\mathcal{Q}}_{\delta}$ can be covered by N balls $\tilde{\mathcal{Q}}_{\frac{\delta}{m}}$ on \mathbb{S}_n , where $N \leq Cm^n$, C > 1.

Therefore, $\hat{\mathscr{Q}}_{\delta} \cap \{z \in \mathbb{B}_n : |z| > r_0\} \subset \bigcup_{N} \hat{\mathscr{Q}}_{\frac{\delta}{m}}$ with $r_0 = 1 - \frac{\delta_0}{m}$. Then

$$\begin{split} \mu_{r_0}(\hat{\mathcal{Q}}_{\delta}) & \leq \mu_{r_0}(\bigcup_N \hat{\mathcal{Q}}_{\frac{\delta}{m}}) \leq \mu_{r_0}(\bigcup_N \hat{\mathcal{Q}}_{\delta_0}) \leq \sum_N \mu(\hat{\mathcal{Q}}_{\delta_0}) \\ & \leq N\varepsilon \delta_0^{n+1} < C\left(\frac{2\delta}{\delta_0}\right)^n \varepsilon \delta_0^{n+1} < C\varepsilon \delta^n \delta_0^{n+1-n} < C\varepsilon \delta^{n+1}, \end{split}$$

which implies that, for $r > r_0$, $\mu_r(\hat{\mathcal{Q}}_{\delta}) < C\varepsilon\delta^{n+1}$. Therefore,

$$\delta^{-\lambda(n+1)} \int_{\mathscr{Q}_{\delta}(\zeta)} |f_k(z)|^p d\mu(z) \lesssim \varepsilon.$$

Thus $I_d: \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{T}^{\infty}_{p,\frac{\lambda(n+1)}{n}}(\mu)$ is compact.

3. RIEMANN-STIELTJES OPERATORS

This section aims to study the boundedness of the Riemann-Stiltjes operators V_g, U_g and the multiplication operator M_g on $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$. Now we recall the definitions of these operators. Let $g \in H(\mathbb{B}_n)$. The Riemann-Stieltjes operator V_g is defined by

$$V_g f(z) = \int_0^1 f(sz) \mathscr{R}g(sz) \frac{ds}{s}, \ f \in H(\mathbb{B}_n), \ z \in \mathbb{B}_n.$$

The operator V_g was first introduced and studied by Hu in [7]. A related operator U_g is defined by

$$U_g f(z) = \int_0^1 \mathscr{R} f(sz) g(sz) \frac{ds}{s}, \ f \in H(\mathbb{B}_n), \ z \in \mathbb{B}_n.$$

Clearly, the multiplication operator M_g is determined by

$$M_g f(z) = f(z)g(z) = f(0)g(0) + V_g f(z) + U_g f(z), f \in H(\mathbb{B}_n), z \in \mathbb{B}_n.$$

Some information on these integral-type operators and related operators on the unit disk and the polydisk and many references up to the end of 2006 can be found in [3, 22]. For some later results on the operators and their extensions in [23] and [24] we refer to, for example, [1, 3, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 25, 27, 28, 33] and the references therein.

Now we state and prove the main results in this section.

Theorem 3.1. Let $0 < \lambda < 1 < p < \infty$ and $g \in H(\mathbb{B}_n)$. Then $V_g : \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is bounded if and only if $g \in \mathscr{B}$.

Proof. Assume first that $V_g : \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is bounded. Since $\mathscr{R}(V_g f)(z) = f(z)\mathscr{R}g(z)$, we find by Lemma 2.3 that

$$\begin{split} \|V_{g}f\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_{n})}^{p} &\approx \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |f(z)|^{p} |\mathscr{R}g(z)|^{p} (1 - |z|^{2})^{p-\lambda(n+1)} (1 - |\sigma_{a}(z)|^{2})^{\lambda(n+1)} dV(z) \\ &= \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |f(z)|^{p} \frac{(1 - |a|^{2})^{\lambda(n+1)}}{|1 - \langle z, a \rangle|^{2\lambda(n+1)}} d\mu_{g}(z) \\ &\lesssim \|f\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_{n})}^{p}, \end{split}$$

where $d\mu_g = |\mathscr{R}g(z)|^p (1-|z|^2)^p dV(z)$. This with Lemma 2.2 implies that $I_d : \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{T}^{\infty}_{p,\frac{\lambda(n+1)}{n}}(\mu_g)$ is bounded. Using Theorem 2.1, we obtain that μ_g is an $\frac{n+1}{n}$ -Carleson measure.

Lemma 2.1 yields that μ_g is an $\frac{n+1}{n}$ -Carleson measure if and only if

$$\infty > \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} \frac{(1 - |a|^2)^{n+1}}{|1 - \langle z, a \rangle|^{2(n+1)}} d\mu_g(z)
= \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} |\mathscr{R}g(z)|^p (1 - |z|^2)^{p - (n+1)} (1 - |\sigma_a(z)|^2)^{n+1} dV(z),$$

which implies that $g \in F(p, p - (n+1), (n+1)) = \mathcal{B}$.

Conversely, we suppose that $g \in \mathcal{B} = F(p, p - (n+1), (n+1))$. From the definition of F(p, p - (n+1), (n+1)), we see that μ_g is an $\frac{n+1}{n}$ -Carleson measure. By Theorem 2.1, we obtain that $I_d: \mathcal{A}^{p,\lambda}(\mathbb{B}_n) \to \mathcal{F}^{\infty}_{p,\frac{\lambda(n+1)}{n}}(\mu_g)$ is bounded. Then Lemma 2.2 gives that

$$\begin{split} \|V_{g}f\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_{n})}^{p} &\approx \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |f(z)|^{p} |\mathscr{R}g(z)|^{p} (1-|z|^{2})^{p-\lambda(n+1)} (1-|\sigma_{a}(z)|^{2})^{\lambda(n+1)} dV(z) \\ &= \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |f(z)|^{p} \frac{(1-|a|^{2})^{\lambda(n+1)}}{|1-\langle z,a\rangle|^{2\lambda(n+1)}} d\mu_{g}(z) < \infty. \end{split}$$

The proof is complete.

Theorem 3.2. Let $0 < \lambda < 1 < p < \infty$ and $g \in H(\mathbb{B}_n)$. Then $U_g : \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is bounded if and only if $g \in H^{\infty}$.

Proof. Suppose that $U_g: \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is bounded. For $a \in \mathbb{B}_n$ with $|a| > \frac{3}{4}$, we set

$$f_a(z) = \frac{1 - |a|^2}{\left(\frac{(1-\lambda)(n+1)}{p} + 1\right) (1 - \langle z, a \rangle)^{\frac{(1-\lambda)(n+1)}{p} + 1}}, \ z \in \mathbb{B}_n.$$

Note that [20, Lemma 2.4] yields that $||f_a||_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} \lesssim 1$. It is known that

$$V(D(a, \frac{1}{2})) \approx (1 - |a|^2)^{n+1}, \ 1 - |a|^2 \approx 1 - |z|^2 \approx |1 - \langle z, a \rangle|,$$

for all $z \in D(a, \frac{1}{2})$, where D(a, r) denotes the Bergman metric ball. Noting that, for $z \in D(a, \frac{1}{2})$, $|\langle z, a \rangle| \gtrsim 1$. Employing the subharmonicity of $|g|^p$ (see [42, Lemma 2.24]), we obtain that

$$\begin{split} |g(a)|^{p} &\lesssim \frac{1}{V(D(a,\frac{1}{2}))} \int_{D(a,\frac{1}{2})} |g(z)|^{p} dV(z) \\ &\lesssim \frac{1}{(1-|a|^{2})^{n+1+p}} \int_{D(a,\frac{1}{2})} |g(z)|^{p} (1-|z|^{2})^{p} dV(z) \\ &\lesssim \int_{D(a,\frac{1}{2})} \left(\frac{1-|a|^{2}}{|1-\langle z,a\rangle|^{\frac{(1-\lambda)(n+1)}{p}+2}} \right)^{p} |g(z)|^{p} (1-|z|^{2})^{p} \frac{(1-|a|^{2})^{\lambda(n+1)}}{(1-\langle z,a\rangle)^{2\lambda(n+1)}} dV(z) \\ &\lesssim \int_{D(a,\frac{1}{2})} \left(\frac{(1-|a|^{2})|\langle z,a\rangle|}{|1-\langle z,a\rangle|^{\frac{(1-\lambda)(n+1)}{p}+2}} \right)^{p} |g(z)|^{p} (1-|z|^{2})^{p} \frac{(1-|a|^{2})^{\lambda(n+1)}}{(1-\langle z,a\rangle)^{2\lambda(n+1)}} dV(z) \\ &\lesssim \int_{D(a,\frac{1}{2})} |\mathscr{R}f_{a}(z)|^{p} |g(z)|^{p} (1-|z|^{2})^{p} \frac{(1-|a|^{2})^{\lambda(n+1)}}{(1-\langle z,a\rangle)^{2\lambda(n+1)}} dV(z) \\ &\lesssim \sup_{b \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |\mathscr{R}f_{a}(z)|^{p} |g(z)|^{p} (1-|z|^{2})^{p-\lambda(n+1)} (1-|\sigma_{b}(z)|^{2})^{\lambda(n+1)} dV(z) \\ &\lesssim ||U_{g}f_{a}||_{\mathscr{A}^{p,\lambda}(\mathbb{B}_{n})}^{p} \lesssim ||U_{g}||_{\mathscr{A}^{p,\lambda}(\mathbb{B}_{n})}^{p} < \infty, \end{split}$$

which means that $g \in H^{\infty}$.

Conversely, we assume that $g \in H^{\infty}$. Let $f \in \mathcal{A}^{p,\lambda}(\mathbb{B}_n)$. Using Lemma 2.3 twice, we have

$$\begin{split} \|U_{g}f\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_{n})}^{p} \lesssim \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |\mathscr{R}f(z)|^{p} |g(z)|^{p} (1 - |z|^{2})^{p-\lambda(n+1)} (1 - |\sigma_{a}(z)|^{2})^{\lambda(n+1)} dV(z) \\ \lesssim \|g\|_{\infty}^{p} \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |\mathscr{R}f(z)|^{p} (1 - |z|^{2})^{p-\lambda(n+1)} (1 - |\sigma_{a}(z)|^{2})^{\lambda(n+1)} dV(z) \\ \lesssim \|g\|_{\infty}^{p} \|f\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_{n})}^{p}, \end{split}$$

which implies that $U_g: \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is bounded.

Theorem 3.3. Let $0 < \lambda < 1 < p < \infty$ and $g \in H(\mathbb{B}_n)$. Then $M_g : \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is bounded if and only if $g \in H^{\infty}$.

Proof. First, we suppose that $g \in H^{\infty}$. Using Theorems 3.1 and 3.2 and the fact that $H^{\infty} \subset \mathcal{B}$, we obtain that V_g and U_g are bounded on $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$. Therefore, $M_g : \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is bounded by the fact that $M_g f(z) = f(0)g(0) + V_g f(z) + U_g f(z)$.

Conversely, we suppose that $M_g: \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is bounded. For any $a \in \mathbb{D}$ with |a| > 1/2, we set

$$f_a(z) = \frac{(1-|a|^2)^2}{(1-\langle z,a\rangle)^{\frac{(1-\lambda)(n+1)}{p}+2}} - \frac{1-|a|^2}{(1-\langle z,a\rangle)^{\frac{(1-\lambda)(n+1)}{p}+1}}, \ z \in \mathbb{B}_n.$$

Then

$$\mathscr{R}f_a(z) = \frac{\left(\frac{(1-\lambda)(n+1)}{p} + 2\right)(1-|a|^2)^2 \langle z, a \rangle}{(1-\langle z, a \rangle)^{\frac{(1-\lambda)(n+1)}{p} + 3}} - \frac{\left(\frac{(1-\lambda)(n+1)}{p} + 1\right)(1-|a|^2) \langle z, a \rangle}{(1-\langle z, a \rangle)^{\frac{(1-\lambda)(n+1)}{p} + 2}}.$$

It is clear that

$$f_a(a) = 0$$
, $\Re f_a(a) = |a|^2 (1 - |a|^2)^{-\frac{(1-\lambda)(n+1)}{p} - 1}$.

Thus we see that $f_a \in \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ and $\sup_{a \in \mathbb{B}_n} \|f_a\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} < \infty$. Since $\mathscr{A}^{p,\lambda}(\mathbb{B}_n) \subset \mathscr{B}^{1+\frac{(1-\lambda)(n+1)}{p}}$, we see that

$$\infty > \|M_g f_a\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} \gtrsim \|M_g f_a\|_{\mathscr{B}^{1+\frac{(1-\lambda)(n+1)}{p}}}$$

$$\gtrsim \sup_{z \in \mathbb{B}_n} |\mathscr{R}g(z) f_a(z) + g(z) \mathscr{R}f_a(z) | (1-|z|^2)^{1+\frac{(1-\lambda)(n+1)}{p}}$$

$$\gtrsim |\mathscr{R}g(a) f_a(a) + g(a) \mathscr{R}f_a(a) | (1-|a|^2)^{1+\frac{(1-\lambda)(n+1)}{p}}$$

$$\gtrsim |g(a)||a|^2,$$

from which it easily follows that $g \in H^{\infty}$.

4. ESSENTIAL NORM

This section is devoted to the essential norm of the operators V_g and U_g on $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$. Let A and B be two Banach spaces. The essential norm of a bounded linear operator $T: A \to B$ is defined as

$$||T||_{e,A\to B} = \inf_K \{||T-K||_{A\to B} : K \text{ is compact from } A \text{ to } B\}.$$

As we know, $T: A \to B$ is compact if and only if $||T||_{e,A\to B} = 0$. For recent research on the estimating essential norm of some integral-type operators, we refer to [4, 6, 26, 27, 35].

Let Q and B be two Banach spaces such that Q is a subspace of B. Given $f \in B$, the distance of f to Q is defined as $dist_B(f,Q) = \inf_{g \in Q} ||f - g||_B$. From [4, Lemma 4.1], the distance formula for the function in the space \mathcal{B} to the space \mathcal{B}_0 is stated as follows.

Lemma 4.1. *Let* $g \in \mathcal{B}$. *Then*

$$\operatorname{dist}_{\mathscr{B}}(g,\mathscr{B}_0) \approx \limsup_{r \to 1^-} \|g - g_r\|_{\mathscr{B}} \approx \limsup_{|z| \to 1^-} |\mathscr{R}g(z)|(1 - |z|^2).$$

Similar to the proof of [37, Lemma 5], we have the following result.

Lemma 4.2. Let $0 < \lambda < 1 < p < \infty$ and $g \in H(\mathbb{B}_n)$. If 0 < r < 1 and $g \in \mathcal{B}$, then $V_{g_r} : \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is compact.

Tjani, in [29], established the following findings within the open unit disc \mathbb{D} , which are fundamental in investigating the essential norm of integral operators on different analytic function spaces. It is noteworthy that these findings also hold true in the open unit ball \mathbb{B}_n .

Lemma 4.3. Let X, Y be two Banach spaces of analytic functions on \mathbb{B}_n . Suppose that

- (i) The point evaluation functionals on Y are continuous.
- (ii) The closed unit ball of X is a compact subset of X in the topology of uniform convergence on compact sets.
- (iii) $T: X \to Y$ is continuous when X and Y are given the topology of uniform convergence on compact sets.

Then T is compact if and only if for every bounded sequence $\{f_n\}$ in X such that $f_n \to 0$ uniformly on every compact set of \mathbb{B}_n , then the sequence $\{Tf_n\}$ converges to 0 in the norm of Y.

Theorem 4.1. Let $0 < \lambda < 1 < p < \infty$ and $g \in H(\mathbb{B}_n)$. If $V_g : \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is bounded, then

$$\|V_g\|_{e,\mathscr{A}^{p,\lambda}(\mathbb{B}_n)\to\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} pprox \operatorname{dist}_{\mathscr{B}}(g,\mathscr{B}_0) pprox \limsup_{|z|\to 1^-} |\mathscr{R}g(z)|(1-|z|^2).$$

Proof. From the proof of Theorem 3.1, it is easy to see that $g \in \mathcal{B}$ and

$$\|V_g\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)\to\mathscr{A}^{p,\lambda}(\mathbb{B}_n)}pprox \|g\|_{\mathscr{B}}.$$

From Lemma 4.2, we see that $V_{g_r}: \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is compact. Hence

$$\begin{aligned} \|V_g\|_{e,\mathscr{A}^{p,\lambda}(\mathbb{B}_n)\to\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} &\leq \|V_g - V_{g_r}\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)\to\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} \\ &= \|V_{g-g_r}\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)\to\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} \approx \|g - g_r\|_{\mathscr{B}}. \end{aligned}$$

Since $\Re g_r \in H^{\infty}$, we see that $g_r \in \mathscr{B}_0$. So,

$$\|V_g\|_{e,\mathscr{A}^{p,\lambda}(\mathbb{B}_n)\to\mathscr{A}^{p,\lambda}(\mathbb{B}_n)}\lesssim \limsup_{r\to 1^-}\|g-g_r\|_{\mathscr{B}}\approx \limsup_{|z|\to 1^-}|\mathscr{R}g(z)|(1-|z|^2).$$

Next, we estimate the lower bounded. Let $\{a_k\}$ be a bounded sequence in \mathbb{B}_n such that $\lim_{k\to\infty}|a_k|=1$. Set

$$f_k(z) = \frac{(1-|a_k|^2)^{\frac{(1-\lambda)(n+1)}{p}}}{(1-\langle z, a_k \rangle)^{2^{\frac{(1-\lambda)(n+1)}{p}}}}, z \in \mathbb{B}_n.$$

Then $\{f_k\}$ is bounded in $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ and converges to zero uniformly on every compact subset of \mathbb{B}_n as $k \to \infty$. Let $K : \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ be a compact operator. By Lemma 4.3, we have

$$\lim_{k\to\infty} ||Kf_k||_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} = 0.$$

Therefore, using [42, Lemma 2.24], we have

$$\begin{split} &\|V_g - K\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)} \\ &\gtrsim \limsup_{k \to \infty} \|(V_g - K)(f_k)\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} \\ &\gtrsim \limsup_{k \to \infty} \|V_g f_k\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} - \limsup_{k \to \infty} \|K f_k\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} \\ &= \limsup_{k \to \infty} \|V_g f_k\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} \\ &\gtrsim \limsup_{k \to \infty} \left(\int_{\mathbb{B}_n} |f_k(z)|^p |\mathscr{R}g(z)|^p (1 - |z|^2)^{p - \lambda(n+1)} (1 - |\sigma_{a_k}(z)|^2)^{\lambda(n+1)} dV(z) \right)^{\frac{1}{p}} \\ &= \limsup_{k \to \infty} \left(\int_{\mathbb{B}_n} \frac{(1 - |a_k|^2)^{(1 - \lambda)(n+1) + \lambda(n+1)}}{|1 - \langle z, a_k \rangle|^{2(1 - \lambda)(n+1) + 2\lambda(n+1)}} |\mathscr{R}g(z)|^p (1 - |z|^2)^p dV(z) \right)^{\frac{1}{p}} \\ &\gtrsim \limsup_{k \to \infty} \left(\int_{D(a_k, r)} |\mathscr{R}g(z)|^p (1 - |z|^2)^{p - (n+1)} dV(z) \right)^{\frac{1}{p}} \\ &\gtrsim \limsup_{k \to \infty} |\mathscr{R}g(a_k)| (1 - |a_k|^2), \end{split}$$

which implies that

$$\|V_g\|_{e,\mathscr{A}^{p,\lambda}(\mathbb{B}_n) o\mathscr{A}^{p,\lambda}(\mathbb{B}_n)}\gtrsim \limsup_{|z| o 1^-}|\mathscr{R}g(z)|(1-|z|^2).$$

The proof is complete.

Theorem 4.2. Let $0 < \lambda < 1 < p < \infty$ and $g \in H(\mathbb{B}_n)$. If $U_g : \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is bounded, then

$$\|U_g\|_{e,\mathscr{A}^{p,\lambda}(\mathbb{B}_n) o\mathscr{A}^{p,\lambda}(\mathbb{B}_n)}pprox \|g\|_\infty.$$

Proof. We define K and $\{a_k\}$ as in the proof of Theorem 4.1. Set

$$f_k(z) = rac{(1 - |a_k|^2)^{rac{(1 - \lambda)(n + 1)}{p}}}{(1 - \langle z, a_k \rangle)^{2rac{(1 - \lambda)(n + 1)}{p}}}, \ \ z \in \mathbb{B}_n,$$

where $\{a_k\}$ satisfies $|a_k| \ge 3/4$ and $|a_k| \to 1$ as $k \to \infty$. Then $\{f_k\}$ is a bounded sequence in $\mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ and converges to zero uniformly on every compact subset of \mathbb{B}_n as $k \to \infty$. Hence

$$\begin{split} \|U_g - K\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)} &\gtrsim \limsup_{k \to \infty} \|(U_g - K)(f_k)\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} \\ &\gtrsim \limsup_{k \to \infty} \|U_g f_k\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} - \limsup_{k \to \infty} \|K f_k\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} \\ &= \limsup_{k \to \infty} \|U_g f_k\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)}. \end{split}$$

From the proof of Theorem 3.2, we see that $||U_g f_k||_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)} \gtrsim |g(a_k)|$, which implies that

$$\|U_g\|_{e,\mathscr{A}^{p,\lambda}(\mathbb{B}_n)\to\mathscr{A}^{p,\lambda}(\mathbb{B}_n)}\gtrsim \|g\|_{H^\infty}.$$

Conversely, we have by Theorem 3.2 that

$$\|U_g\|_{e,\mathscr{A}^{p,\lambda}(\mathbb{B}_n)\to\mathscr{A}^{p,\lambda}(\mathbb{B}_n)}\lesssim \|U_g\|_{\mathscr{A}^{p,\lambda}(\mathbb{B}_n)\to\mathscr{A}^{p,\lambda}(\mathbb{B}_n)}\lesssim \|g\|_{H^\infty}.$$

This finishes the proof.

From Theorems 4.1 and 4.2, we have the following corollary.

Corollary 4.1. Let $0 < \lambda < 1 < p < \infty$ and $g \in H(\mathbb{B}_n)$. Then the following statements hold.

- (i) The operator $V_g: \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is compact if and only if $g \in \mathscr{B}_0$;
- (ii) The operator $U_g: \mathscr{A}^{p,\lambda}(\mathbb{B}_n) \to \mathscr{A}^{p,\lambda}(\mathbb{B}_n)$ is compact if and only if g = 0.

Acknowledgments

The work was supported by NNSF of China (No. 12371131), STU Scientific Research Initiation Grant (No. NTF23004), and Guangdong Basic and Applied Basic Research Foundation(Nos. 2024A1515012404 and 2023A1515010614).

REFERENCES

- [1] K. Avetisyan, S. Stević, Extended Cesàro operators between different Hardy spaces, Appl. Math. Comput. 207 (2009), 346-350.
- [2] L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. Math. 76 (1962), 547-559.
- [3] D. Chang, S. Li, S. Stević, On some integral operators on the unit polydisk and the unit ball, Taiwanese J. Math. 11 (2007), 1251-1286.
- [4] J. Chen, J. Pau, M. Wang, Essential norms and Schatten(-Herz) classes of integration operators from Bergman spaces to Hardy spaces, Results Math. 76 (2021), 88.
- [5] P. Galanopoulos, N. Merchán, A. Siskakis, A family of Dirichlet-Morrey spaces, Complex Var. Elliptic Equ. 64 (2019), 1686-1702.
- [6] P. Galindo, M. Lindström, S. Stević, Essential norm of operators into weighted-type spaces on the unit ball, Abstr. Appl. Anal. 2011 (2011), 939873.
- [7] Z. Hu, Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc. 131 (2003), 2171-2179.
- [8] Z. Hu, Extended Cesàro operators on the Bloch space in the unit ball of \mathbb{C}^n , Acta Math. Sci. 23 (2003), 561-566.
- [9] B. Hu, S. Li, N(p,q,s)-type spaces in the unit ball of $\mathbb{C}^n(V)$: Riemann-Stieltjes operators and multipliers, Bull. Sci. Math. 166 (2021), 102929.
- [10] B. Li, C. Ouyang, Higher radial derivative of functions of Q_p spaces and its applications, J. Math. Anal. Appl. 327 (2007), 1257-1272.
- [11] S. Li, S. Stević, Integral type operators from mixed-norm spaces to α -Bloch spaces, t Integral Transforms Spec. Funct. 18 (2007), 485-493.
- [12] S. Li, S. Stević, Riemann-Stieltjes operators on Hardy spaces in the unit ball of \mathbb{C}^n , Bull. Belg. Math. Soc. Simon Stevin, 14 (2007), 621-628.
- [13] S. Li, S. Stević, Riemann-Stieltjes operators between different weighted Bergman spaces, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 677-686.
- [14] S. Li, S. Stević, Compactness of Riemann-Stieltjes operators between F(p,q,s) spaces and α -Bloch spaces, Publ. Math. Debrecen, 72 (2008), 111-128.
- [15] J. Liu, Z. Lou, Carleson measure for analytic Morrey spaces, Nonlinear Anal. 125 (2015), 423-432.
- [16] Y. Liu, Y. Yu, X. Liu, Riemann-Stieltjes operator from the general space to Zygmund-type spaces on the unit ball, Complex Anal. Oper. Theory, 9 (2015), 985-997.
- [17] S. Miihkinen, J. Pau, A. Perälä, M. Wang, Volterra type integration operators from Bergman spaces to Hardy spaces, J. Funct. Anal. 279 (2020), 108564.
- [18] C. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.
- [19] R. Peng, C. Ouyang, Riemann-Stieltjes operators and multipliers on Q_p spaces in the unit ball of \mathbb{C}^n , J. Math. Anal. Appl. 377 (2011), 180-193.
- [20] R. Peng, Y. Wu, F. Deng, Carleson measures, Riemann-Stieltjes operators and multipliers on F(p,q,s) spaces in the unit ball of \mathbb{C}^n , Acta Math. Sci. Ser. B 36 (2016), 635-654.
- [21] B. Sehba, S. Stević, On some product-type operators from Hardy-Orlicz and Bergman-Orlicz spaces to weighted-type spaces, Appl. Math. Comput. 233 (2014), 565-581.
- [22] S. Stević, Boundedness and compactness of an integral operator on a weighted space on the polydisc, Indian J. Pure Appl. Math. 37 (2006), 343-355.
- [23] S. Stević, Integral-type operators from a mixed norm space to a Bloch-type space on the unit ball, Siberian Math. J. 50 2009), 1098-1105.
- [24] S. Stević, On operator P_{ϕ}^g from the logarithmic Bloch-type space to the mixed-norm space on unit ball, Appl. Math. Comput. 215 (2010), 4248-4255.
- [25] S. Stević, On some integral-type operators between a general space and Bloch-type spaces, *Appl. Math. Comput.* 218 (2011), 2600–2618.
- [26] S. Stević, Essential norm of some extensions of the generalized composition operators between *k*th weighted-type spaces, J. Inequal. Appl. 2017 (2017), 220.

- [27] S. Stević, Norm and essential norm of an integral-type operator from the logarithmic Bloch space to the Bloch-type space on the unit ball, Math. Methods Appl. Sci. 45 (2022), 11905-11915.
- [28] S. Stević, S. Ueki, Integral-type operators acting between weighted-type spaces on the unit ball, Appl. Math. Comput. 215 (2009), 2464-2471.
- [29] M. Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355 (2003), 4683-4698.
- [30] J. Wang, J. Xiao, Holomorphic Campanato spaces on the unit ball, Math. Nachr 290 (2017), 930-954.
- [31] Z. Wu, C. Xie, Q space and Morrey spaces, J. Funct. Anal. 201 (2003), 282-297.
- [32] H. Wulan, J. Zhou, Q_K and Morrey type spaces, Ann. Acad. Sci. Fenn. Math. 38 (2013), 193-207.
- [33] J. Xiao, Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball, J. London Math. Soc. 70 (2004), 199-214.
- [34] J. Xiao, C. Yuan, Analytic Campanato spaces and their compositions, Indiana Univ. Math. J 64 (2015), 1001-1025.
- [35] N. Xu, Z. Zhou, New estimates of essential norm of an integral-type operator between Bloch-type spaces on the unit ball, Math. Inequal. Appl. 19 (2016), 271-285.
- [36] Y. Yang, J. Liu, Integral operators on Bergman-Morrey spaces, J. Geom. Anal. 32 (2022), 181.
- [37] R. Yang, X. Zhu, Besov-Morrey spaces and Volterra integral operator, Math. Inequal. Appl. 24 (2021), 857-871.
- [38] C. Yuan, Holomorphic Campanato type spaces over Carleson tubes and Bergman metric balls, J. Math. Anal. Appl. 457 (2018), 51-66.
- [39] X. Zhang, C. He, F. Cao, The equivalent norms of F(p,q,s) space in \mathbb{C}^n , J. Math. Anal. Appl. 401 (2013), 601-610.
- [40] R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. 105 (1996), 56.
- [41] R. Zhao, K. Zhu, Theory of Bergman spaces in the unit ball of \mathbb{C}^n , Mémoires de la Société mathématique de France, DOI: 10.24033/msmf.427
- [42] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Grad. Texts in Math., vol. 226, Springer-Verlag, New York, 2005.