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PEAK SOLUTIONS FOR LOGARITHMIC SCALAR FIELD SYSTEMS

XINAN DUAN, ZIJUAN GAO, QING GUO*
College of Science, Minzu University of China, Beijing 100081, China

Abstract. We are concerned with a class of important Schrodinger equations in mathematical physics
with logarithmic nonlinearities: —&2Au+V (y)u = ulog|u|, u > 0, in H'(RV), where N > 3, € is a small
positive parameter, and V(y) denotes the potential function. The main difficulties to apply Lyapunov-
Schmidt reduction to logarithmic scalar equations are caused by the non-smooth property and sublinear
growth of the logarithmic non-linearity. Our method is fundamentally based on a new type of inner-
outer decomposition, setting it apart from conventional gluing techniques that usually require distinct
constructions for the inner and outer problems. Rather than this traditional separation, we incorporate
the minimization operator for the outer problem directly with the operator related to the fixed-point the-
orem, enhancing the reduction framework to be applicable. We prove the existence of positive multipeak
solutions under certain assumptions on V (y). Finally, we also use the local Pohozaev identities to obtain
the non-degenerate of positive multipeak solutions.

Keywords. Inner-outer gluing; Local Pohozaev Identities; Lyapunov-Schmidt reduction method; Loga-
rithmic Schrédinger systems; Multi-peak Solutions; Non-degeneracy.

1. INTRODUCTION

We consider the following logarithmic scalar field system:
—&?Au+V(y)u=uloglu|, u>0, in HY(RM), (1.1)

where € is a small positive parameter and N > 3. This system arises from the following time-
dependent logarithmic Schrédinger system:

2
isatu—l-%Au—V(y)u—i-ulogu:O, (1.2)

which was proposed by Bialynicki-Birula and Mycielski [3] as a model of nonlinear wave me-
chanics. System (1.2) finds extensive applications across various fields, including quantum
optics [4], nuclear physics [13], geophysical phenomena like magma transport [9], effective
quantum gravity theories, superfluidity, Bose-Einstein condensation, and open quantum sys-
tems (see [18] and the references therein). Mathematically, there has been considerable recent
interest in the existence and qualitative properties of solutions to nonlinear Schrodinger equa-
tions. Studies such as [1, 2, 5, 6, 7] examine the existence and stability of standing waves and
address the Cauchy problem within an appropriate functional framework for system (1.2).
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However, for the systems with logarithmic non-linearity, new challenges arise when applying
the Lyapunov-Schmidt reduction method to (1.1). Specifically, the sublinear growth of the log-
arithmic nonlinearity near zero complicates the identification of a suitable contraction mapping.
In this paper, we develop a novel approach to applying Lyapunov-Schmidt reduction to investi-
gate the existence of multiple solutions to (1.1). To introduce our main result, we suppose that
V(y) € C? : RN — R satisfies the following conditions:
(V1): V(y) € L*(RN) and 0 < infgy V() < supgy V(y) < oo.
(V2): There exist k points &;,-- -, & such that VV(£;) = 0 and deg(VV,Bs(&;),0) # 0, for any
j=1,-- .k

A function u € H'(R") is said to be a (weak) solution to (1.1) if it satisfies

‘/ u210g|u|dy‘ < oo
RN

and
/ (EVuIv+V (3)uv)dy = / (wlogluf)dy, forall v e G5 (RY).
R: R

The primary results are as follows.

Theorem 1.1. If N > 3, V(y) satisfies (V1) and (V3), then problem (1.1) has a k-peak solution
concentrated at &1, - , & for € > 0 sufficiently small.

Theorem 1.2. If N > 3, V(y) satisfies (V1) and xq is an isolated local maximum point of V (y),
then problem (1.1) has a k-peak solution concentrated at x, for € > 0 sufficiently small.

We consider the following system
— Au~+V (xu = uloglu|, u> 0, in H' (RV), (1.3)

andas € — 0, x/ — &, j=1,--- k. Itis known from [8, 14] that system (1.3) has a unique pos-

. . NN bR . .
itive solution U;(y) := ") *2¢ %, which is non-degenerate in the sense that if u € H' (RV)

with [ u?[y|?dy < o satisfies

2
N
—Au—f—(%—z— )u:O,u>O, in H'(RM), (1.4)

then u € span{%—(yjﬂi =1,---,N,j=1,--- /k}. Actually, the uniqueness of positive solutions
to (1.3) was estabiished in [14] for N > 1 and in [8] for N > 3. The non-degeneracy of these
solutions was proved in [8] for N > 3, with the proof also valid for N < 2.

For any x/ € RN with j =1,--- ,k, we denote

vy bl
Uej(y) =e " T2e

which is the solution to
—&2Au+V (x))u = ulog|u|, in RV,
To recover smoothness, as in [17], we introduce a family of perturbed problems, for small 7 > 0,
—2Au+V)u=g:(u), yeRY uecH'(RY), (1.5)

where g¢(u) = 77 '(|u|*u — u). Since g;(s) — slogls| in Cj,c(R) as T — 0T, the solutions to
(1.1) can be obtained by taking the limits of those to (1.5) with some uniform estimates. We
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first solve equation (1.5) with uniform estimates independent of 7. Next, we introduce some
notations.
Denote d := min,,;|x" —x/|,m,j=1,--- k,

<u1,u2>£ = /RNEZVLHVLQ—}-V()))M]LQ, Uy, up EHI(]RN),
<u1,u2)g,gz/QSZVmVuz—f—V(y)muz, Ui, up EHI(]RN),

<Tl1,n2>e,gZ/QSZVmVnzﬂLV()’)Tllnz, m,m € H'(RY)nL™(RY)

and the norms

lulle = /(u,u)e, u € H'(RY),
lulle.o =/ (uu)eq, u € H'(RY),

IMlle.e =1/, Meq, n €H'(RY)NL™(RY).
Let

k
W(y) :=We(y) i=Wes(y) := Zl Ue j(¥),
f=

N
where Ug ;(y) = PUCILS P
We verify Theorem 1.1 and Theorem 1.2 by proving the following Theorem 1.3 and Theorem
1.4.

Theorem 1.3. If N >3, V(y) satisfies (V) and (V). There exist 0 > 0, &y > 0 and 7, € (0, e’e%)
such that, for any € € (0,&)], T € (0,7, Bs(én) NBs(Ej) =0, m,j=1,--- k, problem (1.5)
has a solution ug 1 of the form

Ug = Ws,r + Ve r,

where x/ € Bs(&)), | Ve clle = 0371, ||We = = O(e).

Theorem 1.4. If N > 3, V(y) satisfies (V1) and suppose x is an isolated local maximum point
1

of V(y). There exist €y > 0 and te € (0,67 %) such that, for any € € (0,€&)], T € (0, 7], problem
(1.5) has a solution ug 1 of the form
uer=Wer+ Yer,

T |

where x1 — xo, X s oo ifm # j and || ec|2 = o(€V), || Ve.c|2- = o(e?).

In fact, the non-degeneracy of positive multipeak solutions to the nonlinear Schrodinger equa-
tion has garnered significant interest in recent years (see [11] and references therein). The non-
degeneracy refers to the stability of these solutions against small perturbations. The study of
the non-degeneracy result 1s inspired by Guo-Musso-Peng-Yan [10]. Before introducing the
non-degeneracy result, we need some notations.

Denote

N 1N AN
He(RY) = e H'®RY) < il = sup (Y e 7 ) Inlt.
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For any 1 € He(R"), we define
Ze(n) = —&2An +V (y)n — (1 +logue)n, (1.6)

where ugy = W 4+ . From the proof Theorem 1.1, we can know that W and g are the limits
of We z and y¢ ¢ as T — 0 in Theorem 1.3.
We obtain the non-degeneracy of the positive k-peak solution of (1.1).

Theorem 1.5. Let the assumptions of Theorem 1.1 hold. Suppose that potential function V (y)

satisfies
*V (&) )
det | | =———=~ #£0, forallj=1,... k.
((aéj,iaéj,l 1<i,I<N

Let {ug } ¢~ be a family of positive solutions to problem (1.1), concentrating at the set {&;, ..., &} C
RN, Let ne € He(RN) be a solution to the linearized equation ZLenNe = 0, where £y is defined
as (1.6). Then ne = 0.

Remark 1.1. In Theorem 1.5, we address the non-degeneracy of the concentrated solutions with
separated k points obtained in Theorem 1.1. As for the case of clustering concentrated solutions
in Theorem 1.2, a completely new technical approach is required for the precise handling of
interaction terms and so we will treat it as an independent work in a subsequent paper.

Then, we give a brief introduction to the ideas and methods of the article.
Step (I): The existence of positive multipeak solutions.
We apply the Lyapunov-Schmidt method by solving the perturbed problem:

LeWe —le —Re(We) =0, (1.7)
where L, is a bounded linear operator in H' (RV) defined by
(Ley)e = [ (EVYVvV)pv—gh(W)yv), W e H'(BY), (1.8)

le € H'(RV) by

(g,v g_/ (i V() — Ug,,+(g1 ]i Ugj>>v,Vv€H1(RN), (1.9)
and Re(w) € H'(RN) by

Re(W)v)e = [ (W +v) = geW) —geW)y) e H'®Y).  (1.10)

We expect K the approximate kernel of L¢ given by

AU ;
Ke :span{ S j=1, k=1, ,N}.
dyi
What challenges are we facing in this work? To explain this, we denote
E:=E¢:=K;
AU;

:{VEHI(RN)Z/Nf/(Us,j)—ae'JV:/B j
K Vi 28,/V(xf)+%+2(x )

where we refer to the definition (2.1) and (2.2) in Section 2.
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First, we know that to apply the reduction method, the process to construct a k-peak solution
for (1.1) consist of two steps:

Step (i): Finite dimensional reduction: We solve (1.7) up to an approximate kernel K¢ of L.
That is, for any given x/, we prove the existence of W, € Eg, such that, for some constants aj j

aU,
LeWe —le — Re(Ye) = Z Zal,jf Ue,j) 8,]

j=li=

Step (ii): Solve the finite dimensional problem and it suffices to choose x;,j = 1,--- ,k ap-
propriately such that all the constants a; ; = 0 in Step (i).

A significant challenge arises during the execution of reduction Step (i). The logarithmic
non-linearity maps an infinitesimal to a lower order one, making it infeasible to directly apply
the implicit function theorem or the contraction mapping principle to solve Ley = I + R (),
Yy € E, with any uniform bound independent of 7. To address this issue, we will follow a three-
step approach. Before that, we first partition the space into inner regions (near the concentration
points) and an outer region (far from the concentration points) based on the distribution of the
concentration points (refer to Section 3 for details).

Step 1: Although the reduction cannot be performed in the outer region, we can modify
the nonlinear terms to make the corresponding functional convex. This involves considering a
boundary value problem in the outer region where the solution u matches any given function
up in the inner region. By exploiting the convexity of the functional, we obtain an energy-
minimizing solution corresponding to the boundary value problem in the outer region, depen-
dent on the boundary function. This establishes a mapping S(ug) relative to the class of bound-
ary functions, and it can be shown that this mapping exhibits favorable regularity.

Step 2: We combine S with the operator T derived from the fixed point theorem. Using the a
priori estimates of the minimizer, it is straightforward to verify that the composite operator 7'S
satisfies the conditions of the fixed point theorem, even though 7 alone does not. Essentially,
we perform the reduction only within the inner region, achieving dimensional reduction, which
facilitates the next phase of the reduction method, allowing us to address a finite-dimensional
problem.

Step 3: We rigorously establish that the fixed point of the operator 7'S inherently corresponds
to the fixed point of the operator 7', thereby confirming the existence of the fixed point for 7.

Finally, using the uniform estimates for Y ¢, Theorem 1.1 can be obtained by taking the
limits of ug ; in Theorem 1.3. Specifically, we find a positive solution ug to (1.1) of the form
ug = We + e, where W and g are the limits of We ¢ and ye ¢ as T — 0. See Section 4 for a
rigorous proof.

Step (II): The non-degenerate of positive multipeak solutions.

For using the local Pohozaev identity, estimating the ||n||¢ is vital. We estimate the ||1||¢
and the perturbation’s term || y||¢ smaller by dividing regions, which are inner regions (near
the concentration points) and an outer region (far from the concentration points) based on the
distribution of the concentration points (refer to Section 5 for details).

In this paper, we denote various generic constants by C. We use O(A), o(A) to mean

|O(A)| <CJA|, and o(A)/|A] -0 as|A]— 0,

respectively.
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his paper is organized as follows. In Section 2, we introduce some notations and provide
basic estimates. In Section 3, we modify the reduction framework and reduce the problem to
a finite-dimensional one. In Section 4, we present the proofs of Theorem 1.1, Theorem 1.2,
Theorem 1.3, and Theorem 1.4. The non-degeneracy of the multi-peak solutions in Theorem
1.5 is established in Section 5. Finally, the Appendix contains fundamental estimates related to
the energy expansions.

2. PRELIMINARIES AND MODIFICATION
Inspired by [17], system (1.5) can be rewritten as —&Au +V (y)u + he(u) = fr(u), u €
H'(RY), where 7 € (0,1) and
T (u—|ul"u), i fu] < (ﬂ)T :
T

he(u) = fo() — ge(u) = u+(1—f)1+‘”", ifu> (22)°

I+7

u— (=) itu< - (=),

0, ifu< (=2)7,

Felw) = eV (uffu—u) +u+ ()7, ifus (257
T~ (\u|fu—u)+u—(ﬁ)l+rl, ifu<—(i*—§)rl.

We also denote
—uloglu|, if |u| <e 2,
h(u) =< u+e2, if u>e?,

u—e 2, ifu<—e 2,
0, ifu<e?2,
f(u) =< uloglu| +u+e2, ifu>e 2, 2.1)
uloglu| +u—e2, ifu<—e 2,

and
g(u) = uloglu| = —h(u) + f(u),

/hth /fdtG /()a’t,

/hf £)dt, Fo(u /ff £\dt, G(u) = /Ougf(t)dt.

Here, we give some properties of g¢,hr, and f.

Lemma 2.1. [16] There exists Ty > 0 such that, for T € (0, 7|, the following conclusions hold

(i) g1, he, and fr are odd and C' in R; g; € C? in R\{0}; h; is strictly increasing in R and
concave in (0,00); I, is locally Lipschitz continuous; Hy is even, convex and nonnegative in R.
(ii) For any t1,t) € R witht; > tp,

H—t
H—=un Shf(tl)_hf(t2) < 2/’11( ! > 2).
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(iii) Let § € (0,3e72]. Foranys>§,t € R,

|he(s+1) —he(s)] < 2|tlogdl,
8 2
he(s 1) — he(s) — Ha(s)t] < %|10g5|.

1
Lemma 2.2. There exists T € (0,e €% ) such that, for each T € (0, 7T¢),

1
lige(ute) = (ute) | v, + gk (ate) — & (e =gy = O (77,

k 1
L. 6+(Ue) =8 W Dlm(an + W) - & W)=y = 0™,

k 1
Y l182(Ue.j) = 8(Ue, (e + g (W) = g(W) | =y = 07 ),
j=1
and

k N 1
X, lse(Ue,) = Vel + (W) - gW)ll 2y =€70(e™7).

Proof. According to the uniform convergence g:(s) — g(s) on any closed interval as T — 0, we
can obtain the first three conclusions of the lerr}ma.

1 1
Next, we claim that there exists e € (0,e%) such that [[g-(W) — g(W) || 2wy < Cere e
for some C > 0 independent of € and 7.

In fact, for some C,c > 0, there holds |W (y)| < Ce=<bF for y € RN\B 1(0). From [gz(s)| +
lg(s)| < C(|s|% +s?) for C independent of 7 € (0, 1), we obtain

[\STIS8]

ls=(W) — s (W)L, ) +CIWI s < CeNe™*.

<C||w|?
RN\B l(O)) < CIWi, (RN\B 1(0) Z(RN\B 1(0))
ez e et

On the other hand, as T — 0, g¢(W(y)) — g(W(y)) uniformly for y € B 1 (0). So, we find 7,
et

1
such that, for 7 € (0, 7|, ||gz(W) —g(W)HiZ(B L) < CeNe ¢®  Then
et

1

N —¢t
||gT(W)_g<W)”L2(RN) <(Ceze .

Similarly,
k N 1
Y- llge(Ue. )~ 8(Ue )2 = €20~ ).
=1
0
Throughout the paper, we assume that d = min,,, |x™ —xj| >(0isaconstantwith j=1,--- k.

We denote s* = max{0,+s} for s € R. In what follows, we always assume 7 € (0, T¢], where
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T¢ 1s determined in Lemma 2.2. Define

E:=E.:=K}

~{ven'®"): ANf’<vaf)a$i’jvzé

U ; .
i f/(U&‘,j) a ] V:(),jzl,"',k},

J
zs,/V(x1)+%+2(x )

which is a closed subspace of the Hilbert space H!(RV).
We denote, for each M € (0, 3d),

k
Ov = | J Bu(x') and Eyy = ENHy(Qu).
j=1

We remark that if M € <28\ [V (xi)+5+2, %d) , then Eyy and H} (R¥\Qy/) can be considered

as closed subspaces of E.
Remark 2.1.
_d*
Z |Ue. =By ,(x™)) + Z |Ug, jlog U |, 81 L&) T 0<€ 3282)- (2.3)
d
J#Fm Jj#m
In fact, to show (2.3), we only need to notice that, for y € B ! 4(*™)) and for any j # m , we

have [y —x/| > 1d, so

/2

k k k ‘ \
Z Ugvj S Z |U87j10gU€7j| = Z ev(xj)—i_%e_ 4¢2

J12
V(x]) N \y x] ‘_ <e 3282>

2
fut fuz 7 4e
Lemma 2.3. Forany >0, 8 > 0and 1 # j, there exists a constant & > 0 such that [px U Uf <
2
CgNe_o-‘ 821\

Proof. We may suppose ¢« > 3. Recalling the expression of U j, by direct calculation, we have

B : N+ _alal 2l
/ UgaU, .:/ OV () BV () +5 (a+B)), g
RN 871 £, RN
f EX: xlfx‘z
<ce" / D@V () BV ()Y (t B) ,—alf? - B2
RN
—x/|2

CeNo(aV (&) +BV (&) +5 (atB)) Bt 2 if o > B3,

Jx fo'|2

CeN @V () +BV () +5 (a+)) ,~(B~0) if a =B,

where C > 0 is independent of € and 7 and 6 > 0 is arbitrarily small. OJ
In what follows, we always assume 7 € (0, 7¢|, where 7, is determined in Lemma 2.2.

Lemma 2.4. There exist some C > 0 independent of € and 7, T € (0, T¢), such that

494
Jee¥)— ¥ ¢(Ue.) li0y, = 0702, (2.4)
j=1
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k _ 4>
lg=(W Z (Ue, )l =mo) ZO(e 25682), (2.5)
J:
L
sup [ (gW) = Y s(Ue )y =eFo(e ), 26
e Q) Ivlle=1 R j=1
and
N
sup / (gc(W)— ) g(Uej))y=¢€20(e 2 ). (2.7)
yer @) [yle=1 B J; “ ( )

Proof. (i) In B ! 4(X™), we have

k
Z (Ue.j)

=W log|W|— Z Ue,jlog|Ue j|
=1

k k k
=(), Us,j)log’ Y Uej| = Y Ue jlog|Ue |
=1 j=1 =1
=(Ugm + Z Ue,j)1og|Uem + Z Ue,j| — Ue mlog|Ue m| — Z Ue,jlog|Ue ;|
J#m J#Fm J#m
~Uem+ Y, Uej)log|1+Uspy ¥ Us| + Y Ue jlog(UemUs})
Jj#m Jj#m Jj#m
= Z Ue,j+Ue,nl1( Z Ue,j)* + Z Ue,jlog(Ue,ng_,}) +U€,m%(U£_,r11( Z Ue.j))
Jj#Fm j#m j#m Jj#Fm

where Z(s) = (1+s)log|1 +s| —s(1+s). Since, for each s € R, |Z(s)| < 2s2, then it holds
that

Uen (Ui X, Ve )| < 20EM( Y Ve )
j#m J#m

Note that, in B%d(xm), Ue j <Ugm (j #m), so Ug7j10g(Ug7mU;}) is positive. Hence

k
80) = Y 8(Ue)| < ¥ Uej+Ush( X Ue)* + ¥ Ue log(Uenl; ).
j=1 j#m j#m j#m

InB ! 4(x™), there holds

. i 2 | s
Y Uej=Y, eV(x1)+%J>4gz and Uy, ( Y Ue ]) <cy ezv(x’)*v(xmﬂ%e*%,
j#m j#m JF#m JjFEm

/2 ]2
Y. Ue flog(Uenle ) <C X &1 +5e 5 (V(x’")—v(xf)+’47;|>.

j#m Jj#m
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When j # m, fory € B%d(xm), we have |y —x/| > %d, SO

k 4942
e~ ¥ a0, =0 ).
]: =
. 3 i (2.8)
_49d
Hg( Z (Ue,j) = 0<e 512€2>.
j=1 (UB 1, (™))
By Lemma 2.2 and (2.8), we obtain (2.4).
(ii) Since, in RV \ U, By (&™), we have
8
k k vk ko, k 1
$(Us) = Y] Uelog| =51 82| <€ Y Ui 1. Ues)
m=1 m=1 US m m=1 =
. o P (2.9)
<CY Uem+CY Z Uz U2, = 0({@),
m=1 s#Emm=1
which together with (2.8) and Lemma 2.2 yields
k _ &
lg=(W Z (Ue, )| 1=y O(e 2564#).
j:
(iii) For any y € H'(R") with [[wl|;2 ) < [lylle = 1, by the Holder inequality, in

8

B ! 4(x™), there holds

k k
| /Bld(xm)<g<w>—jzlg<vg,,->>w(sc( / . (xm)lwl) )~ L 8 i oo

1 8
8

By ()"

8

k
<ClgWw Z Us,J ||L2
j:

When j # m, fory € B%d(x’"), we have

T
G2V O)AN ,m 5

ném/B ! Ve = #m By,

|x —x/ |2

< CSN/ 2V AN o=l =T 8N0<e_@)7
B 4 (0)

Tee
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Y (Ue.jlogUe ;)?

o \UEj 108U j
jAm B L")

= / <V(xj) + N by _xj|2>2ezv(xf)+Ne"y2§§2
j#m?B 16" 2 4¢?

m i 2 . 7X<2
< CEN/ <V(_xj) + ]X _ l|x|2 - u>2ezv(xj)+Ne_|x|2e_|xm4£2/|
- B 4 (0) 2 2 8e2

and

JFEm B%d(xm)

SY [ (v vy B v
‘ 4"

j#m P 42
m__ jl2\2 ) e
<C3N/ (V(xm)—V(x/)—{— |x|2_%> ezv(x/)+N€_|x|ze_| 452|
Pt
d2
:8N0<e 872>
When j # m, for y € By ,(x™), there holds [y —x/| > Zd and
N _ 4>
sW)— L 8Ue, =¢€20(e 106¢?
H ( ) 1—21 ( SJ) LZ(B%d(xm)) ( ) »
; N 42 ( )
a 2870(6 1682>
I Y

By Lemma 2.2, we obtain (2.6) from (2.10).
(iv) In RV \ UF _, By (x™), from (2.9), we also have
8

k
i Y se)]
RN\Bld(xm j=1
8

k
< </RN\BI ’II/| > ||g ]; U87] ||L2 ]RN\BI (x’"))

N
2

3 _
<C||g Z US] ||L2 IRN\B1 (Xm)) = & O(e 3282>’

which together with (2.10) and Lemma 2.2 yields

a2
wp [ (W Zg Uej)y =€20(e 22).

yeH! (RY),[[y]le=1
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We end this section with an estimate of L. This is a variant of the De Giorgi-Nash-Moser’s
iteration.

Lemma 2.5. [16] Assume R >0, 1 € N\{0}, {u;}._, C C}(Bg(0)) with (o) Uittj = Jpp(0) Ui
ij=1,---,Li#jIf¢ €H! (BRH(O)) satisfies fBR+2(0) VOVv+bipv= fBR+2(O) bov forall v €
H,, where H, = {v c Hé(BRH(O)) : fBR(O) vy =0,i=1,--- ,l} and by, by € L1(Br+2(0)) for
some q > 3, then 191l =(Bg. 1 (0)) < C(|’¢HH1(BR+2(O)) + 1621l LB 1 (0))) » Where C > 0 is a con-
stant depending only on N, q, ||b1||a(8g(0)), @nd supyeg,. 0161 lLa(B, (). In addition, if u; =0
foralli=1,--- 1, then the constant C depends only on N,q, and sup,cg. )61 |48, (y))-

3. REDUCTION OF THE PERTURBED PROBLEM

System (1.5) can also be rewritten as the following equation about y:

Lgll/:lg‘i‘Rg(ll/), inIRI\’7
v e H'(RV),

where L is a bounded linear operator in H' (RY), defined by
(Ley)e = [ (EVYVvVO)pv—gh(W)yv), W e H'(BY),

le € H'(RN) satisfies

k k
(le,v e—/ (Z V(x) — Uaj"‘(gr Z Ug]>>v, v e H'(RVY),
: ]:
and Re(y) € H'(RVN) satisfies

Re(w):v)e = [ (86(W+y) =g (W) = geW)y)v, W € H'(®Y).
We define .
de =210 and d, :=¢' 79, (3.1)
where 6 > 0 is a small enough constant.

We also define the projection P from H'(RY) to E as follows:

dUg i \ OUg ;
PR R (e %) 2
J=li=1"25 V(xf)+%+2 i i

Our aim in this section is to solve PzLg Y = Pele + PeRe () in
A= {w € ENL=BY) | [ye < de and [[y|p-qu) < de ).

Before the statement of main idea of the proof, we give some notations. Denote G := 1
Fori=1,2,3, we set D; := Uljleiog(xj)- Take x € ENC(RY) such that

€y/|Ing|.

l\)l

1, inDz,

3.2
0, in RNM\Djs. (5-2)

0<x<l1, |Vx|§2651,x={

Then, for any v € E, we have yv € ENH}(D3) and (1 —x)v € ENH} (RV\D;).
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3.1. The Minimization Problem. In this section, we are to solve the following boundary prob-
lem

¢ =y, inD. 3-3)

For each y € E, we denote a set Eyy = {u € E| u =W + y in D1} and define a functional
I':Ey — Ras

{—82A(W+¢) FV(W+)+he(W+¢)=0in RV\D,,

1
[(u) = E/RN(gz‘vu,erW) +/RNHT(M), ueEy.

2
t
Noting that H; is a strictly convex function and H(r) > 5 for any ¢ € R, there holds that T’

is a strictly convex functional on Ey and I'(u) — oo, as ||u||¢ — co. Then there exists a unique
minimizer to the following minimization problem

inf T'(u). (3.4)

We define the operator S : E — E as follows:

Definition 3.1. For each y € E, let uy € Ey, be the unique minimizer to (3.4). Define S(y) =

It is clear that S(y) = y in D;. Moreover, ¢ = S(y) if and only if ¢ is the unique weak
solution to (3.3). We next give some estimates on S restricted to A.

Lemma 3.1. There exist 0 > 0 small enough and €y > 0 such that, for any € € (0, &), T € (0, ¢)
and some constants C| > 0 independent of € and 7, the following statements hold:

2
(i) If y € A, then ||S(¥) ¢ gy \p, < Cigzde and

ISCW) ez, < C1E%e, IS(W)]|or\py) < C18%de.
Furthermore, if ||| 1=(p, \p,) < ld%, then ||S(Y) || =@V \p,) < Cde.
(ii) If yi € A and || Wil 1=(p, \p,) < de, i = 1,2, then

2
(¢
e RN \D, < Clg_gle - I112”8,D3 \Dy>»

1S(w1) —S(y2)

I1S(w1) = S(Wa)lle kv \p, < CLE® W1 — W2 llens 1D,
2
o,
1S(w1) = S(v2) || =@y \py) < C18—§||‘If1 —Wallz=(ps\Dy)>

1S (1) _S(IIQ)HL""(RN\DQ) < C189||‘l’1 —Wallz=(p5\Dy)-
A o2
Proof. (i) InRN\Dy, we have |W || @vyp,) < X5, ¢V 3 742 So, forall small &, (W) =
0 in RM\Dj and for v € ENH}(RM\Dy), 7 € (0,7¢] , by (2.7), there holds

k

_
L, (X 8(e) ~ geW)v=0(e~ e e I
=1

j:
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and
/RN (VW — EV VU, j)v
k
- IR{N((V(xf')+<VV<xf'>,y—xf>+0<|y—xf|2>>W—].;V@cf)l/e,j)v
N RN(<VV(xj),y—xj>+0(|y—xj|2))Wv
=0(€%;) v
Hence,

/R y (E2VWVY+VWy +he(W)y) = /R , (VWYY +VWv+he(W)v — fo(W)v)

k
Zg Us,j) —8<(W))v+ (VW — Zv(xf)Ug’j)v
j=1

:0(8 dg)HVHg.
(3.5)
Setting ¢ = S(y), by (3.3) and (3.5), we obtain, for each v € ENH} (R¥\Dy),
/RN (E2V0Vv+Vov+ (he(W+6) — he(W))v) = O(e%e) V] (3.6)
Forn=1,2,---, [ﬁ\/\lnd] — 1, we take 7, € ENC}(RY) such that
- . - 0,in Q g2
0< <1, |Vl <2, fip =4 . =Oetr-len 3.7
ST S b Vil <2, 7, {1, in RMQg  e2. G-
Setting v = 7,¢ in (3.6), we obtain from Lemma 2.1 (ii) that
2 2 2\ =
91200, . < [, (EIVOP+V?),
< [ (€199 V> + (bW +6) ~ hs(W))9) 7,
= [ E(V9Vi,)0+0(e°d:) 7,0
< (€%|VO* +€%9%) + 0(e%de) |9l v
QGg+n£2\Q0'3+(n71)£2 ( 8) . \QG He—le
-1 2 2 20 ;2
Sze ’ ||¢||£’RN\QG£+(n71)£2 - ||¢”£’RN\Q63+nsz + 0(8 ds)
Therefore, it holds that
_ \lns
||¢||8RN\Q S 1||¢||£RN\D] 1+Z€ 2 29d2 (3 8)

s JRN\D; + 0(829‘13) :
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Let x € ENC}(RY) be the truncation function satisfying (3.2). Substituting v = x(¢ — y) €
ENH}(D3\Dy) in (3.6), we have

2 2 2
S/Da\Dl (€2[Vo[>+Ve2)x
g/ (E2V P+ VO + (he(W +0) — he(W)9)) 1
D3\D

(3.9)
=—/ 82(V¢Vx)¢+/ VOV (xw)+Voyx
D3\D; D3\D;
+ (he(W +9) —he(W)) yx + O (€%de)
D3\D;
NN 9062
Since Z’;Zl VW) T3e7 42 <W < e 2in D3\Dy, by Lemma 2.1 (iii), we have
. V(xj)—O—E —% 963 .
he(W +9) —he(W)| <2|glog (Y. " I*5e e )| < PCiolin DD (3.10)
=1
Then by (3.9), (3.10) and the Young’s inequality, we have
O 7
100 5, <2605 101 5, + 3 IWE o, 5 T8I0
+0(89d8)<||¢||sD3\D1 ) (3.11)
20 12
<(2e0; '+ 2 )||¢||8RN\D1 +C84 1Wllz py\p, +0(%°d2).
From (3.8) and (3.11), we obtain, for € sufficiently small,
o7 6 o7
19llezvip, < C5 IV llenyn, +0(e%de) < C5de. (3.12)

Moreover, recalling that (78 482|1n€| by (3.8) and (3.12), we obtain, for some C,c > 0,

2
o; _yIng 0
< H(pHs,RN\QZ(’g%2 che e ||II/||£7D3\D1 +0(8 dg)

<Ce ¥ d.+0(%;) < Ce¥de.

Note by (3.3) that ¢ weakly solves
k k
—&* A+ VO +he(W+9¢) — Z xUg j— VW +g(W Z (U, j),
: j:

in H. (RM\Dy). By monotonicity of 4 and (2.5), we have

oW 40) )

and

=0(e%;).

L=(RN\Dy)
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weakly solves
—&°Al9| +V|9| < €de, in Hy, . (RY\Dy).

We get by the local L* estimate ([12], Theorem 8.17) that, for some C(N) > 0 depending only
onN,

19ll=@vpy) < CN) (1912 zmg, , +€7de) < Ce%de.
Now, we assume further that [|y/||=p,\p,) < 3de. Setting ¢ (x) = ¢ (0ex+x7), there holds
—&?A|@| +V (cex+x7)|@| < 62€%de, in B2(0)\B;(0).
By the global L™ estimate ([12], Theorem 8.16), one has

10112 (p\Dy) = 101128, (0)\B, (0))
< sup || +C(N)oze%de
3B, (0)UIB) (0)
1

= Ed'g +C(N)o2ebd;
1.
< Edg.
(ii) Note that ¢; = S(y1) and ¢ = S(y») satisty ¢; — ¢ = W — w3 in Dy and for all v €

H (RM\Dy),
/ 82V(¢1—¢2)VV+/ (V(¢1 —02) +he(W+¢1) —he(W +¢2)>V=0o (3.13)
RN RN

1
Set v =1,(¢; — @) in (3.13) where, f,, n=1,2,---, [ﬂ\/ |1n£|} — 1, are truncation functions
taken as (3.7). Then similar to (3.8), we obtain for some C,c > 0

-3
||¢1 (PZH&- JRN\D, = < ||¢1 (PZH;RN\QZG,;%Z <Ce €2 H(Pl - ¢2”§,RN\D1’ (314)
On the other hand, let ¥ be the truncation function as (3.2) and set

= x(91 — ¢2) — x(¥1 — ¥2) € Hy(D3\Dy).
By (i), |91+ 92| < de <% in D3\Dy, we have in D3\Dy,

|hT(W + ¢1) hT(W + ¢2)| <

(101l < gy~ ol

Similar to (3.11), it follows that

1 ot
91 = 02112 b\, < (2602 "+ 3) 191 = 021 o, +Coi v — (3.15)
Thus, (3.14) and (3.15) imply
2 A 2
191 = 920l rnp, = €z llv1 = walle pyo,
(3.16)

4

2 Oc ,—c% 6 2
101 — ¢2H8,RN\Q268_82 < Cge e |lyg — < Ce”||yi — ¥allz po\p, -
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To obtain the L™ estimate, we note that by Lemma 2.1 (ii) |a(W +¢1) —h: (W +¢2)| > |@1 — 92|
Therefore, (3.3) implies that |¢; — ¢»| weakly solves

—&2A|¢1 — ¢o| + (V +1) |91 — ¢2| <0, in RN\D;.

Then the conclusion of (ii) follows from (3.16) and the local L™ estimate ([12], Theorem 8.17).
O

The following lemma proves that linear operator P¢L¢ is bounded and invertible from E to E.

Lemma 3.2. There exist & > 0, 6 >0, y> 0 such that, for any € € (0,&)), T € (0,7) and
x) € B5(&)). [|[PeLeV||e = Vi l|e for all y € E.

Proof. Arguing by contradiction, we assume that there exist &, — 0 , x/& — & j» Te, — 0 and
Ve, € E¢, such that || P, Le, Wn||le = o(1)||Wn]|e. For simplicity, we denote PeL¢ for Pe, Le,. We
may assume ||y, |2 =2Vel, so

L@V (V)5 Dy — (145, )W

(3.17)
N N
~(Le¥n,V)e, = (PeLe¥nsV)e, = o(DlIVille, IVlle, = 0 (237 ) IVl ¥ € E.
In particular,
AQ#W%F+W@H@JW%—O+@Uw%ﬁzo@%ﬁ) (3.18)
and
L evunP+v0)y: =2V, (3.19)

Let W, (x) = Wy (2€,x +x/). Then limsup, ., [pv|VW|? + V(2&,x +x/%)y2 < 1. Without
loss of generality, we may assume there exist y € H'(R") such that

W, — v weakly in H. .(RY) and , — v strongly in L3, (RY).

In view of
/RNf,(Uemj)ZjVZ/B _ (xj)f’(Uemj)Zjv:O,
28n V(x-’)+7+2
we have
aU' , an
: 5, =0,i=1,---,N.
SO = [ ) U g =01 N
V(x)+5+2

Thus [ f/(U;) 52v = 0.
Next, we claim that

| bRy < (3.20)

To show (3.20), we have ||W||L°°(RN) < Z]]‘-:lev(xj’e”H _
independent of g,

/SﬁlVWn!2+V(y)w3+h%,,(W)w3=/ fé,,(W)w3+0(2N8£V)SC/ v, +2Ve).
RN RN RN

D=

By (3.18), we have, for some C > 0
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From (3.19), we have 0 < [pv i} (W)w? < CeVN. On the other hand, there exists Ry > 0 inde-
pendent of &, such that 0 < W(y) < %e’z fory e B%d(xjﬁn)\Bzean(xj,g,,). So, for any R > R, we
have B, jz g(xien) C B Lg(wen) for all small €, and

. 1-ww
lim sup — VY,
n—eo BZ\/ER():/"E" ) \Bza,,Rl (xJ:En) Tn
<limsup (hz, (W) + y? < CeV.
fi—roe B%d@j,é‘n)\BZgan(xjsgn)
That is, i
. Tn
| L= (Uj(6) + Lz Un g+ x7))
lim sup — vy, <C, (3.21)
n—oo B\/%(O)\BRI«)) Tn
where C > 0 is independent of R and €,. Hence, as n — oo, we have
: Tn
= (Uj(6) + L Un 260+ x750) )
— —logU;. (3.22)

Tn
Note that in B\/%(())\BRl(O)’ U](x) = eV(xj)+%e_‘X\2 < W(2£,,x+xj,£n) < %6_2. Then by (3.21),

(3.22) and Fatou s Lemma, we have [; 0 \Bry0) —(logU;)y? < C, for some C independent of
- \/T? 0 1
R. Since Uj(x) = ¢ (5 o= we obtain (3.20) by letting &, — 0.
Next, we clam y = 0. Let
E_ Hl RN . /U' aIJJ -0 2 2d
= WeH (RY): | fU)Z v=0 | blFyidy<e

be the Banach space with the norm ||v||7 = ||[v||Z + fgw|y|*v? for all v € E. For any R > 0, let
V€ G5 (BR(0)) NE. va(») i=v(¥55 ) € G (Bage, (7)), then we find from (3.17) and (3.22)
that

/R VWYV (E vy — vy — (logUj)vy = 0. (3.23)
By the density of C5(RY) inv € E, (3.23) holds for any v € E. However, (3.23) also holds for
V= % Thus, for any v € H!' (RY) with [gn[y[?v* < e (3.23) holds. Or equivalently, y solves

(1.4). Since U; is non-degenerate, then y = ny: | Ci%—l)g. We obtain C; = 0, so ¥ = 0. Thus

/ oyt =02VeN), VR > 0.
B2R£n (xj,ﬁn )

Since ‘
b;ija“fn ‘2

k k
j,€n N
W)=Y U j(y) = Y "2
=1 j=1

we fix an R > 0 such that W (y) < =3 for y € RN\ U’]‘.:1 Bog, (yieny and W (y) < 26V (Y for
y€E U’]‘.: 1Bag, R(x/en)- Then, for n sufficiently large,

T = (47, Wr > — (145, 1)e " > Tiny e RN\ UL By pruien)
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and
T (147, YW™ > —v (/&) — Ig —2log2—2iny € Byg p(yien)-
Thus
o(2"ey)
= / VYL (VO + 5 - (15 )Wy

eVl + (V) + 5, Dyr — (1+3, Y Why;

RM\US_ Byg ruin)

+ V> + (V) + 7, Dy — (147, )Wy
U1 Bog, r(cisen)

> [ eVl
RN
+0(2NeM)
=2NeN L o(2VeM).

This is a contradiction to (3.18). O

1
%+Z/ xfs”)—EN—2log2—2)l//,%

N
RYAU 2£Rx/8'l

Uk
Jj= les R(x/:€n)

We define the operators B and T as follows:

Definition 3.2. Define B(y) := Pelg + PeRe(y). From Lemmas 3.2, we can define T (y) =
(PeLe)”'B(y) = (PeLe) ™' Pele + (PeLe) ™' PeRe (W).

3.2. Finding the Fixed Point of 7'S. Due to the sublinear nonlinear term, it is very difficult or
even impossible to directly prove the existence of a fixed point for the operator 7. Therefore,
we utilize the a priori estimates obtained for the minimizer to first find a fixed point of the
composite operator 7'S, and then demonstrate that it is indeed a fixed point of 7. To apply the
fixed point theorem to the composite operator 7'S, we require the following estimates.

Lemma 3.3. There exist 0 > 0 small enough and C > 0 independent of € and T, such that
lelle < Ce®de and HZSHL“(RN) < cebd,.

Proof. Recall that (I, v)e = fpv (z§:1 (V () =V (y)Ue.j + (gT(W) —¥h (U, j)) ) v. One

has
‘/RN —V (69))Ue,
<c( [, o -veruz,) inle
:c(zNgN /R (V(ex+21) = V()02 j(zsx+xf))5\|v\|g (3.24)
<ceb ([ (vl + e PU2 2ex ) bl

N .
<Ce? (e|VV(x))| 4+ €2)||v||e = Ce%de||V]|e.
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On the other hand, from lemma 2.1 and lemma 2.5, we have

k k
[ (es0) = Y s@en)v] < [ | X eWe) —geW)]iv
R j=1 RETj=1 (3.25)
a2
<Ce 149 0 g, ||v]|e < CePde||v|e.
From (3.24) and (3.25), we see that ||le|| < Ce®de. Similarly, ||le | ;= rv) < Ce®d. O

Next, it is more difficult to estimate the error term R (S(y)).

Lemma 3.4. There exist 0 > 0 small enough and C > 0 independent of € and t, such that
IRe(S(w))le < Ce®de and ||R€(S(W))||L°°(RN) < Ce%d.

Proof. Recall that (Re(W),v)e = [pn(gc(W + W) — g:(W) — g-(W)y)v. In D,, for any 8 €
(0,1), from Lemma 3.1, we direct calculate

{Re(S(y)vlel =| [ 5=V +5()) —gelW) ~&L(W)S(w))]

=| [ #w sty (s(v)™]
<, e B,

o % .
<Ce dyde||v||e + Ce e ded||v]|e < CE%de|ve.

o (3.26)
e ) (stw)™]

On the other hand, in RV\D,, we use the fact that S(y) is a solution of system (3.3). Since
system (3.3) is equivalent to LeS(y) = I¢ +Re(S(y)), then, by Lemma 3.1, there holds

Re (S vy =ILeSW) ~ el vy < CUSUI g, + Clle I s
<CC3 292 +ce?a? < ce®dz.
From (3.26) and (3.26), we have ||Re(S(w))||e < Ce%de. Similarly, we can obtain
1R (S(y))| =y = O (%)

Based on the above estimates, we have the following result.
Proposition 3.1. There exist § > 0, 0 > 0 small enough and €y > 0 such that, for any € €
(0,&)], Bs5(En)NBs(E;) =0, m,j=1,--- ,k, there exist a unique C'-map v € E satisfying
v =TS(y) and ||y|le <de, W]~ < de.
Proof. Recalling that the operator of T is defined in 3.2. In view of Lemma 3.2, there holds

Y =TS(y) = (PeLe) ' Pele + (PeLe) ' PeRe(S(W)).
Now, we apply the fixed point theorem in A = {y € ENL*(R") | |y|[e < d¢ and ||| (ry) <
de ).
(i) TS maps A onto A. In fact, for any y € A, it follows from Lemmas 3.3 and 3.4 that
1

ITS()le < Cllelle +ClIRe(SW) e < 5. (3.27)
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Similarly, [|TS()|| o my) < 5de.
(i1) 7'S is a contraction map. To prove this claim, from Lemma 3.1, for any y1,y» € A and
6 €(0,1), in Dy, we have

[Re(S(y1)) — Re(S(y2))]

—| (8= W +5(u1)) = (g (W +5(y2)) ) = ge(W) (S(w1) = S(y2))|
(=W +S(y2) + (S (y1) — S(¥2) ) (S(w1) = S(u2) ) = (W) (S(y1) = S(2))|

—| (W +5(w2) + 8(S(w1) = S(y2))) — (W) ) (S(y1) = S(w2) )|
(%W +B(S(w2) + B(S(y1) — S(y2)))(S(¥2) + B(S(y1) = S(w2))) ) (S(y) = S(w2) )|
( (

£+ 5(92)+85() + 9 = 09)5(w2))(BS (1) + (1= 0)S(y2)) ) (S(y1) ~ S(y2))|

oZ .
<Ce4de(y1 — y2).
Similarly, in D>\D1, there holds

Re(S(w1) — Re(S(y2))| <|g (7 ) (S(w1) = S(y2)) (S(w1) +5(y2)|

(3.28)

o2

<Ce# de(S(y1) — S(v2)).
Recalling the definitions of o, and dg, from Lemmas 3.1, we have

ITS(y1) = TS(va) Iz

<C[[Re(S(y1)) — Re(S(w2)) Iz

=C||Re(S(w1)) — Re(S(w2))lIz.p, +ClIRe(S(w1)) = Re(S(w2)) Iz 0,10,
+C[|Re(S(y1)) — Re(S (l//z))HgRN\D2

o2

<Cesde||S(y1) = S(¥2)l[2.p, +C€?de\|5(llfl) —S(w2)|Z py\p,
+CIIS(w1) = S(¥2)lle zvp,

4(72

1

Sz”‘l’l lV2||le4‘C—€£2a’8||‘lfl I//2||g,D3\D1+CC12829||1V1_W2”§,D3\D2
1

<z llvi— vallz.

Therefore, | TS(y1) —TS(y1)lle < 3llw1 — olle. Similarly, |TS(y1) = TS(y2)|| L@y < 5/ ¥1 —
V2| =(ryy- By the fixed point theorem, we conclude that, for any € € (0, &, Bs(5m) NB5(&;) =
0, m,j=1,--- k, there exists ¥ € A, depending on x/ and &, satisfying y = T'S(y). Similar to
(3.27), we obtain

1

lvlle = TS(W)lle < Clllelle + CliRe(S(w))lle < 5 de
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and

W = @vy = ITS(W)l 1=y < Clllell = (mvy + ClIRe (S(W)) | = (mvy < 5 dle-

| =

O

3.3. The Fixed Point of 7. Based on the fixed point of the composite operator 7'S and the
solution of the minimizer problem, we have the following result.

Proposition 3.2. There exist § > 0, 0 > 0 small enough and €y > 0 such that, for any € €
(0,&)], Bs(En) NBs(Ej) =0, m,j=1,--- k, there exists a unique C'-map y € E, which is
given in Proposition 3.1, satisfying w =T y.

Proof. Recalling the definition of operator B, there holds B(S(y)) = Pele + P:R¢(S(y)). For
any ¥ € A, we claim y = TS(y) = T'y. Since S(y) is a solution of (3.3), then P:L:S(y) =
Pele + PeRe(S(y)). For any v € H} (RM\Dy), we have
(B(S(w)) — PeLeS(y),v), =0. (3.29)
On the other hand, y is the fixed point of T'S, 80 PeLe W = PeLeTS(y) = Pele + PeRe(S(y)).
For any v € H} (RN\Dy ), we have
(B(S(y)) —PeLey,v), = 0. (3.30)

From (3.29) and (3.30), we obtain <P8Lg(w—S(l//)),v>£ =0. In particular, (P.Le (v —S(y)), y—
S(y)), = 0. Therefore, in R¥M\D, by Lemma 3.1, we obtain y = S(y). In fact, y = S(y) in
D;. Hence, y = TS(y) = Ty and we complete the proof. 0

Completion of Proof of Proposition 3.2. Let y € A be the fixed point of T in Proposition 3.2.
We remark that y is well-defined by the uniqueness. In light of the implicit function theorem,
it suffices to prove that the operator L¢ : E — E defined as follows is invertible:

(Leu,v) = /N e2VuVv+ (V(y) — g (W4 w))uv, u,v € E.
R

Forany u € E, let u = uj +up withu; = yu € Exg, andup = (1 — x)u € EﬂH(} (RNM\D), where
x<€EN Cé (RY) is the truncation function satisfying (3.2). By the choice of y, we check that

[ulle < [lurlle + [luzlle < 2||ulle (3.31)
On one hand,
|Leulle = sup  (Leu,v) > sup  (Lu,v) = sup  (Lu,xv)
VEE ||v|le=1 VEE) 6, |[V[le=1 VEE) 65 |[V|le=1

= swp [ EVUY()+ (V) — geW + ) g
R

VEE 6, |[V]le=1
> swp [ V) (V) = g W+ )z —deoy ! ule

VEE g, |[v][e=1

> sup (Lagur,v) — |ge(W+¥) = ge(W)l 2y lulle — 4e0g |u e,

VEE 6, |[V]le=1
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where (Lyg,u1,v) is defined as

(Lag,u1,v)e :/ 2V Vv + (V(y) + 7 Huyv — (1 —|—T_1)qu1v
Q2o (3.32)
:/]RN 82Vu1Vv+ (V(y) —g’T(W))ulv, uy,v € kg,

In view of ||| =(mw) < de, as € is small, we obtain
|Lulle = Yluille = Seog ! lulle. (3.33)
On the other hand, since —g,(W + w) = h;,(W + w) > 1 in R¥\Dy, we have
(Let)e = [ 2VuTu+ (V) = oW+ ) (1 = )i
2||u2||g+/ €2Vu, Vuy
Nl + [ et ~20)VaVr 2V P)+ [ (1= 2)IVal

>|luale — /RNE (Jul |V NIVul + [V [Pu?)
>|luafe —2e05|ulle.

Therefore,
1Leullellulle > llual|g —2e0, " [|ulle- (3.34)
By (3.31) C(3.34), we have

.
2||Leulle|ualle = [[Lewl|(lurlle + l[uzlle) = Emm{l,?’}llu\le Teo; ! |lullz-

Thus L is invertible, and we have completed the proof. U

4. PROOF THE EXISTENCE OF THE SOLUTIONS

4.1. proof of Theorem 1.1 and Theorem 1.3. For € € (0,&) and 7 € (0, 7], let y be given
in Proposition 3.1. To show our main theorems, we need some results as follows. Section 3
implies that

aUs,J

Ley —1Ie —Re Zzal,]f US,] 4.1)

j=li= Yi
for some constants a; ;. Every a; ; is determined by the following equations The second step is
to choose x/ suitably, such that ajj=0,i=1,---,N, j=1,--- k. The function in the right
hand side of (4.1) belongs to

aUg’j
dyi

Therefore, if the left hand side of (4.1) belongs to E, then the function in the right hand side of
(4.1) must be zero. Recall that ug ; = We + Y ¢ = Z’;zl Ue,j + We ¢. Then one has

El:span{ ,i:17...,N,J‘:1’...,k}_

(Ley —lg —Re (W), v)e = /]RN 82Vu£,TVv+ V(y)ue,zv—gr(ue c)v, Vv € HI(RN).
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Let %0 € C}(RY) be a fixed truncation function such that

1, il’lDl,

4.2
0, in R¥\D,. *2

0<20 <1, |Vao| <205, |Axo| <20, %, x0 = {

Lemma 4.1. If x/ satisfies

oU, ) .
/]RN< SAugT+V(y)MgT gf(ugf)>x() a;’j 0,i=1,---,N, j=1,--- )k, 4.3)
l

thena; j=0,i=1,--- N, j=1,--- k.

Proof. If (4.3) holds, then

E & aU8 U
’.] 87.]
_07 =1, 7N7 = 17 7k
; ; lj/ f'(Ue) v ayh J
By direct calculation, we have
AUg ;  JUg
/ U . & £,]
U, j dUg
:/B ( j)(2+10gU£,j) asl’j p =
26\ /v )+ 542 X Yi  OYh
AU, j dUg j oU. : U, :
_2/ j asfja—er/B jy108Ue, =5 = 3 =
28\/;f;‘1‘f;§ x') dyi OV 28\/;(;3;@g;5(x ) i 9y
; . — |2 ; .
_2/ J 3;/8.,/ 8576,]+/3 } ’V(xj)—l—%]— |y48);]| (95/8.,1 aaUs,J
SN (<) 9yi Oy ZSW(U Yi ¥
_2N+18N/ OUg j(2ez+x7) dUg j(2€z+x7)
N dzi J
V(xf)+%+2(0) Z 2
+2N‘°’N/ !V (x) +——I IIaU” 2ez4x7) IUe j(2e2+ /)
; Zi 8zh
V(x/)+%+2

=eN 4 (§picj+o(1)),

where 8,; =0 if h =i, and §; = 1,c; > 0 is a constant. Moreover, it follows from Lemma 2.3
that

dUg,; JU gl

y £,j em N—4 c .

e 2Ues g, 2em _ ghso( ) s,

\/RNf ( 87.]) &yl X0 ayh J 7£

So, we conclude thata; ; =0, i=1,--- N, j=1,--- k. O
Now, we are ready to complete our main results.

Proof of Theorem 1.3. We only need to solve (4.3). The main task is to find the main term
for the function in the left hand side of (4.3). Recall that W, = Zl;':1 Ug j(y), where Ug (y) =
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N _ b= xj‘

¢’0)+3 ¢ 42 Note that Xo 1s defined in (4.2). Then the function in the left hand side of
(4.3) become

U,
/]RN( € AM£T+V( )usr gr(”81)>%0 8;]
U,
_ _ o2 — &J
= [ (-~ @AWtV )We —g:(We) ) 20 3
e

—l—/ ( gr(”sr)+gT(W€)+g(U&J)WST)XO dy;

IUe o0Ug ; oU. :
T / V) 205 We e + / 282V)(0V E e o — €2 p oot AxO)
a ayl 8yl
=:A1+Ay+A3+Ay.

Firstly, applying the symmetry of U, ; and Lemma 2.3, we have

AU
/ (V) =V Wero 5
Uk, OUe

~( /D ) -V (ag;”)) Ve ey + €0 )
AU j( 28x—|—x ) )

:C<2N8N/RN(V(28)C+xj) _V(x])) ( jHUg]HLZ RN) 8N_10<e_8%>

e j 2,122 aUg7j(2£X+X) T N-1p(,~5
=ce¥ ([ (Vv I+ e (SR )) 10 slizqeny + €Y' 0 (e )

<CeN(|VV (&) +e),

for some ¢ > 0. Therefore, by Lemmas 2.2, we have

: IUe a oU
M= [ VO VW Tk [ (X 8(We) —ss%e) ) 105

1

—CeV(|IVV ()| +e) +8N_90<e_e§>
<CeN(|VV(x/)| +e).

For A;. Next, we claim that the contribution of the error term Y ; to the function in the left
hand side of (4.3) is negligible. Then

AU, dUg ;i
|A;| S)/RN (gr(usﬂ) — 8t (We) — &' (Ue.j) e, T>%0 ©l gT(W£)>%0 a;id

aU,
S’/N gT(WE+‘/’s,c)_gT(WE)_g/(Ws)Ws,T>ZO 8;’71

Ug.
+‘/ "(We)We o — (Ue,j)We,r>X0 =A +A2.

i
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Since Y ; € A. By Lemmas 2.2, we obtain

U, ;
< _ _ / 87.]
A _‘ /RN (gr(We+ Ve,r) — 8t (We) gT(Ws)ll/m))(o I

oUs ;
/ ! €,j
+’/RN (gr(WE)_g (We))ll’e,floa—yi

1
+8N_90<e_eg)

dUg ;i
= /RN (gr(We+ ‘I/e,r) _gr(We) _g/T(Ws)II/e,‘r)XOWS;]

1
+8N—90<e—€€>

AU, ;
:/ <gr(We+‘I’£,r)—gr(WS)—glr(WS)‘l’s,r> 887]
D Yi

2
+eN-%0 (eeé>

_% U
< 7 &2 2 £,]
<| [ gie e

i

o2 1
N ZE . N . £
§C87_1€82 dg”ll/g?‘[ 3+C87_1dg||v/g’f”g+8N_90<e_e )

:0(8N+%_20).

There exists a constant 0 > 0 such that

IUe ; Uk,
Azzz‘ /R N(logWg—logUs,j)XOﬁllfe,r < /]R N‘(logWe—logUe,j)Wi’]‘l’m

Zs;éers aUsj Zk—]U&‘s aUsj
= log(1+ : : +/ log ==—— ’
Bgs(xJ) ( g( U&j )) 8y,' Ve.r RM\Bj (x/) ( & U&j > 8y,~ Ve
1_g k 1
=0(e”! / Ue s + Ug; Ues)?
( Bs(xn(s;j LGN ST M ves)

—0(&7'e [ eclle).

By Lemmas 2.2, we see that

il =| [0 -V ves
<c( [ o -vw (%)) vt

—c(2Ve" /R (V(2ex+) —V(xf))z(wg’f (zij”j))z);nwe,r

| 1
N j 2 2v2 (Ve j(28x+x7)\ 2\ 2
<cel ([ (Vv el +e? (ST el

5

<CeNTI0(|vv ()| + €).
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= 0(8 16\/]ln£|>. Recall the

Ug]

In D>\D;, we know that ’Vagygjf = 0(8 16|1n£]> and ’

definition of o and Y ; € A. Finally, we obtain

U ; U ;
‘A4‘ S‘ / 282V%0V E,] wgﬂj + ‘/ 8211/871- 87] A%()’
RN dy; RN 3)’;‘

-~ oUs ; _ 8U
<4 826 1’ 8—87] |‘l’s,t‘+2/ 2‘Wsr| =&l
Dy\D, Yi Dy)\D,
8U
:0<GN826—1‘ 2| £,J ) 0(8N+9)_
i
In conclusion, we have
oU, :
/RN (—SZAM8,7+V(Y)M£,17_81(”8,1)>XO 8;] 8N(|Vv(xj)|+£)+0(8N+9)-
l

Therefore, system (4.3) is equivalent to
VW) =0(e?), j=1,- k. (4.4)

By the assumption that deg(VV,B;s(&;),0) # 0, we deduce that (4.4) has a solution x/ € Bs(&;),
and |x/ — &;| = O(€?). For € € (0,&) and 7 € (0, 7], we prove that We + g ¢ is a solution to
(1.5). 0J

Proof of Theorem 1.1. By Theorem 1.3, for € € (0,&p) and 7 € (0, 7¢|, there exists We z + We ¢
which is a solution to (1.5). In addition, ||y ¢||¢ < %dg. Then, up to a subsequence, we may
assume as T — 0,

Ver — We weakly in H' (RY),
We.r — W, strongly in H'(RM).

We have that We ¢ + We ¢ — We + W := ue and ug is a solution to (1.1).
Next, we prove that ug is positive. As € — 0, there holds ||ug ||Lr < ||We||lLr — O for all
p € (2,2%). However, by (1.1) and the Sobolev inequality, we have

iz s <Cp [ (€319 P+ Vi )2) <, [ (g Plogles) < o I,

for some C,, > 0 independent of €. Therefore, u, = 0 for small € and the maximum principle of
[15] implies ue > 0. As a result, We + v is a positive solution to (1.1). The proof for Theorem
1.1 is completed. O

4.2. proof of Theorem 1.2 and Theorem 1.4. We outline the steps of the proof of Theorem
1.2 and Theorem 1.4. Similar procedures to Theorem 1.1 are not repeated here. Note that xg
is an isolated local maximum point of V(y). We take k points x!, -+ x* such that x/ — xo,

, 1
j=1,---,k, as € = 0. In this case, taking d := min,,;[x" —x/| = wslng,m,j =1,k
Lemma 2.2 and Lemma 2.4 are also available.
For any fixed 6 > 0 small enough, we always assume

;= : 1
X ESe = {X:xJ € Bs(xo), j=1,---k, |x""—=x/| > Uelng, m%j}. 4.5)
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Step (i): For eachx € S¢ and y € E, we set J(y) = I(W + y). Thus

<%I‘V”),v>e = /]RNgZV(W+I//)Vv+/IRN(V(W+ V) —g(W+y))v, vEE,

which can be written as

<M’V>g =(Ley —le —Re(W),v)e, vEE,

Iy
where L, I and R () are defined in (1.8), (1.9), and (1.10). Similar to the proof of Theorem
1.3 in Section 3, by replacing &; with xp, j = 1,--- , k, we can solve a{}( ¥) — 0in

A={y e ENL*R") | ||l < de and ||| =(gn) < de},

where d; and d are defined in (3.1).
Step (ii): For € € (0,&)), x € S¢, and 7 € (0, 7¢], we have reduced the perturbed problem to

21w L
o= Lo e Relw) = 1 Y 0

j=1li=

for some constants a; ;. Therefore, we need to choose x/ suitably such that a; ; =0, i =
1,---,N, j=1,--- k. For this purpose, we use the following result, which can be proved
by standard analysis.

Lemma 4.2. Denoting F(X) for W + ), suppose that X* is a critical point of F(x). Then
aij=0fori=1,--- Nand j=1,--- k.

From Lemma 4.2, we only need to prove that F(x) has a critical point in S¢. To show our
main theorems, we need some energy expansions as follows.

Lemma 4.3. There exits 0 > 0 small enough such that J(y) = I(W) + O(e"T1729).

Proof. Step (i): To obtain the lower bound for J(y), we expand J(y) as follows
JW)=IW+vy)=IW)+1L+5L+1,
where
1 2 2 2 ‘
=3 o TPV [ (L el - e0) v,

b= [ (He(W -+ ) = HW) = he(W)p).

b= [ (FW+y) = (W) = f:(W)y).

From Lemma 2.4, one sees that I} = O(SN +1’26). By the mean value theorem and Lemma 2.1
(ii), there holds I, = [pn (he(W +0y) —he(W))y > 0, where 6 € (0, 1). On the other hand, we
have
1] < 12D l=llwlle = 0 (e¥1729).
Therefore,
J(y) > I(W)+0(eVt1728),
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Step (ii): We estimate the upper bound. Let x € ENC}(RY) be as in (3.2). We can know
Xy € ENHJ(D3). Since y is the fixed point of S, by Lemma 3.1 and the definition of d¢, one
fnds

lxwllz = 1wz o, + 12Wl7 zn,
< H‘l/”e D, T ||‘l’||g RN\D, (4.6)

1 1 | )
< ng‘f‘ ||S(W)H5,RN\D2 < Z8N+2729 +C%820dg < Z£N+2 29.

By Proposition 3.2 and the definition of S, it holds that y = S(y) = S(xy), where S be the
operator given in Definition 3.1. Then by Lemma 3.1 (i), there holds

1(y) = J(S(y)) = inf (W

J(S(xw)) =1(W+S(xv))
F(W+S(xy))
<STW+xy) =1W+xy)=1(W)+§L +5,

where
‘_1 2 2 2 :
=5 [TV + [ (L ee) a0 2w

b= [ (Ge(W+2y) = Ge(W) — g:(W)xw)
and the last inequality holds because

J(S(w)) =T(S(y)) = inf [(u) <I(W+xvy).
ULy
By Lemma 2.4 again, I} = O(SNH*M).

On the other hand,

1.1
W llim0y) < 5de < 5 infW]. 4.7)

Therefore, it holds from (4.6) and (4.7) that

Bl =| [ (GeW 4 29) - GeW) —2eW)w)

1 o}
< /( nf ) 2 - 9 Nt+2-26 (N+1 29).
_/2|g1 —21En2\W| [(xw)”: nge =0|¢

Now, we are ready to complete our main results.

Proof of Theorem 1.4. With S; defined in (4.5), we consider the following maximization prob-
lem

max F(X).
XGSg

Then it is achieved by x* € S¢. In order to prove that x* is a critical point of F(x), it suffices
to show that x* is an interior point of Se. We take x/, j = 1, ,k, satisfying |x/ — xp| < eP



30 X.DUAN, Z. GAO, Q. GUO

. 1-B
and [x" —x/| > (,/elné) ,m# j, where 1 > B > 0 is a small fixed constant. Then, for

x* = (x!,--- x¥) € S¢, one has

1
F(x*) = ZAksN V0N N (e2P)).
Suppose that there exists x/0 such that, for x/0 € dBg(xq),
1 £ 1 N
F(x) < ZeN(27r)%e2V(x N | a ) eV (2m) 3 2V 0N 1o (eN) < F(x¥).
J#Jo
But this contradicts the fact that x* is a maximum point of F(x) in Sg.

_ . _ . 1
Suppose that there exist x0 and x/°, my # jo, such that |[x" — x/0| = 4 /€ln e Then

F(x) < %keN(zn)’zveZV@oHN — BeNtse V00N 1 eNO(g) < F(x),

for some B > 0, which is also a contradiction. For € € (0,&), x € S¢ and 7 € (0, T¢], we have
proved that x* is a maximum point of F (x) in Sg. Then We ; + W ¢ is a critical point of 7 and a
solution to (1.5).

O

Proof of Theorem 1.2. By simply repeating the proof process of Theorem 1.1, we can derive
Theorem 1.2 immediately.
OJ

5. THE NON-DEGENERACY OF THE SOLUTIONS

In this section, we prove the non-degeneracy of positive multi-peak solutions Theorem 1.5.
From Section 4, we find a positive solution u, to (1.1) of the form ug = W + ¢, where W and
Y are the limits of W ; and Y ¢ as T — 0. In order to obtain some important estimates, system
(1.1) can also be rewritten as the following equation about Y :

Leye =l +Re(ye), inRV,
Ye € HI(RN)a

where L is a bounded linear operator in H' (RV), defined by
(Lee, v)e = /R (EVYTy V() yey — g (W)yev), W e H' (RY),

Ie € H'(RV) satisfies

(s = [ ( LV =YDV (600) = (00w e ' &

J

and Re(ywe) € H'(RV) satisfies

Re(wi)v)e = [ (8(0V -+ ) —g(W) = (W)ye)v, W & H'(RY).
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5.1. Pohozaeyv identities. The crucial Pohozaev type identities we will use are as follows.

Proposition 5.1. Let u be the solution of (1.1), £(1n) = 0. Then the following local Pohozaev
identities hold:

V() » dudu =, 2 2 1 5
u> = —2¢? +£/ Vu vl-—/ u-lo uv~—l—/ V(y)+<)uv;,
o dy; 90 dy; OV asz‘ | 2Q glulvi asz( 0) 2)

(5.1)
and
aV(y) 2 [ Ou 9N > /
“oun = — = Vu,V - 6.
[0 = [ (Gea S+ [ @uvnyvoumvi- [ togludunvi, 52
where v = (vy,---,V2) is the unit outward normal of dQ.

( )

Proof. 1dentity (5.1) is obtained by multiplying === on both sides of (1.1) and integrating on

dQ. While the identity in (5.2) is obtained by multlplymg ( ) and ( ) on both sides of (1.1)
and .%;(n) = 0, respectively, and integrating on dQ. We omlt the detalls U

5.2. Some estimates on the multipeak solutions. First, we need to estimate ug on dBg(x/*¢)
as the following Lemma.

Lemma 5.1. Let {ug}e~0 be a positive solution to (1.1) concentrating at &y, -+ , & C RN. For
any fixed R >> 1, there exist constants ¢ > ( enough small and C > 0 such that

e (y |<CZe_c VyERN j=1,-- k. (5.3)

and )
Vue(y)| <CY e e, Wy € RN “Be(6/%), j=1,--- k. (5.4)
j=1

Proof. SetV,, = %inf yerv V() and write —&2Aue + (V(y) —log|ue|)ue = 0. For fixed R enough
big and € enough small for any a € (0,V,,), there exists R > 0 such that

k
V(y) —loglue| > o, y € RV\ Y Bre(x').
j=1

Therefore, we have —&?Aue + otue < 0 in RV Z’J‘-ZIBRg (x/€). Let Lgv = —&2Av+av, v €

Valy—x/€| )
H'(RN).Forv;(y)=e ¢ ,j=1,---,k, it follows that

82( a (N—-1)J/a
g2 ely—x/*

Taking v;(y) = cv;(y) — ue (), one has Lev;(y) = cLev;(y) — Leue(y) > 0,in RN\ £ Bre (/).
Since ue € Cppe(RY), in dBge(x/€), then there exists M > 0 such that |ue| < M. When ¢ =

. Valy—x€
MeVOR in dBoge(x/€), one has 7i(y) =cvj(y) —ue(y) > ce” T M > 0. Therefore,

Levj(y) >0, inRN“YY_| Bre(x/),
(y> 2 07 in aBR&'(xj’g)?
7i(y) =0, as y — oo.

Levi(y) = — )w(y) +ov;(y) > 0.

=
~
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Hence, by the comparison theorem, we obtain #;(y) > 0in RY “Z’]‘.zl Bgre (x/€). While in Bge (x/¢),
we have the estimate MeVoR Z’j‘. —valt= jel > M > ug. This completes the proof of (5.3).
(5.4) is similar to (5.3). ]
Corollary 5.1. If W in Theorem 1.1 satisfies | Wel|le = ( 2“) for any fixed 6 > 0 enough
small, then there exist constants ¢ > 0 enough small and C > 0 such that |ye| < CYX e € %
forally e RN and |Vye| < Ce™ ¢ forall y € dBg(x/), j=1,--- k.

For using the crucial Pohozaev type identity (5.1), we also need the following result.
Proposition 5.2. Let u, = Zl;.:l Ug,j + We be the solution of (1.1). Then ||We|le = 0(8%”).

Proof. From Lemma 2.2 and the definition of L., we see that
(Leveve)e = [ VWl +V0) (W) = (W) (ve)?
1
= [ EVWL V0P g W) (v +0le " [ (ve)?)
RV RN
= 3
= (LeWe, We)e +0(e”¢ /RN(‘I’S)Z)-
Note that 7HWgH% <A{LeWe, We)e < (LeWe, We)e, We € Ee. We mainly estimate (Le We, We)e.
<i6‘l’8>‘l’£>£:/ l~£‘l’£+/ Re(we) Ve,
RN RN

Under the condition (V;), we obtain

1
[ V0) =V Uejwe| <C (2% [ (viaextx)) ~V()U2 2ex+x)) vell
RN RN '

1
<cet ([ (evVeljal+ P2 2ex +x7)) el

N
<Ce? ||y
(5.5)

On the other hand, from Lemma 2.2, we have

‘/RN <gr(W)_Jig(U£,j)>V’s S/}RN

Recalling the definition of I¢, we see from Lemma 2.2, (5.5), and (5.6) that

- 1 N
(le,We)e = (le, We)e +O0(e™© /RN Ve) < C8g+2”‘//8H8-

In D5, for any 6 € (0, 1), we direct calculate

) eV ) =09~ e ¥ e

<)
D,

k 1
Y 8(Uej) = ge(W)|lwel <Ce [lyelle.  (5.6)
j=1

< Ceeellyells < Ced |yl

(5.7)

gl (e_:g) (ve) Ve

—‘/ t(W+0ye) (We)zll/e
Dz
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On the other hand, in RV\D,, we use the fact that Ve is a solution of system (1.1). Since
system (1.1) is equivalent to L We = l¢ + R (We), there holds

- - - N
Lo Rewelve= [ (Leve ~T)we < Ce¥ | yelle o, 58)
RN¥\D, RN\D,

On the other hand, from Lemma 2.2, (5.7) and (5.8), we obtain

(Re(We) e)e = (Re(We), We)e + 0(e~ [elle) = o(1)]|vell2 + O(e* | velle)-

Finally, we obtain ||ye||c = O(g272).
0J

From the crucial Pohozaev type identity (5.1) and Proposition 5.2, we have the following
known result.

Lemma 5.2. Let ug be the solution of (1.1) concentrating at k, k > 2, different non-degenerate
critical points {&y,-++ , &} C RN of V(y). Then it holds

/€ —&j| = 0C(e), for j=1,-- k. (5.9)

Proof. Applying (5.1) to ue with Q = Bs(x/€), where § > 0 enough small, we have

/ JRAL- Iy aug%ﬂz/ | Vue[v;
Bs(xi¢) 0Yi dBs(xi€) yi IV 9B (x/*)

1

2 2
- u;log|u v~+/ V(y)+ =)uzv;,
/c?Ba(xjve) € g| 8| ' aBé(xj=8)< (y) 2) .

From Lemma 5.1, we know that |ug| 4 |Vue| < Ce™¢ for all y € Bg(x/€), j=1,---  k, where
¢ > 01s a constant. Then,

(5.10)

ug logue < Ce_%(g —logC) = O(e_%).
Therefore, (5.10) equivalent to

/ . Mu%zO(e_%),izl,---,N.
Bs(vi€) O

On the other hand,

/ <3V(y) B 9V(Xj’€))uz
Bs(wie) \ i dyi /¢

= . <V2V(xj’8)7y—xj7g>u%+0(/ _ (\y—xj’8|2>u§)
B (x/€) B (x/#)

= Jis j5)<V2V(xj78),y—vag)(U;j+2Ug,_,~q/g+(1,,8)2)+0(eg+81v+1)
5\X”

Now, by the symmetry of Ug_, we have fBé(x,;g)(VzV(xj’s),y—xjvS)Ug ;=0,i=1,---,N. By

J
Holder’s inequality, we have

[ e (V) =) Qe e+ () = ofe ),
5(x)e
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Therefore, fBé(xj_g) ag—y(ly)u% - 0(8N+1). Then, fori=1,--- N,

92V (&) el 2 N+1
/195(x18 < dxiox 1 i = o(e77).

So, combining the condition (V2) and [p_ (i) u2 = O(g"), we obtain (5.9). O

5.3. Non-degeneracy result. Let u; be a solution of (1.1) constructed in Theorem 1.1. Sup-
pose that there exist €, — 0, satisfying ng, € H'(RV), || ne, || r=myy = 1, and Z, Mg, = 0. Let
Ne,n,j(X) = Ne,, (26mx +x7%m). Now we study the asymptotic behavior of 1, ;(x).

Lemma 5.3. It holds N, ;(x) = YN a;; a[){ , uniformly in C' (Bg(0)) for any R > 0, where a;
are some constants.

Proof. In view of |1, j| < C, we may assume that 1¢,, ; — 1; in Cjoc(RY). Then 7; satisfies
—AN;+V(E))n; = (1+logU;)n;, in RV,
which implies ; = YN, a;. ’%Zl -
We decompose
Men.j (€ Z amd iS5 ns,,,,,

As in the proof of Lemma 5.1, it is standard to obtain the following two lemmas.

Lemma 5.4. There are constants ¢ > 0 and 0 > 0 enough small, such that |n¢| + |Vne| =
O(e™¢) forally € dBs(x/), j=1,--- k.

Lemma 5.5. There exist € > 0 and & > 0 enough small, R > 0 enough big and ¢ > 0 enough
small, for any € € (0,&), such that [n; |+|Vng ;| = O(e™¢) forally € dBg(x'), j=1,--- k.

For using the crucial Pohozaev type identity (5.2), we also need the following result.
Proposition 5.3. For 1 satisfying £¢(n) =0, it holds ||N¢||e = 0(8%).
Proof. From —&2An(y) +V(y)n — (14logue)n(y) = 0, we have
1
neli2= [ (1+logue)(me)* = | gtlue) (e +0(e " | (me)?).
RN RN RN

Since |Ne| < 1 and |ye| < €, then

‘/ (W +0y) (ll/s (Me) ’</
< [L<g;<e—£))2(%)4+82(n€>4]

—2Jp, Le?

20'§
<Ced eVt [ (neP < CeV+elimelE
D, ’
For € enough small, for y € Byg, (x/), we have W (y) < 2¢2. For y € Bag, (x/), there holds

. N
gW) =t H(1+D)W|"=1) < V() + o +log2+2.
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By Cauchy’s inequality and the fact |ng| < 1, we see that
1 1 2 2
[ demweme?| <5 [ [ (ee0)* (ve) + 2me)’]
D, D, LE

§C8N+2+82/ (Me)* < CeN +€|nellz p,-

2

Therefore, for any 8 € (0,1), it holds
[ g2 = [ (W -+ ve (e = eW)vene) + [ gelW)we(me)?
D D D,

2 2

= [ W+ 0w e+ [ gW)we(ne)? < Ce" + e,
2 2

Therefore,
1
nellZn, = [ gtlue)me?+0(e " [ (o)) <Ce¥+emelEp,. 11
2 2
By Cauchy’s inequality and the fact |n¢| < 1, we see that
of
Lo guedme? <C [ e mllme
RN\D, RV\D,

<c[ e Emilne
RN\D,
N | 22 2
< Ce” +€7||nellg gy p, -
So, ||ne ||§7RN\D2 < CeN+ 82||ng||§7RN\D2, which together with (5.11) finishes the proof. O
To see a contradiction, we also need the following crucial result.
Proposition 5.4. Let a;; be defined as in Lemma 5.3. Thenaj; =0 for j=1,--- k,i=1,--- |N.

Proof. Applying (5.2) to ue with Q = Bg(x/€), where § > 0 enough small, we have

A4%))
/Bs(x./,e) dyi Helle

dus INn
2 € € 2
=—¢ —+ — +/ e (Vueg,Vneg) +V(y)u \ (5.12)
/QBé(xf?f)(aV ayi) 835(va‘>‘)( (Vug,Vne) (y)uene) v
— log|ug|uegnevi,
/QBg(xiae) glue|uenevi
where v = (v1,---, V,) is the unit outward normal of dBs(x/¢),i=1,--- ,N. From Lemma 5.1,

we see that c
uglogue < Ce™ ¢ <E —logC> = O(e_%).

In view of |n¢| < 1, one has faBs(xj,g)log]ug\ugngv,- = O(e_%). From Lemmas 5.1 and 5.4, we
have

L (€6 V0e) 4V (Juene)vi = Ofe ),
dB;s(x/%)

and

du 817 _c
2 e | Tley _ o(e~%).
¢ /335()&@)( av " 8)’;') (e7s)
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So, (5.12) is equivalent to st(x,-,g) ag—y(,y)ugng = O(e_%), i=1,---,N. As aresult,

IV (2ex+ x/€ ~ j
/ 2exts )ue(28x+x]’8)ne(28x+x]’£) =0(eMe7e), i=1,---,N.
B s (0)

8xl~
Then
oV (2ex+x€)  IV(x) J:€ J€Y — N _-¢
/Ba(o)< dx; T ”8)”8(28x+x JNe(2ex+x1%) =0(e Ve ¢),

2

which also implies that

82V J.£ ‘ .
€ 2/35 3)61; X ))Xlue(28x+x178)ne(28x+x178) =o(¢). (5.13)

Letting € — 0 in (5.13), one sees that

azv
Z/BR dx;0x |y §J>xlU Za]l

%V (y U;
X; ;lz"l ( dx;0x; ’y 6J)aj’l/ WUige ox; =0,

(5.14)
but
au; 1 9%U;
U=, = =—— | U?<o.
/I;N MY axl 2 RN A axl RN I

We obtain from (5.14) that

9%V (y) T T

= 5 i = 0,"'70 ) .:17"'7]{7

(8x8x1 = él)NxN< aj) ( )

where a;; = (aj;1, - ,ajin). By the non-degeneracy of §;, we conclude that a;; =0, =
l,---,k,i=1,--- ,N. O
Proof of Theorem 1.5. In conclusion, we have proved 1 = o(1) in Bge(x/€),j = 1,--- ,k,

which, together with Lemma 5.4, gives ||N¢ | .= vy = o(1). This is a contradiction to || e | ;=) =
1.

O

APPENDIX A. ENERGY EXPANSIONS

In this section, we expand (W), where

I(u) = %/RN(82|VM|2+V(y)u2)dy— /RN Ge(u)dy, uc H'(RV).

Proposition A.1. It holds following estimate

k N i ‘xj7ﬂ1|2
Z (2m) 3 Z eV (2rm)ze AV AN o™ e
m=1 Jj#m
_(1-2yE)2 ) o2 k
+eVo( Y e w 4e ) W)

J#m m=1
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Proof. We note that
L -
1) = [ (EVWPvew?) - [ Gw)
1 k k
:5 - (; U87] gr(W )W—I— <Z X] Ue,]>W (A1)

j=1
+ 1 / Wr+2
2(2+T> RN )

Recall that d := min,,£j|x" —x/|,m, j = 1,--- ,k. When j # m, for any y € B, /z4(x™), there
holds

k
/Bz\/:?d(x'") ( ; &(Uey >

2 3
S/B oy Ve y Us,j+4< y Ug,j> +3U;,,11< y U&j) + Y UemlUe jlog(Ue U ))
NG

j#m J#m J#m j#m
(L) < Y. U loa(Uentc )
j#m J#m
2 2
_Zg 27-[% X"+ (x)+Ne*1‘617+8N0<678d?>_
JjFm
Hence,

k p
/uk lngd(xm)( Z Ue,]> Y eN(am)T e WAV N 1682+8N0<e 372>
m & J:

j#m
(A.2)

From (A.2) and Lemma 2.2, we have

/ (Zg U&"J —8r W)>W
= /R L (gom) —gg(ug, D)W+ eNoe )
:_/Ufn132\/5d(xm)< ]zi (Ue,, ) (A.3)

k 1
—/ ( Z (Ue,j )W—f—SNO(e_eE)
RV\US,_ 1 By /za (6™) =
1-2,/8)2d?
==Y 8N(27T)%€2V(x°)+Ne_@ +£N0<e_( 82 >

j#m
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When j # m, for any y € B, /z,(x™), we obtain

oy VOV = V) Ve

= (V) = V™M) UE, + (V) =V")Uem Y. Ue,j
By /ea ") By /ea(*™) j#m
+ Vo) =v(E™) Y, Ue,Uey
By jeq(x™) j#Em#l
<CeV [ (V(@ex+am) — v () N2
%O
30 W2
+Ye / (V(2ex+x™) — V(")) 2V o)tV =3k o= s -
j#m % 0)
2 |xJ—xl\2
V(2ex+x") = V(™)) 2V o) N p =3 f? = Ty
By
ﬁém#l T
:£N+10<Vv(x )+£).
Hence,
k k
/ Y, (V)= V&™) UemW = N“o( Y VV(xm)+8>. (A4)
Uﬁl lefd(xm) m=1 m=1

From (A.4), we have

k
L X (V) =V Ue,w
=1

k k
= Vv — V(™ Ue W + \% — V(™ U W
/ — mgl< OV VNt [y B (YOI
d2
-/, Y (V) = V) UenW + eV e 0V (") + €)
mlBZfd ’=m

=eN1o( Zvv )+é).
m=1

(A.S)

Finally, due to the choice of 7¢,, there holds

2(21+ 7) /1;2\/gd(xm) W :411 (1 * 0(")_6‘%)) /B
!

4 By szq(x™)
2

:%8N(2ﬂ)g’e2v(xm)+N +eNo (e 87)

2
(Vem+ Y Uem)
j#m

2
Uz, +€e'o <e 2 )

2\/ed (x™)
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Thus,

2

1 42 _ LN Ny N oveman | Nl
w :Z):‘C’ (27m)2e +e 0(6 8€2>. (A.6)
i=1

2(2+1) /Uﬁq_le\/Ed(X'")

As a result,

1 T+2 1 / T+2 / T+2
SR = W W
2(2 —+ T) AN 2(2 -+ T) Uf;:le\/gd(xm) 2(2 + T) RN“Ufn:]BZ\/Ed(xm)

1 _-2vejd?
__ / Wepeho(en W) (A7)
2(2+1) Une1B2yza (a™)
m o e2d2
:% Z 8N(27E>%€2V(xm)+N +eNo (e_(l 289 d )
i=1
Thus, the result of Proposition A.1 follows from (A.3), (A.5), and (A.7). ]
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