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EXISTENCE OF GLOBAL AXISYMMETRIC SOLUTIONS FOR A 3D
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SYSTEM
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Abstract. We study the global well-posedness of an inhomogeneous incompressible Hall-MHD system
in the whole space R3. Let ρ0 be the initial density of the fluids. Under certain appropriate smallness
assumptions on a0/r, where a0 = (1/ρ0)−1 and r = (x2

1+x2
2)

1/2, we demonstrate the global regularity of
the solutions to the Cauchy problem of the inhomogeneous Hall-MHD system with axisymmetric initial
data, where the swirl component of the velocity field and magnetic vorticity field vanish.

Keywords. Axisymmetric; Inhomogeneous incompressible hall-magnetohydrodynamic; Global regular-
ity.

1. INTRODUCTION

In this paper, we consider the global well-posedness result to the Cauchy problem of three
dimensional density dependent incompressible Hall-magnetohydrodynamic (Hall-MHD) with
axisymmetric initial data

∂tρ +div(ρu) = 0,
ρ(∂tu+u ·∇u)−∆u+∇P = B ·∇B,
∂tB+u ·∇B−∆B+h∇× ((∇×B)×B) = B ·∇u,
divu = 0, divB = 0,
ρ(0,x) = ρ0, u(0,x) = u0, B(0,x) = B0.

(1.1)

In the following context, we denote P= p+ 1
2 |B|

2, the unknown functions ρ(t,x), u(t,x), p(t,x),
B(t,x) denote the density, velocity field, pressure, magnetic field of the fluid, respectively, and
h is the Hall’s constant.

When the initial magnetic field B0 is identically zero, system (1.1) is nothing but the inho-
mogeneous incompressible Navier-Stokes (N-S) system. In addition, there are numerous well-
posedness results with axisymmetric conditions on the initial data. For the homogeneous N-S
system, Ukhovskii and Iudovich [1], Ladyz̆enskaja [2], and Leonardi et al. [3] proved the global
existence, uniqueness, and regularity of the generalized solutions when the swirl component of
the velocity field is trivial. For the inhomogeneous N-S system, Abidi and Zhang [4] proved the
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global existence of the solutions when ‖a0
r ‖L∞ is sufficiently small, where a0 =

1
ρ0
− 1. More-

over, when the initial velocity belongs to Lq for some q∈ [1,2), Abidi and Zhang [4] also proved
that the velocity field decays to zero with exactly the same rate as the classical N-S system. A
similar result for the case that ‖uθ

0‖L3 is nontrivial but sufficiently small was proved by Chen et
al. [5]. For more global well-posedness results with axisymmetric initial data, we refer to [6, 7]
and the references therein.

When h = 0, (1.1) is the classical MHD system with magnetic diffusion. In what follows, let
us briefly recall some known results on the MHD system. Firstly, in the case of Rd(d represents
the dimensionality), for the viscous and resistive homogeneous MHD system, Duvaut and Lions
[8] established the global existence and uniqueness of the solutions in classical Sobolev spaces
for small initial data. The local well-posedness of classical solutions for fully viscous MHD
system was established by Sermange and Temam [9], in which the global well-posedness was
also proved in R2.

For the viscous and non-resistive problem, Lin, Xu and Zhang [10] constructed the global
smooth solutions around the equilibrium by imposing some admissible conditions in the R2

case. Later on, the global existence of small solutions without imposing such admissible con-
ditions on the initial magnetic field was obtained by Ren, Wu, Xiang and Zhang [11] (see [12]
for a simplified proof).

For the non-resistive MHD system in the R3 case, the global well-posedness result was ob-
tained by Xu and Zhang [13] by introducing the Lagrangian reformulation of the problem,
and by imposing some admissible conditions on the initial magnetic field in [10]. Such ad-
missible conditions were removed by Abidi and Zhang [14] under a more intrinsic Lagrangian
reformulation. The existence of global solutions in a periodic domain was obtained by Pan,
Zhou and Zhu [15]. The global regularity of the axisymmetric solutions was proved by Lei
[16]: If u0,B0 are both axisymmetric divergence-free vectors with uθ

0 = Br
0 = Bz

0 = 0, and

(u0,B0) ∈ Hs, s≥ 2, Bθ
0
r ∈ L∞, then the MHD system satisfies

‖u(t, ·)‖2
H2 +‖B(t, ·)‖2

H2 +
∫ t

0
‖∇u‖2

H2 ds. exp{e(1+t)
7
4 et

5
4
}.

For more studies on MHD system, we refer to [17]-[33] and the references therein.
Let us now briefly recall some known results on the homogeneous Hall-MHD system (the

case of ρ = 1 in (1.1)). The global existence of weak solutions and local well-posedness with
initial data (u0,B0) ∈ Hs×Hs(R3) when s > 5

2 were obtained by Chae, Degond and Liu [34].
Later on, Benvenutti and Ferreira [35] improved the results to H2(R3) and Dai [36] showed the
local well-posedness when (u0,B0) ∈ Hs×Hs+1−ε(R3) with s > 1

2 and small constant ε > 0.
More recently, the global well-posedness of small initial conditions with (u0,B0) in critical
space was obtained by Danchin in [37].

Under the assumption of axisymmetric data, motivated by [16], Fan, Huang and Nakamura
[38] obtained the global well-posedness result to the viscous Hall-MHD system. Recently,
Li and Cui [39] established the global well-posedness for the horizontal dissipation Hall-MHD
system. For more studies on Hall-MHD system, we refer to [40]-[52] and the references therein.

The aim of this paper is to establish the global solutions of the inhomogeneous Hall-MHD
system (1.1) with axisymmetric initial data. Without loss of generality, we assume h = 1. For
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that, let x = (x1,x2,x3) ∈ R3,

r =
√

x2
1 + x2

2, θ = arctan
x2

x1
, z = x3,

and 
ρ(t,x) = ρ(t,r,z),
u(t,x) = ur(t,r,z)er +uz(t,r,z)ez,
p(t,x) = p(t,r,z),
B(t,x) = Bθ (t,r,z)eθ ,

where the basis vectors er,eθ ,ez are given by

er = (x1/r,x2/r,0), eθ = (−x2/r,x1/r,0), ez = (0,0,1),

and we have assumed that uθ (t,r,z) = Br(t,r,z) = Bz(t,r,z) = 0. In these settings, we find that

u ·∇ = ur
∂r +uz

∂z,∇× ((∇×B)×B) =−2
Bθ

r
∂zBθ eθ =−∂z

(Bθ )2

r
eθ .

Then (1.1) can be rewritten as

∂tρ +u ·∇ρ = 0,

ρ(∂tur +u ·∇ur)− ∆̃ur +∂rP =− (Bθ )2

r ,
ρ(∂tuz +u ·∇uz)−∆uz +∂zP = 0,

∂tBθ +u ·∇Bθ − ∆̃Bθ = urBθ

r +∂z
(Bθ )2

r ,

∂rur + ur

r +∂zuz = 0,
ρ|t=0 = ρ0, (ur,uz)|t=0 = (ur

0,u
z
0), Bθ |t=0 = Bθ

0 ,

(1.2)

where

∆ = ∂
2
r +

1
r

∂r +
1
r2 ∂

2
θ +∂

2
z , ∆̃ = ∆− 1

r2 .

Denote

ω = ∂zur−∂ruz, Γ =
ω

r
, Π =

Bθ

r
. (1.3)

By elementary analysis, one can see that Γ and Π satisfy

∂tΓ+ur
∂rΓ+uz

∂zΓ+
1
r

[
∂z

(
∂rP
ρ

)
−∂r

(
∂zP
ρ

)
−∂r

(
r∂rΓ+2Γ

ρ

)]
−∂z

(
∂zΓ

ρ

)
−∂z

(
Π2

ρ

)
= 0,

(1.4)

and

∂tΠ+u ·∇Π = (∆+
2
r

∂r)Π+∂zΠ
2. (1.5)

We now state our main result in the following.

Theorem 1.1. Let a0 = 1
ρ0
− 1 with (ρ0)

±1 ∈ L∞, a0
r ∈ L∞, and assume that there exist two

constants m, M such that 0 < m ≤ ρ0 ≤M. For the axisymmetric initial data, let u0 = ur
0er +

uz
0ez ∈ Hs and B0 = Bθ

0 eθ ∈ Hs, s ≥ 2, and assume that ur
0
r ∈ L2, Γ0 =

ω0
r ∈ L2, Π0 =

Bθ
0
r ∈ Lq

with q ∈ [2,∞]. In addition, if ∥∥∥a0

r

∥∥∥
L∞
≤ ε0, (1.6)
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where ε0 denotes a sufficiently small positive constant, then there exists a global solution u of
(1.1) such that for all t > 0

‖∇u‖2
L∞

t (L2)+‖∂tu‖2
L2

t (L2)
+‖∇2u‖2

L2
t (L2)

+‖∇P‖2
L2

t (L2)
≤CH0 +η

2
1 , (1.7)

where

H0 = G0

(
C0 +

2
c0
(c0‖Γ0‖2

L2 +‖Π0‖2
L2)

)
, (1.8)

with
G0 = exp

(
(‖u0‖2

L2 +‖B0‖2
L2)
(
1+‖u0‖6

L2 +‖B0‖6
L2

))
, (1.9)

and

c0 =
1

2‖Π0‖2
L3

, C0 = ‖∇u0‖2
L2 +

∥∥∥∥ur
0
r

∥∥∥∥2

L2
+‖Π0‖2

L3(‖u0‖2
L2 +‖B0‖2

L2). (1.10)

Furthermore,
‖u(t, ·)‖H2 +‖B(t, ·)‖H2 ≤CE (t), ∀ t ≥ 0,

where E (t) denotes a bounded function of t.

Before ending this section, we present some notations which will be used in this paper.
Notations. For any 1≤ q≤ ∞ and any measurable scalar or vector function f , we use ‖ f‖Lq

to denote the usual Lq norm. We denote R2
+ = (0,∞)×R and E (t) represents a function about

t. For any two quantities X and Y , we denote X . Y if X ≤CY for a constant C > 0. Similarly
X & Y if X ≥ CY for C > 0. We denote X ∼ Y if X . Y and Y . X . The dependence of the
constant C and function E (t) on other parameters or constants are usually clear from the context
and we usually suppress this dependence. Finally, we denote ∇̃ = (∂r,∂z).

The rest of this paper is organized as follows. In Section 2, we provide some preliminary
lemmas that are needed in this paper. In Section 3, we present the basic energy estimates for
the solutions under the axisymmetric case. In Section 4, the last section, we first construct the
approximate solutions and give the a priori uniform bound of the smooth solutions, and the
proof of the global well-posedness result is also given in the last section by using a standard
compactness argument.

2. PRELIMINARIES

In this section, we provide some preliminary lemmas that are used through out this paper.
First, we recall some maximal principle results. The proof of them are referred to [53]. For the
sake of completeness, we give the details below.

Lemma 2.1. Let ρ and Π be satisfy (1.2)1 and (1.5), respectively. Then the following estimates
hold for any t > 0,

‖ρ(t)‖Lq ≤C‖ρ0‖Lq, ∀ q ∈ [2,∞], (2.1)

‖Π(t)‖Lq ≤C‖Π0‖Lq, ∀ q ∈ [2,∞], (2.2)

and
‖Π‖2

L∞
t (L2)+‖∇Π‖2

L2
t (L2)
≤C‖Π0‖2

L2. (2.3)
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Proof. By using characteristic argument, one can directly obtain that the ρ in (1.2)1 satisfies the
maximal principle which read as ‖ρ(t)‖Lq ≤C‖ρ0‖Lq, for all t > 0.

For the proof of (2.2), multiplying (1.5) by |Π|q−2Π, and then taking L2(R2
+;r drdz) inner

product, we write

1
q

d
dt
‖Π(t)‖q

Lq =
∫
R2
+

(∆+
2
r
)Π · |Π|q−2

Πr drdz+
∫
R2
+

∂zΠ
2 · |Π|q−2

Πr drdz

=
∫
R2
+

(∂ 2
r +

3
r
+∂

2
z )Π · |Π|q−2

Πr drdz+
2

q+1

∫
R2
+

∂z|Π|q+1r drdz

=−(q−1)
∫
R2
+

|Π|q−2|∇̃Π|2r drdz− 2
q

∫
R
|Π(t,0,z)|q dz.

Observe that
1
q

d
dt
‖Π(t)‖q

Lq +(q−1)
∫
R2
+

|Π|q−2|∇̃Π|2r drdz

=−2
q

∫
R
|Π(t,0,z)|q dz≤ 0.

(2.4)

Integrating it with respect to time gives ‖Π(t)‖Lq ≤C‖Π0‖Lq for all q ∈ [2,∞). Taking q→ ∞,
we have ‖Π(t)‖L∞ ≤C‖Π0‖L∞ . Particularly, when q = 2, there holds (2.3). �

Lemma 2.2. Let ω and Γ be defined in (1.3). Then the following estimates hold:

‖∇̃ω‖2
L2 +‖Γ‖2

L2 ≤C

(
‖ur

t ‖2
L2 +‖uz

t‖2
L2 +‖ur

∂rur‖2
L2 +‖uz

∂zur‖2
L2

+‖ur
∂ruz‖2

L2 +‖uz
∂zuz‖2

L2 +

∥∥∥∥(Bθ )2

r

∥∥∥∥2

L2

)
,

(2.5)

and

‖∇̃P‖2
L2 ≤C

(
‖ur

t ‖2
L2 +‖uz

t‖2
L2 +‖ur

∂rur‖2
L2 +‖uz

∂zur‖2
L2

+‖ur
∂ruz‖2

L2 +‖uz
∂zuz‖2

L2 +

∥∥∥∥(Bθ )2

r

∥∥∥∥2

L2

)
.

(2.6)

Proof. One can refer to [53] for the proof. For the sake of simplicity, we omit the proof. �

3. ENERGY ESTIMATE

In this section, we obtain the H1 energy estimate of (1.1). To achieve it, we start with L2

energy estimate, and then obtain local in time Ḣ1 estimate. Finally, by using the standard
continuity argument, the global in time Ḣ1 estimate holds true. Before going any further, we
first deduce from (2.1) that there exist two absolute positive constants m, M such that

m≤ ρ(t,r,z)≤M, (3.1)

provided that 0 < m≤ ρ0 ≤M.
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Lemma 3.1. [43] (L2 energy estimate) Let (ρ,u,B) be a smooth solution to (1.1) with (u0,B0)∈
H2. Then there holds for all t > 0

‖u‖2
L∞

t (L2)+‖B‖
2
L∞

t (L2)+‖∇u‖2
L2

t (L2)
+‖∇B‖2

L2
t (L2)
. ‖u0‖2

L2 +‖B0‖2
L2. (3.2)

Lemma 3.2. (Ḣ1 energy estimate)
Let (ρ,u,B) be a smooth solution to (1.1) with (u0,B0) ∈ H2. Then there holds for all t > 0

‖∇u‖2
L∞

t (L2)+

∥∥∥∥ur

r

∥∥∥∥2

L∞
t (L2)

+‖∂tu‖2
L2

t (L2)
+‖u‖2

L2
t (Ḣ2)

+‖Γ‖2
L2

t (L2)
+‖∇P‖2

L2
t (L2)

.G0

(
C0 +‖Γ‖2

L∞
t (L2)+‖∇̃Γ‖2

L2
t (L2)

)
,

(3.3)

where G0 and C0 are given in (1.9) and (1.10).

Proof. By taking L2(R2
+,r drdz) inner product of (1.2)2,3 with ur

t and uz
t , respectively, and using

integration by parts, we have

1
2

d
dt

∫
R2
+

(
(∂rur)2 +(∂zur)2 +

(ur)2

r2

)
r drdz+

∫
R2
+

ρ(∂tur)2r drdz

=−
∫
R2
+

ρ
(
ur

∂rur +uz
∂zur)

∂turr drdz+
∫
R2
+

P∂r(∂turr)drdz−
∫
R2
+

(Bθ )2

r
∂turr drdz,

and

1
2

d
dt

∫
R2
+

(
(∂ruz)2 +(∂zuz)2)r drdz+

∫
R2
+

ρ(∂tuz)2r drdz

=−
∫
R2
+

ρ
(
ur

∂ruz +uz
∂zuz)

∂tuzr drdz+
∫
R2
+

P∂z(∂tuzr)drdz.

Using the incompressibility condition and the maximal principle (3.1), we have

1
2

d
dt

∫
R2
+

(
|∇̃u|2 + (ur)2

r2

)
r drdz+‖∂tu‖2

L2

.‖ur
∂rur‖2

L2 +‖uz
∂zur‖2

L2 +‖ur
∂ruz‖2

L2 +‖uz
∂zuz‖2

L2 +

∥∥∥∥(Bθ )2

r

∥∥∥∥2

L2
.

(3.4)

Let ε > 0 be a small positive constant, which will be chosen later. Summing up (3.4) with
ε×
(
(2.5)+ (2.6)

)
and choosing ε = 1

4C , one has

d
dt

(
‖∇̃u(t)‖2

L2 +

∥∥∥∥ur

r
(t)
∥∥∥∥2

L2

)
+‖∂tu‖2

L2 +‖∇̃ω‖2
L2 +‖Γ‖2

L2 +‖∇̃P‖2
L2

≤C

(
‖ur

∂rur‖2
L2 +‖uz

∂zur‖2
L2 +‖ur

∂ruz‖2
L2 +‖uz

∂zuz‖2
L2 +

∥∥∥∥(Bθ )2

r

∥∥∥∥2

L2

)
.
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According to the standard calculation in [4], for any δ > 0, we see that

‖ur
∂ru‖2

L2 ≤Cδ‖ur‖2
L2

(
‖∇̃ur‖2

L2 +

∥∥∥∥ur

r

∥∥∥∥2

L2

)(
‖ω‖2

L2 +‖Γ‖2
L2

)
+δ

(
‖ω‖2

L2 +‖∇̃ω‖2
L2 +‖Γ‖2

L2 +‖∇̃Γ‖2
L2

)
,

and

‖uz
∂zu‖2

L2 ≤Cδ

((
1+‖uz‖6

L2

)
‖∇̃uz‖2

L2

(
‖∇̃u‖2

L2 +‖Γ‖2
L2

)
+(1+‖uz‖4

L2)‖∂zu‖2
L2

)
+δ

(
‖Γ‖2

L2 +‖∇̃∂zu‖2
L2 +‖∇̃Γ‖2

L2

)
.

Note that, for the axisymmetric flow, we have the conclusions that, for 1 < q < ∞

‖∇̃u‖Lq +

∥∥∥∥ur

r

∥∥∥∥
Lq
∼ ‖∇u‖Lq, ‖ω‖Lq ∼ ‖∇u‖Lq, ‖∇ω‖Lq +

∥∥∥ω

r

∥∥∥
Lq
∼ ‖∇2u‖Lq.

Furthermore, from (1.3), we have∥∥∥∥(Bθ )2

r

∥∥∥∥2

L2
≤C‖Π‖2

L3‖Bθ‖2
L6 ≤C‖Π‖2

L3‖∇Bθ‖2
L2.

Combining the above estimates, we take δ to be sufficiently small and apply Gronwall’s in-
equality. It follows that

‖∇u‖2
L∞

t (L2)+

∥∥∥∥ur

r

∥∥∥∥2

L∞
t (L2)

+‖∂tu‖2
L2

t (L2)
+‖u‖2

L2
t (Ḣ2)

+‖Γ‖2
L2

t (L2)
+‖∇P‖2

L2
t (L2)

.exp

{(
1+‖u‖6

L∞
t (L2)

)(
‖∇u‖2

L2
t (L2)

+

∥∥∥∥ur

r

∥∥∥∥2

L2
t (L2)

)}

×

(
‖∇u0‖2

L2 +

∥∥∥∥ur
0
r

∥∥∥∥2

L2
+
(

1+‖uz‖4
L∞

t (L2)

)
‖∇̃u‖2

L2
t (L2)

+‖Γ‖2
L∞

t (L2)+‖∇̃Γ‖2
L2

t (L2)
+‖Π‖2

L∞
t (L3)‖∇Bθ‖2

L2
t (L2)

)
,

from which (2.2) and (3.2), Lemma 3.2 follows. �

Lemma 3.3. (The estimate of Γ) If (ρ,u,B) is a smooth solution to (1.1) with (u0,B0) ∈ H2,
then there holds, for all t > 0,

‖Π‖2
L∞

t (L2)+‖∇Π‖2
L2

t (L2)
+ c0‖Γ‖2

L∞
t (L2)+ c0‖∇Γ‖2

L2
t (L2)

.c0‖Γ0‖2
L2 +‖Π0‖2

L2 +G0

∥∥∥a0

r

∥∥∥2

L∞
exp
(

t
3
4‖Γ‖

1
2
L∞

t (L2)
‖∇Γ‖

1
2
L2

t (L2)

)
×

(
C0 +‖Γ‖2

L∞
t (L2)+‖∇̃Γ‖2

L2
t (L2)

)
,

(3.5)

where G0 and C0 are given in (1.9) and (1.10).
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Proof. By taking L2 inner product of (1.4) with Γ and using integration by parts, one has

1
2

d
dt
‖Γ(t)‖2

L2 +
∫
R2
+

1
ρ
|∇̃Γ|2rdrdz−2

∫
R2
+

∂r

(
Γ

ρ

)
Γdrdz

=
∫
R2
+

a(∂rP∂zΓ−∂zP∂rΓ)drdz−
∫
R2
+

∂z(Γr)
Π2

ρ
drdz

.
∥∥∥a

r

∥∥∥
L∞
‖∇̃P‖L2‖∇̃Γ‖L2 +

∥∥∥∥ 1
ρ

∥∥∥∥
L∞

‖∂zΓ‖L2‖Π‖L3‖Π‖L6.

From [5, Lemma 3.2], we have a(t,0,z) = 0. By integration by parts, we have

−2
∫
R2
+

∂r

(
Γ

ρ

)
Γdrdz≥−C

∥∥∥a
r

∥∥∥2

L∞
‖Γ‖2

L2−
1
4

∥∥∥∥∂rΓ√
ρ

∥∥∥∥2

L2
.

Using condition (3.1) again, we conclude

d
dt
‖Γ(t)‖2

L2 +‖∇̃Γ‖2
L2 .

∥∥∥a
r

∥∥∥2

L∞
(‖∇̃P‖2

L2 +‖Γ‖2
L2)+‖Π‖2

L3‖∇Π‖2
L2. (3.6)

Moreover, when q = 2, (2.4) shows

d
dt
‖Π(t)‖2

L2 +‖∇Π‖2
L2 ≤ 0. (3.7)

In addition, by taking c0 =
1

2‖Π0‖2
L3

and summing up (3.7) with c0× (3.6), one has

d
dt

(
c0‖Γ(t)‖2

L2 +‖Π(t)‖2
L2

)
+ c0‖∇̃Γ‖2

L2 +‖∇Π‖2
L2

.
∥∥∥a

r

∥∥∥2

L∞
(‖∇̃P‖2

L2 +‖Γ‖2
L2).

(3.8)

On the other hand, as [4, (2.26)], we have∥∥∥a
r
(t)
∥∥∥

L∞
≤
∥∥∥a0

r

∥∥∥
L∞

exp

(∥∥∥∥ur

r

∥∥∥∥
L1

t (L∞)

)
. (3.9)

From [54, 55], we obtain∥∥∥∥ur

r

∥∥∥∥
L1

t (L∞)

. ‖Γ‖L1
t (L3,1) . t

3
4‖Γ‖

1
2
L∞

t (L2)
‖∇Γ‖

1
2
L2

t (L2)
. (3.10)

By integrating (3.8) over [0,t], and combining (3.9)-(3.10), we have

‖Π‖2
L∞

t (L2)+‖∇Π‖2
L2

t (L2)
+ c0‖Γ‖2

L∞
t (L2)+ c0‖∇Γ‖2

L2
t (L2)

.c0‖Γ0‖2
L2 +‖Π0‖2

L2

+
∥∥∥a0

r

∥∥∥2

L∞
exp
(

t
3
4‖Γ‖

1
2
L∞

t (L2)
‖∇Γ‖

1
2
L2

t (L2)

)
(‖∇̃P‖L2

t (L2)+‖Γ‖
2
L2

t (L2)
).

Plugging estimate (3.3) into the above inequality leads to (3.5). �
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4. BOUNDEDNESS OF THE APPROXIMATE SOLUTIONS

In this section, we construct a sequence of approximate solutions to (1.1). It is well known
that if the initial data (ρ0,u0,B0) satisfies the condition, 0 < m ≤ ρ0 ≤ M, u0,B0 ∈ H2, then
system (1.1) possesses a unique local solution (ρ,u,B) on [0,T ∗) satisfying

ρ ∈ L∞(0, t;R3), (u,B) ∈C([0, t];H2) and (∇u,∇B) ∈ L2(0, t;H2(R3)),

for all t < T ∗, where T ∗ is the maximal existence time of the solutions. Under the axisymmetric
condition, we now mollify the initial data (ρ0,u0,B0) as follows. Let Jε = ε−3J( r

ε
, x3

ε
) be a

mollifier, with
0≤ J ≤ 1, suppJ ⊂ {0≤ r ≤ 2, −1≤ x3 ≤ 1},

J = 1 if x ∈
{

0≤ r ≤ 1
2
, −1

2
≤ x3 ≤

1
2

}
,
∫

J dx = 1,

and
ρ

ε
0 = Jε ∗ρ0− (Jε ∗ (ρ0−1))(0,x3), uε

0 = Jε ∗u0, Bε
0 = Jε ∗B0.

We then see that (ρε
0 ,u

ε
0,B

ε
0) is still axisymmetric and thus system (1.1) has a unique global

smooth axisymmetric solution (ρε ,uε ,Bε) in [0,T ∗(ε)) with the initial data satisfying the same
assumptions in Theorem 1.1. Here T ∗(ε) denotes the maximal lifespan to the approximate
system. In what follows, we are going to show that T ∗(ε) has a uniform low bound which only
depends on the initial data. Denote aε = 1

ρε −1. For the sake of convenience, we omit the index
ε and let (a,u,B) be the local smooth solutions on [0,T ∗). By using Lemma 3.2 in [5], we
also have a|r=0 = 0. The following proposition asserts that, for the local solutions constructed
above, we can obtain a uniform low bound for T ∗.

Proposition 4.1. Let (ρ,u,B) be a smooth enough solution of (1.2) on [0,T ∗), which satisfies
(3.1). Then, under the assumption of (1.6) and c0 =

1
2‖Π0‖2

L3
, there exists a positive time t1 ≤ T ∗

such that

‖Π‖2
L∞

t1
(L2)+‖∇Π‖2

L2
t1
(L2)

+ c0(‖Γ‖2
L∞

t1
(L2)+‖∇Γ‖2

L2
t1
(L2)

)≤ 2
(
c0‖Γ0‖2

L2 +‖Π0‖2
L2

)
, (4.1)

and

‖∇u‖2
L∞

t1
(L2)+

∥∥∥∥ur

r

∥∥∥∥2

L∞
t1
(L2)

+‖∂tu‖2
L2

t1
(L2)

+‖u‖2
L2

t1
(Ḣ2)

+‖Γ‖2
L2

t1
(L2)

+‖∇P‖2
L2

t1
(L2)
.H0, (4.2)

where t1 is given by

t1
def
=


√

c0
2

√
c0‖Γ0‖L2 +‖Π0‖L2

ln

(
c0‖Γ0‖2

L2 +‖Π0‖2
L2

2‖a0
r ‖

2
L∞H0

)
4
3

, (4.3)

and H0 is given in (1.8).

Proof. To prove (4.1), we first assume that, for all t ∈ [0,T ∗), (4.1) holds. Plugging (4.1) into
the right side of (3.5), we have

‖Π‖2
L∞

t (L2)+‖∇Π‖2
L2

t (L2)
+ c0‖Γ‖2

L∞
t (L2)+ c0‖∇Γ‖2

L2
t (L2)

.c0‖Γ0‖2
L2 +‖Π0‖2

L2 +H0

∥∥∥a0

r

∥∥∥2

L∞
exp
(

t
3
4

√
2
c0

(
√

c0‖Γ0‖L2 +‖Π0‖L2)

)
.
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Choosing t such that

t1 =


√

c0
2

√
c0‖Γ0‖L2 +‖Π0‖L2

ln

(
c0‖Γ0‖2

L2 +‖Π0‖2
L2

2‖a0
r ‖

2
L∞H0

)
4
3

,

under the smallness condition on
∥∥a0

r

∥∥
L∞ , we obtain

‖Π‖2
L∞

t1
(L2)+‖∇Π‖2

L2
t1
(L2)

+ c0‖Γ‖2
L∞

t1
(L2)+ c0‖∇Γ‖2

L2
t1
(L2)
≤ 3

2
(
c0‖Γ0‖2

L2 +‖Π0‖2
L2

)
.

Plugging the above estimate into (3.3) yields (4.2). �

We now have the following global in time Ḣ1 energy estimate.

Proposition 4.2. Let (ρ,u,B) be the local unique smooth solutions to (1.1) on [0,T ∗), which
satisfies (3.1). Suppose that there exists t0, such that ‖∇u(t0)‖L2 + ‖∇B(t0)‖L2 ≤ η1. Then the
following inequality holds true

‖∇u(t)‖2
L2 +‖∇B(t)‖2

L2 +
∫ t

t0
m(‖∂tu(t ′)‖2

L2 +‖∂tB(t ′)‖2
L2)dt ′

+
∫ t

t0
η2
(
‖∇2u(t ′)‖2

L2 +‖∇2B(t ′)‖2
L2 +‖∇P(t ′)‖2

L2

)
dt ′

≤ ‖∇u(t0)‖2
L2 +‖∇B(t0)‖2

L2,

(4.4)

where η1 and η2, depend only on ‖u0‖L2,‖B0‖L2 and
∥∥∥Bθ

0
r

∥∥∥
L6

. Furthermore, take ε0 in (1.6) so
small that t0 ≤ t1. Then T ∗ = ∞ and (1.7) holds true.

Proof. Firstly, from the proof of [53, Proposition 3.7], one has

‖∇u(t0)‖2
L2 +‖∇B(t0)‖2

L2 ≤
1

2N
‖
√

ρ0u0‖2
L2 +

1
2N
‖B0‖2

L2 ≤ η
2
1 , (4.5)

where N denotes a large constant. Then, by taking the L2 inner product of (1.1)2 with ∂tu and
using integration by parts, one has

‖
√

ρ∂tu(t)‖2
L2 +

1
2

d
dt
‖∇u(t)‖2

L2 =−
(
ρu ·∇u | ∂tu

)
L2 +

(
B ·∇B | ∂tu

)
L2

≤C‖
√

ρ‖L∞‖u‖L3‖∇u‖L6‖
√

ρ∂tu‖L2 +C‖B‖L3‖∇B‖L6

∥∥∥∥ 1
√

ρ

∥∥∥∥
L∞

‖
√

ρ∂tu‖L2

≤C‖u‖L2‖∇u‖L2‖∇2u‖2
L2 +

1
4
‖
√

ρ∂tu‖2
L2 +C‖B‖L2‖∇B‖L2‖∇2B‖2

L2,

which gives

1
2

d
dt
‖∇u(t)‖2

L2 +
3
4
‖
√

ρ∂tu(t)‖2
L2

≤C
(
‖u‖L2‖∇u‖L2‖∇2u‖2

L2 +‖B‖L2‖∇B‖L2‖∇2B‖2
L2

)
.

(4.6)
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Similarly, by taking the L2 inner product of (1.1)3 with ∂tB and using integration by parts, one
has

‖∂tB(t)‖2
L2 +

1
2

d
dt
‖∇B(t)‖2

L2 =−
(
u ·∇B | ∂tB

)
L2 +

(
B ·∇u | ∂tB

)
L2

−
(
∇× (∇×B)×B | ∂tB

)
L2

≤C

(
‖u‖L2‖∇u‖L2‖∇2B‖2

L2 +‖B‖L2‖∇B‖L2‖∇2u‖2
L2

+

∥∥∥∥Bθ

r

∥∥∥∥
L6
‖∇B‖L2‖∇2B‖2

L2

)
+

1
4
‖∂tB(t)‖2

L2.

(4.7)

The inequality in (4.7) can be proved as follows. First, we note that

|∇B|2 = |(er∂r +
1
r

eθ ∂θ + ez∂z)Bθ eθ |2 = |∇Bθ |2 + |Π|2.

Thus ‖Π‖L2 ≤ ‖∇B‖L2. Therefore, the hall term reads as

(
∇× (∇×B)×B | ∂tB

)
L2 ≤C

∫
R3

∂z(Bθ )2

r
∂tBdx

≤C
∥∥∥∥Bθ

r

∥∥∥∥
1
2

L2

∥∥∥∥Bθ

r

∥∥∥∥
1
2

L6
‖∂zBθ‖L6‖∂tBθ‖L2

≤
∥∥∥∥Bθ

r

∥∥∥∥
L6
‖∇B‖L2‖∇2B‖2

L2 +
1

12
‖∂tB‖2

L2.

Combining (4.6) and (4.7) gives

1
2

d
dt

(
‖∇u(t)‖2

L2 +‖∇B(t)‖2
L2

)
+

3
4
(
‖
√

ρ∂tu(t)‖2
L2 +‖∂tB(t)‖2

L2

)
≤C
(
‖u‖L2‖∇u‖L2 +‖B‖L2‖∇B‖L2 +

∥∥∥∥Bθ

r

∥∥∥∥
L6
‖∇B‖L2

)
× (‖∇2u‖2

L2 +‖∇2B‖2
L2).

(4.8)

On the other hand, from the following equations{
−∆u+∇P =−ρ∂tu−ρu ·∇u+B ·∇B,
−∆B =−∂tB−u ·∇B+B ·∇u−∇× ((∇×B)×B),

(4.9)

and the Lq estimate of elliptic equations, we have

‖∇2u‖2
L2 +‖∇P‖2

L2 ≤C
(
‖ρ∂tu‖2

L2 +‖ρu ·∇u‖2
L2 +‖B ·∇B‖2

L2

)
≤C
(
‖ρ∂tu‖2

L2 +‖ρ‖2
L∞‖u‖2

L3‖∇u‖2
L6 +‖B‖2

L3‖∇B‖2
L6

)
≤C
(
‖∂tu‖2

L2 +‖u‖L2‖∇u‖L2‖∇2u‖2
L2 +‖B‖L2‖∇B‖L2‖∇2B‖2

L2

)
,

(4.10)
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and

‖∇2B‖2
L2 ≤C

(
‖∂tB‖2

L2 +‖u‖2
L3‖∇B‖2

L6 +‖B‖2
L3‖∇u‖2

L6 +

∥∥∥∥∂z(Bθ )2

r

∥∥∥∥2

L2

)

≤C

(
‖∂tB‖2

L2 +‖u‖L2‖∇u‖L2‖∇2B‖2
L2 +‖B‖L2‖∇B‖L2‖∇2u‖2

L2

+

∥∥∥∥Bθ

r

∥∥∥∥
L6
‖∇B‖L2‖∇2B‖2

L2

)
,

(4.11)

where ∥∥∥∥∂z(Bθ )2

r

∥∥∥∥2

L2
≤C

∥∥∥∥Bθ

r

∥∥∥∥
L6

∥∥∥∥Bθ

r

∥∥∥∥
L2
‖∂zBθ‖2

L6

≤C
∥∥∥∥Bθ

r

∥∥∥∥
L6
‖∇B‖L2‖∇2B‖2

L2.

Then, for any η2 > 0, (4.8)+η2((4.10)+ (4.11)), one has

1
2

d
dt

(
‖∇u(t)‖2

L2 +‖∇B(t)‖2
L2

)
+

(
3m
4
−Cη2

)(
‖∂tu‖2

L2 +‖∂tB‖2
L2

)
+

{
η2−C

(
‖u‖L2‖∇u‖L2 +‖B‖L2‖∇B‖L2 +

∥∥∥∥Bθ

r

∥∥∥∥
L6
‖∇B‖L2

)}
× (‖∇2u‖2

L2 +‖∇2B‖2
L2 +‖∇P‖2

L2)≤ 0.

This implies that

1
2

d
dt

(
‖∇u(t)‖2

L2 +‖∇B(t)‖2
L2

)
+

(
3m
4
−Cη2

)
(‖∂tu‖2

L2 +‖∂tB‖2
L2)

+

{
η2−C

(
‖u0‖L2 +‖B0‖L2 +

∥∥∥∥∥Bθ
0

r

∥∥∥∥∥
L6

)
(‖∇u‖L2 +‖∇B‖L2)

}
× (‖∇2u‖2

L2 +‖∇2B‖2
L2 +‖∇P‖2

L2)≤ 0.

(4.12)

In the following, we use the standard continuity argument to show that the maximal lifespan T ∗

can be extended to any positive time. For that, we denote

τ
∗ def
= sup

{
t ∈ [t0,T ∗)

∣∣‖∇u(t)‖L2 +‖∇B(t)‖L2 ≤ 2η1
}
. (4.13)

If η1 is sufficiently small and η2 is suitably selected small number, then τ∗= T ∗. When τ∗< T ∗,
taking η2 =

m
4C , and

η1 ≤
η2

2C
(
‖u0‖L2 +‖B0‖L2 +

∥∥∥Bθ
0
r

∥∥∥
L6

) ,
we deduce from (4.12) that, for all t ∈ [t0,τ∗),

d
dt
(‖∇u(t)‖2

L2 +‖∇B(t)‖2
L2)+m(‖∂tu‖2

L2 +‖∂tB‖2
L2)

+η2
(
‖∇2u‖2

L2 +‖∇2B‖2
L2 +‖∇P‖2

L2

)
≤ 0.
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Combining with (4.5), we have

‖∇u(t)‖2
L2 +‖∇B(t)‖2

L2 +
∫

τ∗

t0

(
m(‖∂tu(t ′)‖2

L2 +‖∂tB(t ′)‖2
L2)

+η2(‖∇2u(t ′)‖2
L2 +‖∇2B(t ′)‖2

L2 +‖∇P(t ′)‖2
L2)

)
dt ′

≤‖∇u(t0)‖2
L2 +‖∇B(t0)‖2

L2

≤η
2
1 .

Thus, it contradicts (4.13). Therefore, τ∗ = T ∗.
On the other hand, we define t1 in (4.3). Then, by choosing

∥∥a0
r

∥∥
L∞ so small that t1 ≥ t0.

Therefore, by summing up (4.2) and (4.4), we can obtain for t < T ∗

‖∇u‖2
L∞

t (L2)+‖∂tu‖2
L2

t (L2)
+‖∇2u‖2

L2
t (L2)

+‖∇P‖2
L2

t (L2)

≤‖∇u‖2
L∞(0,t0;L2)+‖∂tu‖2

L2(0,t0;L2)+‖∇
2u‖2

L2(0,t0;L2)

+‖∇P‖2
L2(0,t0;L2)+‖∇u‖2

L∞(t0,t;L2)+‖∂tu‖2
L2(t0,t;L2)+‖∇

2u‖2
L2(t0,t;L2)+‖∇P‖2

L2(t0,t;L2)

≤CH0 +η
2
1 ,

(4.14)

for H0 given by (1.8). Thanks to (4.14) and the blow-up criteria in [56], we conclude that T ∗ =
∞. By summing up (3.2) and (4.14), (1.7) holds true. We then finish the proof of Proposition
4.2. �

Before proving Theorem 1.1, we derive the estimates of ‖Bθ‖L∞ and ‖∇B‖L2 .

Lemma 4.1. (The estimate of Bθ )
Under the assumptions of Proposition 4.1. There holds, for all t > 0

‖Bθ (t)‖L∞ . E (t), (4.15)

and
‖∇B‖2

L∞
t (L2)+‖∇

2B‖2
L2

t (L2)
. E (t), (4.16)

each E (t) denotes different function about t.

Proof. Firstly, multiplying (1.2)4 with q|Bθ |q−2Bθ ,2 < q < ∞ and taking L2(R2
+;rdrdz) inner

product, one has

‖Bθ (t)‖Lq ≤ ‖Bθ
0‖Lq +

∫ t

0
‖Bθ‖Lq

∥∥∥ur

r

∥∥∥
L∞

ds.

By Gronwall’s inequality, (3.10) and (4.1), we have

‖Bθ (t)‖Lq ≤ ‖Bθ
0‖Lq exp

∫ t

0

∥∥∥ur

r

∥∥∥
L∞

ds. E (t).

Taking q→ ∞, (4.15) follows immediately. For the proof of (4.16). We first apply ∇ to (1.1)3,
and have

∂t∇B+∇u ·∇B+u ·∇∇B−∇∆B = ∇B ·∇u+B ·∇∇u−∇∇× ((∇×B)×B).
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Taking L2 inner product with ∇B, we have
1
2

d
dt
‖∇B(t)‖2

L2 +‖∇2B‖2
L2 =−

∫
R3

∇u ·∇B∇Bdx+
∫
R3

∇B ·∇u∇Bdx

+
∫
R3

B ·∇∇u∇Bdx−
∫
R3

∇∇× ((∇×B)×B)∇Bdx

.‖∇u‖L2‖∇2u‖L2‖∇B‖2
L2 +

1
2
‖∇2B‖2

L2

+‖B‖2
L∞‖∇B‖2

L2 +‖∇2u‖2
L2 +

∥∥∥∥Bθ

r

∥∥∥∥2

L∞

‖∇B‖2
L2.

We can use Gronwall’s inequality, (1.7), (2.2) and (4.15) to estimate

‖∇B‖2
L∞

t (L2)+‖∇
2B‖2

L2
t (L2)

.exp

(∫ t

0
‖∇u‖L2‖∇2u‖L2 +‖B‖2

L∞ +

∥∥∥∥Bθ

r

∥∥∥∥2

L∞

ds

)

×
(
‖∇B0‖2

L2 +
∫ t

0
‖∇2u‖2

L2 ds
)

. E (t).

�

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. By taking ∂t to (1.1)2,3, we write

ρ
(
∂tut +u ·∇ut

)
−∆ut +∇Pt =−ρtut− (ρu)t ·∇u+Bt ·∇B+B ·∇Bt ,

and
∂ttB−∆Bt +ut ·∇B+u ·∇Bt =−∂t∇× ((∇×B)×B)+Bt ·∇u+B ·∇ut .

Taking the L2 inner product of the above equations with ut and Bt and combining the equations,
respectively, using (1.1)1,4, we obtain that

1
2

d
dt

(
‖
√

ρut(t)‖2
L2 +‖Bt(t)‖2

L2

)
+‖∇ut(t)‖2

L2 +‖∇Bt(t)‖2
L2

=−
∫
R3

ρt |ut |2 dx−
∫
R3

ρtu ·∇uut dx−
∫
R3

ρut ·∇uut dx

+
∫
R3

Bt ·∇But dx−
∫
R3

∂t∇× ((∇×B)×B)Bt dx

−
∫
R3

ut ·∇BBt dx+
∫
R3

Bt ·∇uBt dx.

(4.17)

As same as [4], the first term on the right side of (4.17) can be bounded by∣∣∣∣∫R3
ρt |ut |2 dx

∣∣∣∣. ‖∇u‖L2‖∇2u‖L2‖
√

ρut‖2
L2 +

1
20
‖∇ut‖2

L2 .

Along the same line, we also have∣∣∣∣∫R3
ρtu ·∇uut dx

∣∣∣∣. ‖∇u‖2
L2‖∇2u‖2

L2‖
√

ρut‖2
L2 +‖∇2u‖2

L2 +‖∇u‖4
L2‖∇2u‖2

L2 +
1

20
‖∇ut‖2

L2,
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and ∣∣∣∣∫R3
ρut ·∇uut dx

∣∣∣∣≤√M‖ut‖L6‖∇u‖L3‖
√

ρut‖L2

.‖∇u‖L2‖∇2u‖L2‖
√

ρut‖2
L2 +

1
20
‖∇ut‖2

L2.

Similarly, the Hall term has the following estimate∣∣∣∣∫R3
∂t∇× ((∇×B)×B)Bt dx

∣∣∣∣= ∣∣∣∣∫R3
∂tz

(Bθ )2

r
Bt dx

∣∣∣∣
=

∣∣∣∣∫R3
∂t
(Bθ )2

r
∂zBt dx

∣∣∣∣
.‖Π‖2

L∞‖Bt‖2
L2 +

1
8
‖∇Bt‖2

L2 .

Finally, the last three terms can be tackled in the same way, which read as∣∣∣∣∫R3
Bt ·∇But dx−

∫
R3

ut ·∇BBt dx+
∫
R3

Bt ·∇uBt dx
∣∣∣∣

. ‖∇B‖L2‖∇2B‖L2‖Bt‖2
L2 +

1
10
‖∇ut‖2

L2 +‖∇u‖L2‖∇2u‖L2‖Bt‖2
L2 +

1
8
‖∇Bt‖2

L2.

Plugging the above inequalities into (4.17), we finally have

1
2

d
dt

(
‖
√

ρut(t)‖2
L2 +‖Bt(t)‖2

L2

)
+‖∇ut(t)‖2

L2 +‖∇Bt(t)‖2
L2

.
1
4
‖∇ut‖2

L2 +
1
4
‖∇Bt‖2

L2 +‖∇u‖L2‖∇2u‖L2‖
√

ρut‖2
L2

+‖∇u‖2
L2‖∇2u‖2

L2‖
√

ρut‖2
L2 +‖∇B‖L2‖∇2B‖L2‖Bt‖2

L2

+‖∇u‖L2‖∇2u‖L2‖Bt‖2
L2 +‖Π‖2

L∞‖Bt‖2
L2 +‖∇2u‖2

L2 +‖∇u‖4
L2‖∇2u‖2

L2.

(4.18)

On the other hand, we deduce from the Stokes system (4.9) that

‖∇2u(t)‖L6 +‖∇P(t)‖L6 ≤C (‖ρ∂tu‖L6 +‖ρu ·∇u‖L6 +‖B ·∇B‖L6) , (4.19)

and

‖∇2B(t)‖L6 ≤C(‖Bt‖L6 +‖u ·∇B‖L6 +‖B ·∇u‖L6 +‖∇× ((∇×B)×B)‖L6). (4.20)

We deduce
‖ρu ·∇u‖L6 +‖B ·∇B‖L6 +‖u ·∇B‖L6 +‖B ·∇u‖L6

≤C(‖u‖L6‖∇u‖L∞ +‖B‖L6‖∇B‖L∞ +‖u‖L6‖∇B‖L∞ +‖B‖L6‖∇u‖L∞)

.‖∇u‖L2‖∇2u‖
1
2
L2‖∇2u‖

1
2
L6 +‖∇B‖L2‖∇2B‖

1
2
L2‖∇2B‖

1
2
L6

+‖∇u‖L2‖∇2B‖
1
2
L2‖∇2B‖

1
2
L6 +‖∇B‖L2‖∇2u‖

1
2
L2‖∇2u‖

1
2
L6

.‖∇u‖2
L2‖∇2u‖L2 +‖∇B‖2

L2‖∇2B‖L2 +‖∇B‖2
L2‖∇2u‖L2

+‖∇u‖2
L2‖∇2B‖L2 +

1
2
‖∇2u‖L6 +

1
2
‖∇2B‖L6,

(4.21)
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and

‖∇× ((∇×B)×B)‖L6 ≤C
∥∥∥∥∂z

(Bθ )2

r

∥∥∥∥
L6
. ‖Π‖L∞‖∇2B‖L2 . (4.22)

Then, together with (4.19)− (4.22), (4.18) can be read as

1
2

d
dt

(
‖
√

ρut(t)‖2
L2 +‖Bt(t)‖2

L2

)
+

1
2
‖∇ut(t)‖2

L2 +
1
2
‖∇Bt(t)‖2

L2

+‖∇2u(t)‖2
L6 +‖∇2B(t)‖2

L6 +‖∇P(t)‖2
L6

.‖∇u‖L2‖∇2u‖L2‖
√

ρut‖2
L2 +‖∇u‖2

L2‖∇2u‖2
L2‖
√

ρut‖2
L2

+‖∇B‖L2‖∇2B‖L2‖Bt‖2
L2 +‖∇u‖L2‖∇2u‖L2‖Bt‖2

L2 +‖Π‖2
L∞‖Bt‖2

L2

+‖∇B‖4
L2‖∇2B‖2

L2 +‖∇B‖4
L2‖∇2u‖2

L2 +‖∇u‖4
L2‖∇2B‖2

L2

+‖∇2u‖2
L2 +‖∇u‖4

L2‖∇2u‖2
L2 +‖Π‖2

L∞‖∇2B‖2
L2.

Finally, by using Gronwall’s inequality, (1.7), (2.2), (3.1), (3.2), (4.15), and (4.16), we have the
following estimate

‖ut‖2
L∞(L2)+‖Bt‖2

L∞(L2)+‖∇ut‖2
L2(L2)+‖∇Bt‖2

L2(L2)

+‖∇2u‖2
L2(L6)+‖∇

2B‖2
L2(L6)+‖∇P‖2

L2(L6) . E (t), ∀ t ≥ 0.
(4.23)

By virtue of (1.7), (4.16), and (4.23), we infer∫
∞

0
‖∇u(t)‖L∞ dt ≤C

∫
∞

0
‖∇2u(t)‖

1
2
L2‖∇2u(t)‖

1
2
L6 dt . E (t), (4.24)

and ∫
∞

0
‖∇B(t)‖L∞ dt ≤C

∫
∞

0
‖∇2B(t)‖

1
2
L2‖∇2B(t)‖

1
2
L6 dt . E (t). (4.25)

(4.24) and (4.25) give the global in time Lipschitz estimates of u and B. Moreover, the esti-
mates (4.23), (4.24) and (4.25) are sufficient for the global regularity of the inhomogeneous
incompressible Hall-MHD system (1.1). Consequently, one has

‖u(t, ·)‖H2 +‖B(t, ·)‖H2 . E (t), ∀ t ≥ 0.

This finishes the proof of the theorem. �
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