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ON POSITIVE SOLUTIONS FOR A CLASS OF DOUBLE PHASE PROBLEMS
WITH STRONG SINGULAR WEIGHTS AND NONLINEARITIES
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Abstract. We study the existence and nonexistence of positive solutions for the singular double phase
problem:

{ —(a(1)@p(u') + B (1) @y (u )) Ah(t)f(u), t € (0,1),
u(0) =0 =u(1),

where A >0, 1 < p < g < oo, and @y(s) := ]s\’"*zs. This model can contain strong singular weights
and nonlinearities such as h(r) = t~% with § > 1 and f(u) = 14+ u~? with y > 1. Firstly, we provide
sufficient conditions on ¢, 3, and & such that positive solutions belong to C|0, 1], which generalizes pre-
vious results. Secondly, we establish various existence results, including the existence of three positive
solutions, which are new results even for strong singular p-Laplacian problems. We prove the exis-
tence results by applying approximation techniques, resulting in approximation solutions that are not in
C'[0,1], stemming from the degeneracy of ¢ and f3.
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1. INTRODUCTION

In this paper, we are concerned with the existence of multiple positive solutions for one-
dimensional double phase problems of the form:

{ - (a0 )+ BB =070, 1 0.1 W
u(0) =0=u(1),

where A >0, 1 < p < g < oo, @p(s) := |s|™ %5, and «, B, f, and h satisfy the following condi-
tions:
(Hy) o:[0,1] = [0,00) and B : [0, 1] — [0,0) are continuous such that ¢ (z) + B (¢) > 0 almost

1

everywhere and K ::/0 P1(5)Be l( )ds < oo, where

o(t) for a(r) >0, t) f t) >0,
winyo {20 Tor a=0. o [ or B)
1 for a(t) =0, 1 for B(r) =0,
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(H) f:(0,00) — (0,0) is continuous and there exist a > 0, a* > 0, and y > 0 such that
0< f(s) < G fors<1land f(s) >a" fors>1,
(H3) h:(0,1) — (0,00) is continuous and satisfies

2

max{ [ T 0B T e, ) as, [ a0, q—'<s><pp1<H<s>)ds} e

WhereH()lsdeﬁnedas/ h(r)dr for s € 0,3 andas/h (r)dr for s € [3,1].

Since Fulks-Maybee’s seminal work on the problem of an electrical conductor in which elec-
trical resistance is a singular function (see [1]), the study of singular problems has been extended
in various directions. One of them is to study singular problems with pure singular terms given
by:

—Au=5%7 ( ) , X€EQ,
1.2
{ u=20, g E 2Q, (12)

where ¥ > 0, Q is a bounded smooth domain in RN with N > 1, and g is Holder continuous on
Q. For example, Crandall-Rabinowitz-Tartar [2] studied (1.2) with more general linear elliptic
operators. Lazer-McKenna [3] showed that if 7 > 1, then a solution u is not in C!(Q). They also
discussed the uniqueness of positive solutions by applying the fact that approximation solutions
u, € C'(Q) to nonsingular nonlinearity converge to u € C(Q). Further, Taliaferro [4] considered
(1.2) with N =1, Q = (0, 1) and a continuous function g. He proved that

1
/0 x(1—x)g(x)dx < o (1.3)

is a necessary and sufficient condition for (1.2) to have a unique positive solution. We note that
(1.3) implies that g may be non-integrable on (0, 1).

Another interesting research is to study singular problems with perturbed singular terms as
follows:

—Apu:%—kuq,xeﬂ, (1.4)
u=0, x € Q, '
where 0 < y < 1 and A,u = div(|Vu|P~2Vu) with p > 1. Haitao [5] dealt with the case when

p=2and 1 <g< %%, while Giacomoni-Schindler-Tak4c [6] explored scenarios for 1 < p <N

and 1 <g < Nﬂ’ Both studies showed that (1.4) has two positive solutions (one obtained by the
mountain pass theorem and the other by the sub-supersolution method) for a certain range of A.
In [7], these studies were extended from constant exponents p, g, and ¥ to variable exponents
p(x), q(x), and y(x). It is noteworthy that condition 0 < y(x) < 1 is essential for applying
variational arguments.

Recently, the authors [8] investigated the positive solutions of (1.1), which we refer to as the
generalized double phase problem, as the term ‘double phase problem’ typically denotes the
case when o = 1 (see [8, 9] for its historical context). Under weaker singular nonlinear terms f
and h:

(F) f:(0,00) = R is continuous and there exist a > 0, a* > 0,d>0,e>0,and0<y< 1

such that (s — &) f(s) > 0 for s € (0,00) \ {€}, f(s) < fors<1andf(s)2—§’—;+€l
for s > 0,
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(H) h:(0,1) —> (0,00) is continuous and there exist » > 0 and 0 > 0 such that Y+ < 1 and
h(t) < T where d(t) ;= min{z, 1 —t},

they explored various existence results depending on the behaviors of f near 0 and o. They
stated that (H;) may weaken the regularities of solutions so that the solutions may not be differ-
entiable at t = 7y where a/(ty) + B(f9) = 0. Thus they investigated positive solutions belonging
to C[0, 1].

Following the study in [8], we examine (1.1) with a focus on the strong singular nonlinear
term f and the strong singular weight 4. Here, f is strong singular means limsup,_,,s”f(s) €
(0,00) for some ¥ > 1, and £ is strong singular means that % is non-integrable on (0,1). The
strong singular f and 4 may further weaken the regularities of solutions. This makes it difficult
to use the ideas in [8] to obtain the existence and multiplicity results.

The first goal of this paper is to establish a sufficient condition (H3), which ensures that the
solutions of (1.1) belong to C[0, 1]. The second goal is to demonstrate various existence results,
including the existence of three positive solutions of (1.1). To overcome the difficulties caused
by regularity, we combine the ideas in [8, 10]. We use the ideas in [8] to find positive solutions
to approximation problems, and use the approximation technique in [10] to find positive solu-
tions of (1.1) from the solutions of the approximation problems. We note that positive solutions
to approximation problems in [10] are actually in C'[0, 1] but they worked it on C[0, 1]. Mean-
while, solutions to the approximation problems of (1.1) (see Section 2) cannot necessarily be
expected to belong to C' [0, 1] due to the degeneracy of o and B at t = to with a(t9) + B (t9) =0.

We define a function u as a positive solution of (1.1) if u is positive on (0, 1), satisfies (1.1)
almost everywhere, and adheres to the boundary conditions. As noted in [8], when either @ =0
or B = 0 on some subintervals of (0, 1), four distinct cases emerge:

Case A: [Qq| =0and Qg =0
Case B: [Qq| > 0 and |Qg| =

Case C: [Qq| =0and [Qg| >0
Case D: [Qq| > 0 and [Qg| >0

where Qg :={t € (0,1) | a(t) >0and () =0} and Qg :={r € (0,1) | a(t) =0 and B(z) > 0}.
The existence or nonexistence of positive solutions to (1.1) depends on the behaviors of f
near 0 and oo. We consider the behavior of f near 0:

(Haq) lim £ f(s)

o0 @) —
(S) _
(Hap) lim 55 = 0.

and the behavior of f near oe:

(Hsa) lim 28L = oo,

5300 Par(s)

(Hsp) lim /(s)

§—>00 rba( )

=0,

where @g (s) := @, (s) 2 (|Qal) + 94(5) X ([Qal), Pp(s) := 9p(s)x°(1261) + @4 (s) X (121), X

[0,00) — {0, 1} is such that x(0) =0and x(s) =1 for s > 0, and x“(s) := 1 — x(s).
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41

1
Let Lyp := max{l, )&t 1Bl }, Mg, := max {MgﬁwMécﬁh} and

(0,1) for Case A,

. (ca,cy) for Case B,
(c,c) =

(cﬁ,cE) for Case C,

(ca,cy) for Case D,

where (cq, c},) is a subinterval of Qg such that ¢}, —cq > &, — €o for any interval (Cq, ) C Qq,
* j—

(c.cp) is a subinterval of Qg such that cg —cg > & — g for any interval (&g,¢5) C Qp,

1 1

()0, (H)ds, [ o T 5B ), <H<s>>ds}

1 1
—1

1
Mgﬁh = max{/o2 a, " (s)B. ?
and

Mgy = max{ [ 0BT )0 (HGas. | 0T 0B T 00y (H(s)ds b

2 2

We note that ¢* — ¢ is uniquely determined because it is the maximum of the lengths of subin-
tervals of Qg or Qﬁ (see Remark 1.1 in [8]). Thus we can define

h. := min / B h(r)dr,/_ _ h(r)dr
(@) | /3= ar

for any interval (¢,¢*) C (0,1) such that ¢* — ¢ = ¢* —¢. To discuss the existence of three
positive solutions, we assume f satisfies the following conditions:

(Hg) f(s):= f ﬁ(ys), where ¥y > 0 is the constant in (H3) and fy : (0,00) — (0, ) is nondecreas-
ing and continuous,

(H7) there exist n > Z*L’; and 6 > 8Ly gM ) such that

f(n) /
Do ()" Pa(6) hi(c* —c)7

£(8) 2(32KaﬁL§w)Y (256KaﬁL‘;ﬁMaﬁh)
’ (c* —c)?

Let

. a r _1
ﬂ,* .Z(m +f(1‘|‘4La[3Moc[3h)> y
1 321{0,[3%
h*f(l)d)( (¢ —c)2 )

2(8KapLyg)" 32nKapLy
M= ) “( (c*—c)? )

A* =

A 1= CI>a(9)
6 ._47q)a(8LaBMaﬁh)f<9)’
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where ¢(s) := @,(s) + @4(s), f(s) ;= inf f( ) and f : [0,e0) — [0,0) is a nondecreasing

re S°°

continuous function such that £(0) = 0, and f(s) = m[aX] f(r) for s > 1. Then we establish the
rell,s

following results.

Theorem 1.1. Assume (Hy) — (H3), (Hay) and (Hs,). Then (1.1) has no positive solution for
A > 1 and has two positive solutions uy and up for A < A such that ||uj || — 0 and ||uz || —
as A — 0.

Theorem 1.2. Assume (H,) — (H3), (Ha,) and (Hsp). Then (1.1) has a positive solution u for
A > 0 such that ||u||e — 0 as A — 0 and ||u||c — o0 as A — 0. If (Hg) and (H7) are additionally

naﬁ aﬁ

satisfied with 0 < , then (1.1) has three positive solutions uy, uy and us for A € (Ay,Ag)

TIKOt La

such that |[uy || < & < uuzuw < e
Theorem 1.3. Assume (H,) — (H3), (Hap) and (Hs,). Then (1.1) has a positive solution u for
A > 0 such that ||u||ec — o0 as A — 0 and ||u|sc — 0 as A — co. If (Hg) and (H7) are additionally

naﬁ (213

satisfied with 6 > , then (1.1) has three positive solutions uy, uy and us for A € (Ay,Ag)

41’]KaﬁL

such that ||uy ||e < L < Nuzfloo < § < ||3]]oo-

Theorem 1.4. Assume (Hy) — (H3), (H4b) and (Hsp). Then (1.1) has no positive solution for

A = 0 and has two positive solutions uy and uy for A > A* such that ||u || — 0 and ||uz || — oo
as A — oo,

This paper is organized as follows. In Section 2, we discuss the existence and multiplicity
of positive solutions to approximation problems with nonsingular nonlinear term and weight to
derive estimates of positive solutions of (1.1). Section 3 presents preliminary results that will
be utilized in subsequent sections. Sections 4 and 5 are dedicated to proving Lemmas 2.1 -
2.4 and showing that positive solutions of (1.1) can be obtained from a sequence of positive
solutions to the approximation problems, respectively. Sections 6 and 7 contain the proofs and
examples of Theorems 1.1 - 1.4, respectively. In the Appendix, we calculate useful estimates
for integrals involving o, B, and h. Throughout this paper, we use the notations A ~ 0 and
A > 1 for sufficiently small A > 0 and sufficiently large A > 0, respectively.

2. POSITIVE SOLUTIONS TO APPROXIMATION PROBLEMS

In this section, we introduce the existence and multiplicity results for approximation prob-
lems with nonsingular nonlinear term and weight.
For the case (Hy,), we consider the following approximation problem:

— (a(t), (V) = Ahy(t) fu(v), t € (0,1),
{ (e i ) i @D

where n € N, f,(v(t)) := f(L +v()) and
inf,c, 1yh(r), 1€(0 -1,

2 ' n+42
hn(l) = h(t), IS [ﬁa 1- n—:—Z]’
inf, -1 gh(r), 1€ (1= 5, 1)
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We note that there exists n* € N such that &, (t) = h(t) forz € (3C4i, %) and n > n*. We also
note that f,, satisfies (Ha,) since f,(0) = f(1) > 0. By (Ha,), there exists a positive constant
ry <min{l,LygMgpy} such that

f 1 /8L
g O o L ( - "“{). 2.2)
se(0,r,) Pg(s) ~ Ah " \&*—¢
) 4KopLlig
If (Hs,) is assumed, then we can find a constant R, > max {4LaBMa[3h7 W} such that
[ s(c*—c)
‘ f<4KaﬁL§ﬁ> 1 32KaﬁfoB
in IS ( L ) 2.3)
SE(Ry.) P < s(c*—c) > Ah, (c*—c)
« 41(&,3%[3
If (Hsp) is assumed, then we can find a constant R} > 4L,5Mgp), such that
27 f(1 1
sup ( a_ S “)) . 2.4)
SE(RY 00) sTPq(s)  Pals) ;Lq)a(4La/3Mth)
Let n** = max {n*, %, ‘”ﬂcfl—;iéﬁ } Following the arguments as in [8], we have the following two

lemmas.

Lemma 2.1. Assume (Hy) — (H3), (Haq), (Hsq) and n > n*. Then (2.1) has two positive solu-
tions vy, and va for A < A, such that rj, < ||v}|lee < 4LqgMep), < ||[vall- < Ry

Lemma 2.2. Assume (H,) — (Hz), (Hay), (Hsp) and n > n* Then (2.1) has a positive solution

vn for A >0 such that rj < ||vpll < R}. If (Hs) and (H7) are additionally satisfied with
8nKaﬁL(2xﬁ
0 < ——+

c*—c

and n > n**, then (2.1) has three positive solutions v}, v and v} for A € (An, L)

4nKaﬁL2

such that ry, < |[v} e < & < ||[V2]je < L < vl <R

c*—c

We give the proofs of Lemmas 2.1 and 2.2 in Section 4.
For the case (Hyy,), we consider the approximation problem:

—(@)@p(V) +B1)9, () = A1) f(v), 1 € (0,1), 25)
v(0) =0=v(1).
Since (Hyp,) implies lirré f(s) =0, we can define f(s):= sup f(r) and find a positive constant
5= re(0,s)
72 < LagMgp, such that
f(s) I
sup < . (2.6)
se(0,7) Pp(s) AP (4LogMuph)
. _ 4Kaﬁlexﬁ
If (Hsp,) is assumed, then we can find a constant R; > ——> such that
£(s) I
sup < . 2.7
SE(Ry ) DPu(s)  Adq (4LaﬁMth)

Following the arguments as in [8], we obtain the following two lemmas.
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Lemma 2.3. Assume (Hy) — (H3), (Hap), (Hsq) and n > n*. Then (2.5) has a positive solution
v for A > 0 such that 7) < ||va|le < Ry. If (Hg) and (H7) are additionally satisfied with

8NKqpLZ
0 > % and n > n**, then (2.5) has three positive solutions v}, vZ and vy for A € (An, L)
4nKopL?
such that 7y, < |[}]leo < =L < [12]00 < & < V3]0 < R

Lemma 2.4. Assume (H,) — (H3), (Hap), (Hsp) and n > n*. Then (2.5) has two positive solu-
4KapLyg

tions v} and vi for A > A* such that 7 < ||[v}]|ee < ——L < ||[V2]leo < Ry.

We give the proofs of Lemmas 2.3 and 2.4 in Section 4.

3. PRELIMINARIES

In this section, we list preliminary results to be used in the next sections.
First, we consider a function x € C[0, 1] such that

x is continuously differentiable on Q := {r € [0,1] | ct(z) + B(¢) > 0}, (3.1)
}irrl; (a(t)@p(x' () + B(1)@q(x (1)) exists for 7 € [0, 1], (3.2)
and
{ — (a(t)@p () + B()@y(x')) >0, 1 € QuUQUQyg, (3.3)
x(0) =0, x(1) >0, '

where Qg := {r € (0,1) | &t(¢) > 0 and B(¢) > 0}. Then x satisfies the following properties.
Lemma 3.1. [8, Lemma 3.3] Assume (H;). If x € C|0, 1] satisfies (3.1), (3.2), and (3.3), then

02 o (min{on () o (i) i -0

Lemma 3.2. [8, Lemma 3.4] Assume (H,). Let x € C[0, 1] satisfy (3.1), (3.2), (3.3), and ||x||o >
KopLap- Let ty € (0,1) be such that ||x|| = x(ty). Ifty > i< then x(t) > K”:%(t —c) for
aplop

2 ’

re (07 CJEC ) Ift, < CJEC , then x(t) > %(c* —t)fort € (czc 7c*).

Now we construct the solution operator for the following problem:

[~ On )+ BOR) ~AOG0) 1€ QB0 oy
x(0) =0=x(1), ’

where n € N, m € NU{0}, y € C[0,1], and

f(L+max{0,y(r)}) formeN,

f(max{0,y(z)}) form =0.

For the case m = 0, we only consider f satisfying (Hyp) (so f(0) := lirr(l)f(s) =0and f5(y(r))
s—

is well-defined). Define 7;" : C[0,1] — C[0, 1] by

Sn(3(2)) == {

t 1

() = [ ol 7B T 5 (o P () (A [ ()00 s

0
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where m’y’m € R is the constant such that

<

0= [ o P (B T () (o B () (mm 42 [ m)f)ar) s

@p(y(t)) fort € Qq,
D(y(1)) = @q((t)) fort € Qg,
o(y(t)) fort e Qqp.

Then we can show that 7;"" : C[0, 1] — C[0, 1] is the solution operator of (3.4), and T;""y(t) > 0
fort € (0,1) by Lemma 3.1. Since 7;"y(¢) > 0 fort € (0,1) and T;"y(0) = 0= T;""y(1), there
exists /" € (0,1) such that [|7;""y|| = T;"y(#;""). Thus T;"y can be written as

T
tn n

" ha(r) f,j;(y)dr>ds7 0o<r<am

q

1 _g=1 p=1

[ o BT e (e B o) |

- /t ' (5)B )@ (han = (5)BI7 (s) () f (3)dr ) ds, (27 <1 < 1.

nm
[y

* i

Further, 7} satisfies the following properties.

Lemma 3.3. [8, Lemmas 2.1-2.2] Assume (H;) — (H3). Then T;" : C[0,1] — C[0,1] is com-
pletely continuous, T,""y is continuously differentiable on .., and

nm
1

i (1) ((T3")' (1)) + B9y (T35 (@) = [ b)) for 7 € 0.1,

t—f

Then we can show that T}y is nondecreasing on [0,#;"] and nonincreasing on [t;™, 1] by

Lemma 3.3, and if 7" (or T){’O) has a fixed point y, then y is a positive solution of (2.1) (or
(2.5)) by Lemma 3.1.

4. PROOFS OF LEMMAS 2.1 -2.4

In this section, we provide proofs of Lemmas 2.1 - 2.4 (similar to but different from the
proofs in [8]) to obtain the information needed to find positive solutions of (1.1). For this, we
use the Krasnoselskii-type fixed point theorem.

Proposition 4.1. [11, Lemma A] Let X be a Banach space, and let I : X — X be a completely

continuous operator. Suppose that there exist a nonzero element 7 € X and positive constants r
and R with r # R such that

(a) ify € X satisfies y = oly for o € (0,1], then ||y||x #r,
(b) ify € X satisfies y = Iy+ tz for T > 0, then ||y||x # R.

Then I has a fixed point y € X with min{r,R} < ||y||x < max{r,R}.

The proofs of Lemmas 2.1 - 2.4 are as follows.

Proof of Lemma 2.1. Let 6 € (0,1] and v, € C[0, 1] be a nontrivial solution of v, = 6T;"v,.
We show [[vpleo 7# 4LggMgp), for A < Ai. Let t, € (0,1) be such that [|v, || = vy, (2,). We first



DOUBLE PHASE PROBLEMS 69

consider the case when #, < 5. Let ) € ( tn) be such that HV"Hw =vp(t7) <vu(t) < wp(ty) =
||| for ¢ € (F,1,). Noting that £(s) < % + f(s) for s > 0 by (Hz) £ satisfies

£5(s) =f<}l+max{0,s}) < S%jtf(l +s).

Thus we have

()5 (1)) < () (-

a _

71 00) HO) (4 71+ )

fort € (¢;,1,). Then we obtain

Wl — o [" o ()8 77 0 (Ao P )87 () [ ha(r) 5 )t

*
n

1

< /0é a8 ()0 (A2 4 T le) o ()BT ()H) ) s

By Proposition 8.2, we have

% <max{g,’ (A(Hzn”y U+ all)) ) 0y (l(ﬁ +F(+ ||Vn”°°>)34}1-)

If [|vuleo = 4LogMgpp, then we have

lgmax{(ppl(/%),qoql(%)}. 4.2)

By similar arguments, we can also show that if z,, > % then v,, satisfies (4.2). However, this is
a contradiction for A < A.. Hence ||v,||e # 4LqgMgp, for A < Ai. Let 72> 0 and v, € C[0, 1]
be a nontrivial solution of v, = 7" v, + 7. To apply Proposition 4.1, we find a positive constant
greater than max{||v,||e,4LqgMp) } and a positive constant less than min{|[v, e, 4LogMaps }-
Let

4K g L2
|Va||oo > max {4LaﬁMaﬁh,—aﬁ }.

If £, > <5, then v, (f) = TJ"v,(t) + 7 > 0 for ¢ € (0,1) and

V (I) > ||Vn”°° (I—C) > Hv”H (C*_C)
aﬁLaﬁ 4K0¢ﬁLaB

fort € (34, <H3¢) by Lemmas 3.1 - 3.2. We note that f(s) = inf f(r) and h, () = h(z) for

re(s,eo)

te (30%, #) and n > n*. Thus we have

ctc*

[ it onar= [ 7w Foar = n g (1 2
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fort € (7C+C 3CIC*) and n > n*. Then, by Proposition 8.1, v, satisfies

P
3ctc 1 1 q—1 p—1

nlle> [0 a7 9B T )0 (e T 9BTT() [ sy G)ar) s

%)) for Case A,

(a1 (
* _1<lh*f<w>> for Cases B and D,
(. (

(V3
0|
* ™~
] ||
= o
N

4Ka,3Léﬁ
w)) for Case C.

(o (BLapllvnll~
0] ‘Z‘i—_c> for Case A,

lh*f(w> << o M) for Cases B and D,

dKopl2, )~ “re
af 0, <8La,B”Vn||°°> for Case C, 4.3)
32K 513 *_
( ﬁ > (M) for Cases A and C,
_ 4Koplly
= 32KaﬁL Wall=(c" =€)\ for Cases B and D
e o) Ky ; or Cases B a .
By similar arguments, we can show that if £, < 5, then v, satisfies (4.3). Noting that
s) for Cases A and C,
Dy (S) = (Pq( )
(pp(s) for Cases B and D,
we obtain
<HVWH (C _C)> 32K L
4KopL?, 1
5Lag ( o aﬁ) (4.4)
(c*—c)?

@y (Ll=e ) = A,

4KopLl

Hence [|v, | < Ry for A >0 and n > n* by (2.3). Let ||v,||ec < min{1,LygMgp;}. Define

(&) (¢c,c*)  for Cases A, Band C,
C,C) =
(cg, 2‘3) for Case D.

Then (¢,¢*) C Qg for Case B and (¢,¢*) C Qg for Cases C and D. Note that v,() is nonde-
creasing for 7 € (0,#,) and h,(t) = h(t) fort € (3, €3 Y and n > n*. If 1, > <E&, then

ote*

/ttn 2 (P (va)dr ﬁcé (r)f(vn)drZh*f<vn<3515*>)
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for ¢ € (15<,3¢4C ) and n > n*. Thus v, satisfies

Z ) for Case A,
T (Ah F(va(35E)))  for Case B,
)

Vv

for Cases C and D.

~ 3c+c* ¢ (L) @y (va(3))  for Cases A and B,
Ahsf(vn < 8L 5 .
/ (v ( 4 ) ) { ) (iffz_) @g(va(3555))  for Cases C and D.

Noting that

D (s) = @p(s) for Cases A and B,
P ¢,(s) for Cases C and D,

we obtain

4.5)

Fn(*59)) _ 1 ( 8Lag )
q)ﬁ(vn(?;c—i-c )) = Ah,

By similar arguments, we can show that if 7, < C“ sthen v, satisfies (4.5). Thus v, (=5 Eliel ) >y,

by (2.2). Hence ||vy||ec > ry for A > 0and n > n . By Proposition 4.1, T, has two ﬁxed points

zyand z2 for A < A, and n > n* such that r; < ||zp]|eo < 4LgpMepp < HzZHoo < R;. Then z} and

22 are positive solutions of (2.1) for A < A, and n > n* by Lemma 3.1,

c*—c¢

Proof of Lemma 2.2. We first show the existence result for A > 0. Let T > 0 and v, € C[0, 1]
be a nontrivial solution of v, = T;""v,, + 7. Then we can show ||v,||cc > 7y for A >0 and n > n*
following the arguments in the proof of Lemma 2.1.

Let o € (0,1] and v, € C[0, 1] be a nontrivial solution of v, = 6T;"v,. We find a positive

constant greater than max{||vy|e, 7 }. Let [[vp[lw > 4LogMapy. 1f t, < 3, we obtain from (4.1)
that

A+ 1+ ll)) =1

Thus

[alee L a
< (A A (L4 [valle) ) ),
Tty < 2 ( (HV"HL F+[vll-)) )

which implies
I _ a O+ )
ADq(4LapMoapn) ~ [|vallE®@al[[vall)  Palllvalle)
By similar arguments, we can also show that if 7, > % then v, satisfies (4.6). Hence ||v; || < Ri
for A > 0 by (2.4). By Proposition 4.1, 7;" has a fixed point z, for A > 0 and n > n* such that

73 < ||zulle < R;. By Lemma 3.1, one sees that z, is a positive solution of (2.1) for > 0 and
n>n*.

(4.6)
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Next we show the multiplicity result for A € (45,A¢). Let o € (0,1] and v, € C[0,1] be a
nontrivial solution of v, = 67;"v,. Assume |[v,|le = % (> 4LygMgypy). We first consider the

case that 7, < 5. Noting that % <Vu(t) < |[Vale and 1 +v,,(#) < 2||vp|eo for £ € (£],1,) and
n > n™*, we have

Fr( + () < 27y (2[[vnles)
Gotva(@)r = vl

fort € (1;,1,) and n > n**. Thus v, satisfies

Fo (va(2)) =

< ATf(2]|vall)

1 q—1 —1

Pl o [0 B 7 0! (e 0BT [t i unir)s

< [Far B e (rslnla T epT HE)as 4P

< 2LogMapnmax{@, ' (A47f(2||vull)), @5 (A4YF(2[|va]l)) 3.
Since [[vy oo > 4Lg Mgy, We have 247 f(2||vy]|e) > 1. Then we obtain

Valleo < 4LopMopn @y (A47f(2]vall)) (4.8)

from (4.7) with Proposition 8.2. By similar arguments, we can also show that if ¢, > %, then v,

Dq(0) .. ..
satisfies (4.8). This implies A > 17, (8L Mapr) f( y = = Ag. However, this is a contradiction for
A < Ag. Hence ||vy |0 # & for A < Ag and n > n**

Let 7> 0 and v, € C[0,1] be a nontrivial solution of v, = T;"v, + 7. Assume [|v,||e =

41]Kal3L

—% (> KypLgp). If tp > S5, then v, (1) > % for t € (31, 1<) by Lemma

3.2. By (Hg), we have

frn(e) = 2 Ll € ey (el )

Ftva()? = Clvall)” "\ 4KqpLZ g 8KapLlg 4KqpLY g
for t € (34, <€) and n > n**. Thus v, satisfies
R T g-1
Ml [, o 7B T ()@ (e T B 5) [ ) gi )
=
36‘1—()* 1 e 7& p—1 C+2£‘
> /7£+C* ol 7 (s)Bs T (5)D” (lOC* ()BT (s) /;c-&-c* h(r)f:(vn)dr>ds
3 =
- Ahi(c* =)V o [[valles(c” —
9 (G ( gKaﬁ; ) for Case 4,
> C . 1</éhK* ;L_ ))yyf(HvL! ﬁL )) for Cases B and D,
—c =1 [ Ml —6)7 [[valloo( e
gLa;qoq <8Ka;L )yf< Kap 2, )) for Case C,
which implies
M*(C*—C)yf<||vn|| (C*—C))<2CD (SLaBHVnHoo> 49)
(8KapL2p)?" \ 4Kopl2g /= %\ ct—c /) '
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By similar arguments, we can show that if 7, < CJEC*, then v, satisfies (4.9). Thus we obtain

2(8K,gL%,)Y 32nK,,gL>
2 < 2 BKaplap) %<M>:M
hi(c* —c)Yf(n) (c*—c)?

ANK,pL?
b ab for ) > Ay and n > n**.

However, this is a contradiction for 4 > Ay. Hence ||v,loo # ——

* 0 4nKaﬁLéB % nn
Note that we can choose ry ~ 0 and R} > 1 such that r; < 5 < —=——" <Rj. Then T}

has three fixed points z!, z2 and z} for A € (A, Ag) and n > n** such that r) < ||z}« < & <

2 4nKaﬁL(Zxﬁ 3 " .-
Z3lle0 < —== < ||z|l» < R} by Proposition 4.1. Hence z

of (2.1) for A € (Ay,Ag) and n > n**.

1

1,72 and 7} are positive solutions

Proof of Lemma 2.3. We first show the existence result for A > 0. Let T > 0 and v, € C[0, 1]
be a nontrivial solution of v, = Tfovn + 7. Then we can show ||vy||< < Ry for A >0 and n > n*
following the arguments in the proof of Lemma 2.1.

Let o € (0,1] and v, € C[0, 1] be a nontrivial solution of v, = GT{’OV,Z. If 1, < % then v,
satisfies

_ g-1 p—1 In

[Vallo G/t’” aﬁ(s)ﬁ* ﬁ(s)qfl (Aa*_ﬁ(s)ﬁ*ﬁ(S) hn(r)fJ(Vn)dr>dS

n N

‘ -
L

_ _g=1 p=1

< [Fad (9B T ()0 (AF (Il ()BT (IH())ds.

Then, by Proposition 8.2, we obtain

2LopMopnmin{ @, (A f(|[valle)), @5 (AF(|Ivull))}  for Case A,
HV”H""< 2LO¢I3M06[311(Pp_1(Af(HVnH°°)) for Case B,
2 7| 2LapMaproy (A F([all) for Case C,

2L Mopnmax{ @, (2 f(||valle)), @5 (A f(||vall))}  for Case D.

(4.10)

By similar arguments, we can also show that if #, > J then v, satisfies (4.10). Let [[va[e0 <
4L(xﬁM(xﬁh- Then

(Ivall)) for Cases A and B,
(|[vall)) for Cases C and D.

[vnlles _ f2LapMapn;(
2 - 2LaﬁMth(P¢;1(

It is easy to show the inequality for Cases A - C. For Case D, if A f(||va]|-) < 1, then it is clear
since max{@, ' (Af([vall«)), @5 ' (A7 ([[vall))} = @5 ' (A S ([vall)). T AF([[vn]|oe) > 1. then

the inequality holds since

Af
Af

[[Valeo

2

< 2LaﬁMth < 2LaBMth(Pc;1(A'f(anHw))'

Recalling that

P (s) = {(pp (s) for Cases A and B,

¢,(s) for Cases C and D,
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we have

L k) wi
A®g(4LogMapn) — Pp(l[vall-)
Hence ||v, || # 7, for A > 0 by (2.6). By Proposition 4.1 and Lemma 3.1, there exists a positive
solution z, of (2.5) for A > 0 and n > n* such that 7} < ||z,|| < R}.
Next we show the multiplicity result for A € (4, Ag). Following the arguments in the proof
of Lemma 2.2, we can show that if v, € C[0, 1] is a nontrivial solution of v, = GTfovn then
[Val[oo 7 § for A < Ag and n > n**, and if v,, € C[0, 1] is a nontrivial solution of v, = 7%, + ,

4nKaﬁL

then ||vy || # 6 for A > Ay and n > n**. Note that we can choose 73 ~ 0 and R; > 1

c*

such that 7 < M < < Rj. Then T} has three fixed points z,, z2 and z;, for A € (A, ¢)
and n > n™* such that

0
2 3
<lzllee < 5 <llzallee <Ry

ANKopl?
P < laalle < — % 5

c*—

By Lemma 3.1, 7, z2 and z are positive solutions of (2.5) for A € (A,,Aq) and n > n**

Proof of Lemma 2.4. Let 7 > 0 and v, € C|0, 1] be a nontrivial solution of v, = Tfovn +1. If

4KapLyg ) «
[Va|[eo = —+—2, then v, satisfies (4.4) for n > n*. Thus

C

o222

However, this is a contradiction for A > A*. Hence ||v; || # 4’(;6_ Lf‘ﬁ for A > A* and n > n*.

Let 6 € (0,1] and v, € C[0, 1] be a nontrivial solution of v, = 6T %v,.. If ||vy|[e < 4Lgp Mg,
then v, satisfies (4.11). Thus [[v,||w # 73 for A > 0. If ||vy||ec > 4LogMgpy, then v, satisfies
(4.10) and A f(||vy|) > 1. Thus

[Valle < 4LopMopn@o (A F([[valle0))
from (4.10) with Proposition 8.2. It follows that
1 - Fall=)
ADq(4LopMopn) ~ Pall[vall-)

Hence vyl < Ry, for > 0 by (2.7).
By Proposition 4.1 and Lemma 3. l there exist positive solutions z! and z2 of (2.5) for A > A*
txﬁL

(4.12)

(4.13)

and n > n* such that 7, < ||z} ||l < ——£ < ||22]|e < Ry

5. LIMIT OF SOLUTIONS TO THE APPROXIMATION PROBLEMS

In this section, we demonstrate that the positive solutions of (1.1) can be obtained from a
sequence of positive solutions to approximation problems (2.1) or (2.5).

Lemma 5.1. Assume (H,) — (H3). For a given A > 0, let {v,} be a sequence of positive solu-
tions of (2.1) (or (2.5)) such that 0 < v < inf ||v,||e < sup||vy|lee <V < oo. Then there exists a
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positive solution v of (1.1) such that v < ||v||e <7V and klim Vi, — V|| = 0, where {vy, } is a
—>o0

subsequence of {vy}.
Proof. Let {v,} be a sequence of positive solutions of (2.1) (or (2.5)) such that
0 < v < infl|vyllee < sup||vpllee <V < o0

It is clear that {v,} is uniformly bounded. Now we prove that {v,} is equicontinuous on [0, 1].
Since f(s) < %+ f(s) for s > 0 and v, () is nondecreasing for ¢ € (0,,), we have

Vn(a”)Y + (1 +vu(r) = a+"n(rii](€£)1y+ e = a+z:](ct()17+‘_})' D

Ja(n(r)) <

for r € (t,t,). By [8, Proposition 3.1], one sees that v/, satisfies

q—1

G0 = al T T 0@ (e T 0B ) [ () fuvar)
< Lopo 7 0B 0@ (1 [ hpin)ar)

< Lapoc 7T OB T e (HEEEEEEI) [Mayar)

fort € (0,1,), where vj := max{(pljl(l(a—k\_ﬂ’f(l +V))),(pq’1(7t(a+\77f(l +9)))}. Lets =
inft, and tg := supt,. Then

) mingg, (), 0 (0N} < viLap 7 0BT (0@ ([ hr)ar)

fort € (0,1,). Further, we have

Vn (ln)

| minto (0.0 (0}ak < [ min{g, (07, 0 (1)

< [Mismin{e, (a(5)7),0; " Ol

In 1 _ 1 In
<vilap [ @ 0BT )0 ([ tryar)as,

which implies #; > 0. By similar arguments, we can show fg < 1 and

1 1

—vi(H)ymin{@, ! (va(t)"), 0, (va(£)")} < viLogot " ()BT (1)@ ! </t:h(r)dr> (5.3)
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l
fort € (ty,1). Let J(I) := / min{@, ' (k"), ¢, ' (k") }dk. By (5.2) and (5.3),if 0 <a < b <t,,
0
then

W) B
(6 (@)l = | [ min{e, ()., () hak

a

ift, <a<b<1,then

[ (va(b)) = I (va(a))| =

and if a < t,, < b, then
[ (va(b)) =T (vu(@))| < [T (vi(D)) = I (va(tn))| + [ (va(tn)) — I (va(a))|

Vn(tn) V,,(In)
<[ min{«p,:%km,w;l(kn}dﬂ min{@, | (k") ¢, (k")}dk

n( vp(a

,L 1
1 1

< v;LLa[; Oc* (s)Bs A h(r)dr)ds

I

() ! (
75 Lag /a " T ()BT (5) D! ( /s tsh(r)dr> ds

< Vi L "« ”l](s)ﬁ*"ll(s)él( /sh( )dr)ds

max{a,tr}
. min{b,ts} ,ﬁ 7%
+V;LLaB/ o " (s)Bs / h(r dr ds.
a

This implies that {J(v,)} is equicontinuous on [0, 1] by Proposition 8.3. Since J(0) = 0 and
J is nondecreasing, J~!(I) is uniformly continuous on [0,J(v)]. Hence {v,} = {J~'(J(v»))}
is equicontinuous on [0, 1]. Then, by Arzela-Ascoli theorem, there exists a subsequence {v,, }
of {v,} that converges uniformly to a function, say v, on [0,1]. Then v < ||v|l« < ¥ since
klgn [Vi, = Vl|ee = 0 and y < inf||vy||ee < sup ||vylle < V.

Let7 € (0,1) be such that o (7) + B(7) > 0 (independent on ny). Then v,, satisfies

R f 1 _gq=1 pfl

vy (0) = v ()= [ T (9B 7 ()07 (a0 TP (B (5) (2 / g (1) f (v )dr) ) s
forr € [0,7] and

q—1 p—1

Vg (£) = vy () + / a7 (5)B 77 ()0 (o 7 (5)B7 (5) (2 / P (1)) ) ) ds

for t € [f,1], where m,, := 1i_r>rt1 (ce(t)@p (v, (1)) + B(2) @y (v, (£))). We note from Lemma 3.1

and Lemma 3.3 that v}, NG ) exists and there exists ¥ > 0 (independent on ny) such that v, () > ¥
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for t € [min{7,#;}, max{7,s}]. Then, from (5.1), we have
a+vf(l1+v) - a-+v'f(1+v)
Vi, (1) - Y

for t € [min{7,#;},max{7,s}]. Thus we obtain

(1) (44, 0)) + BEI@y (3, 0) | = | [ b o om)atr
- a+vf(1+v) /max{fvts}

vy min{7,f;}

TV (1)) <

h(r)dr.

This implies that {v,, (f)} is uniformly bounded. Hence {v;, ()} has a convergent subsequence.
Without loss of generality, we assume klim vy, () = vs. Let [t,,2*] be any subinterval of (0,1)
—>00

containing 7, t; and ts. Then we obtain m = kh_{?om”k = a(f)Qy(vi) + B(f)@y(v+) and
v(t) =
foo1 1 ,u p=l1
v(f) — / 7P(S)l3* P (s)® (OC* ()BT m-l—/l/ h(r ds t <t <P
- p=1
f+/ 7 (5 (a*“()ﬁ‘”’ m— /1/ Jds, i<i<i

This implies v, =V/ (7). Then v(¢) satisfies the equation in (1.1) almost everywhere forz € [t,,1*].
Hence v satisfies the equation in (1.1) almost everywhere for ¢ € (0,1). This implies v is a
positive solution of (1.1). U

6. PROOFS OF THEOREMS 1.1 - 1.4

In this section, we prove Theorems 1.1 - 1.4. Approximation techniques are used to obtain
the existence and multiplicity results.

Proof of Theorem 1.1. By Lemma 2.1, (2.1) has positive solutions z} and z2 for A < A, and
n > n* such that ry < ||z}]le < 4LygMgpy < ||zallo < Ry. Then, by Lemma 5.1, there exist
positive solutions z!' and z2 of (1.1) for A < A, such that r; < ||z'[|ee <4LggMypp < [|2*]|eo < Ry,
klgg |zt —2"[|e = 0 and llgg 122, — 2%[|e = O, where {z), } and {z3 } are subsequences of {z)}
and {z2}, respectively.

For each i € {1,2}, if [|7'||c = 4LygMgpy, then 7' satisfies (4.1). Thus we obtain (4.2).
However, this is a contradiction since A < A,. Thus |z'|| 7 4LogMqpp for i € {1,2}. Hence 7!
and z* are positive solutions of (1.1) for 2 < A, such that rj < |[|z'[jee < 4LggMep) < [|2%]le <
R;.

Further, we have

2"l
4LogMopn

< max{(pp_l ()L(Hjlyﬁ}o + f(1 +4LaﬁMaﬁh))>,(pq_l (A(ijuy + f(1 +4LaﬁMaﬁh)>>}
(6.1)
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and B
1 g 2 FO+]2])
APa(4LapMop) ~ |21 @u([2]) " @all]-)
from (4.1) and (4.6). This implies ||z || — 0 and ||z%[|cc — o0 as A — 0.
Next we show the nonexistence result for 7L > 1. Assume to the contrary that (1.1) has a

(6.2)

positive solution z for A > 1. If ||z]|cc > aﬁ “B

£ 32K, a3
inf S 1 ( “Pa [").
se(1,00) Py (s) ~ Ahy (c¢* —c)?

However, this is a contradiction for A >> 1 by (Hs,). Let Nogj, := min{1,LqgMep, }- If [|z]|eo <
Nogp, then z satisfies (4.5). Thus we have

, then z satisfies (4.4). Thus we have

(6.3)

f 1 /8L
inf JG) ~ ( “ﬁ_). (6.4)
s€(0,1) @g(s) — Ah " \&*—¢
wpl2
However, this is a contradiction for 4 > 1 by (Hy,). This implies Nyg), < [|z][e < % for

A>> 1. Lett, € (0,1) be such that ||z|| = z(t;). By Lemma 3.1, if #, > 3, then

(2)dr > ﬁh(r)f(z)dr
ST 1 ~1 . Nth Nth
- f<4La5¢ <mln{(pp<Ka5LaB)’%(KaBLaB)})>

3
fort € (0,7), where h := mln{ﬁ h(r)afr,[4 h(r)dr}. Thus z satisfies

4 2

L
2

o> [ a0 7 e (e 085 ) [ hir

e (97 w<mm{w<z#£';ﬁ>ﬂ%<z<a:i;>}>>>

by Proposition 8.1. By similar arguments, we can show that if #, < % then z satisfies

| No No
(im0 (yrap ) P ogg) 1)) 69

4KaﬁLgB

c*—c

op

|
Il 2 7 ¢ (AR7 (57

However, this is a contradiction for 4 > 1 since Nygj, < ||z]| < . Hence (1.1) has no

positive solution for A > 1.

Proof of Theorem 1.2. By Lemma 2.2, (2.1) has a positive solution z, for A > 0 and n > n*

such that ry < ||z4]| < R}. Then, by Lemma 5.1, there exists a positive solution z of (1.1) for

A >0 such that r; < ||z[| <R} and klim |2n, — 2|l = 0, where {z,, } is a subsequence of {z,}.
—> 00

If ||z]|le > 4LogMpp, then z satisfies (6.2). However, this is a contradiction for 4 ~ 0 by
(Hsp). Thus [|z]|e < 4LggMgpy for A = 0. Then z satisfies (6.1). This implies [|z[[ — O as
A —0.



DOUBLE PHASE PROBLEMS 79

If ||zle < M then z satisfies either (6.4) or (6.5). However, this is a contradiction for

A > 1. Thus ||z > C*ﬁ_fB for A > 1. Then z satisfies (4.4). This implies ||z|| — oo as
A — o0 by (HSb)-
Next we show the multiplicity result for A € (An,4g). Letz), z2 and z} be positive solutions of

ANK gL
(2.1) for A € (Ay, Ag) and n > n** such that r < [|z}]|e < § < |22l < % < ||z}l <R3

Then we can show that (1.1) has positive solutions z!, z% and z* for A € (An,2g) such that

ANK L2
<2 o <8 <P < w < ||z}|le < R} by Lemma 5.1.

If ||z!]|e = %, then z! satisﬁes (4.8). However, this is a contradiction for A < Ag. Thus

12w # & for A < Ag. By similar arguments, we can show ||z?||. % & for 4 < Ag.
4nKygL?
If ||2%]jo = % then z? satisfies (4.9). However, this is a contradiction for 1 > Ay,.

4nKyplL?
Thus [|z?[| # w for A > Ay. By similar arguments, we can show ||z%||e # Tab b for

c*—c
A > Ay.
Hence z!, 7% and z° are positive solutions of (1.1) for A € (A5, Aq) such that r; < ||z![| <
4ANK,pgL?
o) B
S <122 < =2 < ||2]| < Rj.

Proof of Theorem 1.3. By Lemma 2.3, (2.5) has a positive solution z, for A > 0 and n > n*
such that 7), < ||zx||- < Rj. Then, by Lemma 5.1, there exists a positive solution z of (1.1) for
A > 0 such that 7) <||z]|l <R; and klim |zn, — 2|l = 0, where {z,, } is a subsequence of {z,}.
—>00
If ||z[|ec < 4LygMgpy, then z satisfies (4.11). Thus we have
| A

< ap L (s)

AP (4LapMapn) ~ se(04LygMeg,) PB(S)

(6.6)

However, this is a contradiction for 4 ~ 0 by (Hyp). Thus ||z|ec > 4LgMgpy for A = 0. Then
z satisfies (4. 13) Thus ||z|lee — o0 as A — 0.

If ||z]|e0 > aﬁ O‘ﬁ , then z satisfies (4.4). Thus (6 3) is satisfied. However, this is a contradic-
tion for A > 1 by (Hs,). Therefore ||z]|e < C*ﬁf fﬁ for A > 1. Then we obtain

4KaBwa

T e [[2]eo

ol @) ) o
Z4L1aﬁ¢ ( hf(4Laﬁ¢ 1(min{‘pp<1<!;”£;ﬁ)"Pq<1<£;tﬁ>}>>>

by similar arguments in (6.5). Hence ||z]| — 0 as A — oo.
Now we show the multiplicity result for A € (A5,4g). Let z,, z2 and 73 be pos1t1ve solutions of

(2.5) for A € (An, Ag) and n > n** such that 7y, < ||z} < 7 < ||122]| < % < |12l <Ry

Then we can show that (1.1) has three solutions z!, z* and z* for A € (An,A4¢) such that
4nKaBLgB

c*—c

P < lz' e < & < |2l < < ||z*||= < R, following the arguments in the proof of
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Theorem 1.2.

Proof of Theorem 1.4. By Lemma 24, (2.5) has positive solutions z} and 72 for A > A*
and n > n* such that 7;, < ||z}l < Hapliay < ||z2||l < R3. Then, by Lemma 5.1, there exist

c*—c
positive solutions z' and z2 of (1.1) for A > A* such that 7}, < ||z![|e < % < ||I2?|l < Ry,
I}g{}o |z, — 2]l =0 and llgg ||Z%l — 2%[|eo = 0, where {z,, } and {Z%z} are subsequences of {z}}

and {z2}, respectively.
: el 4KopLig P .
For each i € {1,2}, if ||Z'|| = , then 7' satisfies (4.4). Thus we obtain (4.12). How-

c*—c
. - . .. . ; 4Kopl
ever, this is a contradiction since A > A*. This implies [|7'||« # aﬁ — for A > A* and

i € {1,2}. Hence z' and z? are positive solutions of (1.1) for A > A* such that 7, < [|z![je <
4Kyp L2
— 8 |22 < Ry

Further, 7' and 72 satisfy (6.7) and (4.4), respectivley. Thus [|z!||c. — 0 and ||z?|| — oo as
A — oo by (Hyp) and (Hsp).

Next we show the nonexistence result for A ~ 0. Assume to the contrary that (1.1) has a
positive solution z for A = 0. If ||zl < 4LyMgp;, then z satisfies (4.11). Thus z satisfies (6.6).
However, this is a contradiction for A ~ 0 by (Hyp). Thus ||z|ec > 4LgMgpy for A = 0. Then
z satisfies (4.13). This implies

1 ()

< sup .
ADq (4La[3Ma/3h) SE(4LygMopp,>) Dy (s)

However, this is also a contradiction for A ~ 0 by (Hsp). Hence (1.1) has no positive solution
for A =~ 0.

7. EXAMPLES

In this section, we discuss examples of Theorems 1.1 - 1.4. We consider the double phase

problem (1.1) with
| <l 1
5—t te 0,5
a(r) =4 G0 el
0, 1

and

h(t) .= ———, 1 €(0,1),

)= g 1€ O
where c1, ¢3, ¢3, and ¢4 are constants such that 0 < c; < p—1,0<c; <g—1and 0 <c3,c4 < p.
Then o, B and & satisfy (H;) and (H3). We note that if c3 > 1 or ¢4 > 1, then A is non-integrable
on (0,1).

1. Let

flu) = o+

un
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where ¥ > 0 and 9» > p — 1. Then f satisfies (Hy), (Haq), and (Hs,), and if p > 1,
then f is strong singular. By Theorem 1.1, (1.1) has no positive solution for A > 1 and

has two positive solutions u; and uy for A < A, such that ||u;||cc — 0 and ||u3]|« — oo as
A —0.

. Let

1 2
f(bl) = ﬁ +ent,
where 71 > 0 and %, > 0. Then f satisfies (H3), (Haq), (Hsp), and (Hg), and if 95 > 1,
then f is strong singular. By Theorem 1.2, (1.1) has a positive solution u for A > 0 such
that ||u||cc — 0 as A — 0 and [[u||ec — 0 as A — oo.
If we choose ) = 7 and 6 = 8M 5, (= 8Ly M pp), then (Hy) is satisfied for > 1
since

8Mopgn"2

Y
; BFSMup)

L4 o7 1
fm) , f0) AT Wi T
Dy(n)" Pa(0) ’)/2‘0_] (SMth>p_1
for 1» > 1. Hence, if 15 > 1, then (1.1) has three positive solutions for A € (15, 2¢).

> 1

. Let

f(u) = Amin{u",u®} + min{u”, u®¥},
where A >0and 73 < p—1 <1 <g—1< 7. Then f satisfies (Hz), (Hyp), (Hsy), and
(Hg). Therefore, by Theorem 1.3, (1.1) has a positive solution u for A > 0 such that
||lul|lc — 0 as A — 0 and ||uljc — 0 as A — oo.
If we choose n =1 (> Z*L;;) and 0 = AX with 0 < k¥ < ﬁ, then (H7) is satisfied
for A > 1 since

fm) |, £(8)  A+1 AN LARE 1+ 4

%(n)/%(e) 1 / AX(—1) T AK(n—p+1) p pAK(p—ptl)-1 > 1

for A>> 1. Hence, if A > 1, then (1.1) has three positive solutions for A € (Ay,2¢).

. Let

f(u) = min{u”, "},
where 0 <71 < p— 1< g—1< 7. Then f satisfies (H>), (Hyp), and (Hsp,). Therefore,
by Theorem 1.4, (1.1) has no positive solution for A ~ 0 and has two positive solutions
uy and up for A > A* such that ||u;||. — 0 and ||uz|/cc — o0 as A — oo.

8. APPENDIX

In this section, we provide useful lower and upper estimates for integrals involving ¢,  and

h.

Proposition 8.1. [8, Proposition 3.2] Assume (Hy). If k(t) > ki > 0 fort € (a,b) C (0,1), then

’

¢ ~—1
¢L—(k*)(b—a) forany (a,b),
af
L L 74];] E 71 k*
oI (5)B. T () (o T ()BT ()k(s) ) ds > "”’T(ﬁ)aa—a) for (a,b) C Qq,
M b—a) for(a,b) CQ
\LaB< )f(7)Cﬁ'
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Proposition 8.2. Assume (Hy) and (H3). If C > 0, then

1 1 1 g—1 p—1

|l 758 T (9@ (Car T ()BT ()H()) ds
0
2LaﬁMaﬁhmin{<p;1 (C), (pq_l (C)}  for Case A,
< 2LaﬁMaﬁh(p;1 (C) for Case B,
ZLQBMaﬁh(pq_l (C) for Case C,

2L Mg, max{(pp_1 (0), (pq_1 (C)} for Case D,
< 2LagMaps, max{¢;1(C), (PJI(C)}-

Further, we have

1

1 L -5 = = 2LagMopp®y (C) forC>1,
[ e (0B 50 (cas ) (m ())ds<{2LaBMthcpﬁ 6 dorcz

s

<

Similarly, if C > 0, then

I et ol
J, a7 6B T ()@ (Con ()8 (5)H(s) ) ds
2
2LagMapymin{@, ' (C), @, (C)} for Case A,
2LaﬁMth(Pp_1 (C) for Case B,
2L&[3M(X[3h(pq_1 (C) for Case C,
ZLQBMaﬁhmaX{gDp_l(C), (pq_l(C)} for Case D,

< 2La[3MaﬁhmaX{(P;1(C)a @;1(C)}~

IA

We also have

L s s —et et 2LopMyp @' (C) for C > 1,
J, @ @B e (o B! <s>H<s>)dss{ZLMMMDBI(C) rCel

Proof. Let C > 0. If (a,b) C Qqp, then
1<C/abh(r)dr> — ¢! (C/abh(r)dr)
< min{q)p_] (C/jh(r)dr) 0, (c/abh(r)dr> }

< min{g,"(C), 0; ' ()} (9" ( / bh(r)dr) +o;'( / bh(r)dr)).
If (a,b) C Qq, then

P! (C/abh(r)dr) —¢,! (C/abh(r)dr) =9, (C)p," (/abh(r)dr>.

If (a,b) C Qg, then

e worar) = o e [ iorar) = o ;" ([ Horar)
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For (a,b) C (0,1), we have

P! <C/abh(r)dr) <o, (C/abh(r)dr> +o," (C/abh(r)dr>
< max{e, ' (C), ¢, ()} (0" ( / bh(r)dr) +o;'( / bh(r)dr)).

Then, by [8, Proposition 3.1], we obtain

<Lap [0 ()BT ()@ (CH()) ds

2LapMyppmin{@, ' (C),, ' (C)} for Case A,
2LaﬁMthq0p_l(C) for Case B,
2LaﬁMaﬁhq)q’1(C) for Case C,
2LagMgpymax{@, ' (C), ¢, ' (C)} for Case D,

< 2LopMyppmax{g, ' (C), ¢, (C)}.

IN

Noting that

Bo(s) ¢,(s) for Cases A and C,
¢p(s) for Cases B and D,

and

D (s) = ¢p(s) for Cases A and B,
g @,(s) for Cases C and D,

we have

L R —el el 2LapMypp®y' (C) forC>1
/ Tl (9)B. T () (Can T ()BT (s)Hs) s < § PP a (€) forc>1,
0 2LoMapn®@s' (C) forC < 1.

By similar arguments, we can show the remaining parts. U

Proposition 8.3. Assume (H,) and (H3). Let ¢* € (0,1). Then

[T wB T e ([ hrar)ds < o
and
[ a7 Top T e ([ nrar)ds <o o

Proof. We provide the proof of (8.1). A similar argument can be used to show (8.2).
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1 *
If ¢* < 7, then it is clear that (8.1) is satisfied by (H3). Let ¢* > £. If [ h(r)dr < f%c h(r)dr,

then
I

1 1 c*

o " ()BT (92

o=

h(r)dr> ds

N

for s € (0,s4). Thus

—

*

[P0 T e ([ htryar)as

0

= [ e e ([ i) [ e wp e ([ aojar)as

=
|
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