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ON POSITIVE SOLUTIONS FOR A CLASS OF DOUBLE PHASE PROBLEMS
WITH STRONG SINGULAR WEIGHTS AND NONLINEARITIES
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Abstract. We study the existence and nonexistence of positive solutions for the singular double phase
problem: {

−(α(t)ϕp(u′)+β (t)ϕq(u′))
′ = λh(t) f (u), t ∈ (0,1),

u(0) = 0 = u(1),

where λ > 0, 1 < p < q < ∞, and ϕm(s) := |s|m−2s. This model can contain strong singular weights
and nonlinearities such as h(t) = t−δ with δ ≥ 1 and f (u) = 1+ u−γ with γ ≥ 1. Firstly, we provide
sufficient conditions on α , β , and h such that positive solutions belong to C[0,1], which generalizes pre-
vious results. Secondly, we establish various existence results, including the existence of three positive
solutions, which are new results even for strong singular p-Laplacian problems. We prove the exis-
tence results by applying approximation techniques, resulting in approximation solutions that are not in
C1[0,1], stemming from the degeneracy of α and β .
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1. INTRODUCTION

In this paper, we are concerned with the existence of multiple positive solutions for one-
dimensional double phase problems of the form:{

−
(
α(t)ϕp(u′)+β (t)ϕq(u′)

)′
= λh(t) f (u), t ∈ (0,1),

u(0) = 0 = u(1),
(1.1)

where λ > 0, 1 < p < q < ∞, ϕm(s) := |s|m−2s, and α , β , f , and h satisfy the following condi-
tions:
(H1) α : [0,1]→ [0,∞) and β : [0,1]→ [0,∞) are continuous such that α(t)+β (t)> 0 almost

everywhere and Kαβ :=
∫ 1

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)ds < ∞, where

α∗(t) :=

{
α(t) for α(t)> 0,
1 for α(t) = 0,

and β∗(t) :=

{
β (t) for β (t)> 0,
1 for β (t) = 0,
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(H2) f : (0,∞)→ (0,∞) is continuous and there exist a > 0, a∗ > 0, and γ ≥ 0 such that
0 < f (s)≤ a

sγ for s < 1 and f (s)≥ a∗ for s > 1,
(H3) h : (0,1)→ (0,∞) is continuous and satisfies

max

{∫ 1
2

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)ϕ−1
p (H(s))ds,

∫ 1

1
2

α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)ϕ−1
p (H(s))ds

}
< ∞,

where H(s) is defined as
∫ 1

2

s
h(r)dr for s ∈ [0, 1

2 ] and as
∫ s

1
2

h(r)dr for s ∈ [1
2 ,1].

Since Fulks-Maybee’s seminal work on the problem of an electrical conductor in which elec-
trical resistance is a singular function (see [1]), the study of singular problems has been extended
in various directions. One of them is to study singular problems with pure singular terms given
by: {

−∆u = g(x)
uγ , x ∈Ω,

u = 0, x ∈ ∂Ω,
(1.2)

where γ > 0, Ω is a bounded smooth domain in RN with N ≥ 1, and g is Hölder continuous on
Ω. For example, Crandall-Rabinowitz-Tartar [2] studied (1.2) with more general linear elliptic
operators. Lazer-McKenna [3] showed that if γ > 1, then a solution u is not in C1(Ω). They also
discussed the uniqueness of positive solutions by applying the fact that approximation solutions
un ∈C1(Ω) to nonsingular nonlinearity converge to u∈C(Ω). Further, Taliaferro [4] considered
(1.2) with N = 1, Ω = (0,1) and a continuous function g. He proved that∫ 1

0
x(1− x)g(x)dx < ∞ (1.3)

is a necessary and sufficient condition for (1.2) to have a unique positive solution. We note that
(1.3) implies that g may be non-integrable on (0,1).

Another interesting research is to study singular problems with perturbed singular terms as
follows: {

−∆pu = λ

uγ +uq, x ∈Ω,
u = 0, x ∈ ∂Ω,

(1.4)

where 0 < γ < 1 and ∆pu = div(|∇u|p−2∇u) with p > 1. Haitao [5] dealt with the case when
p= 2 and 1< q< N+2

N−2 , while Giacomoni-Schindler-Takáč [6] explored scenarios for 1< p<N
and 1< q< N+p

N−p . Both studies showed that (1.4) has two positive solutions (one obtained by the
mountain pass theorem and the other by the sub-supersolution method) for a certain range of λ .
In [7], these studies were extended from constant exponents p, q, and γ to variable exponents
p(x), q(x), and γ(x). It is noteworthy that condition 0 < γ(x) < 1 is essential for applying
variational arguments.

Recently, the authors [8] investigated the positive solutions of (1.1), which we refer to as the
generalized double phase problem, as the term ‘double phase problem’ typically denotes the
case when α ≡ 1 (see [8, 9] for its historical context). Under weaker singular nonlinear terms f
and h:

(F) f : (0,∞)→ R is continuous and there exist a > 0, a∗ > 0, â > 0, ε ≥ 0, and 0≤ γ < 1
such that (s− ε) f (s) > 0 for s ∈ (0,∞) \ {ε}, f (s) ≤ a

sγ for s < 1 and f (s) ≥ −a∗
sγ + â

for s > 0,
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(H) h : (0,1)→ (0,∞) is continuous and there exist b > 0 and δ ≥ 0 such that γ +δ < 1 and
h(t)≤ b

d(t)δ
, where d(t) := min{t,1− t},

they explored various existence results depending on the behaviors of f near 0 and ∞. They
stated that (H1) may weaken the regularities of solutions so that the solutions may not be differ-
entiable at t = t0 where α(t0)+β (t0) = 0. Thus they investigated positive solutions belonging
to C[0,1].

Following the study in [8], we examine (1.1) with a focus on the strong singular nonlinear
term f and the strong singular weight h. Here, f is strong singular means limsups→0 sγ f (s) ∈
(0,∞) for some γ ≥ 1, and h is strong singular means that h is non-integrable on (0,1). The
strong singular f and h may further weaken the regularities of solutions. This makes it difficult
to use the ideas in [8] to obtain the existence and multiplicity results.

The first goal of this paper is to establish a sufficient condition (H3), which ensures that the
solutions of (1.1) belong to C[0,1]. The second goal is to demonstrate various existence results,
including the existence of three positive solutions of (1.1). To overcome the difficulties caused
by regularity, we combine the ideas in [8, 10]. We use the ideas in [8] to find positive solutions
to approximation problems, and use the approximation technique in [10] to find positive solu-
tions of (1.1) from the solutions of the approximation problems. We note that positive solutions
to approximation problems in [10] are actually in C1[0,1] but they worked it on C[0,1]. Mean-
while, solutions to the approximation problems of (1.1) (see Section 2) cannot necessarily be
expected to belong to C1[0,1] due to the degeneracy of α and β at t = t0 with α(t0)+β (t0) = 0.

We define a function u as a positive solution of (1.1) if u is positive on (0,1), satisfies (1.1)
almost everywhere, and adheres to the boundary conditions. As noted in [8], when either α ≡ 0
or β ≡ 0 on some subintervals of (0,1), four distinct cases emerge:

Case A: |Ωα |= 0 and |Ωβ |= 0
Case B: |Ωα |> 0 and |Ωβ |= 0
Case C: |Ωα |= 0 and |Ωβ |> 0
Case D: |Ωα |> 0 and |Ωβ |> 0

where Ωα := {t ∈ (0,1) | α(t)> 0 and β (t)= 0} and Ωβ := {t ∈ (0,1) | α(t)= 0 and β (t)> 0}.
The existence or nonexistence of positive solutions to (1.1) depends on the behaviors of f

near 0 and ∞. We consider the behavior of f near 0:

(H4a) lim
s→0

f (s)
Φβ (s)

= ∞,

(H4b) lim
s→0

f (s)
Φβ (s)

= 0,

and the behavior of f near ∞:

(H5a) lim
s→∞

f (s)
Φα (s)

= ∞,

(H5b) lim
s→∞

f (s)
Φα (s)

= 0,

where Φα(s) := ϕp(s)χ(|Ωα |)+ϕq(s)χc(|Ωα |), Φβ (s) := ϕp(s)χc(|Ωβ |)+ϕq(s)χ(|Ωβ |), χ :
[0,∞)→{0,1} is such that χ(0) = 0 and χ(s) = 1 for s > 0, and χc(s) := 1−χ(s).
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Let Lαβ := max
{

1,‖α‖
1

p−1
∞ ,‖β‖

1
q−1
∞

}
, Mαβh := max

{
M0

αβh,M
1
αβh

}
and

(c,c∗) :=


(0,1) for Case A,
(cα ,c∗α) for Case B,
(cβ ,c∗β ) for Case C,

(cα ,c∗α) for Case D,

where (cα ,c∗α) is a subinterval of Ωα such that c∗α−cα ≥ c̃∗α− c̃α for any interval (c̃α , c̃∗α)⊂Ωα ,
(cβ ,c∗β ) is a subinterval of Ωβ such that c∗

β
− cβ ≥ c̃∗

β
− c̃β for any interval (c̃β , c̃∗β )⊂Ωβ ,

M0
αβh := max

{∫ 1
2

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)ϕ−1
p (H(s))ds,

∫ 1
2

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)ϕ−1
q (H(s))ds

}
and

M1
αβh := max

{∫ 1

1
2

α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)ϕ−1
p (H(s))ds,

∫ 1

1
2

α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)ϕ−1
q (H(s))ds

}
.

We note that c∗− c is uniquely determined because it is the maximum of the lengths of subin-
tervals of Ωα or Ωβ (see Remark 1.1 in [8]). Thus we can define

h∗ := min
(c̃,c̃∗)

{∫ c̃+c̃∗
2

3c̃+c̃∗
4

h(r)dr,
∫ c̃+3c̃∗

4

c̃+c̃∗
2

h(r)dr

}

for any interval (c̃, c̃∗) ⊂ (0,1) such that c̃∗− c̃ = c∗− c. To discuss the existence of three
positive solutions, we assume f satisfies the following conditions:

(H6) f (s) := fγ (s)
sγ , where γ ≥ 0 is the constant in (H2) and fγ : (0,∞)→ (0,∞) is nondecreas-

ing and continuous,
(H7) there exist η ≥ c∗−c

4Lαβ
and θ ≥ 8Lαβ Mαβh such that

f (η)

Φα(η)
/

f (θ)
Φα(θ)

>
2(32Kαβ L2

αβ
)γ

h∗(c∗− c)γ
Φα

(256Kαβ L4
αβ

Mαβh

(c∗− c)2

)
.

Let

λ∗ :=
( a
(2Lαβ Mαβh)

γ
+ f̄ (1+4Lαβ Mαβh)

)−1
,

λ
∗ :=

1
h∗ f̃ (1)

φ

(32Kαβ L3
αβ

(c∗− c)2

)
,

λη :=
2(8Kαβ L2

αβ
)γ

h∗(c∗− c)γ f (η)
Φα

(32ηKαβ L3
αβ

(c∗− c)2

)
,

λθ :=
Φα(θ)

4γΦα(8Lαβ Mαβh) f (θ)
,
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where φ(s) := ϕp(s) + ϕq(s), f̃ (s) := inf
r∈(s,∞)

f (r) and f̄ : [0,∞)→ [0,∞) is a nondecreasing

continuous function such that f̄ (0) = 0, and f̄ (s) = max
r∈[1,s]

f (r) for s≥ 1. Then we establish the

following results.

Theorem 1.1. Assume (H1)− (H3), (H4a) and (H5a). Then (1.1) has no positive solution for
λ � 1 and has two positive solutions u1 and u2 for λ < λ∗ such that ‖u1‖∞→ 0 and ‖u2‖∞→∞

as λ → 0.

Theorem 1.2. Assume (H1)− (H3), (H4a) and (H5b). Then (1.1) has a positive solution u for
λ > 0 such that ‖u‖∞→ 0 as λ → 0 and ‖u‖∞→∞ as λ →∞. If (H6) and (H7) are additionally

satisfied with θ <
8ηKαβ L2

αβ

c∗−c , then (1.1) has three positive solutions u1, u2 and u3 for λ ∈ (λη ,λθ )

such that ‖u1‖∞ < θ

2 < ‖u2‖∞ <
4ηKαβ L2

αβ

c∗−c < ‖u3‖∞.

Theorem 1.3. Assume (H1)− (H3), (H4b) and (H5a). Then (1.1) has a positive solution u for
λ > 0 such that ‖u‖∞→∞ as λ → 0 and ‖u‖∞→ 0 as λ →∞. If (H6) and (H7) are additionally

satisfied with θ >
8ηKαβ L2

αβ

c∗−c , then (1.1) has three positive solutions u1, u2 and u3 for λ ∈ (λη ,λθ )

such that ‖u1‖∞ <
4ηKαβ L2

αβ

c∗−c < ‖u2‖∞ < θ

2 < ‖u3‖∞.

Theorem 1.4. Assume (H1)− (H3), (H4b) and (H5b). Then (1.1) has no positive solution for
λ ≈ 0 and has two positive solutions u1 and u2 for λ > λ ∗ such that ‖u1‖∞→ 0 and ‖u2‖∞→∞

as λ → ∞.

This paper is organized as follows. In Section 2, we discuss the existence and multiplicity
of positive solutions to approximation problems with nonsingular nonlinear term and weight to
derive estimates of positive solutions of (1.1). Section 3 presents preliminary results that will
be utilized in subsequent sections. Sections 4 and 5 are dedicated to proving Lemmas 2.1 -
2.4 and showing that positive solutions of (1.1) can be obtained from a sequence of positive
solutions to the approximation problems, respectively. Sections 6 and 7 contain the proofs and
examples of Theorems 1.1 - 1.4, respectively. In the Appendix, we calculate useful estimates
for integrals involving α , β , and h. Throughout this paper, we use the notations λ ≈ 0 and
λ � 1 for sufficiently small λ > 0 and sufficiently large λ > 0, respectively.

2. POSITIVE SOLUTIONS TO APPROXIMATION PROBLEMS

In this section, we introduce the existence and multiplicity results for approximation prob-
lems with nonsingular nonlinear term and weight.

For the case (H4a), we consider the following approximation problem:{
−
(
α(t)ϕp(v′)+β (t)ϕq(v′)

)′
= λhn(t) fn(v), t ∈ (0,1),

v(0) = 0 = v(1),
(2.1)

where n ∈ N, fn(v(t)) := f (1
n + v(t)) and

hn(t) :=


infr∈(t, 1

n+2 )
h(r), t ∈ (0, 1

n+2),

h(t), t ∈ [ 1
n+2 ,1−

1
n+2 ],

infr∈(1− 1
n+2 ,t)

h(r), t ∈ (1− 1
n+2 ,1).
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We note that there exists n∗ ∈N such that hn(t) = h(t) for t ∈ (3c+c∗
4 , c+3c∗

4 ) and n≥ n∗. We also
note that fn satisfies (H4a) since fn(0) = f (1

n) > 0. By (H4a), there exists a positive constant
rλ < min{1,Lαβ Mαβh} such that

inf
s∈(0,rλ )

f̃ (s)
Φβ (s)

>
1

λh∗
φ

( 8Lαβ

c̄∗− c̄

)
. (2.2)

If (H5a) is assumed, then we can find a constant Rλ > max
{

4Lαβ Mαβh,
4Kαβ L2

αβ

c∗−c

}
such that

inf
s∈(Rλ ,∞)

f̃
(

s(c∗−c)
4Kαβ L2

αβ

)
Φα

(
s(c∗−c)

4Kαβ L2
αβ

) >
1

λh∗
φ

(32Kαβ L3
αβ

(c∗− c)2

)
. (2.3)

If (H5b) is assumed, then we can find a constant R∗
λ
> 4Lαβ Mαβh such that

sup
s∈(R∗

λ
,∞)

(
2γa

sγΦα(s)
+

f̄ (1+ s)
Φα(s)

)
<

1
λΦα(4Lαβ Mαβh)

. (2.4)

Let n∗∗ = max
{

n∗, 2
θ
, c∗−c

4ηKαβ L2
αβ

}
. Following the arguments as in [8], we have the following two

lemmas.

Lemma 2.1. Assume (H1)− (H3), (H4a), (H5a) and n ≥ n∗. Then (2.1) has two positive solu-
tions v1

n and v2
n for λ < λ∗ such that rλ < ‖v1

n‖∞ < 4Lαβ Mαβh < ‖v2
n‖∞ < Rλ .

Lemma 2.2. Assume (H1)− (H3), (H4a), (H5b) and n ≥ n∗ Then (2.1) has a positive solution
vn for λ > 0 such that rλ < ‖vn‖∞ < R∗

λ
. If (H6) and (H7) are additionally satisfied with

θ <
8ηKαβ L2

αβ

c∗−c and n≥ n∗∗, then (2.1) has three positive solutions v1
n, v2

n and v3
n for λ ∈ (λη ,λθ )

such that rλ < ‖v1
n‖∞ < θ

2 < ‖v2
n‖∞ <

4ηKαβ L2
αβ

c∗−c < ‖v3
n‖∞ < R∗

λ
.

We give the proofs of Lemmas 2.1 and 2.2 in Section 4.
For the case (H4b), we consider the approximation problem:{

−
(
α(t)ϕp(v′)+β (t)ϕq(v′)

)′
= λhn(t) f (v), t ∈ (0,1),

v(0) = 0 = v(1).
(2.5)

Since (H4b) implies lim
s→0

f (s) = 0, we can define f̂ (s) := sup
r∈(0,s)

f (r) and find a positive constant

r̄λ < Lαβ Mαβh such that

sup
s∈(0,r̄λ )

f̂ (s)
Φβ (s)

<
1

λΦβ (4Lαβ Mαβh)
. (2.6)

If (H5b) is assumed, then we can find a constant Rλ >
4Kαβ L2

αβ

c∗−c such that

sup
s∈(Rλ ,∞)

f̂ (s)
Φα(s)

<
1

λΦα(4Lαβ Mαβh)
. (2.7)

Following the arguments as in [8], we obtain the following two lemmas.
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Lemma 2.3. Assume (H1)− (H3), (H4b), (H5a) and n≥ n∗. Then (2.5) has a positive solution
vn for λ > 0 such that r̄λ < ‖vn‖∞ < Rλ . If (H6) and (H7) are additionally satisfied with

θ >
8ηKαβ L2

αβ

c∗−c and n≥ n∗∗, then (2.5) has three positive solutions v1
n, v2

n and v3
n for λ ∈ (λη ,λθ )

such that r̄λ < ‖v1
n‖∞ <

4ηKαβ L2
αβ

c∗−c < ‖v2
n‖∞ < θ

2 < ‖v3
n‖∞ < Rλ .

Lemma 2.4. Assume (H1)− (H3), (H4b), (H5b) and n ≥ n∗. Then (2.5) has two positive solu-

tions v1
n and v2

n for λ > λ ∗ such that r̄λ < ‖v1
n‖∞ <

4Kαβ L2
αβ

c∗−c < ‖v2
n‖∞ < Rλ .

We give the proofs of Lemmas 2.3 and 2.4 in Section 4.

3. PRELIMINARIES

In this section, we list preliminary results to be used in the next sections.
First, we consider a function x ∈C[0,1] such that

x is continuously differentiable on Ω+ := {t ∈ [0,1] | α(t)+β (t)> 0}, (3.1)

lim
t→t̃

(
α(t)ϕp(x′(t))+β (t)ϕq(x′(t))

)
exists for t̃ ∈ [0,1], (3.2)

and {
−
(
α(t)ϕp(x′)+β (t)ϕq(x′)

)′ ≥ 0, t ∈Ωα ∪Ωβ ∪Ωαβ ,
x(0)≥ 0, x(1)≥ 0,

(3.3)

where Ωαβ := {t ∈ (0,1) | α(t)> 0 and β (t)> 0}. Then x satisfies the following properties.

Lemma 3.1. [8, Lemma 3.3] Assume (H1). If x ∈C[0,1] satisfies (3.1), (3.2), and (3.3), then

x(t)≥ 1
Lαβ

φ
−1
(

min
{

ϕp

( ‖x‖∞

Kαβ Lαβ

)
,ϕq

( ‖x‖∞

Kαβ Lαβ

)})
t(1− t).

Lemma 3.2. [8, Lemma 3.4] Assume (H1). Let x∈C[0,1] satisfy (3.1), (3.2), (3.3), and ‖x‖∞ ≥
Kαβ Lαβ . Let tx ∈ (0,1) be such that ‖x‖∞ = x(tx). If tx ≥ c+c∗

2 , then x(t) ≥ ‖x‖∞

Kαβ L2
αβ

(t− c) for

t ∈ (c, c+c∗
2 ). If tx < c+c∗

2 , then x(t)≥ ‖x‖∞

Kαβ L2
αβ

(c∗− t) for t ∈ (c+c∗
2 ,c∗).

Now we construct the solution operator for the following problem:{
−
(
α(t)ϕp(x′)+β (t)ϕq(x′)

)′
= λhn(t) f ∗m(y), t ∈Ωα ∪Ωβ ∪Ωαβ ,

x(0) = 0 = x(1),
(3.4)

where n ∈ N, m ∈ N∪{0}, y ∈C[0,1], and

f ∗m(y(t)) :=

{
f ( 1

m +max{0,y(t)}) for m ∈ N,
f (max{0,y(t)}) for m = 0.

For the case m = 0, we only consider f satisfying (H4b) (so f (0) := lim
s→0

f (s) = 0 and f ∗0 (y(t))

is well-defined). Define T nm
λ

: C[0,1]→C[0,1] by

T nm
λ

y(t) :=
∫ t

0
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

α
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

(
mnm

y +λ

∫ 1

s
hn(r) f ∗m(y)dr

))
ds,
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where mnm
y ∈ R is the constant such that

0 =
∫ 1

0
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

α
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

(
mnm

y +λ

∫ 1

s
hn(r) f ∗m(y)dr

))
ds

with

Φ(y(t)) :=


ϕp(y(t)) for t ∈Ωα ,

ϕq(y(t)) for t ∈Ωβ ,

φ(y(t)) for t ∈Ωαβ .

Then we can show that T nm
λ

: C[0,1]→C[0,1] is the solution operator of (3.4), and T nm
λ

y(t)≥ 0
for t ∈ (0,1) by Lemma 3.1. Since T nm

λ
y(t)≥ 0 for t ∈ (0,1) and T nm

λ
y(0) = 0 = T nm

λ
y(1), there

exists tnm
y ∈ (0,1) such that ‖T nm

λ
y‖∞ = T nm

λ
y(tnm

y ). Thus T nm
λ

y can be written as

T nm
λ

y(t)=


∫ t

0
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

λα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

∫ tnm
y

s
hn(r) f ∗m(y)dr

)
ds, 0≤ t ≤ tnm

y ,∫ 1

t
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

λα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

∫ s

tnm
y

hn(r) f ∗m(y)dr
)

ds, tnm
y ≤ t ≤ 1.

Further, T nm
λ

satisfies the following properties.

Lemma 3.3. [8, Lemmas 2.1-2.2] Assume (H1)− (H3). Then T nm
λ

: C[0,1]→ C[0,1] is com-
pletely continuous, T nm

λ
y is continuously differentiable on Ω+, and

lim
t→t̃

(
α(t)ϕp

(
(T nm

λ
y)′(t)

)
+β (t)ϕq

(
(T nm

λ
y)′(t)

))
=
∫ tnm

y

t̃
hn(r) f ∗m(y)dr for t̃ ∈ [0,1].

Then we can show that T nm
λ

y is nondecreasing on [0, tnm
y ] and nonincreasing on [tnm

y ,1] by
Lemma 3.3, and if T nn

λ
(or T n0

λ
) has a fixed point y, then y is a positive solution of (2.1) (or

(2.5)) by Lemma 3.1.

4. PROOFS OF LEMMAS 2.1 - 2.4

In this section, we provide proofs of Lemmas 2.1 - 2.4 (similar to but different from the
proofs in [8]) to obtain the information needed to find positive solutions of (1.1). For this, we
use the Krasnoselskii-type fixed point theorem.

Proposition 4.1. [11, Lemma A] Let X be a Banach space, and let I : X → X be a completely
continuous operator. Suppose that there exist a nonzero element z ∈ X and positive constants r
and R with r 6= R such that

(a) if y ∈ X satisfies y = σ Iy for σ ∈ (0,1], then ‖y‖X 6= r,
(b) if y ∈ X satisfies y = Iy+ τz for τ ≥ 0, then ‖y‖X 6= R.

Then I has a fixed point y ∈ X with min{r,R}< ‖y‖X < max{r,R}.

The proofs of Lemmas 2.1 - 2.4 are as follows.

Proof of Lemma 2.1. Let σ ∈ (0,1] and vn ∈C[0,1] be a nontrivial solution of vn = σT nn
λ

vn.
We show ‖vn‖∞ 6= 4Lαβ Mαβh for λ < λ∗. Let tn ∈ (0,1) be such that ‖vn‖∞ = vn(tn). We first
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consider the case when tn ≤ 1
2 . Let t∗n ∈ (0, tn) be such that ‖vn‖∞

2 = vn(t∗n) < vn(t) < vn(tn) =
‖vn‖∞ for t ∈ (t∗n , tn). Noting that f (s)≤ a

sγ + f̄ (s) for s > 0 by (H2), f ∗n satisfies

f ∗n (s) = f
(1

n
+max{0,s}

)
≤ a

sγ
+ f̄ (1+ s).

Thus we have

hn(t) f ∗n (vn(t))≤ h(t)
( a

vn(t)γ
+ f̄ (1+ vn(t))

)
≤ h(t)

( 2γa
‖vn‖γ

∞

+ f̄ (1+‖vn‖∞)
)

for t ∈ (t∗n , tn). Then we obtain

‖vn‖∞

2
= σ

∫ tn

t∗n
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

λα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

∫ tn

s
hn(r) f ∗n (vn)dr

)
ds

≤
∫ 1

2

0
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

λ

( 2γa
‖vn‖γ

∞

+ f̄ (1+‖vn‖∞)
)

α
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)H(s)

)
ds.

By Proposition 8.2, we have

‖vn‖∞

4Lαβ Mαβh
≤max

{
ϕ
−1
p

(
λ

( 2γa
‖vn‖γ

∞

+ f̄ (1+‖vn‖∞)
))

,ϕ−1
q

(
λ

( 2γa
‖vn‖γ

∞

+ f̄ (1+‖vn‖∞)
))}

.

(4.1)
If ‖vn‖∞ = 4Lαβ Mαβh, then we have

1≤max
{

ϕ
−1
p

(
λ

λ∗

)
,ϕ−1

q

(
λ

λ∗

)}
. (4.2)

By similar arguments, we can also show that if tn > 1
2 then vn satisfies (4.2). However, this is

a contradiction for λ < λ∗. Hence ‖vn‖∞ 6= 4Lαβ Mαβh for λ < λ∗. Let τ ≥ 0 and vn ∈C[0,1]
be a nontrivial solution of vn = T nn

λ
vn+τ . To apply Proposition 4.1, we find a positive constant

greater than max{‖vn‖∞,4Lαβ Mαβh} and a positive constant less than min{‖vn‖∞,4Lαβ Mαβh}.
Let

‖vn‖∞ ≥max
{

4Lαβ Mαβh,
4Kαβ L2

αβ

c∗− c

}
.

If tn ≥ c+c∗
2 , then vn(t) = T nn

λ
vn(t)+ τ ≥ 0 for t ∈ (0,1) and

vn(t)≥
‖vn‖∞

Kαβ L2
αβ

(t− c)≥ ‖vn‖∞(c∗− c)
4Kαβ L2

αβ

for t ∈ (3c+c∗
4 , c+3c∗

4 ) by Lemmas 3.1 - 3.2. We note that f̃ (s) = inf
r∈(s,∞)

f (r) and hn(t) = h(t) for

t ∈ (3c+c∗
4 , c+3c∗

4 ) and n≥ n∗. Thus we have

∫ tn

t
hn(r) f ∗n (vn)dr ≥

∫ c+c∗
2

3c+c∗
4

h(r) f̃ (vn)dr ≥ h∗ f̃
(‖vn‖∞(c∗− c)

4Kαβ L2
αβ

)
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for t ∈ (7c+c∗
8 , 3c+c∗

4 ) and n≥ n∗. Then, by Proposition 8.1, vn satisfies

‖vn‖∞ ≥
∫ 3c+c∗

4

7c+c∗
8

α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

λα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

∫ tn

s
hn(r) f ∗n (vn)dr

)
ds

≥


c∗−c
8Lαβ

φ−1
(

λh∗ f̃
(
‖vn‖∞(c∗−c)

4Kαβ L2
αβ

))
for Case A,

c∗−c
8Lαβ

ϕ−1
p

(
λh∗ f̃

(
‖vn‖∞(c∗−c)

4Kαβ L2
αβ

))
for Cases B and D,

c∗−c
8Lαβ

ϕ−1
q

(
λh∗ f̃

(
‖vn‖∞(c∗−c)

4Kαβ L2
αβ

))
for Case C.

Since ‖vn‖∞ ≥
4Kαβ L2

αβ

(c∗−c) , we have

λh∗ f̃
(‖vn‖∞(c∗− c)

4Kαβ L2
αβ

)
≤


φ

(
8Lαβ ‖vn‖∞

c∗−c

)
for Case A,

ϕp

(
8Lαβ ‖vn‖∞

c∗−c

)
for Cases B and D,

ϕq

(
8Lαβ ‖vn‖∞

c∗−c

)
for Case C,

≤


φ

(32Kαβ L3
αβ

(c∗−c)2

)
ϕq

(
‖vn‖∞(c∗−c)

4Kαβ L2
αβ

)
for Cases A and C,

φ

(32Kαβ L3
αβ

(c∗−c)2

)
ϕp

(
‖vn‖∞(c∗−c)

4Kαβ L2
αβ

)
for Cases B and D.

(4.3)

By similar arguments, we can show that if tn < c+c∗
2 , then vn satisfies (4.3). Noting that

Φα(s) =

{
ϕq(s) for Cases A and C,

ϕp(s) for Cases B and D,

we obtain

f̃
(
‖vn‖∞(c∗−c)

4Kαβ L2
αβ

)
Φα

(
‖vn‖∞(c∗−c)

4Kαβ L2
αβ

) ≤ 1
λh∗

φ

(32Kαβ L3
αβ

(c∗− c)2

)
. (4.4)

Hence ‖vn‖∞ < Rλ for λ > 0 and n≥ n∗ by (2.3). Let ‖vn‖∞ ≤min{1,Lαβ Mαβh}. Define

(c̄, c̄∗) :=

{
(c,c∗) for Cases A, B and C,

(cβ ,c∗β ) for Case D.

Then (c̄, c̄∗) ⊂ Ωα for Case B and (c̄, c̄∗) ⊂ Ωβ for Cases C and D. Note that vn(t) is nonde-
creasing for t ∈ (0, tn) and hn(t) = h(t) for t ∈ (3c̄+c̄∗

4 , c̄+3c̄∗
4 ) and n≥ n∗. If tn ≥ c̄+c̄∗

2 , then

∫ tn

t
hn(r) f ∗n (vn)dr ≥

∫ c̄+c̄∗
2

3c̄+c̄∗
4

h(r) f̃ (vn)dr ≥ h∗ f̃
(

vn

(3c̄+ c̄∗

4

))
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for t ∈ (7c̄+c̄∗
8 , 3c̄+c̄∗

4 ) and n≥ n∗. Thus vn satisfies

vn

(3c̄+ c̄∗

4

)
≥
∫ 3c̄+c̄∗

4

7c̄+c̄∗
8

α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

λα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

∫ tn

s
hn(r) f̃ (vn)dr

)
ds

≥


c̄∗−c̄
8Lαβ

φ−1(λh∗ f̃ (vn(
3c̄+c̄∗

4 ))
)

for Case A,
c̄∗−c̄
8Lαβ

ϕ−1
p
(
λh∗ f̃ (vn(

3c̄+c̄∗
4 ))

)
for Case B,

c̄∗−c̄
8Lαβ

ϕ−1
q
(
λh∗ f̃ (vn(

3c̄+c̄∗
4 ))

)
for Cases C and D.

Since vn

(
3c̄+c̄∗

4

)
≤ 1, we have

λh∗ f̃
(

vn

(3c̄+ c̄∗

4

))
≤

{
φ
(8Lαβ

c̄∗−c̄

)
ϕp
(
vn(

3c̄+c̄∗
4 )

)
for Cases A and B,

φ
(8Lαβ

c̄∗−c̄

)
ϕq
(
vn(

3c̄+c̄∗
4 )

)
for Cases C and D.

Noting that

Φβ (s) =

{
ϕp(s) for Cases A and B,
ϕq(s) for Cases C and D,

we obtain
f̃ (vn(

3c̄+c̄∗
4 ))

Φβ (vn(
3c̄+c̄∗

4 ))
≤ 1

λh∗
φ

( 8Lαβ

c̄∗− c̄

)
. (4.5)

By similar arguments, we can show that if tn < c̄+c̄∗
2 ,then vn satisfies (4.5). Thus vn(

3c̄+c̄∗
4 )> rλ

by (2.2). Hence ‖vn‖∞ > rλ for λ > 0 and n≥ n∗. By Proposition 4.1, T nn
λ

has two fixed points
z1

n and z2
n for λ < λ∗ and n≥ n∗ such that rλ < ‖z1

n‖∞ < 4Lαβ Mαβh < ‖z2
n‖∞ < Rλ . Then z1

n and
z2

n are positive solutions of (2.1) for λ < λ∗ and n≥ n∗ by Lemma 3.1.

Proof of Lemma 2.2. We first show the existence result for λ > 0. Let τ ≥ 0 and vn ∈C[0,1]
be a nontrivial solution of vn = T nn

λ
vn + τ . Then we can show ‖vn‖∞ > rλ for λ > 0 and n≥ n∗

following the arguments in the proof of Lemma 2.1.
Let σ ∈ (0,1] and vn ∈ C[0,1] be a nontrivial solution of vn = σT nn

λ
vn. We find a positive

constant greater than max{‖vn‖∞,rλ}. Let ‖vn‖∞ ≥ 4Lαβ Mαβh. If tn ≤ 1
2 , we obtain from (4.1)

that

λ

( 2γa
‖vn‖γ

∞

+ f̄ (1+‖vn‖∞)
)
≥ 1.

Thus
‖vn‖∞

4Lαβ Mαβh
≤Φ

−1
α

(
λ

( 2γa
‖vn‖γ

∞

+ f̄ (1+‖vn‖∞)
))

,

which implies

1
λΦα(4Lαβ Mαβh)

≤ 2γa
‖vn‖γ

∞Φα(‖vn‖∞)
+

f̄ (1+‖vn‖∞)

Φα(‖vn‖∞)
. (4.6)

By similar arguments, we can also show that if tn > 1
2 then vn satisfies (4.6). Hence ‖vn‖∞ < R∗

λ

for λ > 0 by (2.4). By Proposition 4.1, T nn
λ

has a fixed point zn for λ > 0 and n≥ n∗ such that
rλ < ‖zn‖∞ < R∗

λ
. By Lemma 3.1, one sees that zn is a positive solution of (2.1) for λ > 0 and

n≥ n∗.
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Next we show the multiplicity result for λ ∈ (λη ,λθ ). Let σ ∈ (0,1] and vn ∈ C[0,1] be a
nontrivial solution of vn = σT nn

λ
vn. Assume ‖vn‖∞ = θ

2 (≥ 4Lαβ Mαβh). We first consider the

case that tn ≤ 1
2 . Noting that ‖vn‖∞

2 < vn(t) < ‖vn‖∞ and 1
n + vn(t) ≤ 2‖vn‖∞ for t ∈ (t∗n , tn) and

n≥ n∗∗, we have

f ∗n (vn(t)) =
fγ(

1
n + vn(t))

(1
n + vn(t))γ

≤
2γ fγ(2‖vn‖∞)

‖vn‖γ
∞

≤ 4γ f (2‖vn‖∞)

for t ∈ (t∗n , tn) and n≥ n∗∗. Thus vn satisfies

‖vn‖∞

2
= σ

∫ tn

t∗n
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

λα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

∫ tn

s
hn(r) f ∗n (vn)dr

)
ds

≤
∫ 1

2

0
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

λ4γ f (2‖vn‖∞)α
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)H(s)

)
ds

≤ 2Lαβ Mαβh max{ϕ−1
p (λ4γ f (2‖vn‖∞)),ϕ

−1
q (λ4γ f (2‖vn‖∞))}.

(4.7)

Since ‖vn‖∞ ≥ 4Lαβ Mαβh, we have λ4γ f (2‖vn‖∞)≥ 1. Then we obtain

‖vn‖∞ ≤ 4Lαβ MαβhΦ
−1
α (λ4γ f (2‖vn‖∞)) (4.8)

from (4.7) with Proposition 8.2. By similar arguments, we can also show that if tn > 1
2 , then vn

satisfies (4.8). This implies λ ≥ Φα (θ)
4γ Φα (8Lαβ Mαβh) f (θ) = λθ . However, this is a contradiction for

λ < λθ . Hence ‖vn‖∞ 6= θ

2 for λ < λθ and n≥ n∗∗.
Let τ ≥ 0 and vn ∈ C[0,1] be a nontrivial solution of vn = T nn

λ
vn + τ . Assume ‖vn‖∞ =

4ηKαβ L2
αβ

c∗−c (≥ Kαβ Lαβ ). If tn ≥ c+c∗
2 , then vn(t) ≥ ‖vn‖∞(c∗−c)

4Kαβ L2
αβ

for t ∈ (3c+c∗
4 , c+c∗

2 ) by Lemma

3.2. By (H6), we have

f ∗n (vn(t)) =
fγ(

1
n + vn(t))

(1
n + vn(t))γ

≥ 1
(2‖vn‖∞)γ

fγ

(‖vn‖∞(c∗− c)
4Kαβ L2

αβ

)
≥ (c∗− c)γ

(8Kαβ L2
αβ

)γ
f
(‖vn‖∞(c∗− c)

4Kαβ L2
αβ

)
for t ∈ (3c+c∗

4 , c+c∗
2 ) and n≥ n∗∗. Thus vn satisfies

‖vn‖∞ ≥
∫ 3c+c∗

4

7c+c∗
8

α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

λα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

∫ tn

s
hn(r) f ∗n (vn)dr

)
ds

≥
∫ 3c+c∗

4

7c+c∗
8

α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

λα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

∫ c+c∗
2

3c+c∗
4

h(r) f ∗n (vn)dr
)

ds

≥


c∗−c
8Lαβ

φ−1
(

λh∗(c∗−c)γ

(8Kαβ L2
αβ

)γ
f
(
‖vn‖∞(c∗−c)

4Kαβ L2
αβ

))
for Case A,

c∗−c
8Lαβ

ϕ−1
p

(
λh∗(c∗−c)γ

(8Kαβ L2
αβ

)γ
f
(
‖vn‖∞(c∗−c)

4Kαβ L2
αβ

))
for Cases B and D,

c∗−c
8Lαβ

ϕ−1
q

(
λh∗(c∗−c)γ

(8Kαβ L2
αβ

)γ
f
(
‖vn‖∞(c∗−c)

4Kαβ L2
αβ

))
for Case C,

which implies
λh∗(c∗− c)γ

(8Kαβ L2
αβ

)γ
f
(‖vn‖∞(c∗− c)

4Kαβ L2
αβ

)
≤ 2Φα

(8Lαβ‖vn‖∞

c∗− c

)
. (4.9)
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By similar arguments, we can show that if tn < c+c∗
2 , then vn satisfies (4.9). Thus we obtain

λ ≤
2(8Kαβ L2

αβ
)γ

h∗(c∗− c)γ f (η)
Φα

(32ηKαβ L3
αβ

(c∗− c)2

)
= λη .

However, this is a contradiction for λ > λη . Hence ‖vn‖∞ 6=
4ηKαβ L2

αβ

c∗−c for λ > λη and n≥ n∗∗.

Note that we can choose rλ ≈ 0 and R∗
λ
� 1 such that rλ < θ

2 <
4ηKαβ L2

αβ

c∗−c < R∗
λ

. Then T nn
λ

has three fixed points z1
n, z2

n and z3
n for λ ∈ (λη ,λθ ) and n ≥ n∗∗ such that rλ < ‖z1

n‖∞ < θ

2 <

‖z2
n‖∞ <

4ηKαβ L2
αβ

c∗−c < ‖z3
n‖∞ < R∗

λ
by Proposition 4.1. Hence z1

n, z2
n and z3

n are positive solutions
of (2.1) for λ ∈ (λη ,λθ ) and n≥ n∗∗.

Proof of Lemma 2.3. We first show the existence result for λ > 0. Let τ ≥ 0 and vn ∈C[0,1]
be a nontrivial solution of vn = T n0

λ
vn+τ . Then we can show ‖vn‖∞ < Rλ for λ > 0 and n≥ n∗

following the arguments in the proof of Lemma 2.1.
Let σ ∈ (0,1] and vn ∈ C[0,1] be a nontrivial solution of vn = σT n0

λ
vn. If tn ≤ 1

2 , then vn
satisfies

‖vn‖∞

2
= σ

∫ tn

t∗n
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

λα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

∫ tn

s
hn(r) f ∗0 (vn)dr

)
ds

≤
∫ 1

2

0
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

λ f̂ (‖vn‖∞)α
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)H(s)

)
ds.

Then, by Proposition 8.2, we obtain

‖vn‖∞

2
≤


2Lαβ Mαβh min{ϕ−1

p (λ f̂ (‖vn‖∞)),ϕ
−1
q (λ f̂ (‖vn‖∞))} for Case A,

2Lαβ Mαβhϕ−1
p (λ f̂ (‖vn‖∞)) for Case B,

2Lαβ Mαβhϕ−1
q (λ f̂ (‖vn‖∞)) for Case C,

2Lαβ Mαβh max{ϕ−1
p (λ f̂ (‖vn‖∞)),ϕ

−1
q (λ f̂ (‖vn‖∞))} for Case D.

(4.10)

By similar arguments, we can also show that if tn > 1
2 then vn satisfies (4.10). Let ‖vn‖∞ ≤

4Lαβ Mαβh. Then

‖vn‖∞

2
≤

{
2Lαβ Mαβhϕ−1

p (λ f̂ (‖vn‖∞)) for Cases A and B,
2Lαβ Mαβhϕ−1

q (λ f̂ (‖vn‖∞)) for Cases C and D.

It is easy to show the inequality for Cases A - C. For Case D, if λ f̂ (‖vn‖∞)≤ 1, then it is clear
since max{ϕ−1

p (λ f̂ (‖vn‖∞)),ϕ
−1
q (λ f̂ (‖vn‖∞))} = ϕ−1

q (λ f̂ (‖vn‖∞)). If λ f̂ (‖vn‖∞) > 1, then
the inequality holds since

‖vn‖∞

2
≤ 2Lαβ Mαβh ≤ 2Lαβ Mαβhϕ

−1
q (λ f̂ (‖vn‖∞)).

Recalling that

Φβ (s) =

{
ϕp(s) for Cases A and B,
ϕq(s) for Cases C and D,
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we have
1

λΦβ (4Lαβ Mαβh)
≤ f̂ (‖vn‖∞)

Φβ (‖vn‖∞)
. (4.11)

Hence ‖vn‖∞ 6= r̄λ for λ > 0 by (2.6). By Proposition 4.1 and Lemma 3.1, there exists a positive
solution zn of (2.5) for λ > 0 and n≥ n∗ such that r̄λ < ‖zn‖∞ < Rλ .

Next we show the multiplicity result for λ ∈ (λη ,λθ ). Following the arguments in the proof
of Lemma 2.2, we can show that if vn ∈ C[0,1] is a nontrivial solution of vn = σT n0

λ
vn then

‖vn‖∞ 6= θ

2 for λ < λθ and n≥ n∗∗, and if vn ∈C[0,1] is a nontrivial solution of vn = T n0
λ

vn+τ ,

then ‖vn‖∞ 6=
4ηKαβ L2

αβ

c∗−c for λ > λη and n ≥ n∗∗. Note that we can choose r̄λ ≈ 0 and Rλ � 1

such that r̄λ <
4ηKαβ L2

αβ

c∗−c < θ

2 <Rλ . Then T n0
λ

has three fixed points z1
n, z2

n and z3
n for λ ∈ (λη ,λθ )

and n≥ n∗∗ such that

r̄λ < ‖z1
n‖∞ <

4ηKαβ L2
αβ

c∗− c
< ‖z2

n‖∞ <
θ

2
< ‖z3

n‖∞ < Rλ .

By Lemma 3.1, z1
n, z2

n and z3
n are positive solutions of (2.5) for λ ∈ (λη ,λθ ) and n≥ n∗∗.

Proof of Lemma 2.4. Let τ ≥ 0 and vn ∈C[0,1] be a nontrivial solution of vn = T n0
λ

vn + τ . If

‖vn‖∞ =
4Kαβ L2

αβ

c∗−c , then vn satisfies (4.4) for n≥ n∗. Thus

f̃ (1)≤ 1
λh∗

φ

(32Kαβ L3
αβ

(c∗− c)2

)
. (4.12)

However, this is a contradiction for λ > λ ∗. Hence ‖vn‖∞ 6=
4Kαβ L2

αβ

c∗−c for λ > λ ∗ and n≥ n∗.
Let σ ∈ (0,1] and vn ∈C[0,1] be a nontrivial solution of vn = σT n0

λ
vn. If ‖vn‖∞≤ 4Lαβ Mαβh,

then vn satisfies (4.11). Thus ‖vn‖∞ 6= r̄λ for λ > 0. If ‖vn‖∞ > 4Lαβ Mαβh, then vn satisfies
(4.10) and λ f̂ (‖vn‖∞)≥ 1. Thus

‖vn‖∞ ≤ 4Lαβ MαβhΦ
−1
α (λ f̂ (‖vn‖∞))

from (4.10) with Proposition 8.2. It follows that

1
λΦα(4Lαβ Mαβh)

≤ f̂ (‖vn‖∞)

Φα(‖vn‖∞)
. (4.13)

Hence ‖vn‖∞ < Rλ for λ > 0 by (2.7).
By Proposition 4.1 and Lemma 3.1, there exist positive solutions z1

n and z2
n of (2.5) for λ > λ ∗

and n≥ n∗ such that r̄λ < ‖z1
n‖∞ <

4Kαβ L2
αβ

c∗−c < ‖z2
n‖∞ < Rλ .

5. LIMIT OF SOLUTIONS TO THE APPROXIMATION PROBLEMS

In this section, we demonstrate that the positive solutions of (1.1) can be obtained from a
sequence of positive solutions to approximation problems (2.1) or (2.5).

Lemma 5.1. Assume (H1)− (H3). For a given λ > 0, let {vn} be a sequence of positive solu-
tions of (2.1) (or (2.5)) such that 0 < v < inf‖vn‖∞ ≤ sup‖vn‖∞ < v < ∞. Then there exists a
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positive solution v of (1.1) such that v ≤ ‖v‖∞ ≤ v and lim
k→∞
‖vnk − v‖∞ = 0, where {vnk} is a

subsequence of {vn}.

Proof. Let {vn} be a sequence of positive solutions of (2.1) (or (2.5)) such that

0 < v < inf‖vn‖∞ ≤ sup‖vn‖∞ < v < ∞.

It is clear that {vn} is uniformly bounded. Now we prove that {vn} is equicontinuous on [0,1].
Since f (s)≤ a

sγ + f̄ (s) for s > 0 and vn(t) is nondecreasing for t ∈ (0, tn), we have

fn(vn(r))≤
a

vn(r)γ
+ f̄ (1+ vn(r)) =

a+ vn(r)γ f̄ (1+ vn(r))
vn(r)γ

≤ a+ vγ f̄ (1+ v)
vn(t)γ

. (5.1)

for r ∈ (t, tn). By [8, Proposition 3.1], one sees that v′n satisfies

v′n(t) = α

1
q−p
∗ (t)β

− 1
q−p

∗ (t)Φ−1
(

λα
− q−1

q−p
∗ (t)β

p−1
q−p
∗ (t)

∫ tn

t
hn(r) fn(vn)dr

)
≤ Lαβ α

− 1
p−1

∗ (t)β
− 1

q−1
∗ (t)Φ−1

(
λ

∫ tn

t
h(r) fn(vn)dr

)
≤ Lαβ α

− 1
p−1

∗ (t)β
− 1

q−1
∗ (t)Φ−1

(
λ (a+ vγ f̄ (1+ v))

vn(t)γ

∫ tn

t
h(r)dr

)
≤

v∗
λ

Lαβ α
− 1

p−1
∗ (t)β

− 1
q−1

∗ (t)

min{ϕ−1
p (vn(t)γ),ϕ−1

q (vn(t)γ)}
Φ
−1
(∫ tn

t
h(r)dr

)
for t ∈ (0, tn), where v∗

λ
:= max{ϕ−1

p (λ (a+ vγ f̄ (1+ v))),ϕ−1
q (λ (a+ vγ f̄ (1+ v)))}. Let tI :=

inf tn and tS := sup tn. Then

v′n(t)min{ϕ−1
p (vn(t)γ),ϕ−1

q (vn(t)γ)} ≤ v∗
λ

Lαβ α
− 1

p−1
∗ (t)β

− 1
q−1

∗ (t)Φ−1
(∫ tn

t
h(r)dr

)
≤ v∗

λ
Lαβ α

− 1
p−1

∗ (t)β
− 1

q−1
∗ (t)Φ−1

(∫ tS

t
h(r)dr

) (5.2)

for t ∈ (0, tn). Further, we have

∫ v

0
min{ϕ−1

p (kγ),ϕ−1
q (kγ)}dk ≤

∫ vn(tn)

0
min{ϕ−1

p (kγ),ϕ−1
q (kγ)}dk

≤
∫ tn

0
v′n(s)min{ϕ−1

p (vn(s)γ),ϕ−1
q (vn(s)γ)}ds

≤ v∗
λ

Lαβ

∫ tn

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ tn

s
h(r)dr

)
ds,

which implies tI > 0. By similar arguments, we can show tS < 1 and

− v′n(t)min{ϕ−1
p (vn(t)γ),ϕ−1

q (vn(t)γ)} ≤ v∗
λ

Lαβ α
− 1

p−1
∗ (t)β

− 1
q−1

∗ (t)Φ−1
(∫ t

tI
h(r)dr

)
(5.3)
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for t ∈ (tn,1). Let J(l) :=
∫ l

0
min{ϕ−1

p (kγ),ϕ−1
q (kγ)}dk. By (5.2) and (5.3), if 0 ≤ a ≤ b ≤ tn,

then

|J(vn(b))− J(vn(a))|=
∣∣∣∫ vn(b)

vn(a)
min{ϕ−1

p (kγ),ϕ−1
q (kγ)}dk

∣∣∣
≤ v∗

λ
Lαβ

∫ b

a
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ tS

s
h(r)dr

)
ds,

if tn ≤ a≤ b≤ 1, then

|J(vn(b))− J(vn(a))|=
∣∣∣∫ vn(b)

vn(a)
min{ϕ−1

p (kγ),ϕ−1
q (kγ)}dk

∣∣∣
≤ v∗

λ
Lαβ

∫ b

a
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ s

tI
h(r)dr

)
ds,

and if a < tn < b, then

|J(vn(b))− J(vn(a))| ≤ |J(vn(b))− J(vn(tn))|+ |J(vn(tn))− J(vn(a))|

≤
∫ vn(tn)

vn(b)
min{ϕ−1

p (kγ),ϕ−1
q (kγ)}dk+

∫ vn(tn)

vn(a)
min{ϕ−1

p (kγ),ϕ−1
q (kγ)}dk

≤ v∗
λ

Lαβ

∫ b

tn
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ s

tI
h(r)dr

)
ds

+ v∗
λ

Lαβ

∫ tn

a
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ tS

s
h(r)dr

)
ds

≤ v∗
λ

Lαβ

∫ b

max{a,tI}
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ s

tI
h(r)dr

)
ds

+ v∗
λ

Lαβ

∫ min{b,tS}

a
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ tS

s
h(r)dr

)
ds.

This implies that {J(vn)} is equicontinuous on [0,1] by Proposition 8.3. Since J(0) = 0 and
J is nondecreasing, J−1(l) is uniformly continuous on [0,J(v)]. Hence {vn} = {J−1(J(vn))}
is equicontinuous on [0,1]. Then, by Arzela-Ascoli theorem, there exists a subsequence {vnk}
of {vn} that converges uniformly to a function, say v, on [0,1]. Then v ≤ ‖v‖∞ ≤ v since
lim
k→∞
‖vnk− v‖∞ = 0 and v < inf‖vn‖∞ ≤ sup‖vn‖∞ < v.

Let t̂ ∈ (0,1) be such that α(t̂)+β (t̂)> 0 (independent on nk). Then vnk satisfies

vnk(t) = vnk(t̂)−
∫ t̂

t
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

α
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

(
mnk +λ

∫ t̂

s
hnk(r) fnk(vnk)dr

))
ds

for t ∈ [0, t̂] and

vnk(t)= vnk(t̂)+
∫ t

t̂
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

α
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

(
mnk−λ

∫ s

t̂
hnk(r) fnk(vnk)dr

))
ds

for t ∈ [t̂,1], where mnk := lim
t→t̂

(
α(t)ϕp(v′nk

(t))+β (t)ϕq(v′nk
(t))
)
. We note from Lemma 3.1

and Lemma 3.3 that v′nk
(t̂) exists and there exists v̂ > 0 (independent on nk) such that vnk(t)≥ v̂
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for t ∈ [min{t̂, tI},max{t̂, tS}]. Then, from (5.1), we have

fnk(vnk(t))≤
a+ vγ f̄ (1+ v)

vnk(t)γ
≤ a+ vγ f̄ (1+ v)

v̂γ

for t ∈ [min{t̂, tI},max{t̂, tS}]. Thus we obtain∣∣∣α(t̂)ϕp
(
v′nk

(t̂)
)
+β (t̂)ϕq

(
v′nk

(t̂)
)∣∣∣= ∣∣∣∫ tnk

t̂
hnk(r) fnk(vnk)dr

∣∣∣
≤ a+ vγ f̄ (1+ v)

v̂γ

∫ max{t̂,tS}

min{t̂,tI}
h(r)dr.

This implies that {v′nk
(t̂)} is uniformly bounded. Hence {v′nk

(t̂)} has a convergent subsequence.
Without loss of generality, we assume lim

k→∞
v′nk

(t̂) = v∗. Let [t∗, t∗] be any subinterval of (0,1)

containing t̂, tI and tS. Then we obtain m = lim
k→∞

mnk = α(t̂)ϕp(v∗)+β (t̂)ϕq(v∗) and

v(t) =
v(t̂)−

∫ t̂

t
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

α
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

(
m+λ

∫ t̂

s
h(r) f (v)dr

))
ds, t∗ ≤ t ≤ t̂,

v(t̂)+
∫ t

t̂
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

α
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

(
m−λ

∫ s

t̂
h(r) f (v)dr

))
ds, t̂ ≤ t ≤ t∗.

This implies v∗= v′(t̂). Then v(t) satisfies the equation in (1.1) almost everywhere for t ∈ [t∗, t∗].
Hence v satisfies the equation in (1.1) almost everywhere for t ∈ (0,1). This implies v is a
positive solution of (1.1). �

6. PROOFS OF THEOREMS 1.1 - 1.4

In this section, we prove Theorems 1.1 - 1.4. Approximation techniques are used to obtain
the existence and multiplicity results.

Proof of Theorem 1.1. By Lemma 2.1, (2.1) has positive solutions z1
n and z2

n for λ < λ∗ and
n ≥ n∗ such that rλ < ‖z1

n‖∞ < 4Lαβ Mαβh < ‖z2
n‖∞ < Rλ . Then, by Lemma 5.1, there exist

positive solutions z1 and z2 of (1.1) for λ < λ∗ such that rλ ≤‖z1‖∞≤ 4Lαβ Mαβh≤‖z2‖∞≤Rλ ,
lim
k→∞
‖z1

nk
− z1‖∞ = 0 and lim

l→∞
‖z2

nl
− z2‖∞ = 0, where {z1

nk
} and {z2

nl
} are subsequences of {z1

n}

and {z2
n}, respectively.

For each i ∈ {1,2}, if ‖zi‖∞ = 4Lαβ Mαβh, then zi satisfies (4.1). Thus we obtain (4.2).
However, this is a contradiction since λ < λ∗. Thus ‖zi‖∞ 6= 4Lαβ Mαβh for i ∈ {1,2}. Hence z1

and z2 are positive solutions of (1.1) for λ < λ∗ such that rλ ≤ ‖z1‖∞ < 4Lαβ Mαβh < ‖z2‖∞ ≤
Rλ .

Further, we have

‖z1‖∞

4Lαβ Mαβh

≤max
{

ϕ
−1
p

(
λ

( 2γa
‖z1‖γ

∞

+ f̄ (1+4Lαβ Mαβh)
))

,ϕ−1
q

(
λ

( 2γa
‖z1‖γ

∞

+ f̄ (1+4Lαβ Mαβh)
))}

(6.1)



78 I. SIM, B. SON

and
1

λΦα(4Lαβ Mαβh)
≤ 2γa
‖z2‖γ

∞Φα(‖z2‖∞)
+

f̄ (1+‖z2‖∞)

Φα(‖z2‖∞)
(6.2)

from (4.1) and (4.6). This implies ‖z1‖∞→ 0 and ‖z2‖∞→ ∞ as λ → 0.
Next we show the nonexistence result for λ � 1. Assume to the contrary that (1.1) has a

positive solution z for λ � 1. If ‖z‖∞ ≥
4Kαβ L2

αβ

c∗−c , then z satisfies (4.4). Thus we have

inf
s∈(1,∞)

f̃ (s)
Φα(s)

≤ 1
λh∗

φ

(32Kαβ L3
αβ

(c∗− c)2

)
. (6.3)

However, this is a contradiction for λ � 1 by (H5a). Let Nαβh := min{1,Lαβ Mαβh}. If ‖z‖∞ ≤
Nαβh, then z satisfies (4.5). Thus we have

inf
s∈(0,1)

f̃ (s)
Φβ (s)

≤ 1
λh∗

φ

( 8Lαβ

c̄∗− c̄

)
. (6.4)

However, this is a contradiction for λ � 1 by (H4a). This implies Nαβh < ‖z‖∞ <
4Kαβ L2

αβ

c∗−c for
λ � 1. Let tz ∈ (0,1) be such that ‖z‖∞ = z(tz). By Lemma 3.1, if tz ≥ 1

2 , then∫ tz

t
h(r) f (z)dr ≥

∫ 1
2

1
4

h(r) f̃ (z)dr

≥ h̄ f̃
( 1

4Lαβ

φ
−1
(

min
{

ϕp

( Nαβh

Kαβ Lαβ

)
,ϕq

( Nαβh

Kαβ Lαβ

)}))
for t ∈ (0, 1

4), where h̄ := min
{∫ 1

2

1
4

h(r)dr,
∫ 3

4

1
2

h(r)dr
}

. Thus z satisfies

‖z‖∞ ≥
∫ 1

4

0
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

λα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)

∫ tz

s
h(r) f (z)dr

)
ds

≥ 1
4Lαβ

φ
−1
(

λ h̄ f̃
( 1

4Lαβ

φ
−1
(

min
{

ϕp

( Nαβh

Kαβ Lαβ

)
,ϕq

( Nαβh

Kαβ Lαβ

)})))
by Proposition 8.1. By similar arguments, we can show that if tz < 1

2 then z satisfies

‖z‖∞ ≥
1

4Lαβ

φ
−1
(

λ h̄ f̃
( 1

4Lαβ

φ
−1
(

min
{

ϕp

( Nαβh

Kαβ Lαβ

)
,ϕq

( Nαβh

Kαβ Lαβ

)})))
. (6.5)

However, this is a contradiction for λ � 1 since Nαβh < ‖z‖∞ <
4Kαβ L2

αβ

c∗−c . Hence (1.1) has no
positive solution for λ � 1.

Proof of Theorem 1.2. By Lemma 2.2, (2.1) has a positive solution zn for λ > 0 and n ≥ n∗

such that rλ < ‖zn‖∞ < R∗
λ

. Then, by Lemma 5.1, there exists a positive solution z of (1.1) for
λ > 0 such that rλ ≤ ‖z‖∞ ≤ R∗

λ
and lim

k→∞
‖znk− z‖∞ = 0, where {znk} is a subsequence of {zn}.

If ‖z‖∞ ≥ 4Lαβ Mαβh, then z satisfies (6.2). However, this is a contradiction for λ ≈ 0 by
(H5b). Thus ‖z‖∞ < 4Lαβ Mαβh for λ ≈ 0. Then z satisfies (6.1). This implies ‖z‖∞ → 0 as
λ → 0.
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If ‖z‖∞ <
4Kαβ L2

αβ

c∗−c , then z satisfies either (6.4) or (6.5). However, this is a contradiction for

λ � 1. Thus ‖z‖∞ ≥
4Kαβ L2

αβ

c∗−c for λ � 1. Then z satisfies (4.4). This implies ‖z‖∞ → ∞ as
λ → ∞ by (H5b).

Next we show the multiplicity result for λ ∈ (λη ,λθ ). Let z1
n, z2

n and z3
n be positive solutions of

(2.1) for λ ∈ (λη ,λθ ) and n≥ n∗∗ such that rλ < ‖z1
n‖∞ < θ

2 < ‖z2
n‖∞ <

4ηKαβ L2
αβ

c∗−c < ‖z3
n‖∞ <R∗

λ
.

Then we can show that (1.1) has positive solutions z1, z2 and z3 for λ ∈ (λη ,λθ ) such that

rλ ≤ ‖z1‖∞ ≤ θ

2 ≤ ‖z
2‖∞ ≤

4ηKαβ L2
αβ

c∗−c ≤ ‖z3‖∞ ≤ R∗
λ

by Lemma 5.1.
If ‖z1‖∞ = θ

2 , then z1 satisfies (4.8). However, this is a contradiction for λ < λθ . Thus
‖z1‖∞ 6= θ

2 for λ < λθ . By similar arguments, we can show ‖z2‖∞ 6= θ

2 for λ < λθ .

If ‖z2‖∞ =
4ηKαβ L2

αβ

c∗−c , then z2 satisfies (4.9). However, this is a contradiction for λ > λη .

Thus ‖z2‖∞ 6=
4ηKαβ L2

αβ

c∗−c for λ > λη . By similar arguments, we can show ‖z3‖∞ 6=
4ηKαβ L2

αβ

c∗−c for
λ > λη .

Hence z1, z2 and z3 are positive solutions of (1.1) for λ ∈ (λη ,λθ ) such that rλ ≤ ‖z1‖∞ <

θ

2 < ‖z2‖∞ <
4ηKαβ L2

αβ

c∗−c < ‖z3‖∞ ≤ R∗
λ

.

Proof of Theorem 1.3. By Lemma 2.3, (2.5) has a positive solution zn for λ > 0 and n ≥ n∗

such that r̄λ < ‖zn‖∞ < Rλ . Then, by Lemma 5.1, there exists a positive solution z of (1.1) for
λ > 0 such that r̄λ ≤ ‖z‖∞ ≤ Rλ and lim

k→∞
‖znk− z‖∞ = 0, where {znk} is a subsequence of {zn}.

If ‖z‖∞ ≤ 4Lαβ Mαβh, then z satisfies (4.11). Thus we have

1
λΦβ (4Lαβ Mαβh)

≤ sup
s∈(0,4Lαβ Mαβh)

f̂ (s)
Φβ (s)

. (6.6)

However, this is a contradiction for λ ≈ 0 by (H4b). Thus ‖z‖∞ > 4Lαβ Mαβh for λ ≈ 0. Then
z satisfies (4.13). Thus ‖z‖∞→ ∞ as λ → 0.

If ‖z‖∞ ≥
4Kαβ L2

αβ

c∗−c , then z satisfies (4.4). Thus (6.3) is satisfied. However, this is a contradic-

tion for λ � 1 by (H5a). Therefore ‖z‖∞ <
4Kαβ L2

αβ

c∗−c for λ � 1. Then we obtain

4Kαβ L2
αβ

c∗− c
> ‖z‖∞

≥ 1
4Lαβ

max
{

φ
−1
(

λ h̄ f̃
(

z
(1

4

)))
,φ−1

(
λ h̄ f̃

(
z
(3

4

)))}
≥ 1

4Lαβ

φ
−1
(

λ h̄ f̃
( 1

4Lαβ

φ
−1
(

min
{

ϕp

( ‖z‖∞

Kαβ Lαβ

)
,ϕq

( ‖z‖∞

Kαβ Lαβ

)}))) (6.7)

by similar arguments in (6.5). Hence ‖z‖∞→ 0 as λ → ∞.
Now we show the multiplicity result for λ ∈ (λη ,λθ ). Let z1

n, z2
n and z3

n be positive solutions of

(2.5) for λ ∈ (λη ,λθ ) and n≥ n∗∗ such that r̄λ < ‖z1
n‖∞ < θ

2 < ‖z2
n‖∞ <

4ηKαβ L2
αβ

c∗−c < ‖z3
n‖∞ <Rλ .

Then we can show that (1.1) has three solutions z1, z2 and z3 for λ ∈ (λη ,λθ ) such that

r̄λ ≤ ‖z1‖∞ < θ

2 < ‖z2‖∞ <
4ηKαβ L2

αβ

c∗−c < ‖z3‖∞ ≤ Rλ following the arguments in the proof of
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Theorem 1.2.

Proof of Theorem 1.4. By Lemma 2.4, (2.5) has positive solutions z1
n and z2

n for λ > λ ∗

and n ≥ n∗ such that r̄λ < ‖z1
n‖∞ <

4Kαβ L2
αβ

c∗−c < ‖z2
n‖∞ < Rλ . Then, by Lemma 5.1, there exist

positive solutions z1 and z2 of (1.1) for λ > λ ∗ such that r̄λ ≤ ‖z1‖∞ ≤
4Kαβ L2

αβ

c∗−c ≤ ‖z2‖∞ ≤ Rλ ,
lim
k→∞
‖z1

nk
− z1‖∞ = 0 and lim

l→∞
‖z2

nl
− z2‖∞ = 0, where {z1

nk
} and {z2

nl
} are subsequences of {z1

n}

and {z2
n}, respectively.

For each i ∈ {1,2}, if ‖zi‖∞ =
4Kαβ L2

αβ

c∗−c , then zi satisfies (4.4). Thus we obtain (4.12). How-

ever, this is a contradiction since λ > λ ∗. This implies ‖zi‖∞ 6=
4Kαβ L2

αβ

c∗−c for λ > λ ∗ and
i ∈ {1,2}. Hence z1 and z2 are positive solutions of (1.1) for λ > λ ∗ such that rλ ≤ ‖z1‖∞ <
4Kαβ L2

αβ

c∗−c < ‖z2‖∞ ≤ Rλ .
Further, z1 and z2 satisfy (6.7) and (4.4), respectivley. Thus ‖z1‖∞ → 0 and ‖z2‖∞ → ∞ as

λ → ∞ by (H4b) and (H5b).
Next we show the nonexistence result for λ ≈ 0. Assume to the contrary that (1.1) has a

positive solution z for λ ≈ 0. If ‖z‖∞ ≤ 4Lαβ Mαβh, then z satisfies (4.11). Thus z satisfies (6.6).
However, this is a contradiction for λ ≈ 0 by (H4b). Thus ‖z‖∞ > 4Lαβ Mαβh for λ ≈ 0. Then
z satisfies (4.13). This implies

1
λΦα(4Lαβ Mαβh)

≤ sup
s∈(4Lαβ Mαβh,∞)

f̂ (s)
Φα(s)

.

However, this is also a contradiction for λ ≈ 0 by (H5b). Hence (1.1) has no positive solution
for λ ≈ 0.

7. EXAMPLES

In this section, we discuss examples of Theorems 1.1 - 1.4. We consider the double phase
problem (1.1) with

α(t) :=

{(1
2 − t

)c1 , t ∈ [0, 1
2 ],

0, t ∈ [1
2 ,1],

β (t) :=

{
0, t ∈ [0, 1

2 ],(
t− 1

2

)c2 , t ∈ [1
2 ,1],

and

h(t) :=
1

tc3(1− t)c4
, t ∈ (0,1),

where c1, c2, c3, and c4 are constants such that 0< c1 < p−1, 0< c2 < q−1 and 0≤ c3,c4 < p.
Then α , β and h satisfy (H1) and (H3). We note that if c3 ≥ 1 or c4 ≥ 1, then h is non-integrable
on (0,1).

1. Let

f (u) =
1

uγ1
+uγ2,
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where γ1 > 0 and γ2 > p− 1. Then f satisfies (H2), (H4a), and (H5a), and if γ1 ≥ 1,
then f is strong singular. By Theorem 1.1, (1.1) has no positive solution for λ � 1 and
has two positive solutions u1 and u2 for λ < λ∗ such that ‖u1‖∞→ 0 and ‖u2‖∞→∞ as
λ → 0.

2. Let
f (u) =

1
uγ1

+ e
γ2u

γ2+u ,

where γ1 > 0 and γ2 > 0. Then f satisfies (H2), (H4a), (H5b), and (H6), and if γ1 ≥ 1,
then f is strong singular. By Theorem 1.2, (1.1) has a positive solution u for λ > 0 such
that ‖u‖∞→ 0 as λ → 0 and ‖u‖∞→ ∞ as λ → ∞.

If we choose η = γ2 and θ = 8Mαβh (= 8Lαβ Mαβh), then (H7) is satisfied for γ2� 1
since

f (η)

Φα(η)
/

f (θ)
Φα(θ)

=

1
γ

γ1
2
+ e

γ2
2

γ
p−1
2

/

1
(8Mαβh)

γ1 + e
8M

αβhγ2
γ2+8M

αβh

(8Mαβh)
p−1 � 1

for γ2� 1. Hence, if γ2� 1, then (1.1) has three positive solutions for λ ∈ (λη ,λθ ).
3. Let

f (u) = Amin{uγ1 ,uγ3}+min{uγ2,uγ3},
where A > 0 and γ1 < p−1 < γ2 < q−1 < γ3. Then f satisfies (H2), (H4b), (H5a), and
(H6). Therefore, by Theorem 1.3, (1.1) has a positive solution u for λ > 0 such that
‖u‖∞→ ∞ as λ → 0 and ‖u‖∞→ 0 as λ → ∞.

If we choose η = 1 (≥ c∗−c
4Lαβ

) and θ = Aκ with 0 < κ < 1
γ2−p+1 , then (H7) is satisfied

for A� 1 since

f (η)

Φα(η)
/

f (θ)
Φα(θ)

=
A+1

1
/

A1+κγ1 +Aκγ2

Aκ(p−1)
=

1+ 1
A

Aκ(γ1−p+1)+Aκ(γ2−p+1)−1
� 1

for A� 1. Hence, if A� 1, then (1.1) has three positive solutions for λ ∈ (λη ,λθ ).
4. Let

f (u) = min{uγ1 ,uγ2},
where 0 < γ1 < p−1 < q−1 < γ2. Then f satisfies (H2), (H4b), and (H5b). Therefore,
by Theorem 1.4, (1.1) has no positive solution for λ ≈ 0 and has two positive solutions
u1 and u2 for λ > λ ∗ such that ‖u1‖∞→ 0 and ‖u2‖∞→ ∞ as λ → ∞.

8. APPENDIX

In this section, we provide useful lower and upper estimates for integrals involving α , β and
h.

Proposition 8.1. [8, Proposition 3.2] Assume (H1). If k(t)≥ k∗ > 0 for t ∈ (a,b)⊂ (0,1), then

∫ b

a
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

α
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)k(s)

)
ds≥



φ−1(k∗)
Lαβ

(b−a) for any (a,b),

ϕ−1
p (k∗)
Lαβ

(b−a) for (a,b)⊂Ωα ,

ϕ−1
q (k∗)
Lαβ

(b−a) for (a,b)⊂Ωβ .
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Proposition 8.2. Assume (H1) and (H3). If C ≥ 0, then∫ 1
2

0
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

Cα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)H(s)

)
ds

≤


2Lαβ Mαβh min{ϕ−1

p (C),ϕ−1
q (C)} for Case A,

2Lαβ Mαβhϕ−1
p (C) for Case B,

2Lαβ Mαβhϕ−1
q (C) for Case C,

2Lαβ Mαβh max{ϕ−1
p (C),ϕ−1

q (C)} for Case D,

≤ 2Lαβ Mαβh max{ϕ−1
p (C),ϕ−1

q (C)}.

Further, we have∫ 1
2

0
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

Cα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)H(s)

)
ds≤

{
2Lαβ MαβhΦ−1

α (C) for C ≥ 1,
2Lαβ MαβhΦ

−1
β
(C) for C ≤ 1.

Similarly, if C ≥ 0, then∫ 1

1
2

α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

Cα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)H(s)

)
ds

≤


2Lαβ Mαβh min{ϕ−1

p (C),ϕ−1
q (C)} for Case A,

2Lαβ Mαβhϕ−1
p (C) for Case B,

2Lαβ Mαβhϕ−1
q (C) for Case C,

2Lαβ Mαβh max{ϕ−1
p (C),ϕ−1

q (C)} for Case D,

≤ 2Lαβ Mαβh max{ϕ−1
p (C),ϕ−1

q (C)}.

We also have∫ 1

1
2

α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

Cα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)H(s)

)
ds≤

{
2Lαβ MαβhΦ−1

α (C) for C ≥ 1,
2Lαβ MαβhΦ

−1
β
(C) for C ≤ 1.

Proof. Let C ≥ 0. If (a,b)⊂Ωαβ , then

Φ
−1
(

C
∫ b

a
h(r)dr

)
= φ

−1
(

C
∫ b

a
h(r)dr

)
≤ min

{
ϕ
−1
p

(
C
∫ b

a
h(r)dr

)
,ϕ−1

q

(
C
∫ b

a
h(r)dr

)}
≤ min{ϕ−1

p (C),ϕ−1
q (C)}

(
ϕ
−1
p

(∫ b

a
h(r)dr

)
+ϕ

−1
q

(∫ b

a
h(r)dr

))
.

If (a,b)⊂Ωα , then

Φ
−1
(

C
∫ b

a
h(r)dr

)
= ϕ

−1
p

(
C
∫ b

a
h(r)dr

)
= ϕ

−1
p (C)ϕ−1

p

(∫ b

a
h(r)dr

)
.

If (a,b)⊂Ωβ , then

Φ
−1
(

C
∫ b

a
h(r)dr

)
= ϕ

−1
q

(
C
∫ b

a
h(r)dr

)
= ϕ

−1
q (C)ϕ−1

q

(∫ b

a
h(r)dr

)
.
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For (a,b)⊂ (0,1), we have

Φ
−1
(

C
∫ b

a
h(r)dr

)
≤ ϕ

−1
p

(
C
∫ b

a
h(r)dr

)
+ϕ

−1
q

(
C
∫ b

a
h(r)dr

)
≤ max{ϕ−1

p (C),ϕ−1
q (C)}

(
ϕ
−1
p

(∫ b

a
h(r)dr

)
+ϕ

−1
q

(∫ b

a
h(r)dr

))
.

Then, by [8, Proposition 3.1], we obtain

∫ 1
2

0
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

Cα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)H(s)

)
ds

≤ Lαβ

∫ 1
2

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1 (CH(s))ds

≤


2Lαβ Mαβh min{ϕ−1

p (C),ϕ−1
q (C)} for Case A,

2Lαβ Mαβhϕ−1
p (C) for Case B,

2Lαβ Mαβhϕ−1
q (C) for Case C,

2Lαβ Mαβh max{ϕ−1
p (C),ϕ−1

q (C)} for Case D,

≤ 2Lαβ Mαβh max{ϕ−1
p (C),ϕ−1

q (C)}.

Noting that

Φα(s) =

{
ϕq(s) for Cases A and C,

ϕp(s) for Cases B and D,

and

Φβ (s) =

{
ϕp(s) for Cases A and B,
ϕq(s) for Cases C and D,

we have∫ 1
2

0
α

1
q−p
∗ (s)β

− 1
q−p

∗ (s)Φ−1
(

Cα
− q−1

q−p
∗ (s)β

p−1
q−p
∗ (s)H(s)

)
ds≤

{
2Lαβ MαβhΦ−1

α (C) for C ≥ 1,
2Lαβ MαβhΦ

−1
β
(C) for C ≤ 1.

By similar arguments, we can show the remaining parts. �

Proposition 8.3. Assume (H1) and (H3). Let c∗ ∈ (0,1). Then∫ c∗

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ c∗

s
h(r)dr

)
ds < ∞ (8.1)

and ∫ 1

c∗
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ s

c∗
h(r)dr

)
ds < ∞. (8.2)

Proof. We provide the proof of (8.1). A similar argument can be used to show (8.2).
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If c∗ ≤ 1
2 , then it is clear that (8.1) is satisfied by (H3). Let c∗ > 1

2 . If
∫ 1

2
0 h(r)dr ≤

∫ c∗
1
2

h(r)dr,
then ∫ 1

2

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ c∗

s
h(r)dr

)
ds

=
∫ 1

2

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ 1

2

s
h(r)dr+

∫ c∗

1
2

h(r)dr
)

ds

≤
∫ 1

2

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(

2
∫ c∗

1
2

h(r)dr
)

ds

= Φ
−1
(

2
∫ c∗

1
2

h(r)dr
)∫ 1

2

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)ds < ∞.

If
∫ 1

2
s∗ h(r)dr =

∫ c∗
1
2

h(r)dr for some s∗ ∈ (0, 1
2), then∫ c∗

s
h(r)dr =

∫ 1
2

s
h(r)dr+

∫ c∗

1
2

h(r)dr ≤ 2
∫ 1

2

s
h(r)dr = 2H(s)

for s ∈ (0,s∗). Thus∫ 1
2

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ c∗

s
h(r)dr

)
ds

=
∫ s∗

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ c∗

s
h(r)dr

)
ds+

∫ 1
2

s∗
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ c∗

s
h(r)dr

)
ds

≤
∫ s∗

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1 (2H(s))ds+
∫ 1

2

s∗
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1
(∫ c∗

s∗
h(r)dr

)
ds

≤ ϕ
−1
p (2)

∫ 1
2

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)Φ−1 (H(s))ds+Φ
−1 (2H(c∗))

∫ 1
2

0
α
− 1

p−1
∗ (s)β

− 1
q−1

∗ (s)ds

< ∞.

�
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