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LARGE TIME BEHAVIOR OF SOLUTIONS TO THE HALL-MHD EQUATIONS
WITH ION-SLIP EFFECTS AND HORIZONTAL DISSIPATION
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Abstract. This paper investigates the large time behavior of global solutions to the 3D Hall-MHD
equations with ion-slip effects and horizontal dissipation. We establish the global well-posedness of
solutions under the assumption of small Sobolev space initial values. The optimal time-decay rates of
the global solution and its higher order derivatives are also obtained under additional assumptions on the
negative-index Besov space initial value.
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1. INTRODUCTION

This paper considers the initial value problem for the 3D Hall-magnetohydrodynamics (MHD)
equations with ion-slip effects and horizontal dissipation

∂tu+u ·∇u−µ∆hu =−∇p+b ·∇b,
∂tb+u ·∇b+∇× ((∇×b)×b)−∇× (((∇×b)×b)×b)−ν∆b = b ·∇u,
∇ ·u = 0,∇ ·b = 0

(1.1)

with the initial value
u(x,0) = u0(x),b(x,0) = b0(x). (1.2)

Here x ∈ R3, t > 0, u = u(x, t), b = b(x, t), and p = p(x, t) represents the velocity field of the
fluid, the magnetic field, and the pressure of fluid, respectively, the positive constants µ and ν

are viscosity and resistivity coefficients, respectively, and ∆h = ∂ 2
1 +∂ 2

2 denotes the horizontal
Laplacian.

Since Alfvén’s [1] initial derivation, MHD equations have governed the dynamics of fluids
that transport electric currents in the presence of magnetic fields. They play a crucial role in
the study of numerous phenomena across geophysics, astrophysics, and engineering. The MHD
equations attracted substantial interest from the mathematical community, owing to their more
complex structure relative to the Navier-Stokes equations. This complexity arises from the fact
that MHD equations constitute a coupled system, integrating the fluid dynamics governed by
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the Navier-Stokes equations with the electromagnetic field dynamics described by Maxwell’s
equations. For an electrically conducting fluid, the Hall effect and ion-slip currents have a
pronounced impact on the flow dynamics under the influence of a strong magnetic field. Earlier,
Elshehawey et al. [2] investigated the impact of Hall and ion-slip currents on MHD flow with
variable thermal conductivity by using the Chebyshev finite difference method. Subsequently,
Elgazery [3] discovered the role of Hall and ion-slip currents in the MHD flow of micro-polar
fluids through porous media with variable viscosity and thermal diffusivity under the influence
of chemical reactions. Recently, Krishna [4] studied the effects of Hall and ion-slip on the MHD
flow of Casson hybrid nanofluids through an infinite exponentially accelerating vertical porous
surface.

For the 3D Hall-MHD equations with ion-slip effects with full dissipation, namely ∆hu re-
placed by ∆u in (1.1), Zhao and Zhu [5] established the temporal decay estimates for the weak
solutions and the algebraic time decay for higher-order Sobolev norms of small initial data so-
lutions. Later, Zhao [6] proved the local well-posedness of strong solutions. Moreover, the
existence of global smooth solutions for large data was proved by Zhang [7]. For more results
on 3D Hall-MHD equations with ion-slip effects and full dissipation, we refer to [8, 9, 10].

The study on the theory of well-posedness of solutions to the Hall-MHD equations has grown
enormously in recent years. We refer to [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] for the viscous
and resistive Hall-MHD equations. When the 3D Hall-MHD equations have only partial dissi-
pation, due to the complex structure, the global well-posedness problem and large time behavior
can be quite difficult. For (1.1) without ion-slip effects, Fei and Xiang [21] proved the global in
time existence of classical solutions for small initial data in H3. Later, Li [22] investigated the
Cauchy problem for the 3D incompressible Hall-MHD equations under horizontal dissipation
and demonstrated the global well-posedness of the system under the condition of axisymmetric
initial data, where both the velocity vorticity and the magnetic vorticity components are vanish-
ing. For the classical 3D MHD equations, well-posedness and stability of solutions has attracted
the attention of many mathematicians and numerous interesting results were established; see,
e.g., [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. We only recall closely related work
with partial dissipation and anisotropic dissipation for our purpose. Pan, Zhu and Zhou [31]
demonstrated solutions to MHD equations without magnetic diffusion by some time-weighted
energy estimation. It is assumed that the initial magnetic field is sufficiently close to equilib-
rium and that the initial data exhibits some symmetry. Global well-posedness and stability of
solutions to 3D MHD equations with horizontal dissipation and vertical magnetic diffusion near
a background magnetic field were established by Wu and Zhu [33]. Lin, Wu and Zhu [36] in-
vestigated the 3D MHD equations with velocity dissipation in only one direction and magnetic
diffusion in two directions. Global stability of solutions near a suitable background magnetic
field was proved. For small initial data in H1 space, Shang, Wu and Zhang [37] proved the
global existence and stability of solutions to 3D MHD equations with only horizontal dissi-
pation. Moreover, the large-time behavior of solutions was also obtained by using the MHD
equations in an integral form, cancellations and other properties such as the incompressibility
in order to control terms involving vertical derivatives.

Inspired by the recent results [38] for 3D incompressible Navier-Stokes equations and [39]
and [40] for 3D incompressible MHD equations with horizontal dissipation, the main aim of
this paper is to establish large time behavior and global well-posedness of solutions to problem
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(1.1)-(1.2). Firstly, we prove the global well-posedness of solutions to problem (1.1)-(1.2) un-
der the assumption of small initial values. For the details, we refer to Theorem 3.1. Secondly,
we prove the time-decay rates of global solutions and their higher order derivatives when the
initial value belongs to homogeneous negative Besov spaces and H3, Theorem 4.1. Finally,
if the initial value belongs to homogeneous negative Besov spaces and H4, more decay esti-
mates are established, Theorem 4.2. The paper is divided into four sections. Section 1 outlines
the necessary background and provides a review of the current state of research on (1.1) and
related models. Section 2 introduces the preliminary conditions. Section 3 presents global well-
posedness of solutions to problem (1.1)-(1.2). Finally, Section 4 focuses on establishing large
time behavior of global solutions to problem (1.1)-(1.2).

2. PRELIMINARIES

This section presents various notations for functional spaces and several useful calculus in-
equalities that are commonly employed in this work.

2.1. Functional spaces. In this subsection, we recall the Littlewood-Paley operators and their
elementary properties and the anisotropic version of the dyadic decomposition of the Fourier
space, which allow us to define the Besov spaces. Let S be the usual Schwarz class and S ′ its
dual, the space of tempered distributions. For ( j,k, l) ∈ Z3, one defines

∆ j f = F−1(ϕ(2− j|ξ |) f̂ ) and

∆
h
k f = F−1(ϕ(2−k|ξh|) f̂ ),∆υ

l f = F−1(ϕ(2−l|ξ3|) f̂ ),

where ξ = (ξ1,ξ2,ξ3), ξh = (ξ1,ξ2), f̂ denotes the Fourier transform of the tempered distribu-
tion f ∈S ′ over R3, F−1 designates the inverse Fourier transform of f , and ϕ(τ) is a smooth
function such that

supp ϕ ⊂
{

τ ∈ R :
3
4
≤ |τ| ≤ 8

3

}
, and ∀τ > 0, ∑

j∈Z
ϕ(2− j

τ) = 1.

Definition 2.1. The homogeneous Besov spaces Ḃs
p,q and Ḃs1,s2

p,q with s,s1,s2 ∈R and p,q∈ [1,∞]

consist of f ∈S ′/P with P being the set of polynomials, satisfying

‖ f‖Ḃs
p,q
≡ ‖2 js‖∆̇ j f‖Lp‖lq

j
< ∞,

‖ f‖Ḃs1,s2
p,q
≡
(

∑
(k,l)∈Z2

2s1qk2s2ql‖∆h
k∆

υ
l f‖q

Lp

) 1
q
< ∞.

In particular,
‖ f‖Ḃs

2,∞
≡ sup

j∈Z

(
2s j‖∆ j f‖L2

)
< ∞,

‖ f‖
Ḃs1,0

2,∞
≡ sup

k∈Z

(
2s1k‖∆h

k f‖L2
)
< ∞,

amd
‖ f‖Ḃs1,s2

2,∞
≡ sup

(k,l)∈Z2
(2s1k2s2l‖∆h

k∆
υ
l f‖L2)< ∞.

The following lemma provides Bernstein inequalities for fractional derivatives. The upper
bounds also hold when the fractional operators are replaced by partial derivatives.
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Lemma 2.1. Let α ≥ 0 and 1≤ p≤ q≤ ∞.

(1) If f satisfies supp f̂ ⊂ {ξ ∈ R3 : |ξ | ≤ K2 j}, for some integer j and a constant K > 0,
then ∥∥(−∆)α f

∥∥
Lq(R3)

≤C122α j+ j3
(

1
p−

1
q

)
‖ f‖Lp(R3).

(2) If f satisfies supp f̂ ⊂ {ξ ∈ R3 : K12 j ≤ |ξ | ≤ K22 j} for some integer j and constants
0 < K1 ≤ K2, then

C122α j‖ f‖Lq(R3) ≤ ‖(−∆)α f‖Lq(R3) ≤C222α j+ j3
(

1
p−

1
q

)
‖ f‖Lp(R3),

where C1 and C2 are constants depending on α , p and q.

2.2. Calculus inequalities. This subsection gives several useful calculus inequalities. The first
fact provides an upper bound for the Lp-norm of a one-dimensional function, which serves as a
basic ingredient for anisotropic upper bounds.

Lemma 2.2. ([41]) Let 2≤ p≤∞ and s > 1
2−

1
p . Then, there exists a constant C =C(p,s) such

that, for any 1D functions f ∈ Hs(R),

‖ f‖Lp(R) ≤C‖ f‖
1− 1

s

(
1
2−

1
p

)
L2(R) ‖Λs f‖

1
s

(
1
2−

1
p

)
L2(R) .

In particular, if p = ∞ and s = 1, then any f = f (x3) ∈ H1(R) satisfies

‖ f‖L∞(R) ≤C‖ f‖
1
2
L2(R)‖∂3 f‖

1
2
L2(R).

The second fact is an exact Lp-Lq decay estimate for the generalized heat operator associated
with a fractional Laplacian.

Lemma 2.3. ([42]) Let d ≥ 1,β ≥ 0,α > 0,ν > 0, and 1≤ p≤ q≤ ∞. Then

‖Λβ e−ν(−∆)α t f‖Lq(Rd) ≤Ct−
β

2α
− d

2α

(
1
p−

1
q

)
‖ f‖Lp(Rd).

The last fact is an anisotropic upper bound for the integral of a triple product. It is a powerful
tool in investigating anisotropic equations.

Lemma 2.4. ([33]) The following estimates

∫
R3
| f gh|dx≤C‖ f‖

1
2
L2‖∂1 f‖

1
2
L2‖g‖

1
2
L2‖∂2g‖

1
2
L2‖h‖

1
2
L2‖∂3h‖

1
2
L2,∫

R3
| f gh|dx≤C‖ f‖

1
4
L2‖∂1 f‖

1
4
L2‖∂2 f‖

1
4
L2‖∂1∂2 f‖

1
4
L2‖g‖

1
2
L2‖∂3g‖

1
2
L2‖h‖L2

hold, provided that the right-hand sides are all bounded.
We conclude this section with some notations that are frequently used throughout the pa-

per. To simplify the notations, we define fh = ( f1, f2) and ∇h = (∂1,∂2). We write
∫

f dx for∫
R3 f (x)dx, ‖ f‖Lp for ‖ f‖Lp(R3) and ‖ f‖Hs for ‖ f‖Hs(R3). We write ‖ f‖Lp

x j
with j = 1,2,3 for

the Lp-norm with respect to x j on R, and ‖ f‖Lp
x jxk

with j,k = 1,2,3 for the Lp-norm with respect

to (x j,xk) on R2. We also separately write ‖ f‖Lq
h

and ‖ f‖Lq
hLp

x3
for the ‖ f‖Lq

x1x2
and ‖ ‖ f‖Lq

x1x2
‖Lp

x3
to shorten the notations.



3D HALL-MHD WITH ION-SLIP EFFECTS AND HORIZONTAL DISSIPATION 91

3. GLOBAL WELL-POSEDNESS

This section is devoted to proving global well-posedness of solutions to problem (1.1)-(1.2)
in Hk(k ≥ 2), provided that the Hk norm of the initial value is small enough. More precisely,
we have the following theorem.

Theorem 3.1. Let k ≥ 2 be an integer. Assume (u0,b0) ∈ Hk with ∇ · u0 = 0 and ∇ · b0 = 0.
Then there exists a constant ε > 0 such that if ‖u0‖Hk + ‖b0‖Hk ≤ ε, then problem (1.1)-(1.2)
has a unique global solution (u,b) satisfying (u,b) ∈ L∞(0,∞;Hk), ∇hu,∇b ∈ L2(0,∞;Hk) and
for some constants C > 0 and any t > 0, it holds that

‖u(t)‖2
Hk +‖b(t)‖2

Hk +
∫ t

0
(‖∇hu(τ)‖2

Hk +‖∇b(τ)‖2
Hk +

‖(∇×b)×b(τ)‖2
L2 +‖∇k(∇×b)×b(τ)‖2

L2)dτ

≤C(‖u0‖2
Hk +‖b0‖2

Hk).

(3.1)

Proof. Since the local well-posedness of solutions to problem (1.1)-(1.2) in Hk follows from
a standard approach such as Friedrichs’ method, this proof focuses on the global a priori Hk-
bounds. Taking the L2-inner product of (u,b) with the first two equations of (1.1) and using
∇ ·u = ∇ ·b = 0, we obtain

1
2

d
dt
(‖u‖2

L2 +‖b‖2
L2)+µ‖∇hu‖2

L2 +ν‖∇b‖2
L2 +‖(∇×b)×b‖2

L2 = 0. (3.2)

Integrating (3.2) with respect to time yields

‖u(t)‖2
L2 +‖b(t)‖2

L2 +
∫ t

0

(
µ ‖∇hu(τ)‖2

L2 +ν ‖∇b(τ)‖2
L2 +‖(∇×b)×b‖2

L2

)
dτ

= ‖u0‖2
L2 +‖b0‖2

L2 .

Applying ∂ 2
i (i = 1,2,3) to the first two equations of (1.1), dotting the results by (∂ 2

i u,∂ 2
i b),

respectively, integrating over R3, and adding them up, we obtain

1
2

d
dt

3

∑
i=1

(
‖∂ 2

i u‖2
L2 +‖∂ 2

i b‖2
L2

)
+µ

3

∑
i=1
‖∂ 2

i ∇hu‖2
L2 +ν

3

∑
i=1
‖∂ 2

i ∇b‖2
L2

=−
3

∑
i=1

∫
∂

2
i (u ·∇u) ·∂ 2

i udx+
3

∑
i=1

∫
∂

2
i (b ·∇b) ·∂ 2

i udx−
3

∑
i=1

∫
∂

2
i (u ·∇b) ·∂ 2

i bdx

+
3

∑
i=1

∫
∂

2
i (b ·∇u) ·∂ 2

i bdx−
3

∑
i=1

∫
∂

2
i (∇× ((∇×b)×b)) ·∂ 2

i bdx

+
3

∑
i=1

∫
∂

2
i (∇× (((∇×b)×b)×b)) ·∂ 2

i bdx

=: H1 +H2 +H3 +H4 +H5 +H6.

(3.3)
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To bound H1, using ∇ ·u = 0, we write it into components

H1 =−
∫

∂
2
1 u ·∇u ·∂ 2

1 udx−2
∫

∂1u ·∇∂1u ·∂ 2
1 udx−

∫
∂

2
2 u ·∇u ·∂ 2

2 udx

−2
∫

∂2u ·∇∂2u ·∂ 2
2 udx−

∫
∂

2
3 u ·∇u ·∂ 2

3 udx−2
∫

∂3u ·∇∂3u ·∂ 2
3 udx

=: H11 +H12 +H13 +H14 +H15 +H16.

By Lemma 2.4, we obtain

H11 ≤C‖∂ 2
1 u‖

1
2
L2‖∂3∂

2
1 u‖

1
2
L2‖∇u‖

1
2
L2‖∂2∇u‖

1
2
L2‖∂ 2

1 u‖
1
2
L2‖∂1∂

2
1 u‖

1
2
L2

≤C‖u‖H2‖∇hu‖2
H2.

Similarly, we have H12 +H13 +H14 ≤ C‖u‖H2‖∇hu‖2
H2. We cannot estimate H15 directly. To

bound it, we use ∇ ·u = 0 and Lemma 2.4 to obtain

H15 =−
∫

∂
2
3 uh ·∇hu ·∂ 2

3 udx+
∫

∂3∇h ·uh ·∂3u ·∂ 2
3 udx

≤C‖u‖H2‖∇hu‖2
H2 .

Similarly, we have H16 ≤C‖u‖H2‖∇hu‖2
H2. Combining the above bounds up, we obtain H1 ≤

C‖u‖H2‖∇hu‖2
H2. Similarly, we have H2 +H4 ≤C‖u‖H2‖∇b‖2

H2 and

H3 ≤C(‖u‖H2 +‖b‖H2)(‖∇hu‖2
H2 +‖∇b‖2

H2).

Using Hölder’s inequality and commutator estimate yields

H5 =−
3

∑
i=1

∫
∂

2
i (∇ · (b⊗b)) ·∂ 2

i (∇×b)dx

≤C
3

∑
i=1
‖b‖L∞‖∂ 2

i ∇b‖L2‖∂ 2
i (∇×b)‖L2

≤C‖b‖H2‖∇b‖2
H2.

To bound H6, we write it into components

H6 =

3

∑
i=1

∫
((∂ 2

i (∇×b)×b)×b) ·∂ 2
i (∇×b)dx+2

3

∑
i=1

∫
((∂i(∇×b)×∂ib)×b) ·∂ 2

i (∇×b)dx

+2
3

∑
i=1

∫
((∂i(∇×b)×b)×∂ib) ·∂ 2

i (∇×b)dx

+2
3

∑
i=1

∫
(((∇×b)×∂ib)×∂ib) ·∂ 2

i (∇×b)dx

+
3

∑
i=1

∫
(((∇×b)×∂

2
i b)×b) ·∂ 2

i (∇×b)dx+
3

∑
i=1

∫
(((∇×b)×b)×∂

2
i b) ·∂ 2

i (∇×b)dx

=: H61 +H62 +H63 +H64 +H65 +H66.
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Using Hölder’s inequality, we obtain

H61 =−
3

∑
i=1

∫
∂

2
i (∇×b)×b ·∂ 2

i (∇×b)×bdx =−‖∇2(∇×b)×b‖2
L2

and
H62 ≤C‖∇2b‖L2‖∇b‖L∞‖b‖L∞‖∇3b‖L2 ≤C‖b‖2

H2‖∇b‖2
H2 .

As in the estimate of H62, H63 + H65 + H66 ≤ C‖b‖2
H2‖∇b‖2

H2. By Hölder’s inequality and
Sobolev imbedding theorem, we obtain

H64 ≤C‖∇b‖L∞‖∇b‖2
L4‖∇3b‖L2 ≤C‖b‖2

H2‖∇b‖2
H2.

Incorporating the above estimates yields H6 ≤ −‖∇2(∇×b)×b‖2
L2 +C‖b‖2

H2‖∇b‖2
H2 . Substi-

tuting the bounds of Hi (i = 1, · · · ,6) into (3.3) and adding the result to (3.2), one infers that

d
dt
(‖u‖2

H2 +‖b‖2
H2)+µ ‖∇hu‖2

H2 +ν ‖∇b‖2
H2 +‖(∇×b)×b‖2

L2 +‖∇2(∇×b)×b‖2
L2

≤C(‖u‖H2 +‖b‖H2 +‖b‖2
H2)(‖∇hu‖2

H2 +‖∇b‖2
H2),

which together with the bootstrap argument immediately yields (3.1) with k = 2.
Now we turn to (3.1) with k ≥ 3. Applying ∂ k

i (i = 1,2,3) to the first two equations of (1.1)
and taking the L2-inner products with (∂ k

i u,∂ k
i b) , respectively, we obtain

1
2

d
dt

3

∑
i=1

(
‖∂ k

i u‖2
L2 +‖∂ k

i b‖2
L2

)
+µ

3

∑
i=1
‖∂ k

i ∇hu‖2
L2 +ν

3

∑
i=1
‖∂ k

i ∇b‖2
L2

=−
3

∑
i=1

∫
∂

k
i (u ·∇u) ·∂ k

i udx+
3

∑
i=1

∫
∂

k
i (b ·∇b) ·∂ k

i udx−
3

∑
i=1

∫
∂

k
i (u ·∇b) ·∂ k

i bdx

+
3

∑
i=1

∫
∂

k
i (b ·∇u) ·∂ k

i bdx−
3

∑
i=1

∫
∂

k
i (∇× ((∇×b)×b)) ·∂ k

i bdx

+
3

∑
i=1

∫
∂

k
i (∇× (((∇×b)×b)×b)) ·∂ k

i bdx

=: I1 + I2 + I3 + I4 + I5 + I6.

(3.4)

Set C j
k =

k!
j!(k− j)! . By the divergence free condition ∇ ·u = 0, we have

I1 =−
3

∑
i=1

k

∑
j=1

C j
k

∫
∂

j
i uh ·∇h∂

k− j
i u ·∂ k

i udx−
3

∑
i=1

k

∑
j=1

C j
k

∫
∂

j
i u3∂3∂

k− j
i u ·∂ k

i udx

=: I11 + I12.

Using Lemma 2.4 and the Young inequality yields

I11 ≤C
3

∑
i=1

k

∑
j=1
‖∂ j

i uh‖
1
2
L2‖∂1∂

j
i uh‖

1
2
L2‖∇h∂

k− j
i u‖

1
2
L2‖∂3∇h∂

k− j
i u‖

1
2
L2‖∂ k

i u‖
1
2
L2‖∂2∂

k
i u‖

1
2
L2

≤C‖u‖Hk‖∇hu‖Hk−1‖∇hu‖Hk

≤ µ

16
‖∇hu‖2

Hk +C‖u‖2
Hk‖∇hu‖2

Hk−1
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and I12 ≤ µ

16 ‖∇hu‖2
Hk +C‖u‖2

Hk‖∇hu‖2
Hk−1. Thus we obtain

I1 ≤
µ

8
‖∇hu‖2

Hk +C‖u‖2
Hk‖∇hu‖2

Hk−1.

Similarly, we have

I2 + I4 ≤
µ

16
‖∇hu‖2

Hk +
ν

16
‖∇b‖2

Hk +C(‖u‖2
Hk +‖b‖2

Hk)(‖∇hu‖2
Hk−1 +‖∇b‖2

Hk−1),

I3 ≤
µ

16
‖∇hu‖2

Hk +
ν

16
‖∇b‖2

Hk +C(‖u‖2
Hk +‖b‖2

Hk)(‖∇hu‖2
Hk−1 +‖∇hb‖2

Hk−1).

Using Hölder’s inequality, commutator estimate, and the Young inequality, we infers that

I5 =−
3

∑
i=1

∫
(∂ k

i ((∇×b)×b)−∂
k
i (∇×b)×b) ·∂ k

i (∇×b)dx

≤C
3

∑
i=1
‖∇b‖L∞‖∂ k−1

i ∇b‖L2‖∂ k
i (∇×b)‖L2

≤ ν

16
‖∇b‖2

Hk +C‖b‖2
Hk‖∇b‖2

Hk−1.

By the standard calculus inequality, we obtain

I6 =
3

∑
i=1

∫ [
∂

k
i (((∇×b)×b)×b)− ((∂ k

i (∇×b)×b)×b)
]
·∂ k

i (∇×b)dx

+
3

∑
i=1

∫
((∂ k

i (∇×b)×b)×b) ·∂ k
i (∇×b)dx

≤C(‖∇b‖Hk−1‖b‖L∞‖∇b‖L∞ +‖∇b‖L∞‖b‖L∞‖b‖Hk)‖∇b‖Hk−‖∇k(∇×b)×b‖2
L2

≤ ν

16
‖∇b‖2

Hk +C‖b‖4
Hk‖∇b‖2

Hk−1
−‖∇k(∇×b)×b‖2

L2.

Inserting the above bounds into (3.4), and adding the result to (3.2), we obtain

d
dt
(‖u‖2

Hk +‖b‖2
Hk)+min{µ,ν}(‖∇hu‖2

Hk +‖∇b‖2
Hk)+ ∑

j=0,k
‖∇ j(∇×b)×b‖2

L2

≤C(‖u‖2
Hk +‖b‖2

Hk +‖b‖4
Hk)(‖∇hu‖2

Hk−1 +‖∇b‖2
Hk−1),

which together with the bootstrap argument yields (3.1) with k ≥ 3. This completes the proof
of Theorem 3.1. �

4. TIME-DECAY RATE OF GLOBAL SOLUTIONS

In this section, our main aim is to establish time-decay rate of global solutions obtained in
Theorem 3.1. Meanwhile, time-decay rates of some spatial partial derivatives of global solutions
are also obtained.
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4.1. Time-decay rate. The main goal of this subsection is to establish time-decay rate of global
solutions to the problem (1.1)-(1.2) with H3 initial value. The result is stated as follows.

Theorem 4.1. Assume that (u0,b0) ∈ H3(R3). Then there exists ε > 0 such that if

‖(u0,∂3u0)‖Ḃ−1,0
2,∞ (R3)

+‖b0‖Ḃ−1
2,∞(R3)+‖(u0,b0)‖H3(R3) ≤ ε, (4.1)

then the global solution (u,b) to problem (1.1)-(1.2) obeys

‖(u,b,∂3u)(t)‖L2(R3) ≤C
(
1+ t

)− 1
2 , (4.2)

‖(∇hu,∇b)(t)‖L2(R3) ≤C (1+ t)−1 , (4.3)

‖(∇2
hu,∇2

hb)(t)‖L2(R3) ≤C
(
1+ t

)− 3
2 . (4.4)

To prove Theorem 4.1, we first prove the following H1-estimates.

Lemma 4.1. Assume that (u,b) is a solution to problem (1.1)-(1.2). Then, for any 0≤ s < t,

‖u(t)‖2
H1 +‖b(t)‖2

H1 +
∫ t

0
(‖∇hu(τ)‖2

H1 +‖∇b(τ)‖2
H1)dτ ≤C(‖u(s)‖2

H1 +‖b(s)‖2
H1). (4.5)

Proof. Applying ∂i(i = 1,2,3) to the first two equations of (1.1), dotting the results by ∂iu and
∂ib, respectively, integrating over R3, and adding them up, we obtain

1
2

d
dt

3

∑
i=1

(
‖∂iu‖2

L2 +‖∂ib‖2
L2

)
+µ

3

∑
i=1
‖∂i∇hu‖2

L2 +ν

3

∑
i=1
‖∂i∇b‖2

L2

=−
3

∑
i=1

∫
∂i(u ·∇u) ·∂iudx+

3

∑
i=1

∫
∂i(b ·∇b) ·∂iudx−

3

∑
i=1

∫
∂i(u ·∇b) ·∂ibdx

+
3

∑
i=1

∫
∂i(b ·∇u) ·∂ibdx−

3

∑
i=1

∫
∂i
(
∇×

((
∇×b

)
×b
))
·∂ibdx

+
3

∑
i=1

∫
∂i
(
∇×

(((
∇×b

)
×b
)
×b
))
·∂ibdx

=:
6

∑
i=1

Ji.

(4.6)

Analogous to the earlier estimates of H11 and I1, we have

J1 =−
3

∑
i=1

∫
∂iuh ·∇hu ·∂iudx−

3

∑
i=1

∫
∂iu3∂3u ·∂iudx≤C‖u‖H1‖∇hu‖2

H1.

Applying Hölder’s inequality and Sobolev imbedding theorem, we obtain

J3 =
3

∑
i=1

∫
∂iu ·∇b ·∂ibdx≤C‖∇u‖L3‖∇b‖L2‖∇b‖L6 ≤C‖u‖H2‖∇b‖2

H1.

Similarly, we have

J2 + J4 =
3

∑
i=1

∫
∂ib ·∇b ·∂iudx+

3

∑
i=1

∫
∂ib ·∇u ·∂ibdx≤C‖u‖H2‖∇b‖2

H1 .
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Moreover, by integrating by parts, J5 ≤C‖∇b‖L3‖∇b‖L6‖∇(∇×b)‖L2 ≤C‖b‖H2‖∇b‖2
H1. Sim-

ilarly, J6 can also be partially integrated

J6 =
3

∑
i=1

∫
(∂i(∇×b)×b)×b ·∂i(∇×b)dx+

3

∑
i=1

∫
((∇×b)×∂ib)×b ·∂i(∇×b)dx

+
3

∑
i=1

∫
((∇×b)×b)×∂ib ·∂i(∇×b)dx

≤
3

∑
i=1

∫
b×∂i(∇×b) ·∂i(∇×b)×bdx+C‖(∇×b)×∇b‖L3‖b‖L6‖∇2b‖L2

+C||(∇×b)×b||L3||∇b||L6||∇2b||L2

≤−||∇(∇×b)×b||2L2 +C||∇b||2L6||b||L6||∇2b||L2

≤C‖b‖2
H2‖∇b‖2

H1−‖∇(∇×b)×b‖2
L2.

Combining the estimates above with (4.6), and adding the result to (3.2), we arrive at
d
dt

(
‖u‖2

H1 +‖b‖2
H1

)
+2µ‖∇hu‖2

H1 +2ν‖∇b‖2
H1 + ∑

j=0,1
‖∇ j(∇×b)×b‖2

L2

≤C(‖u‖H2 +‖b‖H2 +‖b‖2
H2)(‖∇hu‖2

H1 +‖∇b‖2
H1).

Choosing ε <C−1 min{µ,ν} in (4.1), we derive that
d
dt

(
‖u‖2

H1 +‖b‖2
H1

)
+min

{
µ,ν

}(
‖∇hu‖2

H1 +‖∇b‖2
H1

)
≤ 0.

Integrating the above inequality from s to t, (4.5) immediately follows. We complete the proof
of Lemma 4.1. �

In what follows, we prove Theorem 4.1.

Proof. The idea of the proof is as follows.
(i) To establish the desired decay estimates (4.2) and (4.3), we introduce the suitable time-

weighted energy functional, namely

E(t) = sup
0≤τ≤t

(
(1+ τ)

1
2‖(u,b,∂3u)(τ)‖L2 +(1+ τ)‖(∇hu,∇b)(τ)‖L2

)
.

The main effort is to use delicate energy estimates to prove

E(t)≤CE(0)+C
(

E2(t)+E
3
2 (t)+E

5
3 (t)+E

5
4 (t)+E

9
4 (t)+E3(t)

)
. (4.7)

Once this is established, an application of the bootstrapping argument would imply the desired
decay estimates (4.2) and (4.3).

(ii) We use the a priori H1-estimate to obtain a coarse decay estimate for ‖(∇2
hu,∇2

hb)(t)‖L2 .
Then we improve this decay rate by an iterative process.

The proof is slightly long. For the sake of clarity, we divide the proof into two steps.
Step 1. Decay estimates for ‖(u,b,∂3u)(t)‖L2 and ‖(∇hu,∇b)(t)‖L2 .
To do this, we rewrite problem (1.1)-(1.2) in the integral form, namely

u(x, t) = eµ∆htu0−
∫ t

0
eµ∆h(t−τ)P(u ·∇u)(τ)dτ +

∫ t

0
eµ∆h(t−τ)P(b ·∇b)(τ)dτ, (4.8)
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and

b(x, t) =eν∆tb0−
∫ t

0
eν∆(t−τ)(u ·∇b)(τ)dτ +

∫ t

0
eν∆(t−τ)(b ·∇u)(τ)dτ

−
∫ t

0
eν∆(t−τ)(∇× ((∇×b)×b))(τ)dτ

+
∫ t

0
eν∆(t−τ)(∇× (((∇×b)×b)×b))(τ)dτ,

(4.9)

where P= I−∇∆−1∇· denotes the Leray projection onto divergence-free vector fields. Apply-
ing ∂3 to (4.8) yields

∂3u(x, t) = ∂3eµ∆htu0−
∫ t

0
∂3eµ∆h(t−τ)P(u ·∇u)(τ)dτ

∫ t

0
∂3eµ∆h(t−τ)P(b ·∇b)(τ)dτ. (4.10)

Taking the L2-norm to (4.8)-(4.10), then adding them up, and noticing the boundedness of P on
L2 functions, we obtain

‖(u,b,∂3u)(t)‖L2 ≤ ‖eµ∆htu0‖L2 +‖eν∆tb0‖L2 +‖eµ∆ht
∂3u0‖L2

+
∫ t

0
‖eµ∆h(t−τ)(u ·∇u)(τ)‖L2dτ +

∫ t

0
‖eµ∆h(t−τ)(b ·∇b)(τ)‖L2dτ

+
∫ t

0
‖eν∆(t−τ)(u ·∇b)(τ)‖L2dτ +

∫ t

0
‖eν∆(t−τ)(b ·∇u)(τ)‖L2dτ

+
∫ t

0
‖eν∆(t−τ)(∇× ((∇×b)×b))(τ)‖L2dτ

+
∫ t

0
‖eν∆(t−τ)(∇× (((∇×b)×b)×b))(τ)‖L2dτ

+
∫ t

0
‖eµ∆h(t−τ)

∂3(u ·∇u)(τ)‖L2dτ +
∫ t

0
‖eν∆(t−τ)

∂3(b ·∇b)(τ)‖L2dτ

=:
11

∑
i=1

Ki.

(4.11)
Next, we estimate K1 through K11. By the Littlewood-Paley decomposition and Bernstein’s
inequality, we arrive at

K1 ≤C
(

∑
k∈Z

e−2µ22kt‖∆h
ku0‖2

L2

) 1
2

≤C
(
1+ t

)− 1
2
(
‖u0‖Ḃ−1,0

2,∞
+‖u0‖L2

)
≤C(1+ t)−

1
2 E(0),

where ∑k∈Z(22kte−2µ22kt)≤C is used. Similarly, we have K2 +K3 ≤C(1+ t)−
1
2 E(0). To esti-

mate K4, we further write it into two terms

K4 ≤
∫ t

0
‖eµ∆h(t−τ)(uh ·∇hu)(τ)‖L2dτ +

∫ t

0
‖eµ∆h(t−τ)(u3∂3u)(τ)‖L2dτ

=: K41 +K42.
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Using Lemmas 2.2 and 2.3, we arrive at

K41 ≤C
∫ t

0
(t− τ)−

1
2 ‖ ‖(uh ·∇hu)(τ)‖L1

h
‖L2

x3
dτ

≤C
∫ t

0
(t− τ)−

1
2 ‖uh(τ)‖

1
2
L2 ‖∂3uh(τ)‖

1
2
L2 ‖∇hu(τ)‖L2 dτ

≤CE2(t)
∫ t

0
(t− τ)−

1
2 (1+ τ)−

3
2 dτ

≤C(1+ t)−
1
2 E2(t).

Similar, K42 ≤C(1+ t)−
1
2 E2(t). It follows that K4 ≤C(1+ t)−

1
2 E2(t). Similarly, we can derive

that K5 has the same bound as K4. Using Lemma 2.3 and the Gagliardo-Nirenberg inequality, it
holds that, for 3

4 < α < 1,

K6 +K7 ≤C
∫ t

0
(t− τ)−

1+α

2 ‖(u⊗b)(τ)‖
L

6
3+2α

dτ

≤C
∫ t

0
(t− τ)−

1+α

2 ‖b(τ)‖α− 1
2

L2 ‖∇b(τ)‖
3
2−α

L2 ‖u(τ)‖L2dτ

≤C(1+ t)−
1
2 E2(t).

To bound K8, we again use Lemma 2.3 together with the Gagliardo-Nirenberg inequality to
obtain

K8 ≤C
∫ t

0
(t− τ)−

1+α

2 ‖((∇×b)×b)(τ)‖
L

6
3+2α

dτ

≤C
∫ t

0
(t− τ)−

1+α

2 ‖b(τ)‖α− 1
2

L2 ‖∇b(τ)‖
5
2−α

L2 dτ

≤C(1+ t)−
1
2 E2(t).

Similarly, it holds that K9 ≤C(1+ t)−
1
2 E3(t). As in the estimate of K4, we have

K10 ≤C(1+ t)−
1
2 (E

3
2 (t)+E

5
3 (t)).

Similarly as K8, we obtain K11 ≤C(1+ t)−
1
2 E2(t). Substituting the above bounds into (4.11),

we find that

‖(u,b,∂3u)(t)‖L2 ≤C(1+ t)−
1
2 E(0)+C(1+ t)−

1
2

(
E2(t)+E

3
2 (t)+E

5
3 (t)+E3(t)

)
. (4.12)
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Applying ∇h and ∇ to (4.8) and (4.9), respectively, taking the L2-norm to the resulting equation
and then adding them up, we derive that

‖(∇hu,∇b)(t)‖L2

≤ ‖∇heµ∆htu0‖L2 +‖∇eν∆tb0‖L2 +
∫ t

0
‖∇heµ∆h(t−τ)(u ·∇u)(τ)‖L2dτ

+
∫ t

0
‖∇heµ∆h(t−τ)(b ·∇b)(τ)‖L2dτ +

∫ t

0
‖∇eν∆(t−τ)(u ·∇b)(τ)‖L2dτ

+
∫ t

0
‖∇eν∆(t−τ)(b ·∇u)(τ)‖L2dτ +

∫ t

0
‖∇eν∆(t−τ)(∇× ((∇×b)×b))(τ)‖L2dτ

+
∫ t

0
‖∇eν∆(t−τ)(∇× (((∇×b)×b)×b))(τ)‖L2dτ

=:
8

∑
i=1

Li.

(4.13)

As in the estimate of K1, we obtain L1 +L2 ≤C(1+ t)−1E(0). By Lemma 2.3, we have

L3 ≤C
∫ t

2

0
(t− τ)−1 ‖ ‖(u ·∇u)(τ)‖L1

h
‖L2

x3
dτ +C

∫ t

t
2

(t− τ)−
1+α

2 ‖ ‖(u ·∇u)(τ)‖
L

2
1+α

h

‖L2
x3

dτ

=: L31 +L32.

As in the estimate of K4, we arrive at L31≤C(1+t)−1E2(t). Due to 3
4 <α < 1, direct calculation

implies that

‖ ‖ f ·∇g‖
L

2
1+α

h

‖L2
x3
≤C‖ ‖ f‖

1
2
L2

x3
‖∂3 f‖

1
2
L2

x3
‖

L
2
α
h

‖∇g‖L2

≤C‖ ‖ f‖2α−1
L2

h
‖∇h f‖2−2α

L2
h
‖

1
2
L2

x3
‖∂3 f‖

1
2
L2‖∇g‖L2

≤C‖ f‖α− 1
2

L2 ‖∇h f‖1−α

L2 ‖∂3 f‖
1
2
L2‖∇g‖L2.

Thus

L32 ≤C
∫ t

t
2

(t− τ)−
1+α

2 ‖ ‖(uh ·∇hu)(τ)‖
L

2
1+α

h

‖L2
x3

dτ

+C
∫ t

t
2

(t− τ)−
1+α

2 ‖ ‖(u3∂3u)(τ)‖
L

2
1+α

h

‖L2
x3

dτ

≤C
∫ t

t
2

(t− τ)−
1+α

2 ‖uh(τ)‖
α− 1

2
L2 ‖∇huh(τ)‖1−α

L2 ‖∂3uh(τ)‖
1
2
L2‖∇hu(τ)‖L2dτ

+C
∫ t

t
2

(t− τ)−
1+α

2 ‖u3(τ)‖
α− 1

2
L2 ‖∇hu3(τ)‖1−α

L2 ‖∂3u3(τ)‖
1
2
L2‖∂3u(τ)‖L2dτ

≤C(1+ t)−1E2(t).
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Hence, L3 ≤C(1+ t)−1E2(t). Similarly, we have L4 ≤C(1+ t)−1E2(t). Applying Lemma 2.3
and the Gagliardo-Nirenberg inequality, we obtain

L5 ≤C
∫ t

2

0
(t− τ)−

7
4 ‖(u⊗b)(τ)‖L1dτ +C

∫ t

t
2

(t− τ)−
1+α

2 ‖(u ·∇b)(τ)‖
L

6
3+2α

dτ

≤C(1+ t)−1E2(t).

Similarly, it holds that L6 ≤C(1+ t)−1E2(t).
Now we turn to bound L7 as follows. For terms L7 and L8, we apply the same method as L5,

which are

L7 ≤C
∫ t

2

0
(t− τ)−

7
4 ‖((∇×b)×b)(τ)‖L1dτ

+C
∫ t

t
2

(t− τ)−
1+α

2 ‖(∇× ((∇×b)×b))(τ)‖
L

6
3+2α

dτ

≤C(1+ t)−1(E2(t)+E
3
2 (t)+E

5
4 (t)
)

and

L8 ≤C
∫ t

2

0
(t− τ)−

7
4‖(((∇×b)×b)×b)(τ)‖L1dτ

+C
∫ t

t
2

(t− τ)−
1+α

2 ‖(∇× (((∇×b)×b)×b))(τ)‖
L

6
3+2α

dτ

≤C(1+ t)−1(E3(t)+E
3
2 (t)+E

9
4 (t)
)
,

where 3
4 < α < 1. Inserting the above bounds into (4.13), we see that

‖(∇hu,∇b)(t)‖L2

≤C(1+ t)−1E(0)+C(1+ t)−1
(

E2(t)+E
3
2 (t)+E

5
3 (t)+E

5
4 (t)+E

9
4 (t)+E3(t)

)
.

Adding this to (4.12) immediately yields (4.7). The stand bootstrapping argument would imply
the desired decay estimates (4.2) and (4.3).

Step 2. Decay estimates of ‖∇2
hu(t)‖L2 and ‖∇2

hb(t)‖L2 .
Applying ∇2

h to the first two equations in (1.1), and taking the L2-inner product with ∇2
hu and

∇2
hb, respectively, we obtain

1
2

d
dt

(
‖∇2

hu‖2
L2 +‖∇2

hb‖2
L2

)
+µ‖∇3

hu‖2
L2 +ν‖∇2

h∇b‖2
L2

=−
∫

∇
2
h(u ·∇u) ·∇2

hudx+
∫

∇
2
h(b ·∇b) ·∇2

hudx−
∫

∇
2
h(u ·∇b) ·∇2

hbdx+
∫

∇
2
h(b ·∇u) ·∇2

hbdx

−
∫

∇
2
h(∇× ((∇×b)×b)) ·∇2

hbdx+
∫

∇
2
h(∇× (((∇×b)×b)×b)) ·∇2

hbdx

=:
6

∑
i=1

Mi.

(4.14)
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Using the divergence free condition ∇ ·u = 0, we rewrite M1 as

M1 =−2
∫

∇huh ·∇2
hu ·∇2

hudx−2
∫

∇hu3 ·∇h∂3u ·∇2
hudx

−
∫

∇
2
huh ·∇hu ·∇2

hudx−
∫

∇
2
hu3∂3u ·∇2

hudx

=: M11 +M12 +M13 +M14.

In the following, we bound the terms M11 through M14. Analogous to the earlier estimates of
H1, we have

M11 ≤
µ

16
‖∇3

hu‖2
L2 +C‖∇hu‖L2‖∇2

hu‖L2(‖∂3∇hu‖2
L2 +‖∇2

hu‖2
L2),

M13 ≤
ν

16
‖∇3

hu‖2
L2 +C‖∇hu‖L2‖∇2

hu‖L2(‖∂3∇hu‖2
L2 +‖∇2

hu‖2
L2),

M14 ≤
µ

16
‖∇3

hu‖2
L2 +C‖∂3u‖L2‖∇2

hu‖L2
(
‖∂3∇hu‖2

L2 +‖∇2
hu‖2

L2

)
.

We cannot estimate M12 directly. To bound it, we apply integration by parts and obtain

M12 = 2
∫

∇
2
hu3 ·∂3u ·∇2

hudx+2
∫

∇hu3 ·∂3u ·∇3
hudx

=: M121 +M122.

Clearly, M121 has the same bound as M14. Applying Lemma 2.4 and the Young inequality, we
derive that

M122 ≤C‖∇hu3‖
1
4
L2‖∂1∇hu3‖

1
4
L2‖∂3∇hu3‖

1
4
L2‖∂1∂3∇hu3‖

1
4
L2‖∂3u‖

1
2
L2‖∂2∂3u‖

1
2
L2‖∇3

hu‖L2

≤ µ

16
‖∇3

hu‖2
L2 +C‖∇2

hu‖
4
3
L2‖∂3u‖

4
3
L2‖∇hu‖

2
3
L2(‖∂3∇hu‖2

L2 +‖∇2
hu‖2

L2).

Therefore, we have

M12 ≤
µ

16
‖∇3

hu‖2
L2 +C

(
‖∂3u‖L2‖∇2

hu‖L2 +‖∇2
hu‖

4
3
L2‖∂3u‖

4
3
L2‖∇hu‖

2
3
L2

)
(‖∂3∇hu‖2

L2 +‖∇2
hu‖2

L2).

Inserting the boundness of M1i(i = 1, · · · ,4) into M1 yields

M1 ≤
µ

4
‖∇3

hu‖2
L2 +C

(
‖∇hu‖L2‖∇2

hu‖L2 +‖∂3u‖L2‖∇2
hu‖L2 +‖∇2

hu‖
4
3
L2‖∂3u‖

4
3
L2‖∇hu‖

2
3
L2

)
× (‖∂3∇hu‖2

L2 +‖∇2
hu‖2

L2).

Similar as the estimate of H1 and M1, one has

M3 =−
∫

∇
2
hu ·∇b ·∇2

hbdx−2
∫

∇hu ·∇h∇b ·∇2
hbdx

≤ µ

16
‖∇3

hu‖2
L2 +

ν

8
‖∇2

h∇b‖2
L2 +C(‖∇hu‖L2 +‖∇b‖L2)‖∇2

hu‖L2‖∆b‖2
L2.
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As in the estimates of M1, we have

M2 +M4 =
∫

∇
2
hb ·∇b ·∇2

hudx+2
∫

∇hb ·∇∇hb ·∇2
hudx

+
∫

∇
2
hb ·∇u ·∇2

hbdx+2
∫

∇hb ·∇∇hu ·∇2
hbdx

≤ µ

16
‖∇3

hu‖2
L2 +

ν

16
‖∇2

h∇b‖2
L2 +C

(
‖∇hu‖L2‖∇2

hb‖L2

+‖∇b‖L2‖∇2
hu‖L2 +‖∂3u‖L2‖∇2

hb‖L2

+‖∇hu‖
4
3
L2‖∇hb‖

2
3
L2‖∇2

hu‖
2
3
L2

)
(‖∂3∇hu‖2

L2 +‖∆b‖2
L2).

Next, we turn to bound M5. Integration by parts yields

M5 =−
∫
(∇×b×∇

2
hb) ·∇2

h∇×bdx−2
∫
(∇h∇×b×∇hb) ·∇2

h∇×bdx

≤ ν

16
‖∇2

h∇b‖2
L2 +C‖∇b‖2

L2‖∆b‖4
L2‖∇2

hb‖4
L2.

As in the estimate of H6, we derive that

M6 =
∫
((∇2

h(∇×b)×b)×b) ·∇2
h(∇×b)dx+2

∫
((∇h(∇×b)×∇hb)×b) ·∇2

h(∇×b)dx

+2
∫
((∇h(∇×b)×b)×∇hb) ·∇2

h(∇×b)dx+
∫
(((∇×b)×∇

2
hb)×b) ·∇2

h(∇×b)dx

+2
∫
(((∇×b)×∇hb)×∇hb) ·∇2

h(∇×b)dx+
∫
(((∇×b)×b)×∇

2
hb) ·∇2

h(∇×b)dx

≤−||∇2
h(∇×b)×b||2L2 +

5ν

16
||∇2

h∇b||2L2 +C‖∇b‖L2‖∇2b‖3
L2‖∇3b‖2

L2

+C‖∇b‖
3
2
L2‖∇2b‖3

L2‖∇3b‖
3
2
L2.

Inserting the above bounds into (4.14) yields
d
dt

(
‖∇2

hu‖2
L2 +‖∇2

hb‖2
L2

)
+µ‖∇3

hu‖2
L2 +ν‖∇2

h∇b‖2
L2 + ||∇2

h(∇×b)×b||2L2

≤C
((
‖∇hu‖L2 +‖∇b‖L2 +‖∂3u‖L2

)(
‖∇2

hu‖L2 +‖∇2
hb‖L2

)
+‖∇2

hu‖
4
3
L2‖∂3u‖

4
3
L2‖∇hu‖

2
3
L2 +‖∇hu‖

4
3
L2‖∇hb‖

2
3
L2‖∇2

hu‖
2
3
L2

+‖∇b‖L2‖∇2b‖L2‖∇3b‖2
L2 +‖∇b‖

3
2
L2‖∇2b‖L2‖∇3b‖

3
2
L2

)
(‖∇hu‖2

H1 +‖∇b‖2
H1).

Multiplying (t− s)2 to this inequality, we deduce that
d
dt
((t− s)2 (‖∇2

hu(t)‖2
L2 +‖∇2

hb(t)‖2
L2))

≤ 2(t− s)(‖∇2
hu‖2

L2 +‖∇2
hb‖2

L2)

+C(t− s)2
((
‖∇hu‖L2 +‖∇b‖L2 +‖∂3u‖L2

)(
‖∇2

hu‖L2 +‖∇2
hb‖L2

)
+‖∇2

hu‖
4
3
L2‖∂3u‖

4
3
L2‖∇hu‖

2
3
L2 +‖∇hu‖

4
3
L2‖∇hb‖

2
3
L2‖∇2

hu‖
2
3
L2

+‖∇b‖L2‖∇2b‖L2‖∇3b‖2
L2 +‖∇b‖

3
2
L2‖∇2b‖L2‖∇3b‖

3
2
L2

)
(‖∇hu‖2

H1 +‖∇b‖2
H1).

(4.15)
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Combining this with (4.2) and (4.3), we integrate the resulting inequality from s to t and obtain

(t− s)2 (‖∇2
hu(t)‖2

L2 +‖∇2
hb(t)‖2

L2

)
≤ 2

∫ t

s
(τ− s)(‖∇2

hu(τ)‖2
L2 +‖∇2

hb(τ)‖2
L2)dτ

+C
∫ t

s
(τ− s)2 (1+ τ)−

1
2
(
‖∇hu(τ)‖2

H1 +‖∇b(τ)‖2
H1

)
dτ.

(4.16)

It follows from (4.2), (4.3), and Lemma 4.1 that∫ t

s
(‖∇hu(τ)‖2

H1 +‖∇b(τ)‖2
H1)dτ ≤ ‖u(s)‖2

H1 +‖b(s)‖2
H1 ≤C(1+ s)−1. (4.17)

Setting s = t
2 , one sees that (4.16) and (4.17) implies that

t2

4
(
‖∇2

hu(t)‖2
L2 +‖∇2

hb(t)‖2
L2

)
≤ 2

∫ t

t
2

(
τ− t

2
)
(‖∇2

hu(τ)‖2
L2 +‖∇2

hb(τ)‖2
L2)dτ +C(1+ t)

3
2

∫ t

t
2

(
∥∥∇hu(τ)

∥∥2
H1 +

∥∥∇b(τ)
∥∥2

H1)dτ

≤C
(

1+ t +(1+ t)
3
2

)(
‖u( t

2
)‖2

H1 +‖b(
t
2
)‖2

H1

)
≤C(1+ t)

1
2 .

Thus

‖∇2
hu(t)‖2

L2 ≤C(1+ t)−
3
2 . (4.18)

To enhance the decay rate further, we adopt an iterative approach. For notational convenience,
we define a0 =

3
2 . Inserting (4.2), (4.3), and (4.18) into (4.15), and following the above proce-

dure, we obtain

‖∇2
hu(t)‖2

L2 +‖∇2
hb(t)‖2

L2 ≤C (1+ t)−a1 ,

where a1 =
3
2 +

1
2a0. Repeating this procedure n≥ 1 times yields

‖∇2
hu(t)‖2

L2 +‖∇2
hb(t)‖2

L2 ≤C(1+ t)−an , (4.19)

where an =
3
2 +

1
2an−1. By this iterative formula, we have

an =
3
2

(
1+

1
2
+ · · ·+

(1
2
)n−1

)
+
(1

2
)na0 =

3
2

(
2−
(1

2
)n+1

)
.

Clearly, it holds that, as n→ ∞, an→ 3 Thus, by choosing n→ ∞, (4.19) implies that

‖∇2
hu(t)‖2

L2 +‖∇2
hb(t)‖2

L2 ≤C(1+ t)−3.

This implies that (4.4) holds. This completes the proof of Theorem 4.1. �

4.2. Decay Estimates of ‖(∇h∂3u,∇∂3b)(t)‖L2 and ‖∂ 2
3 u(t)‖L2 . The main purpose of this sub-

section is to establish the decay estimates of ‖(∇h∂3u,∇∂3b)(t)‖L2 and ‖∂ 2
3 u(t)‖L2 for H4 initial

value. We state the result as follows.
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Theorem 4.2. Assume that (u0,b0) ∈ H4(R3). Then there exists ε > 0 such that if (u0,b0) sat-
isfies ‖(u0,∂3u0)‖Ḃ−1,0

2,∞ (R3)
+‖b0‖Ḃ−1

2,∞(R3)+‖(u0,b0)‖H4(R3) ≤ ε, then the global solution (u,b)

to problem (1.1)-(1.2) also obeys

‖(u,∂3u)(t)‖Ḃ−1,0
2,∞ (R3)

+‖b(t)‖Ḃ−1
2,∞(R3) ≤C, (4.20)

‖(∇h∂3u,∇∂3b)(t)‖L2(R3) ≤C (1+ t)−1 , (4.21)

‖∂ 2
3 u(t)‖L2(R3) ≤C

(
1+ t

)− 1
3 . (4.22)

Proof. The idea of proof is follows. To obtain the decay ‖(∇h∂3u,∇h∂3b)(t)‖L2 , we resort to
integral form of the problem. The estimate for ‖∂ 2

3 u(t)‖L2 is more involved. To deal with it, we
also need to introduce the time-weighted functional M (t) = sup0≤τ≤t(1+ τ)

1
3‖∂ 2

3 u(τ)‖L2. In
order to clarify the proof idea, we divide the proof into three steps.

Step 1. Decay estimates for ‖(u,∂3u)(t)‖Ḃ−1,0
2,∞

and ‖b(t)‖Ḃ−1
2,∞

.

Applying (∆h
k ,∆

h
k∂3) and ∆k to the equations u and b of (1.1), taking the L2-inner product with

(∆h
ku,∆h

k∂3u) and ∆kb, respectively, and adding them together, we obtain an inequality. Then,
multiplying this inequality by 2−2k and taking the l∞

k over k ∈ Z, together with the Hölder’s
inequality yield

1
2

d
dt

(
‖u‖2

Ḃ−1,0
2,∞

+‖b‖2
Ḃ−1

2,∞
+‖∂3u‖2

Ḃ−1,0
2,∞

)
+µ ‖∇hu‖2

Ḃ−1,0
2,∞

+ν ‖∇b‖2
Ḃ−1

2,∞
+µ ‖∇h∂3u‖2

Ḃ−1,0
2,∞

≤ ‖b ·∇b‖Ḃ−1,0
2,∞
‖u‖Ḃ−1,0

2,∞
+‖u ·∇u‖Ḃ−1,0

2,∞
‖u‖Ḃ−1,0

2,∞

+‖u ·∇b‖Ḃ−1
2,∞
‖b‖Ḃ−1

2,∞
+‖b ·∇u‖Ḃ−1

2,∞
‖b‖Ḃ−1

2,∞

+‖(∇×b)×b‖Ḃ−1
2,∞
‖∇×b‖Ḃ−1

2,∞

+‖((∇×b)×b)×b‖Ḃ−1
2,∞
‖∇×b‖Ḃ−1

2,∞

+‖∂3(b ·∇b)‖Ḃ−1,0
2,∞
‖∂3u‖Ḃ−1,0

2,∞
+‖∂3(u ·∇u)‖Ḃ−1,0

2,∞
‖∂3u‖Ḃ−1,0

2,∞

=:
8

∑
i=1

Oi.

(4.23)

Using the Hardy-Littlewood-Sobolev inequality and Lemma 2.2, we have

‖b ·∇b‖Ḃ−1,0
2,∞
≤C‖ ‖b ·∇b‖L1

h
‖L2

x3
≤C‖b‖

1
2
L2‖∇b‖

3
2
L2.

Therefore, we obtain O1 ≤ C‖b‖
1
2
L2‖∇b‖

3
2
L2‖u‖Ḃ−1,0

2,∞
. As in the estimate of O1, together with

∇ ·u = 0, we arrive at

O2 ≤C
(
‖u‖

1
2
L2 ‖∂3u‖

1
2
L2 ‖∇hu‖L2 +‖u‖

1
2
L2 ‖∇hu‖

1
2
L2 ‖∂3u‖L2

)
‖u‖Ḃ−1,0

2,∞
.

Applying the Hardy-Littlewood-Sobolev and Gagliardo-Nirenberg inequalities yields

‖u ·∇b‖Ḃ−1
2,∞
≤C‖u ·∇b‖

L
6
5
≤C‖u‖

1
2
L2‖∇u‖

1
2
L2‖∇b‖L2.
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Thus O3≤C‖u‖
1
2
L2‖∇u‖

1
2
L2‖∇b‖L2‖b‖Ḃ−1

2,∞
. Similarly, one has O4≤C‖b‖

1
2
L2‖∇b‖

1
2
L2‖∇u‖L2‖b‖Ḃ−1

2,∞
.

Using the Young inequality, one obtains

O5 ≤C‖b‖
1
2
L2‖∇b‖

3
2
L2‖∇b‖Ḃ−1

2,∞
≤ ν

4
‖∇b‖2

Ḃ−1
2,∞

+C‖b‖L2‖∇b‖3
L2 .

The same procedure yields

O6 ≤C‖(∇×b)×b‖L2‖b‖L3‖∇b‖Ḃ−1
2,∞
≤ ν

4
‖∇b‖2

Ḃ−1
2,∞

+C‖b‖
3
2
L2‖∇b‖

15
4

L2 .

As O1, we obtain

O7 ≤C
(
‖∇b‖

3
2
L2‖∂ 2

3 b‖
1
2
L2 +‖b‖

1
2
L2‖∇b‖L2‖∇∂

2
3 b‖

1
2
L2

)
‖∂3u‖Ḃ−1,0

2,∞
.

To bound O8, we further write ‖∂3(u ·∇u)‖Ḃ−1,0
2,∞

into four terms. More precisely, the Hardy-

Littlewood-Sobolev inequality yields

O8 ≤C
(
‖ ‖∂3uh ·∇hu‖L1

h
‖L2

x3
+C‖ ‖∂3u3∂3u‖L1

h
‖L2

x3

+C‖ ‖uh ·∇h∂3u‖L1
h
‖L2

x3
+C‖ ‖u3∂

2
3 u‖L1

h
‖L2

x3

)
‖∂3u‖Ḃ−1,0

2,∞

≤C
(
‖∂3u‖

1
2
L2‖∇hu‖L2‖∂ 2

3 u‖
1
2
L2 +‖u‖

1
2
L2‖∂3u‖

1
2
L2‖∇hu‖

2
3
L2‖∇3

∇hu‖
1
3
L2

+‖u‖
1
2
L2‖∇hu‖

1
2
L2‖∂3u‖

2
3
L2‖∇3

∂3u‖
1
3
L2

)
‖∂3u‖Ḃ−1,0

2,∞
.

Inserting the bounds of Oi(i = 1, · · ·,8) into (4.23), we obtain

d
dt

(
‖u‖2

Ḃ−1,0
2,∞

+‖b‖2
Ḃ−1

2,∞
+‖∂3u‖2

Ḃ−1,0
2,∞

)
≤C‖b‖

1
2
L2‖∇b‖

3
2
L2‖u‖Ḃ−1,0

2,∞
+C‖b‖L2‖∇b‖3

L2 +C‖b‖
3
2
L2‖∇b‖

15
4

L2

+C
(
‖u‖

1
2
L2‖∂3u‖

1
2
L2‖∇hu‖L2 +‖u‖

1
2
L2‖∇hu‖

1
2
L2‖∂3u‖L2

)
‖u‖Ḃ−1,0

2,∞

+C
(
‖u‖

1
2
L2‖∇u‖

1
2
L2‖∇b‖L2 +‖b‖

1
2
L2‖∇b‖

1
2
L2‖∇u‖L2

)
‖b‖Ḃ−1

2,∞

+C
(
‖∇b‖

3
2
L2

∥∥∂
2
3 b
∥∥ 1

2
L2 +‖b‖

1
2
L2 ‖∇b‖L2

∥∥∇∂
2
3 b
∥∥ 1

2
L2

)
‖∂3u‖Ḃ−1,0

2,∞

+C
(
‖∂3u‖

1
2
L2‖∇hu‖L2‖∂ 2

3 u‖
1
2
L2 +‖u‖

1
2
L2‖∂3u‖

1
2
L2‖∇hu‖

2
3
L2‖∇3

∇hu‖
1
3
L2

+‖u‖
1
2
L2‖∇hu‖

1
2
L2‖∂3u‖

2
3
L2‖∇3

∂3u‖
1
3
L2

)
‖∂3u‖Ḃ−1,0

2,∞
.
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Integrating this over [0, t] with 0 < t ≤ T and using (4.2) and (4.3), we obtain

‖u(t)‖2
Ḃ−1,0

2,∞
+‖b(t)‖2

Ḃ−1
2,∞

+‖∂3u(t)‖2
Ḃ−1,0

2,∞

≤ ‖u0‖2
Ḃ−1,0

2,∞
+‖b0‖2

Ḃ−1
2,∞

+‖∂3u0‖2
Ḃ−1,0

2,∞
+C

∫ t

0
(1+ τ)−

7
2 dτ +C

∫ t

0
(1+ τ)−

9
2 dτ

+C sup
0≤τ≤t

(‖u(τ)‖Ḃ−1,0
2,∞

+‖b(τ)‖Ḃ−1
2,∞

+‖∂3u(τ)‖Ḃ−1,0
2,∞

)
∫ t

0
(1+ τ)−

13
12 dτ

≤C+C sup
0≤τ≤t

(
‖u(τ)‖Ḃ−1,0

2,∞
+‖b(τ)‖Ḃ−1

2,∞
+‖∂3u(τ)‖Ḃ−1,0

2,∞

)
.

Then this together with the Young inequality yields (4.20).
Step 2. Decay estimates of ‖∇h∂3u(t)‖L2 and ‖∇∂3b(t)‖L2 .
Applying ∇h∂3 and ∇∂3 to (4.8) and (4.9), respectively, and taking the L2-norm, we obtain

‖∇h∂3u(t)‖L2 +‖∇∂3b(t)‖L2

≤ ‖∇heµ∆ht
∂3u0‖L2 +‖∇∂3eν∆htb0‖L2 +

∫ t

0
‖∇heµ∆h(t−τ)

∂3(u ·∇u)(τ)‖L2dτ

+
∫ t

0
‖∇heµ∆h(t−τ)

∂3(b ·∇b)(τ)‖L2dτ +
∫ t

0
‖∇eν∆(t−τ)

∂3(b ·∇u)(τ)‖L2dτ

+
∫ t

0
‖∇eν∆(t−τ)

∂3(u ·∇b)(τ)‖L2dτ +
∫ t

0
‖∇eν∆(t−τ)

∂3(∇× ((∇×b)×b))(τ)‖L2dτ

+
∫ t

0
‖∇eν∆(t−τ)

∂3(∇× (((∇×b)×b)×b))(τ)‖L2dτ

=:
8

∑
i=1

Pi.

(4.24)
By Lemma 2.3, we see that

P1 ≤C(1+ t)−1(‖∂3u0‖Ḃ−1,0
2,∞

+‖u0‖L2)≤C(1+ t)−1,

where we used ∑k∈Z(24kt2e−2µ22kt)≤C. Similarly, we have P2 ≤C(1+ t)−1. To bound P3, we
rewrite it as

P3 =
∫ t

2

0
‖∇heµ∆h(t−τ)

∂3(u ·∇u)(τ)‖L2dτ +
∫ t

t
2

‖∇heµ∆h(t−τ)
∂3(u ·∇u)(τ)‖L2dτ

=: P31 +P32.

Using the Hardy-Littlewood-Sobolev inequality, one sees that

P31 ≤C
∫ t

2

0
(t− τ)−1

(
‖ ‖∂3uh ·∇hu(τ)‖L1

h
‖L2

x3
+‖ ‖∂3u3∂3u(τ)‖L1

h
‖L2

x3

+‖ ‖uh ·∇h∂3u(τ)‖L1
h
‖L2

x3
+‖ ‖u3∂

2
3 u(τ)‖L1

h
‖L2

x3

)
dτ

≤C(1+ t)−1.
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Applying ∇ ·u = 0 and Lemma 2.3 , and following the same procedure that leads to L3 and K10,
we obtain

P32 ≤C
∫ t

t
2

(t− τ)−
1+α

2

(
‖ ‖∂3uh ·∇hu(τ)‖

L
2

1+α

h

‖L2
x3
+‖ ‖∂3u3∂3u(τ)‖

L
2

1+α

h

‖L2
x3

+‖ ‖uh ·∇h∂3u(τ)‖
L

2
1+α

h

‖L2
x3
+‖ ‖u3∂

2
3 u(τ)‖

L
2

1+α

h

‖L2
x3

)
dτ

≤C(1+ t)−1

with 3
4 < α < 1. Thus P3 ≤C(1+ t)−1. Similarly as the estimate of P3, we obatin P4 ≤C(1+

t)−1. To bound P5, we rewrite it as

P5 =
∫ t

2

0
‖∇eν∆(t−τ)

∂3(b ·∇u)(τ)‖L2dτ +
∫ t

t
2

‖∇eν∆(t−τ)
∂3(b ·∇u)(τ)‖L2dτ

=: P51 +P52.

Using Lemma 2.3, we obtain

P51 ≤C
∫ t

2

0
(t− τ)−

9
4 ‖(b⊗u)(τ)‖L1dτ ≤C(1+ t)−1.

Applying the Hardy-Littlewood-Sobolev and Gagliardo-Nirenberg inequalities yields

P52 ≤C
∫ t

t
2

(t− τ)−
1+α

2

(
‖∂3b ·∇u(τ)‖

L
6

3+2α

+‖b ·∇∂3u(τ)‖
L

6
3+2α

)
dτ

≤C
∫ t

t
2

(t− τ)−
1+α

2

(
‖∂3b(τ)‖

α

2 +
1
4

L2 ‖∇hu(τ)‖L2 +‖∂3b(τ)‖
α

2 +
1
4

L2 ‖∂3u(τ)‖L2

+‖b(τ)‖α− 1
2

L2 ‖∇b(τ)‖
3
2−α

L2 ‖∂3u(τ)‖
1
2
L2

)
dτ

≤C(1+ t)−1.

Thus P5 ≤C(1+ t)−1. Similarly, we can show that P6 and P7 have the same bound as P5. Ap-
plying the Hölder’s inequality and Sobolev imbedding theorem, we derive that

P8 ≤
∫ t

2

0
(t− τ)−

9
4 ‖(((∇×b)×b)×b)(τ)‖L1dτ

+
∫ t

t
2

(t− τ)−
1+α

2 ‖∂3(∇× (((∇×b)×b)×b))(τ)‖
L

6
3+2α

dτ

≤C
∫ t

2

0
(t− τ)−

9
4‖∇b(τ)‖L2‖b(τ)‖2

L4dτ +C
∫ t

t
2

(t− τ)−
1+α

2

(
‖b(τ)‖L∞‖∇b(τ)‖L 3

α

‖∇2b(τ)‖L2

+‖b(τ)‖L 3
α

‖b(τ)‖L∞‖∇3b(τ)‖L2 +‖∇b(τ)‖2
L4‖∇b(τ)‖L 3

α

)
dτ

≤C(1+ t)−1.

Inserting the bounds of Pi(i = 1, · · · ,8) into (4.24), (4.21) immediately follows.
Step 3. Decay estimates of ‖∂ 2

3 u(t)‖L2 .
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Let M (t) = sup0≤τ≤t(1+τ)
1
3‖∂ 2

3 u(τ)‖L2. Applying ∂ 2
3 to (4.8), and taking the L2 norm, one

has
‖∂ 2

3 u(t)‖L2 ≤ ‖∂ 2
3 eµ∆htu0‖L2 +

∫ t

0
‖∂ 2

3 eµ∆h(t−τ)(u ·∇u)(τ)‖L2dτ

+
∫ t

0
‖∂ 2

3 eµ∆h(t−τ)(b ·∇b)(τ)‖L2dτ

=: Q1 +Q2 +Q3.

(4.25)

Taking advantage of the Gagliardo-Nirenberg inequality and Lemma 2.3 yields

Q1 ≤C‖∂3eµ∆htu0‖
2
3
L2‖∂ 4

3 eµ∆htu0‖
1
3
L2 ≤C(1+ t)−

1
3 .

To bound Q2, we rewrite it as

Q2 ≤
∫ t

0
‖eµ∆h(t−τ)(∂ 2

3 u ·∇u)(τ)‖L2dτ +
∫ t

0
‖eµ∆h(t−τ)(u ·∇∂

2
3 u)(τ)‖L2dτ

+2
∫ t

0
‖eµ∆h(t−τ)(∂3u ·∇∂3u)(τ)‖L2dτ

=: Q21 +Q22 +Q23.

Similar, we can obtain

Q21 ≤C
∫ t

0
(t− τ)−

α

2 ‖ ‖(∂ 2
3 uh ·∇hu)(τ)‖

L
2

1+α

h

‖L2
x3

dτ

+C
∫ t

0
(t− τ)−

α

2 ‖ ‖(∂ 2
3 u3∂3u)(τ)‖

L
2

1+α

h

‖L2
x3

dτ

≤C(1+ t)−
1
3 M α− 1

2 (t)+C(1+ t)−
1
3 M

1
2 (t)

and
Q22 ≤C

∫ t

0
(t− τ)−

α

2 ‖ ‖(uh ·∇h∂
2
3 u)(τ)‖

L
2

1+α

h

‖L2
x3

dτ

+C
∫ t

0
(t− τ)−

α

2 ‖ ‖(u3∂
3
3 u)(τ)‖

L
2

1+α

h

‖L2
x3

dτ

≤C(1+ t)−
1
3 +C(1+ t)−

1
3 M

1
2 (t),

where 3
4 < α < 1. In view of the estimate of Q21 together with ∇ ·u = 0, we have

Q23 ≤C
∫ t

0
(t− τ)−

α

2 ‖ ‖(∂3uh ·∇h∂3u)(τ)‖
L

2
1+α

h

‖L2
x3

dτ

+C
∫ t

0
(t− τ)−

α

2 ‖ ‖(∂3u3∂
2
3 u)(τ)‖

L
2

1+α

h

‖L2
x3

dτ

≤C(1+ t)−
1
3 M α− 1

2 (t)+C(1+ t)−
1
3 M

1
2 (t).

Incorporating the above bounds yields

Q2 ≤C(1+ t)−
1
3 M α− 1

2 (t)+C(1+ t)−
1
3 M

1
2 (t)+C(1+ t)−

1
3 .

Similarly, we can derive that Q3 has the same bound as Q2. Substituting the bounds of Q1, Q2,
and Q3 into (4.25), we find that M (t) ≤ C+CM α− 1

2 (t)+CM
1
2 (t), which together with the

Young inequality immediately yields (4.22). Thus Theorem 4.2 is proved. �
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